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FOREWORD 

Contributions to the Metropolitan Study:4 

The Project "Nested Dynamics of Metropolitan Processes 
and Policies" was initiated by the Regional E Urban Development 
Group in 1 9 8 2 ,  and the work on this collaborative study started 
in 1 9 8 3 .  The series of contributions to the study is a means 
of conveying information between the collaborators in the net- 
work of the project. 

This paper by Haag and Weidlich presents an approach to 
modeling migration (population or household relocation). It 
makes a clear distinction between (i) the decision process or, 
in other words, the underlying motivation for migration, and 
(ii) the macrolevel outcome which in model terms is obtained 
as an aggregate picture of a dynamic stochastic process. The 
latter is formulated in terms of transition probabilities which 
are functions of trend parameters which may be related to 
characteristics of the housing market, transportation system, 
workplace accessibility of different locations, etc. 

It is observed that empirically estimated trend parameters 
may be compatible with more than one type of microlevel decision 
process. In this respect.the analysis makes one central 
theoretical issue in the Metropolitan Study apparent: the 
resolution of microlevel assumptions and macrolevel descriptions 
of a dynamic process. 

EBrje Johansson 
Acting Leader 
Regional E Urban Development Group 

November, 1 9 8 3  





ABSTRACT 

A master equation formulation for a class of migration 
problems describing the spatio-temporal dynamics of a system of 
regions is introduced. The transition probabilities are functions 
of trend parameters, which characterize preferences, growth pool 
and saturation effects. The trend parameters can be determined 
by regression analysis from the empirical migration matrix. 
The solution of meanvalue equations yields a nonlinear migration 
prognosis. The relation between trend parameters and motivation 
factors, e.g., income per capita, infrastructure and transporta- 
tion costs, is also discussed. Numerical simulations illustrate 
the influence of the superposition of migration trends on the 
evolution of the system. 
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1 . INTRODUCTION 

Migration processes are an example of socio-economic dyna- 

mics of particular interest for quantitative research because of 

the following reasons: 

On the one hand the under l y ing  mot i va t ions  for a given kind 

of migration are relatively well defined and specific and thus 

available for inquiry. 

On the other hand all these motivations must always result 

in a c lea r  dec is ion  to maintain or to change the location of the 

unit under consideration in a given interval of time. The number 

of relocations of a group of units between a set of sites or 

areas can be counted. And the understanding of the dynamics of 

these changes is the objective of a quantitative migration theory. 

The motivation structure behind migration patterns has been 

intensely investigated in recent work on the microZeveZ as well 

as on the macro leveZ:  factors like the housing market, neighbor- 

hood quality, distance from working place and transportation 

costs, preferences for an urban or rural life style, the labor 

market and the structure of the economy of an area have been 

considered (see Clark and Smith, 1982;  Clark and Burt, 1980 ;  

Curry, 1981;  Dendrinos and Mullally, 1 9 8 1 ) .  The effect of 



motivation factors on the dynamics of a migration system was 

taken into account by different versions of ut i l i ty funct ions 

(see for example, Clark and Smith, 1982; Leonardi, 1983). 

Furthermore, several approaches towards a genera l  dynamica l  

theory o f  migrat ion have recently been developed (see Griffith, 

1982; Haag and Dendrinos, 1983; MacKinnon, 1970; Sonis, 1981; 

Weidlich and Haag, 1980, 1983; and in particular the articles 

in Griffith and Lea [eds], 1983). The migration model presented 

here follows and extends the line of argumentation in Weidlich 

and Haag (1983) and Griffith and Lea (1983, pp24-61). 

We begin with the remark that the structure of the process 

to be described in a migration theory indicates some consequences 

with respect to the adequate form of the theory: 

Firstly, since we cannot expect to describe the individual 

decisions on a fully deterministic level, their probabi l ist ic 

t reatment  seems adequate. As a consequence the resulting theory 

should be a stochast ic  one. This means, we expect that the 

theory yields as a main result the evolution of a probabil i ty 

d is t r ibut ion over the possible configurations (i.e.., area popu- 

lation numbers) arising in the migration process. From such a 

moving distribution it will then be possible to derive determin- 

istic equations of motion for the meanvalues of the numbers of 

migrating units. Thus the stochastic level of description com- 

prises the evolution with time of meanvalues of the relevant 

variables. 

Secondly, it seems reasonable to make a certain separation 

between the st ructure of  mot ivat ions and the resul t ing dynamics 

of a migration process in the following sense: 

Let us assume that the migration dynamics is fully deter- 

mined by a set of parameters T ~ , . . . , T ~  appearing in the equa- 

tions of motion for the probability distribution and the mean- 

values. (In our model the parameters { v , G ~ , K ~ }  determining the 

transition probabilities (2.7) are of this type.) And vice 

versa we assume, that the numerical values of the {T~,...,T~) 

can be extracted from empirical knowledge about the migration 

process by a regression analysis. We shall denote this kind of 

parameter as "trend parameters". 



Since the migration is ultimately generated by certain 

motivation factors p l,...tpN describing the intensities of 

different "reasons" 1,2, ..., N to change the location, the trend 

parameters will be functions of these motivation factors p 
1 -  

This functional relationship however is not necessarily an unam- 
(1 1 ( 1 ) )  biguous one. It can happen, that two different sets {p1,...uN 

(2 1 and b (2) ) of motivation factors under appropriate assump- M 
tions give rise to the same set {T~....,T~} of trend parameters 

and hence to the same migration dynamics. In this case the migra- 

tion analysis does not distinguish between the motivation sets 

(1) and (2), since they lead to the same dynamics. The two moti- 
( 1  ) vation factor sets {q ,.. . (2 1 ("1 and p l t t p 2  then are N 

equivalent with respect to the migration process. 

For these reasons we proceed in two steps: firstly we 

introduce trend parameters, which determine the dynamics, and 

vice versa are determined by the dynamics of the system; and 

only secondly and separately we discuss the eventual dependence 

of these trend parameters on motivation factors. 

The paper is organized as follows: 

In chapter 2 the migration model is developed on the basis 

of its master equation and its meanvalue equations. The mathe- 

matical tools of the derivation of the master equation and some 

of its more specific properties, e.g., detailed balance, are 

summarized in the appendix A. In chapter 3 the trend parameters 

are determined from empirical migration data by a regression 

analysis; an evaluation scheme indicates the possible conclusions 

to be drawn from this analysis. The relationship between trend 

parameters and motivation factors is also established. Finally, 

the numerical simulation of chapter 4 shows the practicability 

of the model. 

2. THE MIGRATION MODEL 

In the following model for simplicity of notation we restrict 

ourselves to the migration of human populations, although the 

transition to a migration of other units can easily be made. 



The individual motivations and resulting decisions in the 

migration process of populations are highly complex. Therefore 

a reasonable and practicable description of such decisions is 

formulated in probabilistic terms: for a member of a certain 

population there exists a certain probability per unit of time 

to move from one area or region to another. These transition 

probabilities are assumed to 'de~end on certain trend parameters, 

whose numerical values fully determine the dynamics of the 

system. Before going into details, however, we have to draw a 

general conclusion: if the i n d i v i d u a l  decisions are stochastic, 

the evolution of the g l o b a l  system composed of migrating indi- 

viduals cannot be fully deterministic either. Instead the 

system must correctly be described by an equation of motion for 

the evolution of a p r o b a b i l i t y  d i s t r i b u t i o n  over its possible 

states. This equation is denoted as master equation and some 

of its general properties are summarized in appendix A. In the 

next sections the migration model is specified to which the 

master equation will be applied. 

2.1 Specification of the Model 

We consider one population of N members (the units of 

migration) migrating between L areas or sites 1,2, ..., L. The 

possible states i of the migration system are then characterized 

by the f f s o c i o c o n f i g u r a t i o n  1 

L 
with C n k = N  

k= 1 

where the integer n is the number of units in area k. After k 
this identification the formulas of the appendix can be applied, 

In particular, the probability distribution function 

1)For the general definition of the socioconfiguration see 
Weidlich and Haag (1 983) . 



can be introduced, where n abbreviates the vector {nl,...,nL} 

and where P(n ; t)-is the probability that the socioconfigura- 

tion {nlt...,nL} is realized at time t. The general form of 

the master equation then reads according to (A.9) 

Here, w(n+k;n) is the transition probability per unit of time 

from the socioconfiguration n = {n lt...tnL} to a neighboring 

configuration n+k = ~nl+k1,n2+k2,...,nL+kL}, where k are posi- 
j 

tive or negative integers. The sums on the r.h.s. of (2.4) 

extend over all k with nonvanishing w(n;n+k) and w(n+k;n), 

respectively. 

2.2 Choice of Transition Probabilities 

In order to make the model explicit the transition proba- 

bilities w(n+k;n) which govern the dynamics of the system have 

to be specified. 

We start from the individual transition probability p j i 
per unit of time of one of the n members in area i to migrate i 
into area j. In principle p can be a function of the situation j i 
in all areas and in particular of the total socioconfiguration 

n, i.e., of the ,distribution of the whole population over the 

areas 1,2, ..., L. It is highly plausible, however, to assume 

that pji is a function of the attractiveness of the new resi- 

dence area j and the old area i only, leaving aside the situa- 

tion in areas 1 # i,j. 

Let the attraction of the area i be characterized by a 

function f.  (n.) depending on parameters specific to that area, 
1 1  

which include the number ni of its residents. Increasingly 

positive (negative) values of fi(ni) by definition mean higher 

(lower) attractiveness to that area. Thus fi(ni) may be inter- 

preted as a "u t iZ i ty  functionf '  with respect to the area i and 

the migration type under consideration. 



The simplest form of this attractivity or utility function 

is 

where the parameters K ~ ,  pi can be interpreted as follows: 

b i  = preference parameter of area i t  since growing 6 i 
increases the attractivity of area i 

K = cooperat ion parameter of area i, since a positive K i i 
leads to increasing attractivity of area i with grow- 

ing density (-ni) of the population in i. Hence K~ 

describes the growth pool effect. 

'i = saturat ion parameter of area i, since for pi < 0 the 

attractivity decreases for sufficiently large popula- 

tion densities. 

The problem is now to describe the effect of the utility 

functions on the migration dynamics. We solve this problem by 

proposing that the individual transition probabilities direct ly 

depend on the utility functions. (Then the utility functions 

directly influence the dynamics, and vice versa, the dynamical 

process itself measures the utility of the areas.) In this 

sense we choose the following exponential form of pji, which-- 

beyond other advantages (see also Leonardi, 1983)--guarantees 

the positive definiteness of these transition probabilities: 

pji(nj,ni) = v exp [f. (n.+l)] exp [-fi(ni)] 
3 3 

with i,j = lt2,...,L 

where v is a global mobility parameter determining the time 

scale on which the migration process takes place. The form (2.6) 

obviously means, that the transition probability from area i to 

area j is larger than that from j to i t  if 

or equivalently, if the attractivity of j exceeds that of i. 



Since the parameters r = {v,Gi,ri,pi} , i = 1,2, ..., L d i r e c t l y  

influence the dynamics of the system they are trend parameters 

T in the sense of the definition given in the introduction, R 

It is now easy to construct the transition probabilities 

w(n+k;n) between socioconfigurations. The ni residents of area 

i change to area j with individual transition probabilities 

(2.6) and thus give rise to the configuration transition 

Hence they contribute the term 

nipji (nj ,nil s wji[n1 

= vn i exp [f . (n .+l) 1 exp [-fi (nil 1 
I I 

for k = {O,. . . (-l)i.. . (+l) j.. -01 

10 for all other k 

to the transition probability w(n+k;n). Since the transitions 

between all areas take place simultaneously and independently, 

the total transition probability w(n+k;n) is the sum of all 

contributions (2.7) so that 

2.3 Explicit Form of the Master Equation 

Inserting (2.8) with (2.7) into (2.4) the explicit master 

equation is obtained which can be cast into a more convenient 

form, because according to (2.7) only transitions between adja- 

cent socioconfigurations are possible, which differ by ki = - 1 ,  

k+ = +1 at the sites i and j. This final form of the master 
J 

equation reads 



In formulating (2.9) we have used translation operators E act- i 
ing on any function of {nl, ... n 1 as L 

2.4 Detailed Balance 

It can now be proved, that the transition probability (2.8) 

satisfies the condition of detailed balance (A.ll) or, equiva- 

lently (A.13). For this aim we choose a set of smallest closed 

chains of states which, however, are sufficient for 'the proof, 

since arbitrary closed chains of states can be composed of these 

smallest ones. A smallest closed chain Lijk connects the follow- 

ing states: 

and corresponds to the ring migration of a member of the popula- 

tion between areas i+j+k+i. Only one term of the r.h.s. of (2.8) 

contributes to each of the transitions (2.11). Hence, the 

formula (A.13) reduces to (read from right to left): 

w [ni-l,nk+l] - - ik . wk. Ink," .+l] . wji [n. ,nil 
= 1 

Wki [nkfnil wjk[nj,nk+l] w ij Ini-1 ,n.+I] J 

which easily can be checked to be satisfied. This completes 

the proof that detailed balance holds. 

2.5 Stationary Solution of the Master Equation 

The most important consequence of detailed balance is, that 

in the case of time-dependent transition probabilities, e.g., 

for constant trend parameters the stationary solu- i 
tion P (n) can be constructed by using (A.12). st 



Let us consider a chain of states 

L 
where N =  I n i  (see(2.2)) 

i=l 

starting from the reference state {N,o, ... 0) and ending in the 

general state {nltn2,..nLI. They are connected by nonvanishing 

transition probabilities. Hence, we can use this chain to con- 

struct Pst (nl , ... . .n ) from PSt (N,O,. . .O) according to formula L 
(A. 12) . By inserting into (A. 12) the transition probabilities 

(2.8) with (2.7), which connect these states, we obtain for 

instance the intermediate result. 

PSt (N-n2,n2,0,.. .O) = 
(2.14) 

n 
N (N-1) . . . (N-n2+1) 2 N 

exp {2 L f2(v)-2 L 
n2! v= 1 v=N-n2+l f l  (v)~PSt(~,Ot...O) 

Continuing the procedure along the chain (2.13) the result 

1 .  i= 1 
Pst (nl tn2 1 "nL) = exp {2 L Fi(ni) 1 

n1 !n2!. . . .n 1 
L' i-1 

can be derived. Here we have introduced 

and put 



Furthermore, the constraint (2.2) has been taken into account 

in (2.15) by the factor 

L 
1 for C ni = N 

i=l 

L 
0 for C ni # N 

i=l 

The factor Z follows from the normalization of the probability 

(2.15) and is L L 
exp {2 C Fi (ni) M ( C ni-N) 

i=l i=l z =  C 
In) 

nl! n2! ..". nL! 

where the sum extends over all socioconfigurations In). In the 

case of the utility function (2.5) the exponential term of (2.15) 

can be further evaluated. The use of (2.5) in (2.16) yields 

which makes the stationary solution (2.15) of the master equation 

fully explicit. Evidently this solution factorizes into a pro- 

duct of L factors, where the i-th factor only depends on 

{ni6 i , ~ i , ~ ) .  The additional factor (2.18) however links these 

otherwise independent factors of the distribution. Henceforth 

we shall neglect the saturation term in (2.31) by putting pi = 0. 

Using Stirling's formula for the factorials, (2.15) can 

also be written in the form 



with 

Oi (ni) = 26 .n. + K .n. (n. +1) - ni (fin (ni) -1) 
1 1  1 1  1 J 

The numbers fi. maximizing P are found by maximizing the 
I st 

exponent in (2.21 ) under the constraint (2.2) . This leads to 

Solving for fii we obtain 

exp [X .+2r. (fi.+i) ] N exp [X i+2~i(fii+!) ] - 1 fii - 1 1  - - 
exp @ L 

(2.23) 

where the Lagrangian parameter X was determined by using the 

constraint (2.2). For given trend parameters (6 ,K.) the trans- 
j I 

cendental equations (2.23) can be used to calculate the most 

probable stationary area population numbers fii, i=1,2,..L. The 

trivial case 6i = K = 0 of equal and vanishing trend parameters i 
naturally leads to equal area population numbers 

The stationary distribution (2.15) or (2.21) will turn out 

to be a useful tool in the analysis of the migration process. 

By definition it is the time-independent solution of the master 

equation for constant  trend parameters { v , ~ ~ , K ~ ) .  Furthermore, 

any time dependent solution of this master equation approaches 

the stationary solution for t + m. In general the migration 

system is, of course, not in this equilibrium state, firstly 



because for given constant trend parameters the occupation 

numbers ni may not yet have reached their equilibrium values fi i 
and secondly because the trend parameters may also be slowly 

time dependent. Although the master equation (2.9) is still 

valid in the last case the transition probabilities wji[n] are 

now time dependent (via the Gi (t) , K~ (t) , etc. ) and the system 

does not reach a stationary state at all! Nevertheless, the 

formal "stationary" solution for the given momentary values of 

the trend parameters (into which the system would relax sooner 

or later if from now on the trend parameters would remain con- 

stant), provides an insight: comparing the equilibrium values 

fii calculated from the "stationary" solution according to (2.23) 

with the empirical values ni at that point in time, the "distance 

from equilibrium" of the system under the given trend situation 

can be estimated. This kind of analysis will be implemented in 

chapters 3 and 4. 

2.6 Equations of Motion for the Meanvalues 

The time dependent solutions of the master equation (2.9) 

can be found numerically. In most cases, however, the full 

information contained in the probability distribution is not 

exploited in an empirical analysis. Instead, it is sufficient 

to solve equations for the meanvalues &(t) of the population 

numbers nil i=1,2, ... L. These meanvalue equations will now be 

derived from the master equation (2.9). The meanvalue of a 

function f (n) of n is defined by 

In particular the mean occupation numbers are given by 

The equation of motion follows from 



dnk - -  - C nk 
dP (n ;  t) 

d t  - d t  

where (2 .9 )  h a s  been i n s e r t e d  on t h e  r . h . s .  The r . h . s .  can  now 

be  t rans fo rmed  making u s e  o f  

f o r  any f u n c t i o n  F ( n )  s i n c e  t h e  sum ex tends  o v e r  a l l  soc i o -  

c o n f i g u r a t i o n s  n ,  and o f  

which f o l l o w s  from t h e  d e f i n i t i o n  o f  E;'E-'. 
j 

Taking i n t o  accoun t  (2.18)  and (2.19)  t h e  r . h . s .  o f  (2 .27)  

is  e q u a l  t o  

s o  t h a t  t h e  e x a c t  e q u a t i o n s  o f  mot ion f o r  t h e  meanvalues r e a d  

f o r  k  = 1 , 2 , .  . . .L 



It is now assumed that the approximation 

is valid, which certainly holds for narrow unimodal probability 

distributions. The final set of equations (for k = 1,2,. ..L) 

then is a self-contained set of coupled nonlinear differential 

equations in time for the occupation numbers nk(t). The system 

becomes fully explicit by inserting the form (2.7) of wji[n] 

whereby we obtain 

dnk L 
- -  - I e x ~  [fk(") I exp [-fi (5) I 
dt i=l i 

k = 1,2, ... L 

-st with fi(") according to (2.5). The stationary solution nk 

of (2.34) can be read off immediately: 

-st n = c exp [2fk(iiEt)l, k = 1.2 ,.... L k (2.35) 

with the normalization factor 

L -st c = N{ I exp [2fi(ni )I I-'. 
i=l 

The transcendental equations (2.35) for the stationary meanvalues 
-st 
"k essentially agree with the equations (2.23) for the most 

probable values Bk of the stationary probability distribution. 

This shows the consistency of the meanvalue approach with the 

fully stochastic approach. The meanvalue equations (2.34) with 

(2.5) are the main starting point for the empirical analysis of 



migration systems. The general procedure of this analysis will 

be introduced in the next chapter. 

3. DETERMINATION OF TREND PARAMETERS FROM EMPIRICAL DATA 

In principle the comparison between the theory of migration 

and empirical data can proceed on two lines: the "forward" 

procedure consists in calculating the time dependent solution - - 
ni(tl) ,Ei(t2) ,...ni(tT),i=1,2,...L of the meanvalue equations 

with a g i v e n  set of trend parameters T = for a 

sequence of years tl,t2, ...% and in comparing the result with 

the data. In general, however, the trend parameters, are not 

known in advance. Therefore, we have to resort to the "backward" 

procedure, i.e., a regression analysis consisting of the extrac- 

tion of trend parameters from the comparison of empirical data 

with the theoretical expressions. This regression analysis is 

performed in the next section. The backward and forward proce- 

dures may also be combined, for instance by extracting trend 

parameters from the analysis of past migration data and by using 

them for predictive purposes under the assumption that the trends 

remain quasi-stable for a reasonable interval of time. 

3.1 The Regression Analysis 

In a migration system with L areas and one kind of popula- 

tion the following empirical quantities listed in Table 1 can be 

observed year by year: 

Table 1. Observed quantities per year--describing the migration 
process. 

area 

1 

2 
I 
I 
I 
1 

i 
I 
I 
1 
I 

L 

population 
size 

"1 

"2 
1 

I 
I 

n i 
I 
I 
I 
I 

n L 

Number of transitions per year from i to j 

W~ 2 
1 
I 
1 

w 1 i 
1 
I 
1 
I 

W 1 L 

"21 

I 
I 
I 
I 

w 2i 
i 
I 
I 
1 

W 2L 

W 31 

W 32 
I 
I 
I 
I 

w 3i 
I 
I 
1 
I 

W 3L 

- - -  

- - -  
I 
I 

I 
I 

- -  
I 

I 
I 
I 

--- 

--- 

- - -  
I 
I 
I 
I 

--- 
I 
I 
I 
1 

- - - W  

W 
j 1 

j 2 
W 

I 
I 
4 

I 

Wji 
I 

I 
I 
I 

jL 

- - -  

- - - 
I 
I 
I 
I 

--- 
I 
I 
1 
I 

- - -  

W~ I 

W ~ 2  
- 1 

I 

1 ,  
W ~ i  

1 
I 

I 
I 



On the theoretical side it follows from the meanvalue 

equation (2.33) written in the form 

with At = 1 [year] , that 

- 
w [El = v ni exp 1 (6k-6i) + ~ ~ ( ; ~ + l )  - K ." 1 ki 1 1  

(3.2) 

must be identified as the theoretical expression for the mean 

number of individuals migrating per year, that is per unit of 

time, from area i to area k. 

The t h e o r e t i c a l  migration matrix w [n(t)] for given popu- ki 
lation numbers ni(t) therefore has to be matched to the e m p i r i c a l  

migration matrix w (t) by an optimal fitting of the trend para- ki 
meters. There are (L~-L) matrix elements wki [n (t) 1 to be matched 

to the wki (t) by fitting the (2L+1) trend parameters 1 v(t) , gi  (t) , 
ri (t) 1 year by year. 

The optimization of the trend parameters amounts to the 

determination of the least square deviations between theoretical 

and empirical expressions. This optimization can be reduced to 

a l i n e a r  regression analysis. For this aim we introduce (for 

each year, with the time index t omitted) the empirical quantities 

and the corresponding theoretical expressions 

with 11 = Rn ( v )  

J 

The latter are linear in the parameters {p,Si,ri} to be deter- 

mined. We now require that the sum of the square deviations 
e th between rji and rji, namely 



be minized by an appropriate choice of the parameter set 

{ p t i t ~ .  The requirement of finding the minimum of 

F ( p t 6 t ~ )  leads to 

for k = 1,2, ... L. 

and 

for k = 1,2,. ..L. 

Since only the differences (6 -Si) appear in the expression 
j 

(3.5), the 6. are only determined up to an additive constant. 
3 

Hence we can put 



Furthermore, we introduce the abbreviations 

and 

and 

The evaluation of (3.6) and (3.7) then yields 

for k  = 1,2, ... L 

The results (3.13) and (3.14) can be inserted into (3.8) to 

obtain equations for the parameters K alone. The straight k  
forward calculation leads to 

- S 2 K - K  = Bk for k  = 1,2, .... L (3.15) 

where 

s with C Bk = 0 
k= 1 

Since the L equations (3.15) are linearly dependent (the 

sum of the 1.h.s. as well as the sum of r.h.s. of the equations 

vanish), the parameters K are only determined up to an additive 

constant. This constant can be fixed by putting 



Reinserting (3.17) into (3.13.. .3.15) the final results are 

obtained : 

for k = 1,2, ... L , with 3 = 0 

and 

for k = 1,2, ... L , with = 0 

By the system (3.18, 19, 20) all trend parameters are 

uniquely determined and expressed by the known empirically 
e r , i,j,=1, ... L, if L>3. It is remarkable that the coopera- j i - 

tion parameters rk and the mobility 11 depend on RE only, i.e., 
e on symmetrical expressions in the r r e 
kit ik' i*k, while the 

preference parameters Sk also depend on the quantities RES 
e which are asymmetric in the r r i*k. kit ik' 

3.2 The Evaluation Scheme and Conclusions 

The linear regression analysis of the foregoing section 

leads to the optimal determination of the trend parameters ~ ( t ) ,  

6i (t) , ri (t) for the years t = 1,2,. . .TI if the empirical 

migration matrix w (t) and population sizes ni(t) of Table 1 i j 
are known for these years. Which conclusions can be drawn from 

this analysis? 

The first step consists in comparing the actual empirical 

situation with the accompanying "virtual" equilibrium situation: 

For each set of trend parameters {ur ri} we may make use of 

(2.35) and (2.2 1 ) to determine the theoretical stationary 



-st -st -st} population sizes {nl , n2 ,.... n L and even the theoretical 

stationary distribution P (nl,n2, ... nL) corresponding to these st 
trend parameters. These stationary quantities describe the 

equilibrium situation into which the system would evolve, if the 

trend parameters would remain constant from this point of time. 

The actual system, however, in general is not in that equilibrium! 

Comparing the actual population sizes {n1,n2, .... nL} with these 
-st -st -st} virtual equilibrium populations {nl ,n2 ,... n L we therefore 

obtain a measure for the momentary deviation of the migration 

system from its equilibrium state. This "distance from equili- 

brium" can be seen as a measure for the migratory s t ress in the 

population. The most compact formulation of the deviation 

between the actual and the equilibrium population distribution 

is given by the correlation coefficient 

with 

-st -st} Obviously 1.r / < 1 , and r approaches 1 for {nl . .nL} + {nl - 
As a second step the results of the trend parameter deter- 

mination for the past of a migration system can be used for 

prognost ic  purposes. Let us assume that the trend parameters 

{u(t), Gi (t) , ri (t) 1 have been found by regression analysis 

as above for a sequence of past years and that at most a slow 

time dependence was found, which can be approximated by 

Apart from newly arising interfering factors it would be a 

plausible assumption to extrapolate the slow trend evolution 

into the future. The theoretically predicted values nl (t), 



n2(t), ... n (t) of the population sizes in the areas then follow L 
by solving the meanvalue evolution equations (2.33) using the 

trend parameters (3.23). (In a realistic prognosis of course 

also birth-death processes in each area have to be taken into 

account. ) 

Thirdly, we consider the case in which the empirical 

analysis exhibits a more pronounced and nonlinear time dependence 

of the trend parameters. Then it may be promising to analyze 

the correlation between a (representative) trend parameter r and 

possible motivation factors !ls, s = 1, ... m creating the dynamic 

trends. The following standard method then can be applied: 

let re (t) be an empirically determined trend parameter with 

linear trend in time subtracted and let uz (t) , s = 1,. . .m, be 

empirical properly standardized socioeconomic motivation factors 

net of linear trend with time, in the time interval O<t<T under 

consideration! A tentative theoretical linear relation between 

the trend parameter and the motivation factors can then be 

assumed : 

Between the empirical trend parameter re (t) and its theoretical 

expression (3.24) there will exist a random deviation 

The n(t) have to be minimized by an optimal choice of the coef- 

ficients as in (3.24). The principle of the least sum of squares 

then yields 

with 



The evaluation of (3.26) leads to the set of linear equations 

for the as: 

with 

and 

A measure for the agreement between rth (t) and re (t) is the 

correlation coefficient r (re, rth) defined as 

Here 

holds, since all time series of parameters are taken net of 

linear trend. As already mentioned in the introduction, the 

"explanation" of trend parameters by motivation factors can be 

ambiguous. An adequate definition of "equivalence" between 

different sets of motivation factors in the framework of linear 

regression analysis could be the following: two sets of moti- 
(1 vation factors 1 v1 , . . .vs and{vl (2) ,...vr (2) 1 are equivalent 

by definition, if 



(1 (1) ] holds. Here rth and rth are linear combinations of fu l  , . . . ps 
C2 

2 
12) ) , respectively, with optimal coefficients and Iu, , = - - I J ~  

determined by linear regression analysis (see (3.26 ... 30)). 

Finally, we summarize the proposals of this section for 

the evaluation of the empirical data of a migration system in 

an "evaluation scheme". 

Evaluation Scheme for a Migration System 

Empirical Data 

ni(t) ; wji(t) 

for t = 1,2, .... T 

Y .  

Determination of 

Trend Parameters 

lJ(t), y t ) ,  K~ (t) 

i = 1,2, .... L 
t = 1,2, .... T 

1 

v 

V 

v L 

Comparison with 

Prognostic Analysis 

Solution of the 

Motivation Analysis 

Representation of 

Virtual Equilibria 

-st -st n (t) ,... ..n (t) 1 L 
trend parameters by 

motivation factors 

rth(t) = Lass(t) 
S 

t = 1,2, .... T 

-st) 
rt(n,n 

J 

V - 

Indicator of I 
Migratory Stress 

equations of motion 

for meanvalues. 

Result: 

"(t) ; wji(i(t)) 

for t = T+1, T+2,.. . 



4-  A NUMERICAL SIMULATION 

In this final section we demonstrate some aspects of the 

numerical evaluation of the model. We consider a fictitious 

migration system consisting of L = 10 areas, for which at time 

t = 0 the trend parameters v,& and K~ and the initial area k 
population numbers nk(t=O) for k = 1,2, ..., 10 are known. Further- 

more we assume that the trend parameters remain constant during 

the further evolution. Under such circumstances the meanvalue 

equations (2.34) can be used for predictive purposes. Their 

solution yields the expected area population numbers nk(l), 

nk (2) , . . .nk (t) , . . .nk (a) = nSt and, as a consequence, the k 
expected migration matrices w (n(t)). The population numbers jk - 
n (t) due to the structure of the meanvalue equations approach k 
their stationary values nk(a) = nEt belonging to the (constant) 

trend parameters 6k,~k, Hence, the correlation coefficient 

r (n,nst) introduced in (3.21 ) can be expected to approach 1 for 

The choice of the trend parameters % and K for k = 1,2, ... k 
10 is represented in Figure 1. Positive preference parameters 

6 are assumed for areas k = 6, ... 10, and negative bk for areas k 
k = 1, ... 5. Simultaneously, areas k = 1,7,8 have positive co- 

operation parameters K~ (growth pool effects) while areas 

k = 3,4,10 have negative K (repulsion effects) and areas k 
k = 2,3,6,9 are neutral, i.e., Kk = 0, with respect to density 

effects. The equations (3.9) and (3.17) are satisfied by this 

choice. Furthermore, the time scaling factor is chosen as 

v = 0.01. 

Figure 1.  Choice of trend parameters ti (. 
) & Kk (-------- 1 for the 10 areas k=1,2,. . . . ,%0. 



The main results of the solution of the meanvalue equation 

(2.34) are shown in Figures 2 and 3. In Figure 2 the area 

population numbers nk, k = 1, ... 10 are represented for the 

initial time t = 0--where an equipartition was assumed--for 

an intermediate time t = 10, and for the final time t + when 

the stationary distribution belonging to the trend parameters 

6 k , ~ k  has been reached. It can be seen, that strong growth 

effects in areas 7,8 or evacuation effects in areas 3,4 evolve, 

if preference and cooperation parameters have the same (positive 

or negative, respectively) sign and hence act in parallel. On 

the other hand, in area 1 the negative preference parameter 

is over compensated by the positive cooperation parameter K~ 

so that a net growth effect prevails. The same holds, with 

inverted signs, for area 10. This demonstrates the important 

role of cooperative effects in migration theory. 

Figure 2. Evolution of area population numbers n for k=1,2, ..., 10: 
Initial distribution n Ct=O) (.-------- f ; intermediate 
distribution nk (t=lO) f - ; E * - * - *  ) ; final stationary 
distribution nk(.t ) = nk ( 1 



st Figure 3. Evolution of the correlation coefficient r(n,n ) 
with time. 

Finally, the monotonous evolution of the correlation 

coefficient r (n,nst) towards 1 is represented in Figure 3. 

It shows, that for constant trend parameters and starting from 

an initial nonequilibrium situation the system steadily 
st st approaches the equilibrium state {nl ,...nlO}. Since the mean- 

value equations (2.33) or (2.34) are invariant under the 

-1 
~ n k f ~ f ~ k f ~ k ~  {ank f~ f6k fa  Kkl 

with an arbitrary constant a it is easy to construct migration 

systems for artitrary N and equivalent results with respect to 

the mean area population numbers. 



APPENDIX: The Master Equation 

Consider a system S which at any time is in one of a set 

of a finite or infinite number of discrete states {i). If the 

system evolves deterministically, its state i(t) at any time 

t is precisely known. If, on the other hand, only probabilis- 

tic laws about the evolution of S are known, the decisive 

quantity which then can be calculated is the so-called condi- 

tional probability 

which is, by definition, the probability to find S in state i 

at time t, given that S was in state j at the initial time 

to < t. 

For many systems including migration models it is reason- 

able to make the Markow-assumption that the conditional proba- 

bility depends on the end state i at time t and the initial 

state j at time to only, but not on former states which the 

system may have traversed prior to t 
0 

The conditional proba- 

bility has two obvious properties implied by its definition: 



since S is in state i = j at time t = to with certainty, and 

~ ~ ( i , t l j , t ~ )  = 1 (A.3) 
i 

since the 1.h.s. of (A.3) is the probability of finding the 

system in any one ,of the states i at time t, and this probabi- 

lity must be equal to 1.  

Furthermore, if the conditional probability is known, we 

may calculate the further evolution with time of any given 

probability distribution over the states of the system. Hence, 

the conditional probability also is denoted as "propagator". 

Let 

P (1 ;to) with ZECjitQ) = 1 
j 

be the (properly normalized) probability to find the system in 

a state j at time to. Then the probability of state i at time 

t > to is given by 

since P(i;t) can be represented as the sum of (conditional) 

probabilities to reach state i at time t from any of the states 

j at time to, each of them weighted with the probability P(j;to) 

that this state j was realized at time to. 

The master equation for P (i; t) or for P (it t ( j , t ) now 
0 

follows from considering the propagator for short time intervals 

(t-to) = T. Expanding the propagator in a Taylor series, and 

taking into account (A.2) and (A.3) we obtain 

for i+j 

with 

for i+j 



and 
C) 

Equation (A.8) follows by using (A.3). The t ransi t ion probabi- 

lities w are the transition rates of probability per unit of ij 
time from state j to state i, where i*j. In many theories the 

w are known from basic considerations or by plausible assump- ij 
tions. If the expansions (A.6) and (A. 8) are inserted into (A.5) 

the rearrangement of terms and division by r yields in the limit 

of r + 0 the master equat ion 

lim P(i,t+r) = P(i,t) - - - dP (i; t) 
r + o  r dt 

This first order differential equation for the evolution 

with time of the distribution function P(i;t) can be inter- 

preted as a probability rate equation: the increase per time 

of the probability of state i is due to the net effect of pro- 

bability transitions from all states j into state i (first term 

of the r.h.s.) and on the other hand from state i into all other 

states j (second term of the r.h.s.). If the transition proba- 

bilities w do not depend on time t, the master equation thus ij 
describes a probability equilibration process starting with an 

arbitrary initial distribution P(i:to) and ending with a final 

distribution P (i;=) = Pst (i) . The latter is the stationary 

probability distribution obeying the stationary master equation 

for all i. 

(A. 10) 

In general it is not easy to obtain a practicable form for 

Pst (i); only the graph-theoretically formulated solution accord- 

ingly to the Kirchhoff theorem is known. 



In special cases, however, the condition of "detailed 

balance" 

WijPst (j) = wjiPst (i) , for all i, j (A.ll) 

is fulfilled. It means that not only the global balance (A.lO) 

of all probability fluxes from and to the state i holds, but 

that the (stationary) probability flux from i to j is equal to 

that from j to i separately for each pair of states i and j. 

If (A.11) holds, the stationary solution can easily be constructed: 

take any chain C of states io E 0, i = 1, ... i 1 - = n - ) ,  in j n-1 - 
from a reference state 0 to an arbitrary state j, so that all 

transition probabilities w (1,O) ,w (0,l) ,w (2,1) ,w (l,2) , . . .w (j ,n-1 ) , 
w(n-1,j) are nonvanishing. (At least one such chain has to 

exist, otherwise no probability flux could reach state j.) The 

repeated application of (A.ll) then yields 

(A. 12) 

Finally, we derive conditions equivalent to the condition 

of detailed balance (A.11) which do not imply the (as yet unknown) 

stationary distribution Pst(i). For this aim let the chain C 

be a closed loop L with the end state j equal to the reference 

state io 1 0. Because of P (j) = Pst st (0) , it follows from (A. 12) 

that 

for all closed chains L of states. I 
Vice versa, if (A.13) holds, it can be seen that Pst(j) in 

(A.12) is, as it should be, independent of the specific choice 

of chain C from io s 0 to in = j, and (A. 11) then follows from 

(A. 12) . Formula (A. 13) will be used in section 2.3 to prove 

that detailed balance holds for the migration model and (A.12) 

will be used to construct the stationary solution of this model. 
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