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PREFACE 

In this paper, the authors summarize recent results obtained 

by applying the Lotka-Volterra approach to problems in nonlinear 

systems analysis. This approach was developed at the Mathematics 

and Cybernetics Division of the GDR Academy of Sciences (Berlin); 

various applications have been investigated in collaboration with 

the System and Decision Sciences Program at IIASA. 

This paper should also be seen as a contribution to the de- 

bate on future directions of research at IIASA, in particular 

possible research into the evolution of macrosystems. 

ANDRZEJ WIERZBICKI 

Chairman 

System and Decision Sciences Program 
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QUALITATIVE ANALYSIS OF NONLINEAR 
SYSTEMS BY THE LOTKA-VOLTERRA APPROACH 

M. Peschel, W. Mende and M. Grauer 

INTRODUCTION 

This paper s.ummarizes recent results obtained by applying 

the Lotka-Volterra approach to problems in nonlinear systems 

theory. 

Ref. 1 introduces a general structure design principle by 

which it is possible to obtain a unified description of a large 

class of systems normally described by ordinary differential 

equations in terms of the Lotka-Volterra equations: 

Ref. 2 proposes a group of equivalence transformations for the 

Lotka-Volterra equations once these equations have been embedded 

in the huge class of multinomial differential equations. One 

particularly important member of these equivalence classes is 

the Riccati representation of a nonlinear system: 

This Riccati representation has important properties which can 

help to simplify qualitative analysis. To a good approximation, 



t h e  behavior of nonl inear  systems can be l o c a l l y  represented  by 

R i c c a t i  models. I t  can be shown [ 3 ]  t h a t  t h e  V o l t e r r a  approach 

may a l s o  be used t o  advantage i n  t h e  s tudy of l i n e a r  systems. 

S h i f t  cones,  which e x i s t  f o r  a  huge c l a s s  of V o l t e r r a  sys- 

t e m s ,  a r e  d iscussed  and t h e  importance of some of t h e i r  q u a l i -  

t a t i v e  p r o p e r t i e s  noted (see [ 4 ]  ) . 
The s t r e n g t h  of t h e  Vo l t e r r a  approach i n  app l i ed  systems 

a n a l y s i s  may be demonstrated by a  number of i n t e r e s t i n g  examples, 

one of which involves  t h e  use  of t h e  approach f o r  modeling t h e  

dynamics of growth. Some systems d e s c r i p t i o n s  of growth func- 

t i o n s  a r e  d iscussed  [ 5 ]  and t h e  Vo l t e r r a  approach is  then  app l i ed  

t o  the r e s u l t i n g  equat ions  [6]. An o u t l i n e  of t h e  gene ra l  Lotka- 

Vo l t e r r a  approach i s  given i n  a  previous I I A S A  paper [ 7 ] .  

1 .  CHAINS AND CYCLES 

W e  o f t e n  f i n d  t h a t  t h e  h ighly  complicated e x t e r n a l  appearance 

of complex systems ( e c o l o g i c a l ,  economic, a s t r o p h y s i c a l ,  e t c . )  

concea ls  q u i t e  a  simple b a s i c  s t r u c t u r e  o r  ske le ton  composed of 

cha ins  and c y c l e s  l i nked  toge the r  wi th  a  r e l a t i v e l y  smal l  number 

of feedbacks o r  o t h e r  connections.  

Growth and s t r u c t u r e  a r e  t h e  main c h a r a c t e r i s t i c s  of evolu- 

t i o n a r y  systems. Dynamic i n t e r a c t i o n  u s u a l l y  l e a d s  t o  a c t i o n s  

c o n t r o l l i n g  t h e  growth r a t e s ,  which from a f u n c t i o n a l  p o i n t  of 

view means t h a t  r a t e  coupl ing i s  t h e  most important  type of i n t e r -  

a c t i o n  i n  complex systems. 

A very  broad b u t  simple model of a  cha in  s t r u c t u r e  i s  given 

by t h e  fo l lowing  equat ions :  

where 

Ki r e f l e c t s  t h e  in f luence  of t h e  nex t  l e v e l  up on t h e  g r o w t h o f x i  

Li r e p r e s e n t s  t h e  l o s s  of x  connected wi th  t h e  next  l e v e l  down i 

ai r e f l e c t s  t h e  wastage on l e v e l  i 



If the loss terms can be neglected we obtain what is called an 

exponential chain with 

We can try to use such an exponential chain to generate any given 

signal xo(t). In this case the state variables xi(t) should be 

normalized such that xi (0) = 1. The coefficients Ki can then be 

uniquely determined by 

This is an expansion very similar to the Taylor expansion of a 

given function xo(t). (Recall that the Taylor expansion involves 

the approximation of xo(t) by a linear chain 

normalized such that xi (0) = 0.) 

Both chain constructions are special cases of a more general 

construction based on an arbitrary differentiable and monotonic 

function $(u) and the following chain: 

Again we have the normalization condition 

In this case the coefficients Ki can be computed from 

Ki = F itlxo (t) 1 I F=d$(-)/dt . 
t=O 



Another chain construction can also be useful when trying 

to approximate systems behavior by a local chain model. This 

one is based on the generalized difference quotient: 

For @(u) = u and $(u) = u this expression is equivalent to a 

Taylor series expansion about the reference time to. The normal- 

ization condition for these chains is: 

Note that this does not necessarily hold for i = 0. The corre- 

sponding parameters can then be computed using 

In this case it is difficult to obtain an estimate of Ki based 

directly on xo(t); it is only possible to derive the following 

iterative procedure for Li (t) = d@(xi (t) ) /dt: 

We shall now return to the concept of the exponential chain, 

and describe some of its most important properties and some 

(as yet) unsolved problems. 

Assuming that Ki = K for all i, the exponential chain 

converges to xo(t) as the length of the chain increases, where 



For simplicity we assume that xi (0) = 1 for i = 0,1,. . . . The 

signal x0(t) is a solution of the following autocatalytic differ- 

ential equation: 

This equation can be represented by the cyclic structure shown 

in Figure 1 which is a hypercycle of the simplest form (see [ 8 ] ) .  

Figure 1. A hypercycle of the simplest form. 

A hypercycle of order n is produced by a finite chain with 

feedback after n elements and is represented by the equations 

This hypercycle corresponds to an exponential chain with periodic 

coefficients 

We can consider our finite chain to be built up by repeating this 

sequence m times, and this leads to our first unsolved problem. 

Does the signal xo(t) always converge to the corresponding hyper- 

cycle solution as m + w ?  



Eigen and Schuster considered in detail the hypercycle with 

homogeneous flow 4 on every level represented by the equations 

In this case the normalization condition lxi = 1 is obviously 

satisfied, which means that the interesting behavior of the system 

is concentrated completely on this simplex. This hypercycle 

behavior can be transformed in such a way that we have 

where the relation between the new state variables yi and the old 

ones xi is given by xi = yi/y. 

It was shown by Schuster, Sigmund, Hofbauer and Wolff [9] that 

for n - < 3 the hypercycle can have only foci, but for n - > 4  limit 

cycles can occur. 

We shall now consider the behavior of a complex hypercycle, 

i.e., a complex exponential chain. In this case we allow xi(t) 

to take complex values and substitute into the chain equations 

the Gaussian representation 

xi(t) = Ri(t) exp (jei(t)) . 

On separating real and imaginary parts we obtain the following 

real equations: 

F R ~  = K ~ R ~ + ~  cos ei+l I Bi = K ~ R ~ + ~  sin ei+l 

which lead to 



These r e l a t i o n s  can be used t o  h e l p  c l a r i f y  t h e  dynamics o f  t h e  

complex hypercyc le .  

The a n a l y s i s  o f  an e x p o n e n t i a l  cha in  i n  which t h e  Ki a r e  

independent  s t o c h a s t i c  v a r i a b l e s  (do n o t  depend on t i m e  t )  i s  

a l s o  o f  g r e a t  i n t e r e s t .  

Consider  t h e  fo l l owing  ca se :  

where K i s  a  s t o c h a s t i c  v a r i a b l e  w i t h  p r o b a b i l i t y  d e n s i t y  @ ( K ) .  

W e  would l i k e  t o  show t h a t  t h e  p r o b a b i l i t y  d e n s i t y  @ ( x O  ( t ) )  
r n 

(where x  ( t)  i s  t h e  lowes t  s i g n a l  of a  cha in  o f  l e n g t h  n )  con- 
O,n 

ve rges  t o  @ ( x o ( t ) )  a s  n+rn,  w i th  

Th i s  is  s t i l l  an  open q u e s t i o n ,  b u t  i f  proven would be o f  g r e a t  

importance  because  it would mean t h a t  a  c h a i n  w i t h  n e a r l y  e q u a l  

c o e f f i c i e n t s  Ki ,  w i t h  d i f f e r e n c e s  caused on ly  by f l u c t u a t i o n s ,  

would n e c e s s a r i l y  e x h i b i t  approx imate ly  hype rbo l i c  behav ior  (Law 

of  Large Numbers of  Ecology) .  

2.  THE STRUCTURE DESIGN PRINCIPLE AND THE DOMINATING ROLE 

OF LOTKA-VOLTERRA EQUATIONS I N  DYNAMIC SYSTEMS 

The s tudy  o f  e c o l o g i c a l  systems p rov ides  u s  w i t h  a  p i c t u r e  

o f  t h e i r  unde r ly ing  s t r u c t u r e  i n  terms of  a  s k e l e t o n  composed o f  

c h a i n s  and c y c l e s  l i n k e d  by a  r e l a t i v e l y  s m a l l  number o f  feed-  

backs  and o t h e r  connec t ions .  From t h e  f u n c t i o n a l  p o i n t  o f  view, 

e c o l o g i c a l  sys tems a l s o  c o n t a i n  dynamic i n t e r a c t i o n s  i n f l u e n c i n g  

t h e  growth r a t e s  Fxi o f  t h e  cor responding  s t a t e  v a r i a b l e s  xi ,  

which r e p r e s e n t  growth i n d i c a t o r s .  The s t r u c t u r e  d e s i g n  p r i n -  

c i p l e  proposed i n  [ I ]  a t t e m p t s  t o  u se  t h i s  knowledge t o  o b t a i n  

t h e  s t r u c t u r e s  o f  a  huge c l a s s  o f  sys tems d e s c r i b e d  by o r d i n a r y  

d i f f e r e n t i a l  equa t i ons .  

The s t r u c t u r e  d e s i g n  p r i n c i p l e  i s  based on t h e  fo l lowing  

r u l e s  : 



1. The logarithmic derivative function F = dRn/dt is applied 

to any intermediate state variable xi: 

The result Ai is not introduced as a new state variable 

as in the case of an exponential chain. Rather, Ai is in 

general an arithmetic expression built up from:(i) signals 

already known because they have appeared previously, (ii) 

signals unknown up to this stage of the design process, and 

possibly (iii) nonlinear transformations of signals of both 

types. 

2. We identify the known signals in Ai and construct feedback 

loops or interconnecting arches for them; we fix in an arbi- 

trary manner the unknown signals or nonlinear expressions 

of known and unknown signals as addresses of new state vari- 

ables; we then continue the design process with the new 

signals, i.e., we operate with the logarithmic derivative 

function F = dRn/dt on the newly introduced signals. 

3. The structure design process comes to an end when all of 

its branches bear arithmetic expressions Ai containing only 

known signals. 

We shall now demonstrate this design process for the generation 

of the harmonic oscillation xo(t) = A sin wot. Following the 

procedure outlined above, we obtain 

Figure 2 shows the structure obtained using this design principle; 

it is in fact a representation of the sine signal by a completely 

imaginary structure. However, this has nothing to do with the 

numerical quality of the sine generator produced in this way. In 

our example the sine generator actually has quite bad properties, 

because it produces singularities after every quarter of a period. 



Figure 2. The structure obtained using 
the proposed design principle. 

?n general we can always direct the structure design process in 

such a way that linear superposition of state variables will be 

preserved and that all products or quotients of state variables 

can be replaced by linear superpositions because of the corre- 

sponding property of the logarithmic function. If this require- 

ment is met at all stages of the structure design process we will 

always ultimately obtain a unified system description in the form 

of the well-known Lotka-Volterra equations [1,4,10]: 

where the ys represent input variables in the nonautonomous case. 

The question immediately arises as to which types of ordinary 

differential equations can be treated with this structure desig~ 

principle. There is no easy answer to this question, but the 

following guidelines may be useful: 

1. All state variables of the original system of ordinary dif- 

ferential equations and all newly introduced intermediate 

state variables must possess a sufficient number of derivatives. 



2 .  A l l  z e r o s  o f  t h e  o r i g i n a l  s t a t e  v a r i a b l e s  and newly i n t r o -  

duced s t a t e  v a r i a b l e s  c a u s e  s i n g u l a r i t i e s  i n  t h e  c o r r e -  

sponding Lo tka -Vol te r ra  system i f  t h e y  a r e  n o t  removed by 

a n  a p p r o p r i a t e  r e g u l a r i z a t i o n  p rocedure .  T h i s  can  u s u a l l y  

be  done by s h i f t i n g  t h e  v a r i a b l e s  concerned and i n t r o d u c i n g  

a d d i t i o n a l  s t a t e  v a r i a b l e s .  

3 .  Assuming t h a t  c o n d i t i o n s  1 and 2 a r e  s a t i s f i e d ,  a l l  o r d i n a r y  

d i f f e r e n t i a l  e q u a t i o n s  which can  be  d e f i n e d  u s i n g  o n l y  t h e  

b a s i c  arithmetic o p e r a t i o n s  o f  a d d i t i o n ,  s u b t r a c t i o n ,  m u l t i -  

p l i c a t i o n  and d i v i s i o n  can  be  t r a n s f o r m e d  i n t o  a V o l t e r r a  

r e p r e s e n t a t i o n .  

There  are u s u a l l y  many V o l t e r r a  r e p r e s e n t a t i o n s  f o r  a g i v e n  set  

o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  because  o f  t h e  ambigu i ty  i n -  

t r o d u c e d  by choos ing  i n t e r m e d i a t e  s ta te  v a r i a b l e s .  The p r o c e d u r e  

by which a g i v e n  d i f f e r e n t i a l  e q u a t i o n  is  t r ans fo rmed  i n t o  a  

V o l t e r r a  r e p r e s e n t a t i o n  can  be  f o r m a l i z e d  u s i n g  n o t a t i o n  s i m i l a r  

t o  t h e  Backus n o t a t i o n  f a m i l i a r  from a l g o r i t h m i c  l anguages .  W e  

s h a l l  g i v e  h e r e  o n l y  a  b r i e f ,  n o n t e c h n i c a l  d e s c r i p t i o n  o f  t h i s  

p rocedure ;  t h e  proof o f  t h i s  c o n s t r u c t i o n  i s  g i v e n  i n  [4]. Two 

n o t i o n s  a r e  of impor tance:  t h a t  o f  a n  a r i t h m e t i c  d i f f e r e n t i a l  

e x p r e s s i o n  and t h a t  of an  a d m i s s i b l e  d i f f e r e n t i a l  e q u a t i o n .  

An arithmetic d i f f e r e n t i a l  e x p r e s s i o n  i s  a r a t i o n a l  f u n c t i o n  

composed o f  c o n s t a n t s ,  i n p u t  v a r i a b l e s ,  o u t p u t  v a r i a b l e s  and t h e i r  

d e r i v a t i v e s  up t o  a c e r t a i n  o r d e r  ( f o r  example, up t o  o r d e r  m 

f o r  a  c e r t a i n  o u t p u t  v a r i a b l e )  and f u n c t i o n s  depending on one  

v a r i a b l e .  The c o r r e s p o n d i n g  n o t i o n  o f  a  " f u n c t i o n "  i s  more gen- 

e r a l  t h a n  t h a t  u s u a l l y  employed i n  a l g o r i t h m i c  l a n g u a g e s ,  b u t  

t h e r e  a r e  some r e s t r i c t i o n s ,  which a r e  o u t l i n e d  below. 

An a d m i s s i b l e  d i f f e r e n t i a l  e q u a t i o n  f o r  a c e r t a i n  o u t p u t  

v a r i a b l e  x  h a s  t h e  form: 

n  p  x  = a r i t h m e t i c  d i f f e r e n t i a l  e x p r e s s i o n ,  p  = d / d t  

where t h e  o r d e r  m of  t h e  d e r i v a t i v e s  o f  t h e  o u t p u t  v a r i a b l e  x  

i n  t h e  a r i t h m e t i c  d i f f e r e n t i a l  e x p r e s s i o n  must be  s m a l l e r  t h a n  n. 



A "function" is a function f(x) which depends on - one output 

variable and is itself a solution of an admissible differential 

equation with the differential operator q = d/dx. 

Because the definition of a "functionu in terms of an asso- 

ciated differential expression can itself depend on "functions" 

of the type introduced above, our design principle obviously 

produces a hierarchical procedure for the development of structures. 

As another example, we shall use our structure design prin- 

ciple to derive the Volterra representation for a generalization 

of the famous Brusselator associated with the Prigogine school: 

where 

y is the prey 

x is the predator . 

On the first step we obtain 

We now introduce the following four variables: 

From this we immediately obtain the following Lotka-Volterra model: 



The expressions for the newly introduced state variables are 

obviously the first integrals of the final Volterra representation, 

i.e., we get a representation with some transparent redundancy. 

3. EQUIVALENCE TRANSFORMATIONS FOR VOLTERRA REPRESENTATIONS 

AND THE CORRESPONDING NORMAL FORMS 

Because intermediate state variables can be introduced during 

the structure design process in several ways, we can obtain a 

number of different Volterra representations for a given set of 

ordinary differential equations. These representations are in 

some sense equivalent because they all represent the trajectories 

of the same system. 

There is a group of equivalence transformations which can 

be applied to Volterra representations; this is isomorphic to the 

group of regular affine transformations of a finite-dimensional 

vector space. However, it does not seem possible to introduce 

equivalence transformations for the Volterra equations themselves. 

We therefore have to embed the Volterra equations into the broader 

class of multinomial differential equations. 

A multinomial differential equation in n state variables xi(t), 
i = 1,2,...,n, is defined in the following way: 

For simplicity we consider here only the autonomous case, i.e., 

without input variables. The driving force of a multinomial 

differential equation is apparently a superposition of terms, 

where each term has the form 

To avoid difficulties with complex numbers we have to assume that 



only the behavior in the positive cone 

is of interest to us. For a given Volterra representation this 

condition can be met by means of an appropriate regularization 

procedure. 

More generally, an augmented multinomial differential equa- 

tion can be defined as follows: 

All of the remarks made here in connection with equivalence 

transformations also hold in this more general case. 

We now define homogeneous term-consistent coordinate trans- 

formations as linear regular affine transformations on the space 

spanned by Rn x .  (scalarization by the Iln function): 
1 

where T = (ti,) is a regular matrix. The form of an autonomous 

multinomial differential equation is obviously preserved under 

such a transformation and we find that the matrix pairs (T-'A, aT) 

define a class of equivalent multinomial differential equations. 

These transformations can be used to derive suitable normal 

forms for multinomial differential equations and also, indirectly, 

for Volterra representations, because every multinomial differ- 

ential equation can immediately be transformed into a Volterra 

representation after renaming each different term. 

We now have to consider which kind of normal forms are most 

suitable for our purpose, i.e., to simplify a given representation. 

We can obviously pursue simplification in a number of different 

ways, some of which are outlined below. 



1. Matrix A should have as many zero elements as possible to 

minimize the number of terms occurring in the driving forces. 

2. Matrix a should have as many zero elements as possible to 

minimize the number of times variables occur in the terms. 

3. Matrix A should have as many zero rows as possible, because 

every zero row means that the corresponding transformed state 

variable is a first integral of term motion form, i.e., of 

power product form. This is also a means of reducing dimen- 

sionality. 

4. Matrix a should have as many zero columns as possible, because 

every zero column represents a state variable that does not 

occur in the driving force, i.e., a state variable that can 

be eliminated. This is another means of dimension reduction. 

5. Matrix a should, as far as possible, have rows equal to each 

other, because these rows are associated with the same terms, 

which can then be combined. This is obviously another way 

to reduce the number of different terms involved in the 

driving force. 

To combine these various types of simplification is really a 

multiobjective decision problem because we are usually interested 

in pursuing several of these objectives simultaneously, and have 

as bur control resource only one regular matrix T in n-dimensional 

space. One way of obtaining efficient solutions to this problem 

(in the vector-optimization sense) is outlined below. 

We first use the resources T such that we reach a certain 

normal form which, for example, satisfies goal 3. Then we con- 

sider the subgroup of all regular affine transformations T for 

which this normal form is invariant, and use the rest of the 

resources contained in this subgroup to pursue another target, 

for example, goal 1. 

We shall now demonstrate the use of the equivalence trans- 

formation procedure by means of a simple example: xo = (l+b)sint, 

where a < 1 ,  b > 1 are regularization parameters. It can be shown 

that a regular sine generator is given by the following Volterra 



equations (all state variables xi are assumed to be nonnegative): 

-1 When we use the resource T to transform A to T-'A we obviously 

have the chance to add any linear combination of rows of matrix A 

to any other. Thus, taking the following form of T-l 

we obtain the transformed matrix A as follows: 

The new terms are given by the transformed matrix a: 



The new s t a t e  v a r i a b l e s  zi a r e  r e l a t e d  t o  t h e  o l d  o n e s  xi by t h e  

f o l l o w i n g  c o o r d i n a t e  t r a n s f o r m a t i o n s :  

W e  t h e r e f o r e  o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n s :  

W e  see t h a t  t h e  c o o r d i n a t e s  z l , z 2 , z 3  are first  i n t e g r a l s ,  i .e . ,  

t h e y  are c o n s t a n t  a l o n g  t r a j e c t o r i e s .  W e  have t h e r e f o r e  reduced 

t h e  d imension o f  t h e  m u l t i n o m i a l  d i f f e r e n t i a l  e q u a t i o n  sys tem 

t o  n  = 2. 

W e  now have t o  c o n s i d e r  t h e  f o l l o w i n g  m u l t i n o m i a l  d i f f e r e n t i a l  

e q u a t i o n s  : 

By a s s i g n i n g  new names t o  a l l  of  t h e  d i f f e r e n t  terms w e  can 

e a s i l y  t r a n s f o r m  t h e  m u l t i n o m i a l  d i f f e r e n t i a l  e q u a t i o n  i n t o  a  

V o l t e r r a  r e p r e s e n t a t i o n .  W e  t h e r e f o r e  o b t a i n  t h e  f o l l o w i n g  e q u i -  

v a l e n t  V o l t e r r a  r e p r e s e n t a t i o n :  

W e  r e c o g n i z e  a t  once  a n o t h e r  f i r s t  i n t e g r a l ,  yOy2 = c o n s t .  

However, i n  t h i s  case it i s  n o t  p o s s i b l e  t o  r e d u c e  t h e  o r d e r  o f  

an  e q u i v a l e n t  V o l t e r r a  sys tem s t i l l  f u r t h e r ,  s o  t h a t  t h e  a p p l i -  

c a t i o n  o f  a n  e q u i v a l e n c e  t r a n s f o r m a t i o n  a c t u a l l y  l e a d s  t o  a  

r e d u c t i o n  i n  d i m e n s i o n a l i t y  o f  one. 



It should be noted that all of the rate equations in chemical 

reaction kinetics are multinomial differential equations, and thus 

it seems reasonable to seek their equivalent representations under 

the group of equivalence transformations described above. 

If all of the exponents occurring in a multinomial differential 

equation are rational numbers, then the system can easily be trans- 

formed so that the transformed system contains terms with integer 

exponents. 

4. THE RICCATI REPRESENTATION - AN EQUIVALENT REPRESENTATION 

OF LOTKA-VOLTERRA SYSTEMS 

Suppose that we want to remove the autocatalytic term Giixi 

from the Volterra representation 

We can do this in the following way. We introduce new state 

variables Ei such that 

where 

F = exp (I), I = It 
If we want to solve the substituted form of the equation for 

variables xi, we have to solve a special case of the Riccati 

differential equation. In this case a direct solution exists, 

namely 

We shall now discuss this transformation, making the assumption 

that x is restricted to the positive cone xi > 0 and that we 
j - 



start the trajectory with the normalized initial condition 

xi(0) = 1. The initial condition for Si is then Si(0) = 1. 

Under this transformation, the Lotka-Volterra equation is 

replaced by the following integral equation: 

-G. ./G 
If G = 0 the factor (1-G ISj) 

j j j j 
jj reduces to exp(GijISj). 

This is a model containing multiplicative interactions. The 

components of this model show the following modes of behavior: 

1. Quasihyperbolic increase (in finite time to infinity) 

2. Quasiparabolic decrease (in finite time to zero) 

3. Quasiparabolic saturation (in finite time to a nonzero level) 

4. Quasihyperbolic decrease (in infinite time to zero) 

5. Quasiparabolic increase (in infinite time to infinity) 

6. Quasilogistic saturation (in infinite time to a nonzero level) 

We may describe any equivalent representation (in terms of multi- 

nomial differential equations) of the form 

as a Riccati representation of a Lotka-Volterra system. 

From the integral equation derived above we can easily con- 

struct an equivalent Riccati representation by making the following 

substitutions: 

u = 1 - G . . I S  for G # 0 ,  j E A  
j 3 1  j j j 

uj (0) = 1 

u = e x p  (IS.) for G = o ,  ~ E A  
j I j j 

For j E A  we have x = -(l/G..)Fu. and for j ~ x  we have x = Fu 
j 1 3  I j j. 



Thus we obtain the following Riccati representation for the u j. 

It should be pointed out that in this case it is not necessary 

to assume initial conditions ui(0) = 1 or to assume that the 

initial Lotka-Volterra system is restricted to the positive cone 

x > 0. i - 
More generally, we can pass from a Lotka-Volterra represen- 

tation to an equivalent Riccati representation by applying any 

substitution of the form 

In the case where the motion is restricted to the positive cone 

we find that all of the Riccati state variables u are monotonic 
j 

functions and therefore that all of the xi are power products of 

monotonic functions. 

The Riccati representation of a Lotka-Volterra system has 

some very useful properties: 

1. The redundant state variables u can frequently be used to 
j 

construct direct analytical solutions if they exist. 

2. The poles which arise in a Lotka-Volterra system during the 

structure design procedure if the appropriate (regularization) 

measures are not taken are eliminated in the corresponding 

Riccati representation. 



3. In the case where all of the exponents in the Riccati 

representation are integers, it is possible to use a special 

method based on graphs to examine the qualitative properties 

of both the Riccati representation and the original ordinary 

differential equation (see Section 5). 

4. The Riccati representation provides a good basis for the 

design of an integrated processor for solving ordinary 

differential equations. 

We shall now give two simple examples illustrating proper- 

ties 1 and 2. 

Example I .  We consider the Langevin differential equation [ I l l  

Without loss of generality we can assume that q(0) = 1, i.e., 

normalization. Then we have 

The Riccati representation is 

Integration leads directly to 

B ul (t) = 1 + - [exp(2at) -11 a 

and therefore the solution is 

qO (t) = exp (at) / (1 + [exp (2at) -1 ) 1/2 



Example 2 .  I n  Sec t ion  2 w e  de r ived  a  V o l t e r r a  r e p r e s e n t a t i o n  

f o r  t h e  s i n e  f u n c t i o n  

x O ( t )  = A s i n  w o t  . 

The r e s u l t i n g  nonregula r  V o l t e r r a  r e p r e s e n t a t i o n  

produces a  p o l e  eve ry  q u a r t e r  of a  per iod .  The corresponding 

R i c c a t i  r e p r e s e n t a t i o n  i n  t h i s  c a s e  i s  

The behavior of t h e  R i c c a t i  r e p r e s e n t a t i o n  i s  c l e a r l y  complete ly  

r e g u l a r .  

5. A METHOD OF GRAPHS FOR QUALITATIVE ANALYSIS, BASED ON THE 

R I C C A T I  REPRESENTATION 

The method p re sen ted  h e r e  i s  a p p l i c a b l e  t o  any R i c c a t i  re- 

p r e s e n t a t i o n  f o r  which a l l  exponents i n  t h e  d r i v i n g  f o r c e  a r e  

i n t e g e r .  I n  g e n e r a l ,  motion i s  n o t  r e s t r i c t e d  t o  t h e  p o s i t i v e  

cone i n  u-space. 

W e  f i r s t  p r e s e n t  a  g e n e r a l  o u t l i n e  of t h e  method. 

L e t  u s  cons ide r  t h e  equa t ion  

where a l l  t h e  kir a r e  i n t e g e r s .  W e  now in t roduce  t h e  concepts  

of s i g n  s t a t e s  and growth s t a t e s .  



A s i g n  s t a t e  i s  an admiss ib le  vec to r  (v1 ,v2 ,  ... ,vn)  where 

v = sgn ui. The s i g n  func t ion  sgn i s  def ined  a s  i 

The f a c t  t h a t  t h e  v e c t o r  has t o  be admiss ib le  means t h a t  n o t  a l l  

s i g n  s t a t e  v e c t o r s  a r e  n e c e s s a r i l y  allowed; t h i s  t a k e s  i n t o  ac- 

count p o s s i b l e  r e s t r i c t i o n s  on t h e  xi i n  t h e  o r i g i n a l  Lotka- 

V o l t e r r a  system. 

I 

A growth s t a t e  i s  an admiss ib le  v e c t o r  ( w 1 , w 2 ,  ..., wn) where 

sgn u = 

w = growth u . W e  d e f i n e  t h e  growth func t ion  a s  fol lows:  i i 

+1 ( o r  +) i f  u > 0 

0 i f  u = O  

-1 ( o r  - )  i f  u < 0 

+I  ( o r  4 )  i f  ; > o 
growth u = 0 ( o r  8) i f  ; = 0 

-1 ( o r  J . )  i f  ; <  o . 

Again, t h e  f a c t  t h a t  t h e  growth s t a t e  must be admiss ib le  means 

t h a t  because of t h e  conf igu ra t ion  of d r i v i n g  f o r c e s  i n  t h e  R i c c a t i  

r e p r e s e n t a t i o n  n o t  a l l  combinations of f ,  J. and 8 can n e c e s s a r i l y  

occur.  

The s i t u a t i o n  becomes c l e a r e r  if w e  i n t e r p r e t  t h e  set of 

admiss ib le  s i g n  s t a t e s  a s  t h e  set of s t a t e s  of a graph game, and 

t h e  set of admiss ib le  growth s t a t e s  a s  t h e  set of s t a t e s  of another  

graph game, The two graph games a r e  assumed t o  be in te rconnec ted ,  

W e  now have t o  d e f i n e  t h e  set  of f e a s i b l e  a c t i o n s  f o r  any s t a t e  

of a graph game; i n  our  case  t h i s  i s  easy  because t h e  f e a s i b l e  

a c t i o n s  a r e  s p e c i f i e d  completely by t h e  given R i c c a t i  r ep resen ta t ion .  

W e  s h a l l  now d e s c r i b e  how t h e  procedure works i n  p r a c t i c e .  

A s s u m e  t h a t  w e  s t a r t  i n  any admiss ib le  s i g n  s t a t e ,  Because of t h e  

i n t e g e r  exponents kir i n  t h e  R i c c a t i  r e p r e s e n t a t i o n ,  t h e  s i g n  

s t a t e  and t h e  power-product d r i v i n g  f o r c e  uniquely d e f i n e  t h e  

growth s t a t e ,  Once i n  t h i s  growth s t a t e  w e  can o b t a i n  t h e  cor-  

responding f e a s i b l e  new s i g n  s t a t e s  from t h e  previous s ign  s t a t e .  

Thus, t h e  set of f e a s i b l e  a c t i o n s  i s  c l e a r l y  s p e c i f i e d  i n  every 

s t a t e  of both graph games. W e  t h e r e f o r e  o b t a i n  two coupled graphs 



with sign states and growth states as nodes; it is also possible 

(and sometimes useful) to consider the subgraphs containing only 

sign states or only growth states separately. These graphs can 

provide useful information about the qualitative behavior of a 

Riccati representation; the question is what sort of information 

they provide about the qualitative behavior of a given ordinary 

differential equation. 

We demonstrate the use of this approach with the example of 

a hypercycle of order n = 2: 

i mod 2 

If we take arbitrary initial values we can remove the parameters 

Ki by substituting 

We therefore have to consider the following Riccati representation: 

We draw the following inferences from the sign and growth graphs: 

( + , + I  -+ ( + , + I  -+ ( + , + I  (stable mode, explosive growth) 

Figure 3 shows the sign graph together with possible transitions 

caused by disturbances which influence only the value 0. 



Figure 3. Sign graph and possible transitions caused 
by disturbances which influence only the value 0. 

We see that (+,+) is the only stable focus; the other foci (which 

contain at least one 0) are unstable, behaving like saddle points 

when subject to disturbances. 

6. THE HYPERLOGISTIC GROWTH MODEL AS A GENERAL MODEL FOR GROWTH 

FUNCTIONS 

The hyperlogistic differential equation 

is a generalization of the logistic growth function (which has 

k = R = w = 1); many commonly used growth functions may also be 

represented in this general form. In addition, increases in 



one-dimensional growth indicators in soft systems can usually 

be represented (in a phenomenological sense) by appropriate 

solutions of the hyperlogistic differential equation. 

The analysis of many real data series using this approach 

is described in [ 4 ]  - Figure 4  illustrates the analysis and pro- 

jection of world primary energy consumption using a hyperlogistic 

growth model [ 6 1  . 
Note that only two of the three exponents k,R and w are 

assumed to be significant, which means, for example, that w can 

be removed by a substitution of the form 

It is therefore only necessary to discuss the behavior of the 

equation 

With xo = x and introducing the additional state variables 

we obtain the following Volterra representation: 

and the following Riccati representation: 

These representations clearly contain a second-order Lotka- 

Volterra model, as can be seen from Figure 2. The importance 



Time 

Fig. 4(a) Analysis of historical data for world energy con- 
sumption [6]. The solid line indicates the fit with 
a hyperlogistic growth model and the individual dots 
represent the observed data. 

Fig. 4(b) Projection of world energy consumption [61 up to the 
year 2100 based on the hyperlogistic growth model 
presented in Fig. 4 (a) . 
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of t h i s  power-product d r i v e n  model l ies  i n  t h e  f a c t  t h a t  i n  some 

sense  it i s  t h e  s i m p l e s t  non l inea r  system e x h i b i t i n g  a l l  s i x  modes 

of  behavior  d i scus sed  i n  Sec t ion  4 .  To demonstra te  t h i s  w e  con- 

s i d e r  t h e  g e n e r a l  second-order Volterra-Lotka system i n  t h e  i n -  

t e g r a l  and d i f f e r e n t i a l  R i c c a t i  r e p r e s e n t a t i o n s .  Our o r i g i n a l  

V o l t e r r a  equa t ions  a r e :  

The corresponding R i c c a t i  r e p r e s e n t a t i o n s  a r e :  

which i s  obvious ly  t h e  s i m p l e s t  s t r u c t u r e  demonstra t ing a l l  s i x  

modes of  behavior ,  and 

A f i r s t  i n t e g r a l  can immediately be cons t ruc t ed :  

W e  must a l s o  t a k e  i n t o  account  some degenera te  c a s e s  which 

become impor tan t  l a t e r  i n  t h e  d i scuss ion .  

For G1 = G2 , b u t  G 2 2  # G12,the f i r s t  i n t e g r a l  becomes 



For G 1 2  = G Z 2 ,  bu t  G l l  # G 2 1 ,  t h e  f i r s t  i n t e g r a l  i s  

For G1 = G21 and G22 = G 1 2  t h e  f i r s t  i n t e g r a l  w i l l  be 

I n  t h e  most g e n e r a l  ca se ,  G l l  # G21 and G22 # G 1 2 ,  w e  in t roduce  

new v a r i a b l e s  

and o b t a i n  

s o  t h a t  t h e  f i r s t  i n t e g r a l  now becomes 

Obviously i n  t h i s  c a s e  bo th  s t a t e  v a r i a b l e s  v1 ,v2  have t h e  same 

dynamics, determined by t h e  gene ra l  power-product d r i v e n  d i f f e r -  

e n t i a l  equat ion.  



We now examine the effect of introducing new variables in 

the other three cases. 

For G l l  = G21, but G22 # G12 we make the substitution 

The first integral will now be 

The transformed differential equations are then 

Obviously both state variables v1,v2 have the same dynamics, i.e., 

which is another well-known general form for growth functions. 

By symmetry, the case G12 = G22, G l l  # G21 yields the same result. 

In the case G1 = G2 , G22 = G12 we set 

The first integral will now be 

The transformed differential equations are then 



This is obviously a special case of the dynamical behavior noted 

previously, i.e., 

We have to discuss at least one more special case: that in 

which one of the autocatalytic terms vanishes, for example, 

G l l  = 0. In this case we obtain 

The first integral is then 

We shall now assume G 2 1  # 0 and G22 - G 1 2  # 0. Introducing the 

new variables 

we obtain the following transformed differential equations: 

Both variables show the same dynamics and the first integral now 

has the form 

which is obviously another special case of power-product driven 

dynamics. 



7. THE DEVELOPMENT OF STRUCTURE AND THE LOTKA-VOLTERRA EQUATIONS 

Our discussion of the development of structure is based on 

the following assumption: that in real systems only competition, 

mutation and selection determine the structure of the system - 
no special natural laws must be invoked. It is therefore neces- 

sary to show that structure can actually develop from these three 

quantitative relationships. 

In this section we concentrate on the structures arising 

from quantitative competition in the Lotka-Volterra equations. 

Schuster et al. [I21 pointed out that Darwinian properties 

can best be studied using the replicator form of the Lotka-Volterra 

equations; in our opinion this is also true for the development 

of societies of species. 

There is a standard method of transforming the Lotka-Volterra 

.description 

to the replicator form which requires us to introduce the bary- 

centric coordinates 

n 
Then, using the new coordinates yi where 1 yi = 1 , we obtain the 

following differential equations: i=l 

For yo > 0 the value of yo does not have an important influence 

on the Gynamics (this is only a monotonic transformation of the 

time scale along the trajectories), so that for all qualitative 

purposes we can work with 

This is called the replication form of the Lotka-Volterra equa- 

tions [12], and is qualitatively equivalent to the original Lotka- 



Volterra equation. It is also possible to construct an expression 

quantitatively equivalent to the replicator with the help of the 

Riccati representation. 

The Volterra representation of the replicator is 

where v - 
kj - Xkxj* 

On passing to the Riccati representation we 

obtain the following (quantitative) equivalent to the replicator: 

where w = Lwi. All of the stationary points of the replicator 

equation have the form 

* 
yi = 0 for i e I  (1,2,. . . ,n) 

* 
IGi jy j=@ for i e f  . 

We are interested in stable stationary points (sinks) . Every 

stable stationary point contains a certain set I of non-vanishing 

species, and we consider each such set to be a possible cluster 

of the structure. The overall structure of the Lotka-Volterra 

system is then obtained by combining all these clusters, 

This is a restricted notion of structure, because in ecology 

the most important clusters belong to stable limit cycles. Never- 

theless, this restricted notion is very useful in solving non- 

linear assignment problems. 

We can experiment with the structure of a Lotka-Volterra 

system by varying, for example, the replication rates Gii. Bringing 

together the modified terms we obtain the following disturbed re- 

plicator equation: 



or its quantitative equivalent: 

If h i > O  we call it a subvention of species i: if X i < O  it 

becomes a tax. 

AS Xi + - for all i the structure approaches a form which 

represents a decomposition into single species, i.e., every 

species forms its own cluster; by contrast, as Xi + -- all species 

are grouped together into one cluster, i.e., we have a stable 

sink within the simplex lyi = 1. Thus, between these two ex- 

tremes, any combination of Xi's leads to a certain configuration 

of clusters, the form of which is controlled by the Xi's. 

We shall now demonstrate how this cluster-building concept 

works for the simple example of the hypercycle of order n = 2. 

The quantitative equations are 

Kiwi+ 1 + xiwi Fw2 = I i mod 2 . 

This leads directly to 

From this we obtain the stationary solutions 

For h o  = kXl, where k is a parameter, we obtain the result: 



8. SOME GLOBAL QUALITATIVE PROPERTIES OF THE LOTKA-VOLTERRA 

EQUATIONS 

We shall first draw some qualitative conclusions based on 

the transformation of the Lotka-Volterra equations to the repli- 

cation form. Introducing the notion of lbiomassl, defined as 

we immediately obtain 

The flow $ is obviously the driving force for the growth of the 

biomass B. Between this flow J, and the flow @ = lyk~kjyj intro- 

duced in the replicator equation we apparently have the relation 

However, according to Maynard-Smith most of the stationary points 

of the replicator equation (especially the local maxima) are 

evolutionary stable states, so that d@/dt > 0 in the neighborhood 

of these points. 

In general we have: 

F$ = FJ, - 2FB . 

1. Let us assume that J, > 0, so that the system plays the part 

of a predator. Because Fm > 0 in the neighborhood of an 

evolutionary stable state we have 

and 



That means that the necessary input J, is not proportional 

to the actual biomass but rather to the square of the biomass. 

Thus, the larger the system, the more inefficient is the use 

of this input. On the other hand, the biomass necessarily 

shows hyperbolic growth under these conditions - even in the 

case where all autocatalytic rates Gii are equal to zero. 

We can interpret 

as a measure of complexity. The growth-related complexity 

is high if the biomass unit absorbs much of the input (because 

the level of inner organization or cooperation is high). 

1f% is high, the amount of biomass "explodes" in a relatively 

short time. 

2. Let us now assume that J, < O ,  so that the systen as a whole re- 

presents a prey. The internal dynamics of the system are now 

no longer growth-oriented, but if the system nevertheless 

approaches an evolutionary stable state we have d$/dt > 0 so 

that 

The global biomass B is now decreasing but at a rate less 

than hyperbolic since QO < 0. This can be interpreted as 

meaning that the internal organization is now damping the 

starving process. 

The biomass B will rapidly assume smaller values, we will 

have B/BO < 1 and the exploiting force will be greatly re- 

duced because of the quadratic law derived above. This 

means that we observe a moderate exploitation of the global 

system by the environment, which can surely be attributed 

to the strength of internal links within the system. 



We now pass to another global property of Lotka-Volterra 

systems, and consider what are known as shift cones. 

We write the Lotka-Volterra equations in the form 

where G* is the j-th column vector of the matrix G, and restrict 
j 

the motion to the positive cone xi - > 0. The vector of growth 

rates Fx is then a positive linear combination of the column 

vectors of matrix G. This leads to the following important con- 

clusions: 

1. If the zero vector is contained in the convex hull of the 

column vectors of matrix G, 

then 

* * 
where x > 0 and Ex = 1. This means that the Lotka-Volterra 

j - j 
equations have a stationary solution at which the forces 

driving the growth rate are vanishingly small. If, on the 

other hand, we have a stationary solution of the form 

where 2 > 0, then we have 
j - 

* 
where x = gj/E%s. This means that the zero vector is again 

j 
contained in the convex hull of the columns of (7. In this case 

it is especially important that the column vectors be lin- 

early dependent. We deduce from this that if det G # 0 the 

zero vector cannot be contained in the convex hull of the 

column vectors G. 
j ' 



2.  L e t  u s  now assume t h a t  t h e  zero  v e c t o r  does  n o t  belong t o  - 

I n  t h i s  c a s e  t h e  ze ro  v e c t o r  and H({G.  1 )  t o g e t h e r  span a  * j  
convex cone K (smaller than  a h a l f - s p a c e ) ,  which w e  s h a l l  

c a l l  a s h i f t  cone. 

W e  now cons ide r  t h e  t r a j e c t o r i e s  of t h e  system i n  t h e  new 

c o o r d i n a t e s  

s ca l ed  by t a k i n g  n a t u r a l  logar i thms .  I t  t u r n s  o u t  (see Fig .5 )  

t h a t  f o r  t > to and any r e f e r e n c e  p o i n t  y ( t O )  , t h e  v e l o c i t y  - 
v e c t o r  dy /d t  of any t r a j e c t o r y  i s  d i r e c t e d  i n t o  t h e  cone 

whi le  f o r  t < to t h e  v e l o c i t y  v e c t o r  dy /d t  i s  d i r e c t e d  i n t o  

t h e  cone 

F igure  5. T r a j e c t o r i e s  of t h e  system i n  t h e  new 
coord ina t e s .  



This  i s  very s i m i l a r  t o  t h e  s i t u a t i o n  t h a t  e x i s t s  w i th  r ega rd  

t o  " l igh t -cones"  i n  t h e  t heo ry  of s p e c i a l  r e l a t i v i t y  and i s  an 

important  r e s t r i c t i o n  on motion i n  such systems ( a l l  t r a j e c t o r i e s  

i n  t h i s  cone resemble deformed s t r a i g h t  l i n e s ) .  I n  p a r t i c u l a r ,  

i f  such a s h i f t  cone e x i s t s  no c y c l i c a l  motion ( l i m i t  c y c l e s ,  

s p i r a l s  o r  combinations of  t h e s e  e lements )  i s  p o s s i b l e .  
* 

The parameter  k belongs t o  t h e  cone k d u a l  t o  k i f  t h e  * * 
fo l lowing  r e l a t i o n  ho lds  f o r  a l l  k E K  : 

The d u a l  cone K i s  a l s o  a convex cone (smaller than  a h a l f  space)  

and i s  spanned by a f i n i t e  number of s t r a i g h t  l i n e  g e n e r a t o r s ,  
i 

i .e. ,  a l l  v e c t o r s  f  , where 

For every  such f  w e  c o n s t r u c t  a f u n c t i o n  

which l e a d s  t o  t h e  r e s u l t  

This  means t h a t  t h e  f u n c t i o n s  

are Ljapunov f u n c t i o n s  which can o n l y  i n c r e a s e  a long  t h e  trajec- 

t o r i e s  of t h e  system. I n  p a r t i c u l a r ,  i f  d e t  G # 0 w e  can choose 

G t o  be a new c o o r d i n a t e  base  i n  n-dimensional v e c t o r  space,  
j 

s o  t h a t  w e  o b t a i n  t h e  f i  as v e c t o r s  of t h e  so-ca l led  d u a l  base  
i where ( f  , G e j )  = 0. The d u a l  cone K i s  t hen  i d e n t i c a l  w i th  t h e  

p o s i t i v e  cone spanned by t h e  d u a l  base  { f i l m  



We can then  apply  an equivalence t r ans fo rma t ion ,  t a k i n g  t h e  

Kfi a s  new c o o r d i n a t e s  f o r  t h e  t r a j e c t o r i e s ,  which g i v e s  

* 
This  means t h a t  t h e  cone K i s  now t h e  p o s i t i v e  cone ( P a r e t o  cone) 

and i n  t h i s  new coord ina t e . sys t em w e  can c o n s t r u c t  t h e  R i c c a t i  

r e p r e s e n t a t i o n .  

9.  .SOME NUMERICAL ISSUES I N  THE SIMULATION OF NONLINEAR SYSTEMS 

U S I N G  VOLTERRA OR RICCATI REPRESENTATIONS 

I f  w e  t rans form a  g iven  o r d i n a r y  d i f f e r e n t i a l  equa t ion  i n t o  

a  V o l t e r r a  r e p r e s e n t a t i o n  us ing  our  s t r u c t u r e  des ign  p r i n c i p l e  it 

can happen t h a t  t h e  r o o t s  of t h e  o r i g i n a l  d i f f e r e n t i a l  equa t ions  

o r  t h e  r o o t s  of t h e  i n t e rmed ia t e  s i g n a l s  in t roduced  i n  t h e  des ign  

p roces s  produce p o l e s  i n  t h e  V o l t e r r a  r e p r e s e n t a t i o n .  Th i s  occu r s  

because w e  can p a s s  from one coo rd ina t e  o r t h a n t  t o  ano the r  on ly  

through i n f i n i t y .  W e  can u s u a l l y  e l i m i n a t e  t h i s  phenomenon by 

s u i t a b l e  r e s c a l i n g  b u t  t hen  w e  have t o  i n t roduce  a d d i t i o n a l  s t a t e  

v a r i a b l e s ,  which means t h a t  t h e  dimension of t h e  problem i n c r e a s e s .  

I t  i s  n o t  c l e a r  whether it i s  always p o s s i b l e  t o  g e t  r i d  of t h e s e  

unwanted po les :  some b u t  n o t  n e c e s s a r i l y  a l l  of  them can be re- 

moved by t ransforming  t h e  V o l t e r r a  r e p r e s e n t a t i o n  i n t o  an equi-  

v a l e n t  R i c c a t i  r e p r e s e n t a t i o n .  

I n  t h e  R i c c a t i  r e p r e s e n t a t i o n  w e  have t o  d e a l  w i th  monotonic- 

a l l y  changing s t a t e  v a r i a b l e s  which can e i t h e r  i n c r e a s e  ve ry  q u i c k l y ,  

l e ad ing  t o  an overf low,  o r  dec rease  very  qu ick ly ,  l e a d i n g  t o  a  

computer zero.  Sometimes r a p i d l y  i n c r e a s i n g  v a r i a b l e s  a r e  com- 

pensated a n a l y t i c a l l y  by r a p i d l y  decreas ing  v a r i a b l e s ,  b u t  t h i s  

i s  a l s o  dangerous from t h e  numerical  p o i n t  of  view even i f  t h e r e  

i s  a  f i n i t e  l i m i t  - w e  c a l l  t h i s  t h e  l 1 ~ s p i t a l  c a t a s t r o p h e .  

I n  some senses  t h e s e  p r o p e r t i e s  a r e  i n h e r e n t  i n  t h e  repre-  

s e n t a t i o n s  under c o n s i d e r a t i o n ;  w e  have a l r e a d y  shown t h a t  one of  

t h e  s p e c i f i c  p r o p e r t i e s  of non l inea r  systems i s  t h a t  exp los ion  

and e x t i n c t i o n  can occur  i n  a  f i n i t e  t i m e .  However, w e  must t r y  

t o  overcome t h e s e  numerical  d i f f i c u l t i e s  i n  some way. I n  t h e  ca se  

of t h e  R i c c a t i  r e p r e s e n t a t i o n  t h e  fo l lowing  r e s c a l i n g  i s  o f t e n  

h e l p f u l  : 



We can change the scale of ur by a factor kr and require that xi 

be invariant, i. e. , 

This makes sense only if these equations have solutions. These 

degrees of freedom can be used to transform the parameters of 

the Riccati representation as follows: 

However, the best approach seems to be to look for a regular 

Volterra or Riccati representation. 

We have found that a system of ordinary differential equa- 

tions can be globally embedded into a Riccati representation; 

this means that all of the original trajectories then become tra- 

jectories of a single Riccati representation. 

The behavior of nonlinear systems is usually approximated by 

a set of locally linear models using a local Taylor expansion. 

However, it is also possible to approximate the behavior of a given 

ordinary differential equation by a set of local Riccati represen- 

tations. This can be done in the following way, making use of 

the discrete chain concept outlined in Section 1. Consider first 

the functions of time xo(t). We construct a first-order discrete 

chain 

and determine the parameter KO: 



This  l eads  t o  t h e  fol lowing l o c a l  model of x o ( t ) :  

x (t) = x0 (to) (T/TO)  
M o  

I f  w e  use a  higher-order  d i s c r e t e  cha in  w e  can determine higher-  

o rde r  l o c a l  models i n  t h e  same way, j u s t  a s  higher-order l o c a l  

models can be obta ined  by t h e  Taylor series approach. 

This p r i n c i p l e  can be simply extended t o  non l inea r  o rd ina ry  

d i f f e r e n t i a l  equa t ions .  W e  s h a l l  cons ider  f u n c t i o n s  of t h e  f o l -  

lowing form ( i .e . ,  wi th  independent arguments):  

W e  f i r s t  make use of t h e  f i r s t - o r d e r  d i s c r e t e  cha in  concept 

where 

This  l e a d s  t o  t h e  fol lowing family of l o c a l  power-product models: 

This  procedure i s  then  repea ted  f o r  the  d r i v i n g  f o r c e s  of an auto- 

nomous o rd ina ry  d i f f e r e n t i a l  equa t ion  

r e s u l t i n g  i n  t h e  fol lowing l o c a l  R i c c a t i  r e p r e s e n t a t i o n :  

W e  t hus  have two extreme s i t u a t i o n s  which can a r i s e  when con- 

s t r u c t i n g  a  R i c c a t i  r e p r e s e n t a t i o n  of a  given o rd ina ry  d i f f e r e n -  

t i a l  equat ion.  On t h e  one hand w e  can c o n s t r u c t  a  s i n g l e  g l o b a l  



Riccati representation of a given ordinary differential equation 

by introducing many additional state variables; on the other we 

can approximate the solutions of this differential equation by 

a family of local Riccati representations without introducing 

any new state variables at all. There is, of course, a whole 

spectrum of intermediate possibilities. We could, for example, 

stop the structure design process before obtaining a complete 

finite Lotka-Volterra representation, i.e., after having intro- 

duced a relatively small number of additional state variables, 

and then approximate the right-hand side with a family of local 

Riccati representations. 

We thus conclude that it is necessary to find some compro- 

mise between the number of additional state variables and the 

number of local Riccati models. 

NUMERICAL ADVANTAGES OF MODELING LINEAR SYSTEMS USING 

THE LOTKA-VOLTERRA APPROACH (SEE [ 31 ) 

At first sight one might think that there would be no point 

in trying to simulate the behavior of a linear system 

using the Lotka-Volterra approach. Why should we abandon the 

linear superposition principle for a higher-dimensional nonlinear 

representation? However, linear systems have some properties 

which lead very simply to regular Volterra representations. 

By shifting the origin of the coordinate system we can in 

most cases produce a situation in which the trajectories of the 

linear system do not leave the positive cone zi - > 0. This is 

then sufficient for regularization because we cannot obtain a 

Volterra representation by multiple differentiation. It is then 

only necessary to divide the velocities ; by zit which leads to i 



Thi s  i s  a  s p e c i a l  c a s e  of a  more g e n e r a l  V o l t e r r a  q u o t i e n t  system 

of t h e  t ype  

These e q u a t i o n s  can e a s i l y  be t ransformed i n t o  a  V o l t e r r a  r ep re -  

s e n t a t i o n  by i n t r o d u c i n g  a d d i t i o n a l  s t a t e  v a r i a b l e s  

l e a d i n g  t o  t h e  V o l t e r r a  r e p r e s e n t a t i o n  

The a u t o c a t a l y t i c  terms 

have an impor tan t  e f f e c t  on t h e  numerical  p r o p e r t i e s .  I n  p a r t i c -  

u l a r ,  i f  a l l  o f  t h e  s t a t e  v a r i a b l e s  v,(where mn # rs) a r e  numer- 

i c a l l y  s t a b l e ,  t h e n  t h e  numer ica l  s t a b i l i t y  o f  vrs e s s e n t i a l l y  

depends on t h e  s i g n  of  Grs ,  be ing  s t a b l e  f o r  Grs < 0 and u n s t a b l e  

f o r  Grs > 0. Thi s  p r o p e r t y  ha s  p a r t i c u l a r  advan tages  when d e a l i n g  

w i t h  l i n e a r  sys tems,  s i n c e  i n  t h i s  case t h e  fo l l owing  hypo thes i s  

i s  l i k e l y  t o  be t r u e  (under  c e r t a i n  minor a d d i t i o n a l  c o n d i t i o n s ) :  

I f  A = ( A .  . )  i s  t h e  m a t r i x  of a  s t a b l e  l i n e a r  sys tem,  i .e. ,  
1 I 

a l l  r o o t s  of  t h e  c h a r a c t e r i s t i c  e q u a t i o n  det(A-XE) p o s s e s s  nega- 

t i v e  real p a r t s ,  t hen  t h e  V o l t e r r a  r e p r e s e n t a t i o n  d e r i v e d  above 

always c o n t a i n s  a t  l e a s t  n  e q u a t i o n s  w i t h  n e g a t i v e  a u t o c a t a l y t i c  

o r  r e s o u r c e  paramete rs .  

W e  w i l l  demons t ra te  t h i s  f o r  a l i n e a r  system of  o r d e r  n  = 2 :  



In this case we have the following Volterra representation: 

The characteristic equation of the linear system is 

The linear system is stable under the conditions 

At least one of the elements A l l  or A22 must be negative. If 

only one of them is negative, then necessarily sgn(A12A21) i 0, 

so that a linear equation and a v-equation are damped; if both 

elements A l l  and A22 are negative, then both linear equations 

are damped. It is obviously necessary to distinguish between 

damping by autocatalytic terms and damping by "resources" in these 

linear equations. 

If the system is unstable, for example if it fulfills the 

condition 

then this would be consistent with A12 < 0 and A21 < 0. 



1 1 .  CONCLUSIONS 

The approach presented in this paper is based on the obser- 

vation that ecological systems can be described by chains and 

cycles of rate-coupled evolving systems. Applying this descrip- 

tion to arbitrary nonlinear nonstationary systems governed by 

sets of ordinary differential equations leads to a new flexible 

structure design procedure which makes it possible to describe 

the original system by a system of Volterra equations (a Volterra 

representation). Using a nonlinear transformation, the Volterra 

equations can be converted into a system of differential equations, 

where the right-hand side consists only of a power product of 

states (Riccati representation). This unified system description 

in terms of Volterra or Riccati representations allows us to apply 

mathematical tools developed for the analysis of Volterra systems 

to a large class of nonlinear systems. The Riccati representation 

provides a means of characterizing the dynamics of the original 

system using only a few basic modes of growth. The advantages 

of this new approach from both the theoretical and the practical 

point of view have been demonstrated by examples (replication 

equation, analysis of world energy consumption and world popula- 

tion growth [4,6]). 
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