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PREFACE

In this paper, the authors summarize recent results obtained
by applying the Lotka-Volterra approach to problems in nonlinear
systems analysis. This approach was developed at the Mathematics
and Cybernetics Divisidn of the GDR Academy of Sciences (Berlin):
various applications have been investigated in collaboration with

the System and Decision Sciences Program at IIASA.

This paper should also be seen as a contribution to the de-
bate on future directions of research at IIASA, in particular

possible research into the evolution of macrosystems.

ANDRZEJ WIERZBICKI
Chairman

System and Decision Sciences Program
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QUALITATIVE ANALYSIS OF NONLINEAR
SYSTEMS BY THE LOTKA-VOLTERRA APPROACH

M. Peschel, W. Mende and M. Grauer

INTRODUCTION

This paper summarizes recent results obtained by applying
the Lotka-Volterra approach to problems in nonlinear systems

theory.

Ref. 1 introduces a general structure design principle by

which it is possible to obtain a unified description of a large
class of systems normally described by ordinary differential
equations in terms of the Lotka-Volterra equations:

Fx, = )G;:X; + )H

i 1§73 is¥s

Ref. 2 proposes a group of equivalence transformations for the
Lotka-Volterra equations once these equations have been embedded
in the huge class of multinomial differential equations. One
particularly important member of these equivalence classes is

the Riccati representation of a nonlinear system:

u = K Hukir
i ir :
This Riccati representation has important properties which can

help to simplify qualitative analysis. To a good approximation,
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the behavior of nonlinear systems can be locally represented by
Riccati models. It can be shown [3] that the Volterra approach

may also be used to advantage in the study of linear systems.

Shift cones, which exist for a huge class of Volterra sys-

tems, are discussed and the importance of some of their quali-

tative properties noted (see [4]).

The strength of the Volterra approach in applied systems
analysis may be demonstrated by a number of interesting examples,
one of which involves the use of the approach for modeling the
dynamics of growth. Some systems descriptions of growth func-
tions are discussed [5] and the Volterra approach is then applied
to the resulting equations [6]. An outline of the general Lotka-

Volterra approach is given in a previous IIASA paper [7].

1. CHAINS AND CYCLES

We often find that the highly complicated external appearance
of complex systems (ecological, economic, astrophysical, etc.)
conceals quite a simple basic structure or skeleton composed of
chains and cycles linked together with a relatively small number

of feedbacks or other connections.

Growth and structure are the main characteristics of evolu-
tionary systems. Dynamic interaction usually leads to actions
controlling the growth rates, which from a functional point of
view means that rate coupling is the most important type of inter-

action in complex systems.

A very broad but simple model of a chain structure is given

by the following equations:

where

Ki reflects the influence of the next level up on the growthofxi

Li represents the loss of X, connected with the next level down

a; reflects the wastage on level i
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If the loss terms can be neglected we obtain what is called an

exponential chain with

in = K i=20,1,... .

i¥ivr v
We can try to use such an exponential chain to generate any given
signal xo(t). In this case the state variables xi(t) should be
normalized such that xi(O) = 1, The coefficients Ki can then be

uniquely determined by

K. = FxX. = prtlx ]
1 le=0 Oli=g

This is an expansion very similar to the Taylor expansion of a
given function xo(t). (Recall that the Taylor expansion involves
the approximation of xo(t) by a linear chain

X, =K. + x

i i i+l ! i=20,1,2,...,

normalized such that xi(O) 0.)

Both chain constructions are special cases of a more general
construction based on an arbitrary differentiable and monotonic

function ¢ (u) and the following chain:

d¢ (x,)

_ -1

Again we have the normalization condition
o(x;(0)) = 0 .

In this case the coefficients K, can be computed from

K; = Fi+1xo(t) , F = dé(+)/dt .
£=0
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Another chain construction can also be useful when trying
to approximate systems behavior by a local chain model. This

one is based on the generalized difference gquotient:

o (x; (£)) =0 (x; ()
i r 0 €))) .

-1
= ¢ (¢(K.)+¢(x.+1
v (E) =y () * *
For ¢(u) = u and ¢(u) = u this expression is egquivalent to a
Taylor series expansion about the reference time tye. The normal-

ization condition for these chains is:
¢(xi(to)) = 0 ’ i=1,2,..., .

Note that this does not necessarily hold for i = 0. The corre-

sponding parameters can then be computed using

d¢ (x, (t,))/dt
K. = .
1 dy () /dt

In this case it is difficult to obtain an estimate of Ki based

directly on xo(t); it is only possible to derive the following

iterative procedure for L. (t) = d¢(x;(t))/dt:
d t

Lin(®) = 3¢ ¢([tLi(u)du/EW(t)-w<to)] :
0

We shall now return to the concept of the exponential chain,

and describe some of its most important properties and some

(as yet) unsolved problems.

Assuming that K, K for all i, the exponential chain

F; = KX544

converges to xo(t) as the length of the chain increases, where

xo(t) = xO(O)/(1-Ktxo(O)) .
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For simplicity we assume that xi(O) =1 for i=20,1,... . The
signal xo(t) is a solution of the following autocatalytic differ-

ential equation:

FXO = KXO .

This equation can be represented by the cyclic structure shown
in Figure 1 which is a hypercycle of the simplest form (see [8]).

Figure 1. A hypercycle of the simplest form.

A hypercycle of order n is produced by a finite chain with
feedback after n elements and is represented by the equations

in = K i=0,1,oou’n -

i¥ie1 !
This hypercycle corresponds to an exponential chain with periodic

coefficients

KgrKqreoorK 4
We can consider our finite chain to be built up by repeating this
sequence m times, and this leads to our first unsolved problem.

Does the signal xo(t) always converge to the corresponding hyper-

cycle solution as m~+ =?



Eigen and Schuster considered in detail the hypercycle with

homogeneous flow ¢ on every level represented by the equations
Fxg = RyXjq =0 o0 0= IxKex o .

In this case the normalization condition in = 1 is obviously
satisfied, which means that the interesting behavior of the system
is concentrated completely on this simplex. This hypercycle
behavior can be transformed in such a way that we have

Fyi = Kiyi+1/y ’ Y = Zyi

where the relation between the new state variables Yy and the old

ones x; is given by X, = yi/y.

It was shown by Schuster, Sigmund, Hofbauer and Wolff (9] that
for n <3 the hypercycle can have only foci, but for n >4 limit

cycles can occur.

We shall now consider the behavior of a complex hypercycle,
i.e., a complex exponential chain. In this case we allow xi(t)
to take complex values and substitute into the chain equations

the Gaussian representation
xi(t) = Ri(t) exp (jei(t)) .

On separating real and imaginary parts we obtain the following

real equations:

FR; = KyRyq c08 8,4 v 83 = KyRyyq sin 8,44
which lead to
8. &
. ( i1 ) ) 6,cos6. 4
Ki_151n6.l Sinei+1
I S £ I
1 Ki_1 sin®



These relations can be used to help clarify the dynamics of the

complex hypercycle.

The analysis of an exponential chain in which the Ki are
independent stochastic variables (do not depend on time t) is
also of great interest.

Consider the following case:

Fx, = Kx

i i+1 ’ X = 1 r’ i=0’1’o|-'n ’

n+1
where K is a stochastic variable with probability density ¢(K).
We would like to show that the probability density q)(x0 n(t))
14
(where X, n(t) is the lowest signal of a chain of length n) con-
14
verges to ¢(x0(t)) as n-+o, with

xo(t) = 1/(1-Kt) .

This is still an open question, but if proven would be of great
importance because it would mean that a chain with nearly equal
coefficients Ki’ with differences caused only by fluctuations,
would necessarily exhibit approximately hyperbolic behavior (Law

of Large Numbers of Ecology).

2, THE STRUCTURE DESIGN PRINCIPLE AND THE DOMINATING ROLE
OF LOTKA-VOLTERRA EQUATIONS IN DYNAMIC SYSTEMS

The study of ecological systems provides us with a picture
of their underlying structure in terms of a skeleton composed of
chains and cycles linked by a relatively small number of feed-
backs and other connections. From the functional point of view,
ecological systems also contain dynamic interactions influencing
the growth rates in of the corresponding state variables x.,

i
which represent growth indicators. The structure design prin-

ciple proposed in [1] attempts to use this knowledge to obtain
the structures of a huge class of systems described by ordinary

differential equations.

The structure design principle is based on the following
rules:



-8-

1. The logarithmic derivative function F = d&n/dt is applied

to any intermediate state variable X,
in = A, .

The result Ai is not introduced as a new state variable Xi1
as in the case of an exponential chain. Rather, Ai is in
general an arithmetic expression built up from:(i) signals
already known because they have appeared previously, (ii)
signals unknown up to this stage of the design process, and
possibly (iii) nonlinear transformations of signals of both

types.

2. We identify the known signals in A, and construct feedback
loops or interconnecting arches for them; we fix in an arbi-
trary manner the unknown signals or nonlinear expressions
of known and unknown signals as addresses of new state vari-
ables; we then continue the design process with the new
signals, i.e., we operate with the logarithmic derivative

function F = d&n/dt on the newly introduced signals.

3. The structure design process comes to an end when all of
its branches bear arithmetic expressions A, containing only
known signals.

We shall now demonstrate this design process for the generation
of the harmonic oscillation xo(t) = A sin wot. Following the
procedure outlined above, we obtain

Fx0 = wocosumt/sinwot = WwoXq X, = Acosmot/x0

Fx, = -wosinwot/coswot--wox1 = —wo(x2+x1) r Xy = 1/x1

Fx, = wo(x1+x2)

Figure 2 shows the structure obtained using this design principle;
it is in fact a representation of the sine signal by a compietely
imaginary structure. However, this has nothing to do with the
numerical quality of the sine generator produced in this way. In
our example the sine generator actually has quite bad properties,

because it produces singularities after every quarter of a period.



Figure 2. The structure obtained using
the proposed design principle.

in general we can always direct the structure design process in
such a way that linear superposition of state variables will be
preserved and that all products or quotients of state variables
can be replaced by linear superpositions because of the corre-
sponding property of the logarithmic function. If this require-
ment is met at all stages of the structure design process we will
always ultimately obtain a unified system description in the form

of the well-known Lotka-Volterra equations [1,4,10]:

Fx; = EGijxj + EHisYs ,

where the Yg represent input variables in the nonautonomocus case.

The question immediately arises as to which types of ordinary
differential equations can be treated with this structure desigp
principle. There is no easy answer to this question, but the

following guidelines may be useful:

1. All state variables of the original system of ordinary dif-
ferential equations and all newly introduced intermediate

state variables must possess a sufficient number of derivatives.
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2. All zeros of the original state variables and newly intro-
duced state variables cause singularities in the corre-
sponding Lotka-Volterra system if they are not removed by
an appropriate regularization procedure. This can usually
be done by shifting the variables concerned and introducing

additional state variables.

3. Assuming that conditions 1 and 2 are satisfied, all ordinary
differential equations which can be defined using only the
basic arithmetic operations of addition, subtraction, multi-
plication and division can be transformed into a Volterra

representation.

There are usually many Volterra representations for a given set
of ordinary differential equations because of the ambiguity in-
troduced by choosing intermediate state variables. The procedure
by which a given differential equation is transformed into a
Volterra representation can be formalized using notation similar
to the Backus notation familiar from algorithmic languages. We
shall give here only a brief, nontechnical description of this
procedure; the proof of this construction is given in [4]. Two

notions are of importance: that of an arithmetic differential

expression and that of an admissible differential equation.

An arithmetic differential expression is a rational function
composed of constants, input variables, output variables and their
derivatives up to a certain order (for example, up to order m
for a certain output variable) and functions depending on one
variable. The corresponding notion of a "function" is more gen-
eral than that usually employed in algorithmic languages, but

there are some restrictions, which are outlined below.

An admissible differential equation for a certain output

variable x has the form:
pnx = arithmetic differential expression, p = d/dt

where the order m of the derivatives of the output variable x

in the arithmetic differential expression must be smaller than n.
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A "function" is a function f(x) which depends on one output

variable and is itself a solution of an admissible differential

equation with the differential operator g = d/dx.

Because the definition of a "function" in terms of an asso-

ciated differential expression can itself depend on "functions"

of the type introduced above, our design principle obviously

produces a hierarchical proceduré for the development of structures.

As another example, we shall use our structure design prin-

ciple to derive the Volterra representation for a generalization

of the famous Brusselator associated with the Prigogine school:

ayk - ayxxk

PY

px = Byxxk - bxg
where

y is the prey

x is the predator .

On the first step we obtain

_ k-1 _ x=1_X
Fyp = ayg %Yy *o
_ X A=1 _ =1
Fx0 = Byox0 bx0
We now introduce the following four
_ k-1
Yi. T Yo r Yo =
- 2=1 -
X, = X ’ X, =

From this we immediately obtain the
Fy0 = ayq - Y, ' Fx0 =

Fy1 = a(k-1)y1 - a(k-1)y2 ' Fx1

14

<

[}

<
o

variables:

x=1_A
YO xo 14
X

—_—

X

}\-
Yo¥o

o

following Lotka-Volterra model:
sz - bx1 ’

= B(Z-1)y2 - b(JZ,-‘I)x1 '
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Fy2 a(x—1)y1 - a(x-1)y2 + Asz - Abx1 R

Fx

, = axy, = oxy, + (A=1)8x, = (A=T)bx; .

The expressions for the newly introduced state variables are
obviously the first integrals of the final Volterra representation,

i.e., we get a representation with some transparent redundancy.

3. EQUIVALENCE TRANSFORMATIONS FOR VOLTERRA REPRESENTATIONS
AND THE CORRESPONDING NORMAL FORMS

Because intermediate state variables can be introduced during
the structure design process in several ways, we can obtain a
number of different Volterra representations for a given set of
ordinary differential equations. These representations are in
some sense equivalent because they all represent the trajectories

of the same system.

There is a group of equivalence transformations which can
be applied to Volterra representations; this is isomorphic to the
group of regular affine transformations of a finite-dimensional
vector space. However, it does not seem possible to introduce
equivalence transformations for the Volterra equations themselves.
We therefore have to embed the Volterra equations into the broader

class of multinomial differential equations.

A multinomial differential equation in n state variables xi(t),

i=1,2,...,n, is defined in the following way:
a b
Jr JSs
Fx., = §AiJ Mx Iy .

For simplicity we consider here only the autonomous case, i.e.,
without input variables. The driving force of a multinomial
differential equation is apparently a superposition of terms,
where each term has the form

a
IIx Jr .
r

To avoid difficulties with complex numbers we have to assume that
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only the behavior in the positive cone

x. >0
l__

is of interest to us. For a given Volterra representation this

condition can be met by means of an appropriate regularization

procedure.

More generally, an augmented multinomial differential equa-

tion can be defined as follows:

d¢ (x;) -1 )
——L - g (fage e + Do)
dt
All of the remarks made here in connection with equivalence

transformations also hold in this more general case.

We now define homogeneous term-consistent coordinate trans-
formations as linear regular affine transformations on the space

spanned by Qn.xi(scalarization by the &n function):

t.
_ ir
X; = Hzr
where T = (tir) is a regular matrix. The form of an autonomous

multinomial differential equation is obviously preserved under
such a transformation and we find that the matrix pairs (T_1A, aT)

define a class of equivalent multinomial differential equations.

These transformations can be used to derive suitable normal
forms for multinomial differential equations and also, indirectly,
for Volterra representations, because every multinomial differ-
ential equation can immediately be transformed into a Volterra

representation after renaming each different term.

We now have to consider which kind of normal forms are most
suitable for our purpose, i.e., to simplify a given representation.
We can obviously pursue simplification in a number of different

ways, some of which are outlined below.



-1l-

1. Matrix A should have as many zero elements as possible to

minimize the number of terms occurring in the driving forces.

2. Matrix a should have as many zero elements as possible to
minimize the number of times variables occur in the terms.

3. Matrix A should have as many zero rows as possible, because
every zero row means that the corresponding transformed state
variable is a first integral of term motion form, i.e., of
power product form. This is also a means of reducing dimen-

sionality.

4, Matrix a should have as many zero columns as possible, because
every zero column represents a state variable that does not
occur in the driving force, i.e., a state variable that can

be eliminated. This is another means of dimension reduction.

5. Matrix a should, as far as possible, have rows equal to each
other, because these rows are associated with the same terms,
which can then be combined. This is obviously another way
to reduce the number of different terms involved in the

driving force.

To combine these various types of simplification is really a
multiobjective decision problem because we are usually interested
in pursuing several of these objectives simultaneously, and have
as our control resource only one regular matrix T in n-dimensional
space. One way of obtaining efficient solutions to this problem
(in the vector-optimization sense) is outlined below.

We first use the resources T such that we reach a certain
normal form which, for example, satisfies goal 3. Then we con-
sider the subgroup of all regular affine transformations T for
which this normal form is invariant, and use the rest of the
resources contained in this subgroup to pursue another target,
for example, goal 1.

We shall now demonstrate the use of the equivalence trans-
formation procedure by means of a simple example: Xg = (1+b) sin t,
where o<1, b>1 are reqularization parameters. It can be shown
that a regular sine generator is given by the following Volterra
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equations (all state variables X, are assumed to be

Fx

0

Fx1

Fx

2

Fx3

a(1+b)x1 - bax2
—[a(1+b)x1-bax2]

-[a(1+b)x1-bax2]

When we use the resource 1

[a(1+b)x1-bax2] + (

1 1
- (a(1_+b) X3 T S(1+o)
1 -1
a(1+b) *3 ~ a(1+b)
S I
a(1+b) 73 a (1+b)

nonnegative) :

to transform A to T—1A we obviously

have the chance to add any linear combination of rows of matrix A

to any other. Thus, taking the following form of T

o O O = O
o O = O O

o = O O O

we obtain the transformed matrix A as follows:

-

The new terms are given by the transformed matrix a:

i 1 0

-1 1

aT = T = | -1 0
1 0

0 0

a(1+b)
0
0
0

-ba

o

o O O O
o O O O

1 1

a(1+b) ~ a(1+b)

-

1
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The new state variables z, are related to the old ones x; by the
following coordinate transformations:

-1

ir

z. = [Ix .
i r

We therefore obtain the following expressions:

We see that the coordinates z1,22,23 are first integrals, i.e.,
they are constant along trajectories. We have therefore reduced
the dimension of the multinomial differential equation system

ton = 2,

We now have to consider the following multinomial differential

equations:

_ -1 -1 -1
on = a(1+b)z0 z.lzu - baz0 22
F ———1—ZZZ— 1
2y T T+ %0%3%4 T G(i+dD) %4 -

By assigning new names to all of the different terms we can
easily transform the multinomial differential equation into a
Volterra representation. We therefore obtain the following equi-

valent Volterra representation:

1 1

Fyy = =—all+blyy + bay, - oopy Y2 ¥ g77+p) Y3
Fy, = -a(1+b)y0 + bay,
Fy., = a(1+b)y. - bay, + —m S

2 Yo Y9 ¥ 300+b)Y Y2 T T(T+b) Y3
F = L Yo - __J___

Y3 a(i+py Y2 ~ a(i+p) Y3 *

We recognize at once another first integral, Yo¥p = const.
However, in this case it is not possible to reduce the order of
an equivalent Volterra system still further, so that the appli-
cation of an equivalence transformation actually leads to a

reduction in dimensionality of one.
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It should be noted that all of the rate equations in chemical
reaction kinetics are multinomial differential equations, and thus
it seems reasonable to seek their equivalent representations under

the group of equivalence transformations described above.

If all of the exponents occurring in a multinomial differential
equation are rational numbers, then the system can easily be trans-
formed so that the transformed system contains terms with integer

exponents.

4. THE RICCATI REPRESENTATION - AN EQUIVALENT REPRESENTATION
OF LOTKA-VOLTERRA SYSTEMS

Suppose that we want to remove the autocatalytic term Giixi

from the Volterra representation

Fx; = ZGijxj .

We can do this in the following way. We introduce new state

variables Ei such that

FE. = Fx, - G,.X,

i i 1i%i
or
E. = x./F 'G..x
i i iiti !
where
_‘] t
F = exp (I), I = f .
0

If we want to solve the substituted form of the equation for
variables X;, we have to solve a special case of the Riccati
differential equation. In this case a direct solution exists,
namely
-1/G. .
= - ii
We shall now discuss this transformation, making the assumption

that xj is restricted to the positive cone X5 > 0 and that we
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start the trajectory with the normalized initial condition

xi(O) = 1, The initial condition for Ei is then Ei(O) = 1,

Under this transformation, the Lotka-Volterra equation is
replaced by the following integral equation:
—Gi./G..
j#i
-G, ./G..

= 0 the factor (1-ijI£j) 13" 3J reduces to exp(GijIE.).

If
J

G..
J3

This is a model containing multiplicative interactions. The

components of this model show the following modes of behavior:

1. Quasihyperbolic increase (in finite time to infinity)

2. Quasiparabolic decrease (in finite time to zero)

3. Quasiparabolic saturation (in finite time to a nonzero level)

4. Quasihyperbolic decrease (in infinite time to zero)

5. Quasiparabolic increase (in infinite time to infinity)

6. Quasilogistic saturation (in infinite time to a nonzero level)

We may describe any equivalent representation (in terms of multi-

nomial differential equations) of the form

; K, Tu_t
v = i “Yr

r

as a Riccati representation of a Lotka-Volterra system.

From the integral equation derived above we can easily con-
struct an equivalent Riccati representation by making the following

substitutions:

.= 1 = G..IE. £ ' ) A
uJ 33 EJ or G]] #F0, Jje

uj(O) =1 .

e
Il

IE. £ G.. =0 i €A
exp ( EJ) or 33 v ]

For j €A we have xj = —(1/ij)Fuj and for j €A we have xj = Fuj.
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Thus we obtain the following Riccati representation for the uj:

-G. .

4. = -G. T u, 3r/Crx n_u %, jEA
J 33 rea-4 SER

-G._/G .
B oo TN L P

j reA-j SEA
° _G' /G L) —_—
u = u, I u, jrrr I u IS , jEeA
-G._/G

pYe = u_ jr rr I us]s , jEA .
] rea seA-7j

It should be pointed out that in this case it is not necessary
to assume initial conditions ui(O) = 1 or to assume that the
initial Lotka-Volterra system is restricted to the positive cone

x. > 0.
120

More generally, we can pass from a Lotka-Volterra represen-
tation to an equivalent Riccati representation by applying any
substitution of the form

Xx. = K.Fu. K. 0 .

] i3 j 7

In the case where the motion is restricted to the positive cone
we find that all of the Riccati state variables uj are monotonic
functions and therefore that all of the X; are power products of

monotonic functions.

The Riccati representation of a Lotka-Volterra system has
some very useful properties:

1. The redundant state variables uj can frequently be used to

construct direct analytical solutions if they exist.

2. The poles which arise in a Lotka-Volterra system during the
structure design procedure if the appropriate (regularization)
measures are not taken are eliminated in the corresponding

Riccati representation.
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3. In the case where all of the exponents in the Riccati
representation are integers, it is possible to use a special
method based on graphs to examine the qualitative properties
of both the Riccati representation and the original ordinary

differential equation (see Section 5).

4., The Riccati representation provides a good basis for the
design of an integrated processor for solving ordinary

differential equations.

We shall now give two simple examples illustrating proper-

ties 1 and 2.

Example 1. We consider the Langevin differential equation [11]
. 3
q = ag - Bg .

Without loss of generality we can assume that g(0) = 1, i.e.,

normalization. Then we have

qu = q - Bq1 ’ q = qq

2
Fq1 2a - 28q1 ’ 91 T 9q .

The Riccati representation is

1/2 _ 1/2

exp(at)uou; r 4y = exp(at)u;

45

Uy

2R exp (2at) .
Integration leads directly to
u1(t) = 1+ g [exp(2at)=-1]

and therefore the solution is

qy(t) = exp (at)/(1+§ lexp (20t)-11]1/2 .
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Example 2. 1In Section 2 we derived a Volterra representation

for the sine function
xo(t) = A sin wot .

The resulting nonregular Volterra representation

Fxy = g%y
Fx1 = -wo(x1+x2)
sz = u)o (x1+x2)

produces a pole every quarter of a period. The corresponding

Riccati representation in this case is

uo = u0u1 ’ xo = u1 ’
4y = Wouy g = uy/ug

The behavior of the Riccati representation is clearly completely

regular.

5. A METHOD OF GRAPHS FOR QUALITATIVE ANALYSIS, BASED ON THE
RICCATI REPRESENTATION

The method presented here is applicable to any Riccati re-
presentation for which all exponents in the driving force are
integer. In general, motion is not restricted to the positive

cone in u-space.

We first present a general outline of the method.
Let us consider the equation

k.
. 1lr .
ui = Ki 1'[ur ' i=1,2,...,n '

where all the kir are integers. We now introduce the concepts

of sign states and growth states.
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A sign state is an admissible vector (v1,v2,...,vn) where
v, = sgn u,. The sign function sgn is defined as
+1 (or +) if u >
sgnu = 0 if u=20
-1 (or =) if u <

The fact that the vector has to be admissible means that not all
sign state vectors are necessarily allowed; this takes into ac-
count possible restrictions on the X5 in the original Lotka-

Volterra system.

A growth state is an admissible vector (w1,w2,...,wn) where

w, = growth u, . We define the growth function as follows:

+1 (or 4) 4if u >
growth u = 0 (or @) if u =
-1 (or +) if u < .

Again, the fact that the growth state must be admissible means
that because of the configuration of driving forces in the Riccati
representation not all combinations of 4, V and # can necessarily

occur.

The situation becomes clearer if we interpret the set of
admissible sign states as the set of states of a graph game, and
the set of admissible growth states as the set of states of another
graph game. The two graph games are assumed to be interconnected.
We now have to define the set of feasible actions for any state
of a graph game; in our case this is easy because the feasible

actions are specified completely by the given Riccati representation.

We shall now describe how the procedure works in practice.
Assume that we start in any admissible sign state. Because of the
integer exponents kir in the Riccati representation, the sign
state and the power-product driving force uniquely define the
growth state. Once in this growth state we can obtain the cor-
responding feasible new sign states from the previous sign state.
Thus, the set of feasible actions is clearly specified in every

state of both graph games. We therefore obtain two coupled graphs
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with sign states and growth states as nodes; it is also possible
(and sometimes useful) to consider the subgraphs containing only
sign states or only growth states separately. These graphs can
provide useful information about the qualitative behavior of a

Riccati representation; the question is what sort of information
they provide about the qualitative behavior of a given ordinary

differential equation.

We demonstrate the use of this approach with the example of

a hypercycle of order n = 2:

Fx. = K i mod 2 .

i i¥is1 v

If we take arbitrary initial values we can remove the parameters

K, by substituting
Yi T Kjq*¥ o -

We therefore have to consider the following Riccati representation:

<
o
|

YoY4q .
Y = Y1YO .
We draw the following inferences from the sign and growth graphs:

(+,+) > (4,4) » (+,4) (stable mode, explosive growth)
(+I"') g (+I+) - (01—) - (glg) - (01—)

(=,+) » (+,%) » (-,0) >~ (@#,8) - (-,0)

¥

(=,=) » (4,4) (0,-) ~ (4,4) -~ (0,-)
or ~ (-,0) ~ (#,8) ~ (-,0)
or - (0,0) ~ (g,8) - (0,0) .

Figure 3 shows the sign graph together with possible transitions

caused by disturbances which influence only the value 0.



-204-

Figure 3. Sign graph and possible transitions caused
by disturbances which influence only the value 0.

We see that (+,+) is the only stable focus; the other foci (which

contain at least one 0) are unstable, behaving like saddle points
when subject to disturbances.

6. THE HYPERLOGISTIC GROWTH MODEL AS A GENERAL MODEL FOR GROWTH
FUNCTIONS

The hyperlogistic differential equation
x = ka(B-xw)2

is a generalization of the logistic growth function (which has
k =2 =w=1); many commonly used growth functions may also be

represented in this general form. In addition, increases in
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one-dimensional growth indicators in soft systems can usually
be represented (in a phenomenological sense) by appropriate

solutions of the hyperlogistic differential equation.

The analysis of many real data series using this approach
is described in [4] - Figure 4 illustrates the analysis and pro-
jection of world primary energy consumption using a hyperlogistic

growth model [6].

Note that only two of the three exponents k,% and w are
assumed to be significant, which means, for example, that w can

be removed by a substitution of the form

It is therefore only necessary to discuss the behavior of the

equation
X = ka(B-x)l .

With x0'= x and introducing the additional state variables
x, = = Te-0t X, = xX (B-x) 1

we obtain the following Volterra representation:

Fx0 = Kx1
Fx2 = ka1 - K(l-1)x2

and the following Riccati representation:

. _ -1/(k=-1) _ -1/(k=-1)

u, = ugu, , Xg = U

ﬁ1 = —K(k-1)u;£/(l-1) , Xy = ugl/(l-”/u1 ,
ﬁz = K(2-1)u;k/(k_1) . u;k/(k_”/u2 .

These representations clearly contain a second-order Lotka-

Volterra model, as can be seen from Figure 2. The importance
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Fig. 4(a) Analysis of historical data for world energy con-
sumption [6]. The solid line indicates the fit with
a hyperlogistic growth model and the individual dots
represent the observed data.
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Fig. U4(b) Projection of world energy consumption [6] up to the
year 2100 based on the hyperlogistic growth model
presented in Fig. 4(a).
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of this power-product driven model lies in the fact that in some
sense it is the simplest nonlinear system exhibiting all six modes
of behavior discussed in Section 4. To demonstrate this we con-
sider the general second-order Volterra-Lotka system in the in-
tegral and differential Riccati representations. Our original
Volterra equations are:

Fx1 = G11x1 + G12x2

sz G21x1 + G22X2 .

The corresponding Riccati representations are:

-G,,/G
E,(8) = (1-Gy,IE,) 2 22

-G, /G
_ 217711
Ex(8) = (1-G,,IE,)

which is obviously the simplest structure demonstrating all six
nodes of behavior, and
: =G12/G22 ~G12/C22

4y = mGqqu roXp = U /84

=G,4/Gqy u'G21/G11

A first integral can immediately be constructed:

=Gp1/Gqq*1 =Gyp/GyptT
u.l u2
- = C .
Gi1 — G2q Gyz = Gq2

We must also take into account some degenerate cases which

become important later in the discussion.

For Gyq = G21, but G,y # G12,the first integral becomes
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=Gy /Gyt
2n u1 u2

Gq1 Gy = Gq2

For G = G but G11 # G21, the first integral is

12 227
-G, .,/G,,+1
u, 217711 en u2
- = C .
(Gyq = Gyq) Ga2
For G11 = G21 and G22 = G12 the first integral will be
Zn u Zn u
1 _ 2 _ c .
Gqq Ga2

In the most general case, G11 # G21 and G22 # 912, we introduce

new variables

u'G21/G11+1 u‘G12/G22+1
1 1 2 2

and obtain

G2/ (G 5=Gyy)  Gpq/(Gy1=Gqq)

Vi = =(Gq4=Gyqlv, vy
: GG ) Gy2/(G157Gy)) VG21/(G21'G11)
2 = 2279127V 1

so that the first integral now becomes

v v

1
G

2

(Gy4=Gyq) (Gy5-Gq3)

Obviously in this case both state variables VirVy have the same
dynamics, determined by the general power-product driven differ-

ential equation.
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We now examine the effect of introducing new variables in

the other three cases.

For G11 = G21, but G22 # G12 we make the substitution

- _ TGq2/GpptT
v, = nu; , vy = U, .
The first integral will now be
v v
_1 - 2 - C -
G1y (G227Gq2)

The transformed differential equations are then

“Vy  Gyp/(Gq3=Gy3)
v = -G11 e Vz

(GG VG12/(G12'G22) =G51/G11V4
2 227712 2 € .

<
I

Obviously both state variables ViV, have the same dynamics, i.e.,

x = kxFe™'®

which is another well-known general form for growth functions.

By symmetry, the case G12 = G22’ G11 # G21 yields the same result.

In the case G11 = G21, G22 = G12 we set

V1 = JLnu1 ’ v2 = 4n u2 .

The first integral will now be

v v
G—1.. - .G—2 = C .
11 22

The transformed differential equations are then

. A TS
v, = -G11 e e ’ vy, = -G22 e e .
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This is obviously a special case of the dynamical behavior noted

previously, i.e.,

We have to discuss at least one more special case: that in

which one of the autocatalytic terms vanishes, for example,

G11 = 0. In this case we obtain
. L €12/C22 o o G12/%22
4 T 9 Y ' X9 T W
+G G
. 21 _ 21
u, = —G22 u, ’ X, = U, /u2 .

The first integral is then

G21 4 G127C20"
1 2
G (G

u

-G

21 22 12)

We shall now assume G21 # 0 and G22 - G12 # 0. Introducing the

new variables

v Gy _ TGy/Gypt]
I ' Vo T U

we obtain the following transformed differential equations:

. Gqo/ (Gy5=Gyy) . G12/(G12'G22)V

Vi = GyVq Yy 1 Vo = (Gyy=Gyy) v, 1

Both variables show the same dynamics and the first integral now

has the form

V1 V2 c
Gy (Gy5=Gq3)

which is obviously another special case of power-product driven

dynamics.
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7. THE DEVELOPMENT OF STRUCTURE AND THE LOTKA-VOLTERRA EQUATIONS

Our discussion of the development of structure is based on
the following assumption: that in real systems only competition,
mutation and selection determine the structure of the system -
no special natural laws must be invoked. It is therefore neces-
sary to show that structure can actually develop from these three

quantitative relationships.

In this section we concentrate on the structures arising
from quantitative competition in the Lotka-Volterra equations.

Schuster et al. [12] pointed out that Darwinian properties
can best be studied using the replicator form of the Lotka-Volterra
equations; in our opinion this is also true for the development

of societies of species.

There is a standard method of transforming the Lotka-Volterra

.description

Fx; = ZGijxj , i=1,2,...,n

to the replicator form which requires us to introduce the bary-

centric coordinates

Yo = 1/2xj ’ Yo = XpXy .

n
Then, using the new coordinates Yi where z y; = 1, we obtain the
following differential equations: =1

Fy; = (JGj4v4 - /vy 0= InS¥y -

3
For Yo > 0 the wvalue of Yg does not have an important influence
on the dynamics (this is only a monotonic transformation of the
time scale along the trajectories), so that for all qualitative

purposes we can work with

This is called the replication form of the Lotka-Volterra equa-

tions [12], and is qualitatively equivalent to the original Lotka-
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Volterra equation. It is also possible to construct an expression
quantitatively equivalent to the replicator with the help of the

Riccati representation.

The Volterra representation of the replicator is

Fy;, = JG;i¥: = 1 GpuiViy
i 571373 vy kKITKS

where vkj = xkxj. On passing to the Riccati representation we

obtain the following (quantitative) equivalent to the replicator:

Fw, = ZGirwi/w P Yy = wi/w
where w = ZWi. All of the stationary points of the replicator

equation have the form
y; = 0 for ie1l (1,2,...,n)

* —_

G..Y. = for ie1l .

1Gj5v5 = ¢ €
We are interested in stable stationary points (sinks). Every
stable stationary point contains a certain set I of non-vanishing
species, and we consider each such set to be a possible cluster
of the structure. The overall structure of the Lotka-Volterra

system is then obtained by combining all these clusters.

This is a restricted notion of structure, because in ecology

the most important clusters belong to stable limit cvcles. Never-
theless, this restricted notion is very useful in solving non-
linear assignment problems.

We can experiment with the structure of a Lotka-Volterra
system by varying, for example, the replication rates Gii' Bringing
together the modified terms we obtain the following disturbed re-
plicator equation:

_ 2
Fy; = IGi4¥5 = IGy¥y¥y + Ai¥y - INvg
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or its quantitative equivalent:

ZG..w.-+A.w.
pw, = —23 3 11 <

w

If Ai >0 we call it a subvention of species i; if Ai <0 it

becomes a tax.

As xi -~ o for all i the structure approaches a form which
represents a decomposition into single species, i.e., every
species forms its own cluster; by contrast, as Ai + = all species
are grouped together into one cluster, i.e., we have a stable
sink within the simplex Zyi = 1. Thus, between these two ex-
tremes, any combination of Ai's leads to a certain configuration

of clusters, the form of which is controlled by the Ai's.

We shall now demonstrate how this cluster-building concept
works for the simple example of the hypercycle of order n = 2.

The quantitative equations are

RiWipq * 449y
Fwi = ' i mod 2 .
w
This leads directly to
w \ W
1) - - 0 _ - 1

For AO = kA1, where k is a parameter, we obtain the result:

Y kK, -K
_1=k+__0__1 .

y -
0 A1 Kq
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8. SOME GLOBAL QUALITATIVE PROPERTIES OF THE LOTKA-VOLTERRA
EQUATIONS

We shall first draw some qualitative conclusions based on
the transformation of the Lotka-Volterra equations to the repli-

cation form. Introducing the notion of 'biomass', defined as

B = y = Zkaijj .

The flow y is obviously the driving force for the growth of the
biomass B. Between this flow ¥ and the flow ¢ = Zykajyj intro-

duced in the replicator equation we apparently have the relation
2
¢ = Y/B .

However, according to Maynard-Smith most of the stationary points
of the replicator equation (especially the local maxima) are
evolutionary stable states, so that d¢/dt > 0 in the neighborhood

of these points.

In general we have:
Fp = Fy - 2FB .

1. Let us assume that y > 0, so that the system plays the part
of a predator. Because F¢ > 0 in the neighborhood of an

evolutionary stable state we have

(W/¥y) > (B/By) >

and

B
B(t) > 0 .
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That means that the necessary input § is not proportional

to the actual biomass but rather to the square of the biomass.
Thus, the larger the system, the more inefficient is the use
of this input. On the other hand, the biomass necessarily
shows hyperbolic growth under these conditions - even in the
case where all autocatalytic rates Gii are equal to zero,

We can interpret
X = v,/B,

as a measure of complexity. The growth-related complexity

is high if the biomass unit absorbs much of the input (because
the level of inner organization or cooperation is high).

If ¥ is high, the amount of biomass "explodes" in a relatively

short time.

Let us now assume that ¥ <0, so that the system as a whole re-
presents a prey. The internal dynamics of the system are now
no longer growth-oriented, but if the system nevertheless
approaches an evolutionary stable state we have d¢/dt > 0 so
that

(6/64) < (B/By)®

B
B(t) > 0 )

The global biomass B is now decreasing but at a rate less
than hyperbolic since wo < 0. This can be interpreted as
meaning that the internal organization is now damping the

starving process.

The biomass B will rapidly assume smaller values, we will
have B/B0 < 1 and the exploiting force will be greatly re-
duced because of the quadratic law derived above. This
means that we observe a moderate exploitation of the global
system by the environment, which can surely be attributed

to the strength of internal links within the system.
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We now pass to another global property of Lotka-Volterra

systems, and consider what are known as shift cones.

We write the Lotka-Volterra equations in the form

where G-j is the j=-th column vector of the matrix G, and restrict

the motion to the positive cone Xy

rates Fx is then a positive linear combination of the column

> 0. The vector of growth

vectors of matrix G. This leads to the following important con-

clusions:

1. If the zero vector is contained in the convex hull of the

column vectors of matrix G,

OEH({G'j}) ’

then

* * »
where xj > 0 and ij = 1. This means that the Lotka-Volterra
equations have a stationary solution at which the forces
driving the growth rate are vanishingly small. If, on the

other hand, we have a stationary solution of the form

zij'j =0 p

where ij > 0, then we have

ZX-G.j =0 ,

where x; = ij/zﬁs' This means that the zero vector is again
contained in the convex hull of the columns of G. In this case
it is especially important that the column vectors be lin-
early dependent. We deduce from this that if det G # 0 the
zero vector cannot be contained in the convex hull of the

column vectors G-j‘
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Let us now assume that the zero vector does not belong to
H({G_j}), i.e.,

0 ¢ H({G_j}) .

In this case the zero vector and H({G.j}) together span a
*
convex cone K (smaller than a half-space), which we shall

call a shift cone.

We now consider the trajectories of the system in the new

coordinates

y; = &n x4

scaled by taking natural logarithms. It turns out (see Fig.5)
that for t > t, and any reference point y(to), the velocity

vector dy/dt of any trajectory is directed into the cone
*
y(to) + K

while for t < to the velocity vector dy/dt is directed into

the cone

*
y(to) - K .

¥ 3
Y2

'Figure 5. Trajectories of the system in the new
coordinates.
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This is very similar to the situation that exists with regard

to "light-cones" in the theory of special relativity and is an
important restriction on motion in such systems (all trajectories
in this cone resemble deformed straight lines). In particular,
if such a shift cone exists no cyclical motion (limit cycles,

spirals or combinations of these elements) is possible.

*

The parameter k belongs to the cone k dual to k if the

* *

following relation holds for all k €K :

*
(k,k ) >0 .

The dual cone K is also a convex cone (smaller than a half space)
and is spanned by a finite number of straight line generators,

. i

i.e., all vectors £, where

(£t,6,5) >0, j=1,2,...,n .

J

i .
For every such f~ we construct a function

r

which leads to the result

_ i

This means that the functions

Kfi(x)
are Ljapunov functions which can only increase along the trajec-
tories of the system. In particular, if det G # 0 we can choose
G-j to be a new coordingte base in n-dimensional vector space,
so that we obtain the £' as vectors of the so-called dual base
where (fl,G..) = 0. The dual cone K is then identical with the

positive cone spanned by the dual base {£1}.
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We can then apply an equivalence transformation, taking the

K i @s new coordinates for the trajectories, which gives
f

*
This means that the cone K 1is now the positive cone (Pareto cone)
and in this new coordinate. system we can construct the Riccati

representation.

9. .SOME NUMERICAL ISSUES IN THE SIMULATION OF NONLINEAR SYSTEMS
USING VOLTERRA OR RICCATI REPRESENTATIONS

If we transform a given ordinary differential equation into
a Volterra representation using our structure design principle it
can happen that the roots of the original differential equations
or the roots of the intermediate signals introduced in the design
process produce poles in the Volterra representation. This occurs
because we can pass from one coordinate orthant to another only
through infinity. We can usually eliminate this phenomenon by
suitable rescaling but then we have to introduce additional state
variables, which means that the dimension of the problem increases.
It is not clear whether it is always possible to get rid of these
unwanted poles: some but not necessarily all of them can be re-
moved by transforming the Volterra representation into an equi-

valent Riccati representation.

In the Riccati representation we have to deal with monotonic-
ally changing state variables which can either increase very quickly,
leading to an overflow, or decrease very quickly, leading to a
computer zero. Sometimes rapidly increasing variables are com-
pensated analytically by rapidly decreasing variables, but this
is also dangerous from the numerical point of view even if there
is a finite limit - we call this the 1'Hopital catastrophe.

In some senses these properties are inherent in the repre-
sentations under consideration; we have already shown that one of
the specific properties of nonlinear systems is that explosion
and extinction can occur in a finite time. However, we must try
to overcome these numerical difficulties in some way. In the case
of the Riccati representation the following rescaling is often
helpful:



. kir 2ir
ui = KiIIur ’ X, = Hur .

We can change the scale of u. by a factor k.. and require that X;

be invariant, i.e.,

0 = J&; fnk_ .
This makes sense only if these equations have solutions. These
degrees of freedom can be used to transform the parameters of
the Riccati representation as follows:

. _ i ir ir
ui = 'k— Hkr Hur .

i

However, the best approach seems to be to look for a regular

Volterra or Riccati representation.

We have found that a system of ordinary differential equa-
tions can be globally embedded into a Riccati representation;
this means that all of the original trajectories then become tra-

jectories of a single Riccati representation.

The behavior of nonlinear systems is usually approximated by
a set of locally linear models using a local Taylor expansion.
However, it is also possible to approximate the behavior of a given
ordinary differential equation by a set of local Riccati represen-
tations. This can be done in the following way, making use of
the discrete chain concept outlined in Section 1. Consider first
the functions of time xo(t). We construct a first-order discrete
chain

n xo(t) - &n xo(to)

= KO
Zn(t/to)
and determine the parameter KO:
t din Xq (t)
K = .
0 dt
t=t
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This leads to the following local model of xo(t):
Ko
xMo(t) = x4 (tg) (T/T) .

If we use a higher-order discrete chain we can determine higher-
order local models in the same way, just as higher-order local

models can be obtained by the Taylor series approach.

This principle can be simply extended to nonlinear ordinary
differential equations. We shall consider functions of the fol-
lowing form (i.e., with independent arguments):

X = f(z1,z2,...,zn) .

We first make use of the first-order discrete chain concept

_ 0 0
enf(z) = nflz) + Eailn(zi/zi)
where
9&n £(z)
a, = z; 0 .
azo zZ=2

This leads to the following family of local power=-product models:
a.
_ 0 0, 1
fM(z) = f(z7) H(zi/zi) .

This procedure is then repeated for the driving forces of an auto-

nomous ordinary differential equation

éi = fi(Z1,22,...,Zn) 1

resulting in the following local Riccati representation:

. 0 0,215
Ziy = fi(z ) H(zj/zj) .
We thus have two extreme situations which can arise when con-

structing a Riccati representation of a given ordinary differen-

tial equation. On the one hand we can construct a single global
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Riccati representation of a given ordinary differential equation
by introducing many additional state variables; on the other we
can approximate the solutions of this differential equation by

a family of local Riccati representations without introducing
any new state variables at all. There is, of course, a whole
spectrum of intermediate possibilities. We could, for example,
stop the structure design process before obtaining a complete
finite Lotka-Volterra representation, i.e., after having intro-
duced a relatively small number of additional state variables,
and then approximate the right-hand side with a family of local

Riccati representations.

We thus conclude that it is necessary to find some compro-
mise between the number of additional state variables and the

number of local Riccati models.

10. NUMERICAL ADVANTAGES OF MODELING LINEAR SYSTEMS USING
THE LOTKA-VOLTERRA APPROACH (SEE [3])

At first sight one might think that there would be no point

in trying to simulate the behavior of a linear system
z; = ZAijzj

using the Lotka-Volterra approach. Why should we abandon the
linear superposition principle for a higher-dimensional nonlinear
representation? However, linear systems have some properties

which lead very simply to regular Volterra representations.

By shifting the origin of the coordinate system we can in
most cases produce a situation in which the trajectories of the
linear system do not leave the positive cone z, > 0. This is
then sufficient for regularization because we cannot obtain a
Volterra representation by multiple differentiation. It is then
only necessary to divide the velocities éi by z,, which leads to

N| Ne
-

2.
- By
12z
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This is a special case of a more general Volterra gquotient system

of the type

These equations can easily be transformed into a Volterra repre-

sentation by introducing additional state variables

Ves T Zr/zs ’

leading to the Volterra representation

_ rs
Fz; = ZAi Vrs
_ mn_.mn
Fves = Z(Ar As ) Van :
The autocatalytic terms
_ rs_.rs
Grg = [(G7-G5T)

have an important effect on the numerical properties. In partic-
ular, if all of the state variables vmn(where mn # rs) are numer-

ically stable, then the numerical stability of v essentially

rs
depends on the sign of Grs’ being stable for G.g < 0 and unstable
for Grs > 0. This property has particular advantages when dealing
with linear systems, since in this case the following hypothesis

is likely to be true (under certain minor additional conditions):

If A = (Aij) is the matrix of a stable linear system, i.e.,
all roots of the characteristic equation det (A-AE) possess nega-
tive real parts, then the Volterra representation derived above
always contains at least n equations with negative autocatalytic

Or resource parameters,

We will demonstrate this for a linear system of order n = 2:

Zy = Bzt AgyZ,

A = A21z1 + A2222 .
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In this case we have the following Volterra representation:

Fzp = By + BygVay

Fzy = ByqVi2 * Ay

FVa1 = ByqVqa ~ BpVpq + Byy T Ay

Fvia = = ByqVqg + BgpVpq + Bgq = By -

The characteristic equation of the linear system is

A A(A11+A22) + A

11822 = 212824
The linear system is stable under the conditions

A11 + A22 <0

ByqBay ~ APy > 0

At least one of the elements A11 or A22 must be negative. If
only one of them is negative, then necessarily sgn(A12A21) <0,

so that a linear equation and a v-equation are damped; if both
elements A11 and A22 are negative, then both linear equations

are damped. It is obviously necessary to distinguish between
damping by autocatalytic terms and damping by "resources" in these

linear equations.

If the system is unstable, for example if it fulfills the
condition

Agg ¥ Ryy >0

then this would be consistent with A < 0 and A2 < 0.

12 1
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11. CONCLUSIONS

The approach presented in this paper is based on the obser-
vation that ecological systems can be described by chains and
cycles of rate-coupled evolving systems. Applying this descrip-
tion to arbitrary nonlinear nonstationary systems governed by
sets of ordinary differential equations leads to a new flexible
structure design procedure which makes it possible to describe
the original system by a system of Volterra equations (a Volterra
representation). Using a nonlinear transformation, the Volterra
equations can be converted into a system of differential equations,
where the right-hand side consists only of a power product of
states (Riccati representation). This unified system description
in terms of Volterra or Riccati representations allows us to apply
mathematical tools developed for the analyéis of Volterra systems
to a large class of nonlinear systems. The Riccati representation
provides a means of characterizing the dynamics of the original
system using only a few basic modes of growth. The advantages
of this new approach from both the theoretical and the practicai
point of view have been demonstrated by examples (replication
equation, analysis of world energy consumption and world popula-

tion growth [4,6]).
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