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FOREWORD

Many large urban agglomerations in the developed countries
are either experiencing population decline or are growing at
rates lower than those of middle-sized and small settlements.
This trend is in direct contrast to the one for large cities
in the less developed world, which are growing rapidly. Urban
contraction and decline is generating fiscal pressures and
fueling interregional conflicts in the developed nations; ex-
plosive city growth in the less developed world is creating
problems of urban absorption. These developments call for the
reformulation of urban policies based on an improved under-
standing of the dynamics that have produced the current patterns.

During the period 1979-1982, the former Human Settlements
and Services Area examined patterns of human settlement trans-
formation as part of the research efforts of two tasks: the
Urban Change Task and the Population, Resources, and Growth
Task. This paper was written as part of that research acti-
vity. Its publication was delayed, and it is therefore being
issued now a few months after the dissolution of the HSS Area.

Andrei Rogers

former Chairman

of the Human Settlements
and Services Area
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ABSTRACT

This paper discusses some fundamental difficulties faced
by researchers attempting to model hierarchical settlement
systems. Particular attention is paid to the problem of relating
the effects of city size and of the regional location on
growth prospects for a city. It is argued that the central
issue here is a need to relate a multiregional specification
of change to the hierarchical, overlapping regions that are
typical of an urban system and reflect its city size distribu-
tion. A typology is provided of methods that convert inter-
actions between arbitrarily defined regions into interactions
between more meaningful functional, urban centered, regions.
This is then used in an exercise that demonstrates how a con-
ventional multiregional economic model may be restructured
to allow use of a hierarchical set of functional reaions, in
such a way that regional economic theory may be used to ask
questions about the effect of city size and regional location

on urban phenomena.
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MODELLING INTERDEPENDENCIES IN HIERARCHICAL
SETTLEMENT SYSTEMS

INTRODUCTION

The modeling of change in an urban system has been tackled
at two broad levels. On the one hand, the relation of urban
growth to city size has received extensive attention, testi-
fied to by the extent of literature on the benefits of city
size and on the dynamics of city size distributions (see the
reviews by Richardson, 1973; Carroll, 1982; Sheppard, 1982).
The common criticism of this literature, voiced also in these
reviews, is that the interdependencies between cities are
ignored in such discussions. The second level represents an
attempt to model a complete urban system with all the asso-
ciated inter-urban interdependencies (see the plea by Simmons
and Bourne, 1981). This literature, which tends to draw
heavily on the methodology and theories developed for modeling
systems of regions,can in turn be criticized for not taking
into account the hierarchical nature of urban systems. In
multi-regional models, all regions are essentially alloted
the same importance, but in an urban system the extent of in-
fluence, and thus the importance of large metropolitan areas
means that they should be treated differently from small cities

and towns. This has resulted in the evolution of a distinctive
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sub-category of urban systems models that concentrate almost
exclusively on the hierarchical nature of inter-urban inter-
dependencies, and bear little apparent relation to multi-
regional approaches (Pred, 1971; Hudson, 1972; Bassett and
Haggett, 1971; Pigozzi, 1980; Weissbrod, 1976).

The real situation clearly is some mixture of city size
elements on the one hand, and the relative location and inter-
dependency of cities on the other hand. Just as the growth,
and thus the size of cities depends on links with the other
cities, so it is also the case that the nature of these links
depends on the size and sphere of influence of the various
cities. An example of the importance of this issue is that
the growth rate of cities of a given size in the United States
depends on the region they are located in. Thus while the
major metropoli of the northeast are declining, those of the
Southwest continue to expand (Berry and Dahmann, 1977). The
regions in which these cities are located are in turn an aggre-
gation of cities and their rural hinterlands, and it is the
prosperity of these clusters of cities that influences indi-

vidual metropoli.

While the conclusion that city size and patterns of inter-
urban interdependence influence one another is hardly surpris-
ing, researchers working on the urban system (and on other
strongly hierarchical systems) face a particular problem.

This may be posed as a question: how can inter-urban inter-
dependencies and the hierarchical nature of urban systems be
simultaneously taken into account? The purpose of this paper
is to provide some steps on the way to answering this question.
Section 1 motivates the discussion by illustrating the problems
faced by urban system modelers. Section 2 presents some rather
abstract ways of attempting to resolve this problem, while
Section 3 illustrates how this type of solution can be applied
to introducing hierarchical elements into a model of inter-

urban flows and prices.



1. THE PROBLEMS OF URBAN SYSTEM HIERARCHIES

Hierarchical systems come in many forms. Some are capable
of straightforward treatment, such as hierarchies with a strict
top-down structure. But urban and regional systems are signi-
ficantly more complicated than this (Rietveld, 1981b). 1In
these systems, flows can go up and down between hierarchical
levels, and also between cities at the same level. This is
a basic principle stemming from central place theory {(Christaller,
1933). But perhaps more importantly than this, there are no
clear boundaries between branches of the hierarchical tree that
can (see Pred, 1971) be used to represent an urban system. This
makes it particularly difficult to identify the separate ele-

ments of an urban system.

The difficulty can perhaps be illustrated by an analogy.
Biological systems are also strongly hierarchical, but at
certain levels there are distinct individuals that can be
separated from one another. Thus cells and individual plants
and animals can be isolated physically from one another. As
a result the influence of cells upon one another, and of cells
on some larger level of aggregation such as an animal, can be
modeled at least in principle by identifying the individual
cells and then summing up the influence of each cell in turn

to derive some aggregate effect.

Unfortunately this is much more difficult with urban sys-
tems. If an entire urban system is split into individual
functional entities, in parallel to the cells or individuals
of biology, it is generally agreed that these functional units
can be well represented by a city together with its rural
hinterland (cf. Kawashima and Korcelli, 1982). However, urban
hinterlands overlap in two rather complicated ways. First of
all, cities from high up in the urban hierarchy have hinter-
lands encompassing the hinterlands of many smaller cities, as
is to be expected due to the hierarchical structure. But, at
every level, there is no complete identification of each lower
order hinterland to a single higher order hinterland. Thus,

for example, two large cities can simultaneously have direct



contact with, and influence on, a smaller city. Second, hin-
terlands defined around cities of the same level in an urban
hierarchy overlap; rural areas along simultaneously to two

separate hinterlands at the same hierarchical level.

This overlap makes it difficult to identify the units of
analysis of an urban system. The nature of this problem is
identical to that faced by multi-regional modelers. In order
to meaningfully forecast regional change, the individual re-
gions must first be identified. 1If this is not well done,
then the regions between which flows are modeled may not
represent functional clusters of activities, and any attempt
to treat a region as such a cluster and to forecast its pros-
perity may well be unsuccessful. For this reason, regional
modelers have turned to functional regions as their units of
analysis. However, often such regions are only identified
at one hierarchical level. This has had two effects. First,
such regions are not useful for hierarchical models as men-
tioned in the introduction. Second the regions are non-
overlapping, forcing sub-regions that belong to two larger re-
gions to only be included in one of them. Any attempt to
allow for a hierarchical structure is achieved by aggregating
lower order regions into non-overlapping higher order regions
(cf. Harris, 1980). But, again, this is a very severe way of
representing the rather ambiguous manner in which urban-centered

regions do divide up the national space of an economy.

A regionalization which excludes the possibility of over-
laps between regions poses special problems for a model of
inter-regional interdependencies. Two non-overlapping regions
A and B are proposed, and then intra-regional interactions
A » A, B> B are identified and separated from inter-regional
interactions A #* B. But if in fact the two regions overlap,
then some flows A - A should in fact be classified as A »> B,
and vice versa. These areas of ambiguity occur in those sub-
regions of A and B that in fact represent a zone of overlap
where both A and B simultaneously exert a direct influence.

If flows are misclassified in this way, due to the enforced



misclassification of the overlapping region, then a confusion
is introduced similar in effect to that of improperly construct-

ing regions in the first place.

The sophistication of this argument, however, must be
confronted with the fact that data is collected for non-
overlapping regions, for compelling administrative reasons.
Thus at an operational level researchers are forced to use
such regions. But the possibility exists of ex post adjust-
ments to these regions, and to the flows between them, in
such a way that the misclassified flows are more correctly
classified. Then inter- and intra-regional interdependencies
may be more adequately separated from one another, perhaps
leading to better forecasts. Such corrections could also
simultaneously take into account the overlaps of higher
order regions. If such adjustments could successfully
be made, then one important implication would be that the
models, and extensive experience, developed for multi-
regional analysis could be applied to modeling an urban system

in a wav that accounts for its real hierarchical nature.

The following section proposes some ways of making such
ex post adjustments in a hierarchical urban system. The re-
sults presented here are complex and do not at this stage have
the elegance necessary if they are to be practically useful.
However, it is hoped that if the approach taken is sound then
future work may lead to practical proposals, which would at
least allow an estimate of the size of the misspecification
error introduced by not accounting for the overlapping and

hierarchical nature of urban centered regions.



2. INTERREGIONAL AND INTERURBAN INTERACTIONS: A TYPOLOGY

2.1. Interactions Amongst Well-Defined Regions

Consider the (artificial) case where a nation is divided
into a non-overlapping set of urban-centered regions i,§=1,...,R,
with metropoli A, B,...R. Let Pxg be the probability that an
interaction (of commodities or people), starting from some part
of region A, flows directly to some part of region B. Assuming
(reasonably) that the nation is an open system, let o represent
the outside world, and assume for all A: Pio 2 0 with the in-
equality holding in at least one case. Then the R x R matrix

of interactions, P is transitive. As a consequence, the matrix:
_ -1
U= (I - P) (1)

is finite and contains elements uij representing the probability
that a unit of commodity shipped, or a person migrating, will
ever reach j from i. U is a matrix of total influences or
"geographical potentials", which in turn is related to the
potential function of a Markov process (Seneta 19871; Sheppard
1979) .

If functional regions represent the most meaningful units
for analyzing spatial democeconomics then this matrix P contains
flows that can be identified with meaningful origins and desti-
nations. The flows themselves are then more likely to be

meaningful.

The regions used in the above analysis are themselves
aggregates that are internally heterogeneous. However this
heterogeneity is not random but may itself be susceptible to
subdivision into functional subregions. Such a division of
aggregate entities into disaggregate but still meaningful
entities is simply a procedure of replacing a smaller group
of loosely knit but heterogeneous functional regions by a larger
number of less heterogeneous regions. We do not seek to
maximize homogeneity in our groups, but rather to maximize the

functional unity of each member.



If our regions, A, can each in turn be divided into a set
of completely exclusive and mutually exhaustive functional
subregions; a,b = 1,...,M, such that each subregion is within

only one region, then we have a well-defined set of regions

(Figure 1). Relating aggregate and disaggregate flows is

then relatively simple, since:

~ * A %
Pag = L. Py ° Zg Pap * Pa ° Pap (2)

where p_ is the pro?ability that a randomly selicted trip
starting in region A will originate in a, and Pab is the prob-
ability that a trip from center a will terminate in center b.
We distinguish here the flow from center A to center B simply
to emphasize that it must be included. 1Indeed, if P* is the
matrix of direct interactions between subregions (igcluding
the subregions centered on the regional centers, A, B, etc.

as in Figure 1):

*
P = G.W.P .G’ (3)
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Figure 1. Well-defined regions.
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where P* is the M by M matrix of %p;bi, G is an K by M aggre-
gation matrix; with its rows indexed by regions and its columns

by subregions. Entry 95 is one if subregion j is a member of

region i; zero otherwise? Note that G'G = I; G.G' = H; a dia-
gonal matrix with hii equal to the number of subregions in re-
gion i. Finally, W is a diagonal weighting matrix with entry
w.g o= ﬁi’ If P*¥, W and G are known, P can immediately be de=-
rived. If P, W and G are known, P* can be estimated in a
"least biased" way (Sheppard 1975; Snickars and Weibull 1977):

* *
Max - ) % Pap 109 Py (4)
a

Sy *
subject to equation (2) and non-negativity conditions on Pap*

Knowledge of W implies possessing some theory or data that
provides knowledge about the propensity to make trips. This is
a complex issue intimately linked with questions of accessibility

that cannot be pursued here (cf. Sheppard 1980).

The relation between potential matrices U, and U*, where U*

is the M by M matrix of potentials between all subregions:

v =z -2, (5)
can also be specified. From (1); (3):
-1 *
U =1 - GWP G’

whence



or
X - -
T o1 -wli - eru e (6)
2.2. Interactions Amongst Overlapping Regions
It is typically the case that we cannot construct well-
defined aggregations of functional urban regions. There are

four sources of indeterminancy. First, the functional terri-
tories surrounding lower order cities have a spatial extent that
does not coincide with that of the areas of influence of the
higher order centers (Figure 2). Second, it is impossible to
draw precise boundaries between functional regions because they
overlap. Third, different types of interaction will fall to
low levels at different distances from any city; and fourth,
areas may be erroneously classified into the wrong region.

All of these sources of error imply that regional boundaries
are fuzzy (Gale and Atkinson 1979). Thus an observed flow from
A to B may in fact be more appropriately classed as an internal
flow within the functional region of B.

As an example of the first source of error, consider
Figure 2. Functional regions are typically defined in terms
of the level of interaction between areal units and a city
identified as the core of the region. However, location z in
Figure 2 may have stronger direct contacts with A, than with B,
thus leading to it being classified as part of region A,
whereas indirec¢t contacts z -+ b] -+ B may be stronger still.

If this is the case it is at least partially erroneous to
_represent z as a member of the functional region A. Concrete
examples would be that an individual from z shops more at A than
at B, but he/she obtains even more goods by placing orders in
town b1with local merchants who buy from city B. Similarly a
person in z may become unemployed due to layoffs in town b1
responding to economic conditions at B, rather than due to
conditions in A. In short indirect interactions may be more

powerful than direct interactions, and, particularly on the



-10-

interregional boundary

— — —— boundary between subregions

Figure 2. Hierarchically overlapping urban centered regions.

fringe of functional regions, may operate in the opposite
direction. 1If only direct interactions are considered the
result is an identification error classifying some intraregional
flows (z ~ b1) as if they were interregional, and vice-versa.
The challenge of reconstructing meaningful flows is pursued in

the next subsection.

2.3. Reconstructing Functionally Meaningful Interactions.
2.3.1. Observed Interactions

It has been traditional in regionalization problems to
classify regional membership on the basis of allocating lower
order urban centers to that regional center with which they
have the highest direct interaction. This approach was
pioneered by Nystuen and Dacey (1961) and has been used
inter alia by Simmons (1974). Let us alternatively assume,

for simplicity, that subregions whose centers are in a particular
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region should ideally be treated as part of that functional
region. Thus suppose that the areas shaded in Figure 2 have
been mis-classified as a result of considering only direct
interactions with centers A and B. Also assume that all
individuals in a subregion can be treated as responding to

the same socioeconomic environment. Then the flows between
regions must be modified to take into account the proportion

of a subregion that is assigned to each larger region.

Define this by a non-binary fuzzy membership function pa(ﬁ)
representing the possibility that a randomly selected individual
from a is in fact starting a trip from a location that is within

A, where:

O <p,(R) <1 (7)

pa(ﬁ) could, for example equal the proportion of the subregional
population of a residing in A. The probability that a move
from a to b is in fact a move from A to B [p;b(ﬁﬁ)], which we

may call a fuzzy interaction, is:
* * - o
pab(AB) = pab pa(A) Pb(B) (8)

Then the total probability that a randomly selected trip

in the system occurs from A to B is:

1
o~
o
e
o>

]
~1
o’

o

to
o

o

o

o

Or, generalizing (3):

P = P(G)WP P(G)’ (11)
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where P(G) is an R by M matrix with i,j-th entry equal to pj(I
the probability that an individual from subregion j lives in
region I. P(G) 1is thus a fuzzy generalization of G. P would

then represent the matrix of observed interregional flows.

. * , .
The relation between U and U is now more complex because

P(G)'P(G) is not an identity matrix;

2.3.2. Adjusted Interactions

Let us assume for simplicity that each subregional center
is dominated by only one regional center. We might term this
binary hierarchical dominance as "Christallerian" (Figure 3),
where a hierarchical relation is taken to exist whenever there

is a direct interaction between two locations.

economic situation in A economic situation in B
Y \j
supply/demand in A supply/demand in B
. a . b
production a 3 production b 3
and trade in and trade in
alEAm) blEBw)

Figure 3. Christallerian hierarchical dominance.

)
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ai € A(d) is a statement that the center of subregion aj
is dominated by the (higher order) regional center of region X.
Since this regional center cannot interact directly with sub-
regions dominated by another regional center by assumption,
interactions from regional center A to bi’ or from aj to B,
are excluded. Therefore the total interregional interactions
represent direct flows from center A to center B, or from sub-
centers a, to subcenters bi' Thus no inter-regional flows occur

from one level of the hierarchy to another. Formally:

~ N * ~ %*
Pig = 1 Pa Pap ¥ Pa Pap (13)

* Ca e . .
where Pap is the probability that a trip from center A will
travel directly to center B, and §g§ is the probability that
a trip is made directly from some point in the region dominated

by A to some point in the region dominated by B.

Our Christallerian hierarchical structure implies:
x ok _x
PaB = Pba = Pap = P g = 0

Notice a subtle but vital difference between equation (13) and
equation (2). In (13) set membership is defined by functional
dominance; in (2) it is given by the (well-defined) regionaliza-

tion.

We wish to convert observed aggregate interactions Pig

into functionally based interactions p The assumption under-

lying this aggregation is that a betteigspecified set of rela-
tionships will be derived if areas indirectly dependent on
region B, but classified as being located in region X were to
be re-identified with region B. The interactions observed
across the given A/B boundary must then be adjusted to allow
for this reclassification; i.e., flows from regions dominated

by B must be classified as being flows from B.
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Defining P as the matrix of adjusted interactions, ﬁié:

whence, from (11)

P = ﬂg)GéPGdP(G)’ (14)

with the R by M matrix of dominance relations, Gy having i,j-th
element equal to one if subregion j is dominated by region i

and zero otherwise. Once again GéGd = I.

Equation (14) shows how an observed aggregate interregional
interaction matrix P can be converted into a more meaningful
matrix of flows between functionally defined regions, B. The

necessary information for this procedure are estimates of (i)

the probability Pa(ﬁ) that an individual in some functionally
defined subregion a is actually residing within the aggregate
functional region B, for all a=1,...,M; B =1,...,R; and (ii)
the regional center which hierarchically dominates each sub-
region. Then matrices Gd and P(G) can be constructed, and

our functionally meaningful interaction matrix is:

= i1 ,"1
P = [G4P(G) '] P [G4P(G) "] (15)

assuming the inverses exist. It is most important to note that
no knowledge of the disaggregate flows is necessary; for purposes
of altering P to P, estimations described in equation (4) can

be bypassed.
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2.3.3. Adjusted Interregional Flows with Fuzzy Hierarchical
Relations

The Christallerian assumption that each subregion is domi-
nated by only one regional center is clearly a simplification;
we may generalize this by recognizing (with Pred, 1971, and
others) that each subregion may be dominated to different
degrees by several regional centers, making the set relation
of dominance fuzzy. This case has been extensively treated
by Ponsard (1977). He argues that many types of interactions
occur between urban centered regions of various hierarchical
positions. Define ftj to be the direct interaction of type k

between urban centers i and j. We normalize these as follows

fE. / max ) £ if flow k is determined
3 i 3 J by supply considerations
ko _
gij -
£5. / max | f_. if flow k is determined
J j 1 1] by demand considerations

Thus once the k-th type of interaction is defined as primarily
supply or demand determined, the index g?j measures the dominance
of i over j (for given k) relative to the total dominance

exerted by the most influential urban center. For each inter-

urban link (i,j), we have a range of values of gtj (one for
each k), and we can construct a "fuzzy" matrix F; with i,j-th
entry u.. = [min gk., max gk.]. Each entry in F is thus a

1] k 1] Kk 1]

double entry giving maximum and minimum values for the level
0of dominance of i over j. These values can be ranked and mani-
pulated consistently (Ponsard 1977). Even if these ranges are
k . .
915 = gij for all k) it still has

a "fuzzy" interpretation as the degree of existence of dominance

reduced to one number (i.e.,

of i over j (the level of possibility that i has of dominating

3.
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Once interregional interactions between centers at different
hierarchical levels are included (i.e., Papr Pap 2 0), it no
longer is possible to say that any one subregion is uniquely
associated with any one region. Indeed any interaction observed
from a; to bj represents an influence that only partly originates
in region A. Total interaction from some region B directly

to subregion aj is given by:

. * *
Iy, = pﬁ[% By Ppa, * Bg Ppa ] (16)

i i

where @B is the probability that a trip will be generated from
region B during a fixed time period. Define the level of direct

2

dominance of region X over some subregion a, as Da (A) =
i

b, (X&) =1 - (gzg IBa))//(% Iga)
(17)

where

D_ (B)
ai Ba.

(18)

1
(=
H
'.4
W o~
—
(ov]
o)
|_4

Then the interaction from a; to bj that originates directly

. * . .
from region X is given by D (B)p and total interaction

’
i aibj
from region A to region B that directly originates within region

A is:

A %*
Byy = L D (X)) p ) p (19)
AB  eR(a) 2 2 pep(a) 2P

Define an R by M fuzzy dominance matrix, D, with i,j-th entry

equal to Dj(i), if i,j] are members of the same functional region,
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zero otherwise. Then from equation (19):

*
= !
B DWP Gd

Note that the i,j-th element of D is zero if the i,j-th element
of Gd

diagonal matrices.

is zero, thus all feasible products of D and Gd are

An assumption underlying equation (20), with the inclusion

of Gd’ is that interactions into some subregion b of region B
thus represent interactions affecting region B. However, by
extending the above arguments, if b in turn directly interacts
with subregions associated with other regions, then a part of
the flow into b is exported again out of B. Thus (20) may be
modified to count only those flows to b that remain within B
as follows.

Define a matrix E’, of dimension M by R, with i,j-th

elements:
E_(K) =1 - ( ) I ]// /Z I ) (21)
a aB B
AR 7 (\é =

_ 3 * *
Ty = g Pap ¥ Pap (22)

where Ei(j) is zero if i1 is a subregion not belonging to region

j. Then
~ *
Pag = ) D_(X) P J b E, (E) (23)
B aeR(a) 2 3 peB(a) PP
or
*
P = pwp E’ (24)

Again E has the same structure as D and Gd'
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2.3.4. Adjusted Interregional Flows with Indirect Relations

In general, particularly in models with static interaction
matrices, the influence of one location on another is given by
the sum of all direct and indirect interactions, or the geo-
graphic potential difference along that link (Sheppard 1979).
This is already implicit in the arguments of the previous sec-
tion. To conceptualize this we shall discuss in turn a first

approximation and the limiting case.

As a first approximation, interactions from any subregion
g to another subregion h may contain interactions that partly
originate in region X, and may affect flows from g that go from h
directly to B. Then there is an element of interdependence from
X to B that exists even in a flow between g and h when g and
h do not belong to A or B. The total flows from X to B

should incorporate this:

M M .

Ban = ) ) D_(X)p_ ., E_(B) (25)
AB g=1 h=1 g gh “h

where the fuzzy relations D and E represent, respectively; the

possibility that a flow from g results from a flow into g from

A, and the possibility that a flow into h will in turn directly
affect B. Both of these possibility relations may be non-zero

for any subregion and region, defining the generalized matrices
D and E. Then:

B = Dwp E’ (26)

It should be noted that despite the generality of the two
possibility functions D and E we are retaining a precise defi-
nition of which subregions should be assigned to which regional
centers. If this were not done all of the structure of the
problem would be lost.
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Turning attention to the limiting case, we recall that U*
contains the total direct and indirect interactions between
all pairs of subregions, and that U* is finite if P* is transi-
tive. Now the total influence exerted on subregion b (the
probability of ever reaching b from some randomly chosen starting
point in the system) may be defined as the location potential
at b; the b-th column sum of U*. It seems, however, not relevant
to assume that each subregion is equally likely to interact
with other regions. Therefore we should define location

potential, Ub’ as weighted by overall interaction propensities:

%

g ugb (27)

U, = }. 1 Bgh
b g€ 2 G

Then the possibility that any given action at b is influenced

by causes emanating from some region A is:

* -1 ~ *
D, (K) = U Y Bx P u (28)
b g€a A ¥g “gb

The possibility that an action at b influences events in region

A is:

ELA) = ) ou_ /T o (29)
b = b . u
g€A g g bg
g#0

*
and, defining the R x M matrix D from (28) and the R by M

*
matrix E from (29):

!

L3 L IR
P =DWPE (30)
Now,

* A *
D = WGdWQU (31)
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where W is an R x R diagonal matrix, Qﬁﬁ = ﬁﬁ; and Q is a

diagonal matrix, 955 = U;1.
* %
E =U0Q Gé (32)

-1
ii u g) . Therefore

~ kK ok
P = WGdWQU PUQ Gd (33)

) * x
Recalling U = (I - P ) =

Il e~18
~

and

A * * *
B = WGdWQU (U - 1I)0 Gé (34)

Finally, P may be related to observed aggregate interactions,

* - - -
P, since from equation (11) P = H 1P(G)'PP(G)H 1W 1, whence
-1
*

vt = |1 - H-1P(G)’PP(G)H_1W—1} where H = P(G) 'P(G) and there-

fore

-1
P(G)'PP(G)H'1W'1] .

oA o
P = WGdWQ[I H

[(I - H-1P(G)’PP(G)H-1W-1)—1 - IJ Q*G,

A —— —_—

Equation (35), in all its complexity, describes how an
observed matrix of interactions between regions defined as in
Figure 2 may be converted to a "meaningful" matrix of inter-
regional flows. 1In this case meaningful flows between regions
A and B are the sum of all direct interregional flows weighted
by the probabilities that those flows ever originated in region
A and will ever terminate in region B. Once again this conver-

sion may be made without any knowledge of the disaggregated
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flows matrix. We do however require information, at the disag-

gregate level, of B_, )} wu__, and } } $.P. u,_ . These three terms
a gEA ag 2 b B¥b "ba
g#0

may be interpreted as the propensity for a subregion to generate
interaction; the general accessibility of the rest of the system
from that subregion, and the accessibility of that subregion
from the rest of the system. It may well be possible to provide
estimates of these without a knowledge of individual pairwise

flows.

2.4, Summary

Assume that we have an empirical system of regions, each
hierarchically decomposed into subregions that themselves do
not coincide in extent with regional boundaries (Figure 2).
Suppose further that the interactions between these regions
have been observed, or modeled, as P. However because they are
not well defined with respect to the subregions, these inter-
actions do not represent interdependencies between functionally
meaningful units. In order to convert them to more meaningful
interactions, P must be converted into a theoretically more
defensible matrix of interactions P. The nature of this con-
version depends on how interregional links are conceptualized.
However, it may be shown in each case that although (or rather,
because) regional interactions P and P depend on a larger, more
disaggregated, interactions matrix P*, it is not necessary to
know subregional interactions in order to perform this conver-
sion. We only need to know how P and P are related to P*. The
results are summarized in Table 1, where the choice of procedure

is seen to depend on how interdependencies are conceptualized.

3. FROM REGIONAL ECONOMICS TO URBAN SYSTEMS MODELS

Modeling the spatial development of regions has typically
involved defining a set of regions and relating them together

in some way. The dominance that any one region might exert



Table 1.
urban system.

Converting observed into meaningful interregional interactions in a hierarchical

CONCEPTUALIZATION OF INTERDEPENDENCIES

CONVERSION EQUATION

DERIVATION

INFORMATION NECESSARY FOR CONVERSION

CASE A

Only direct interregional interactions

From equations

Probability that an area functionally

considered between centers at the same P = (GdP(G)']fl P (Gdli'(G)']'.1 (11), (14) a part of one region is mistakenly

hierarchical level in different classified in another region,

regions. {P(G)]. The allocations of subregions
to functional regions (Gd).

CASE B

Interregional interactions between From equations As above, plus knowledge for each ‘

different levels of the hierarchy -1 -1 -1 (11), (18), (20) subregion of the proportion of direct

allowed. Direct interregional flows P = [P(G)(D'D) D'] P lGdP(G)'l (note D'D is interaction terminating there that

weighted by the likelihood that each dlagonal) originates in the same functional

subregion is directly influenced by region (D),

events from within that subregion.

CASE C

As for case B, except the proportion P = [P(G)(D'D)_ID' -1 p s From equations As above, plus knowledge of the like-

of flows terminating in any subregion (11), (21), (23) lihood that each subregion will

is reduced by the likelihood of that E'E)-lP(G)' -1 (note E'E is directly interact with other places

subregion immediately contacting E( dliagonal) within the same functional region

places outside the functional region. (E).

CASE D

As for case C, except the flow between B - [P(G)(B”B)_IBV]—I p e From equations As above, plus knowledge of the like-~

any pair of subregions g,h is a flow . (11), (25), (26) lihood of any subregion receiving

between any pair of regions A,B (g,h E(E'E)_IP(G)' -1 direct interaction from, or sending

¢ A,B), weighted by the likelihood direct interaction to, each region

that flows exist from A to g and from (E,D are expanded versions of E,D).

h to B.

CASE E

As for case D, except the probabili- g = ﬂdeQ[} - H_lP(G)'PG)H_IH—l]—l From equations As case B plus knowledge of the like-

ties of contact of A to g and h to B
are given by the likelihood of any
contact by direct or indirect means
(geographical potentials) between
these places.

[(1 - 1l (c) erG)n

- I]Q.Gé

—1)—1

1), (309), (31),
(32), (34), (35)

lihood that a trip in the system
w*ll originate from any subregion
(WGW) , and knowledge of the overall
accessibility of any subregion from
the rest of the system [Q) and to the
rest of the system (Q*).
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over others is to be determined from an empirical analysis of
the relative strength of interregional links. By contrast,
models of change in urban systems have tended to impose a "top
down" structure; growth impulses are seen as diffusing through
the urban hierarchy moving quickly between large cities and into
the functional regions of those cities (Hudson 1972). 1Indeed
many analyses have demonstrated the existence of short period
space—-time lags in urban responses to impulses, reflecting

this process (for a recent example see Pigozzi, 1980). However

both of these conceptions are only partly correct.

The hierarchical structure, implying cities connected
together dendritically, cannot allow for many other interactions
that are clearly important both up and across the hierarchy
(Pred 1971). Once these loops are allowed for, the responses
of cities to growth impulses can be brought about by all sorts
of direct and indirect transmission routes through the system
and can thus occur more than once for any given city, and in
a temporal order that eventually bears little relation to the
original hierarchical structure. This may explain why the
most successful empirical demonstrations of leads and lags are
limited to responses that occur within one to three months of
the initial impulse. Bennett (personal communication), for

example, has suggested one month as the maximum time lag at

which meaningful results can be obtained for the British urban
system. It 1is, perhaps, only during the first pass of an impulse
through the system that there can be any hope of detecting a
meaningful pattern. Later on, the various spatial feedbacks
will disturb any regular sequencing of responses that might be
hoped for. Not only, then, are there loops and cycles in the
system of inter-urban interdependencies, but there apparently
must be geographical biases to these flows. If they were depen-
dent only on the 7n situ characteristics of the cities involved
then cities of the same type would be identically affected, and
there would be no regional differentiation of city performance

for cities of a particular type.

On the other hand, to assume no hierarchical structure to
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the intra-national space economy at all can also lead to diffi-
culties. If a nation is divided into a few large regions, even
when meaningfully defined as centered on the major cities, little
can be said about those other cities located within these func-
tional regions simply because the scale of analysis is inappro-
priate. If we divide the nation into very many very small
units, the sheer size of the problem is such that in the ab-
sence of anv structure imposed on the interaction patterns the
number of interregional interactions to be modeled is enormous
(9,625,206 in the case of counties in the United States, a scale
used by Harris, 1980).

A model that allows for regional and urban aspects of
demoeconomic change would ideally incorporate the advantages
of both the above approaches. Interregional interdependencies
may be represented as links between the cities of major func-
tional urban regions, including those between lower order cities
within those regions. Hierarchical relations will be represented
by strong flows between cities of different hierarchical order
but within the same branch of the hierarchy. Finally, the
model itself would have a hierarchical structure allowing
representation of interregional links between the fewer higher-
order functional regions and the more numerous lower-order

regions.

Urban system theory and plain common sense inform us that
different types of interdependencies are important at different
scales. If one considers wage or price formation, for example,
the scale of analysis at which these are determined depends on
the geographic scope of the institutions involved. Nation-
wide unions and/or nation-wide corporations will set certain
wages at a national scale. Examples are auto-workers' wages
in the United States, miners' wages in Britain, and federal
government wages everywhere. On the other hand in industries
where the unions do not have nation-wide penetration (such as
textiles in the U.S.) or in corporations whose operations are
resricted to certain regions (regional retailing companies),

a regional scale is appropriate, with actions in one region
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affecting those in others providing a greater geographical
variation nation-wide. Finally, single enterprise companies
and highly localized corporations, particularly if associated
with labor organizations whose policies are locally determined,
will set wages at a local scale; wages that show the greatest
geographical variation and the lowest level of spatial auto-
correlation. Similar arguments may be made about price forma-
tion; certain prices show a strong correlation between cities
as they are set nationally by suggested retail prices (for
instance, standard brand-name commodities). Others are set
regionally (such as in agricultural commodity markets) or locally
(personal services); with the links between locations being at
best indirect leading to correspondingly less well correlated
prices. This would suggest that different types of activities
should be modeled at different regional scales (or equivalently
at different positions within the urban hierarchy) within a

nested regional structure.

3.1. A Theoretical Illustration

Consider, as an example, an economy that is nationally
focused on one major (capital) city, while below this three

nested lower order levels of hierarchical functional regions

may be identified. We shall refer to these levels by the index
h=1,...,4; with h = 1 representing the highest order func-
tional region, encompassing the nation and centered on the
capital city. Let us further suppose, as is frequently the
case, that the process of regionalization by which subregions
for each level are identified is a strict hierarchical clas-
sification based on direct interactions as illustrated in
Figure 2. I shall attempt to show how regional and hierarchi-

cal considerations can be linked together in this context.

As an example of a regional specification consider an
interregional model of price and profit determination in a
capitalist economy, specified at a given point in time, where
the levels of production and trade within and between regions,

and the real wage, are given. Define aTg as the amount of good
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m, produced in region i, that is shipped to region j to produce

a unit of good n there. 1If A is the matrix of these coefficients,
T is the rate of profit (assumed equal everywhere), and p’ is

a row vector of all prices pT of goods m in regions i (including
transportation), then in competitive equilibrium with no joint

production (Sheppard 1980, 1981):

p’ = (1 + m)p’'A (36)

If the economy is producing a surplus of commodities over demands
the non-negative matrix A has a principal eigenvalue less than
one which has associated with it the only eigenvector of A that
is positive, by the Perron-Frobenius theorem. This eigenvalue,
equal to (1 + n)_1 implies a positive rate of profit and a

unique price vector p’ given by the associated left hand eigen-
vector. Hourly money wages in sector n of region j, given by

the real wage weighted by prices, are:

n mn_m._—1 mn _m t
W Y OV ay.psT_ '+ ) ] a,.T..P. (37)
) ipem YR i még 7 371

where II is the set of goods consumed by workers (including trans-

portation inputs that ship such goods), or the set of wage goods.
mn
ij o
industry n, Tij
i, pf is the transport price in i, and T, is the length of the

working day in hours. It can be shown in this system that profits

a is the amount of wage good m consumed per day by a worker in

is the transportation needed to ship m from i to

are inversely related to input quantities of labor, to the real

wage, and to the length of the working day.

Typically A is partitioned into a relatively small number
of regions which may or may nor be arbitrarily defined. Inter-
regional input-output models are then tied into a national
econometric model in some way, with the sum of regional variables
being made consistent with national aggregates. Recalling that

an urban hierarchy suggests that different economic variables
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are determined at various geographical scales, this problem may
be approached differently. Partition the set of N sectors into
four groups identified by h = 1,...,4; each group representing
the sectors whose prices may be regarded as being determined at
the h-th hierarchical (or spatial, cf. Curry 1972) scale. Note
that some sectors may have prices determined at more than one
scale (an example would be goods produced by national and
regional corporations), so the total number of scale specific
sectors could exceed N. For simplicity we will ignore this

possibility.

We then require a model with two principal features.
First, the prices of different goods are determined at dif-
ferent scales. Second, the interactions between regions defined
at hierarchical levels above the lowest level must be consistent
aggregations of lower level interactions. One way to incorporate
these is as follows. Assume N, sectors in Ry functional regions
have their prices determined at hierarchical level h. Then at

the (lowest) level h = 4:

where Eﬂ is the (1 by Nth) vector of prices in the Nh sectors
and Rh regions for which prices are determined at hierarchical
level h. Ah (NhRh by Nth) is the interregional input-output
matrix at level h. Gh (Nth by Nh+1Rh+1) is a binary matrix
specifying which subregions at level h+1 are dominated by each
regional center at level h. The i,j-th element of Gh is one
if j represents a sector in a subregion s that is dominated by
the region r represented by row i. Gh thus disaggregates prices
set at level h into price inputs for all subregions at level
h+1. Ah represents interregional interactions at level h that
are consistent aggregations of lower level interactions.

Similarly:

py = (1 + 7 pik; + [piK,G; + pyA, ]G, (39)
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Defining p’ as the partitioned vector [E{E géi géf pyl:

p’ = (1 + mp’A (42)
where
. 1 . | | ]
A, E A1G1i 216Gy 1 K46 G,yGy
e S Fommmm e
1
0 1 A, I A,Gy 1 K,G,Gy
R i s S
0 i 0 i A3 : A3G3
B R
0 1 0 1 0 ! A
I | I 4 _

3.2. Regionalization Issues

To complete the specification of (42) Ah must be defined.
As noted in section 2 of this paper there are a number of
approaches to this which vary only in the way in which direct
interactions are weighted. For this example we choose case C

from Table 1, which from equation (24) implies:

A, =D

X 7
h,h+12h+18h, h+1
The definition of input-output coefficients implies that W
from (24) 1s not necessary. Dh,h+1 and Eh,h+1 have essentially
the analogous definition to those of equation (24): they have
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the i,j-th element non-zero if row i refers to some sector m €
Nh in some region r € Ry+ and j refers to a sector n € Ny for
some subregion s € R, 41 Which is dominated by r. An exception
is aggregation from the subnational to the (single region)
national level. Here regional boundaries have disappeared

and we have a simple aggregation problem:

A1 = rhAhFﬁ (44)

where the i,j-th element of I, is one if row i refers to some

h

sector n € N1 in the nation, and column j refers to some sector

m € N, in some region r € Ry ;i zero otherwise.
Three kinds of empirical cases may now be identified.

First, we may possess direct observations on flows of goods

m € Nh between regions r € Rh for all levels h. If so then
these may be used directly to construct A1, A2, A3 and A,, and
aggregations of the form (43) are not needed. Second, we may
observe flows of all goods directly between all functional
regions of the lowest hierarchical level: an interregional

uN by Ru
as A. If A, is a RyN, by RN binary matrix with i,j-th element

input-output matrix of dimension R N, which we may define

equal to one if row i represents a sector m € N_ in subregion

h
r, and j represents the same region and subsector, then

A, = Au A A& (45)

A3 = D3,u A Eé,u (46)

A, = Dy gy A Eé,u (47)
and

A1 =T, A F& (48)
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From (42) and (45)-(48):

— I | o — = | = ' —
roor Ay b oo 11GIG.G, GGG
| ’

. iDyy 1 f tA 1Exq! ! |II: G, | G,G,
= |15t |-t || |t
| Dy i R { tEo i Lo I

| 34 | 34| | | 3
Tt Z_- -_4--4_-4-_ -—_}_‘—-l-—_-rA_l_ —_r—r—_-—r"_i--—
{ ! 18, it 1 1A ] I 18, o 1
! 1 S T I R R D I I i 4] | |

The third case occurs if we have an interregional input-
output matrix for flows between all sectors, but defined for
regions whose scale is closest to that of a hierarchical level
above the lowest (say at h = 3), and furthermore these regions
do not conform with well-defined functional regions at this
scale. For example, we have an observed matrix A3 which has

to be converted to AB' Using case c of Table 1:

_ =1 -1
A3 = J A3K (49)
where
— 7 -1 7
J = P(G)(D3,uD3,u) D3,u
= 7 -1 7
K= Ey 4By 4E5 4)  P(G)
whence
X, =D, .0 a.x EZ
2 2,3 3 2,3 (50)
5, = 1,07 'axrs
1 3 3 3 (51)

and Au may be estimated, as A from

u'’
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Ru Nu nm nm
MAX = Z 2 a, . log a;.
- — J 1]
nm i,3=1 n,m=1
(aij)
subject to:
gé %? nm nm
a.. = a ¥ ; (52)
i€a +€m i3 AB A,B,n,m
i=1 j= = . €
A,B R3 ; n,m N3
a0 v, .
ij i,j,n,m

Here equation {(52) matches the aggregate flows [from the np

subregions, i, of region A, to the n, subregions, j, of region

B
B] to the observed values contained in the matrix Aj; a total
of N3R; constraints. 1In the absence of any other information

about these flows this reduces to the estimate:

(53)

Equation (53) provides a minimally biased prior estimate of
the probability of each of the disaggregate flows occurring,
that is subject only to being consistent with the more aggregate

flows. If we had extra information, of course, these estimates
would differ (Sheppard 1975; Snickars and Weibull 1977). Thus
N _ ’
A, = G'NA,NG (54)

where N is a R N5 by R3N3 diagonal matrix with i,i-th entry

3

equal to (nj)-1 where j is the region represented in row 1i.

It thus follows that when A, is known A in equation (42) is:
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3.3. Causal Structure

Two simplifications seem to exist in the type of hierarchical
(42) .

(E%) seem to have no geographical variation, and secondly,

model represented by equation First, national prices
that lower order goods are not consumed as inputs for higher
As a result this model has apparently a rigid
(cf. Rietveld 1981b).

interpretations need strictly speaking be true.

order goods.

top down structure However neither of these

As regards the first, it should be noted that prices are
f.o.b. prices set at the factory gate. In other words the price
paid in various regions is not uniform; only the price prior

to shipment is set. Transportation, the costs of which are

added to this, In order to know trans-—

are a lowest order good.

port costs, and thus local delivered prices, it is necessary to

know the increase in cost per unit of distance, and the loca-
tion of production and consumption. Note that for goods whose
price is set at higher hierarchical levels the location given
is at best aggregate, since the fine details do not affect price
formation. The price paid for a unit of good k € N, delivered

in subregion j € R, to industry m there is:

R
k kn t k
E(6)) = + a..p.c..
3 p 121 13P1%i5 (55)
where c?j is the amount of the transportation good used up
in shipping a unit of k from i to j, and pz is the price of
a unit of transportation services bought at i. Here 6? is the

cost of good k delivered to j. 6? is a stochastic variable with
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its expectation depending on the weighted average of transporta-
tion costs (equation 55). The variance of 6? will be zero only
in the event that shipments satisfy some globally optimal criterion
such as the spatial price equilibrium of Takayama and Judge
(1964). Equation (55) includes information which is not
necessary to determine prices in equation (42), because it
requires knowledge of a??, the production and shipment of a

high order good k € N1 between low order regions i,j € R,. The
equations for price determination require only an aggregated
version of this. For provision of the transport good, t in
region i as an input to the production of good m in region j

we need only to know:

Turning to the second issue, the spatially uniform
production price of some good k € Ng at the regional scale
Rg need not imply that lower order goods m € Nh (h < g) are
not used as inputs. Rather it simply reflects the fact that
the set of cities producing good k are cities of order g and
above. For example goods k € N1 are only produced at one

location in the nation, R,; goods £ € N, are produced at most
at only one location within each region j € Ry, and so on.

In other words the hierarchical level, g, at which any good
is produced is defined by the lowest value for g such that no
region j € Rg produces this good at two or more different

locations with two or more different production prices.

This in turn implies that intraregional variations in
the price of low order goods do not lead to significant intra-
regional variations in the production price for a good k € Ng
in a region j € Rg. We may modify the price determination
equations to allow for this, explicitly introducing inputs

of lower order goods.

Take as an example a good at the highest level. The

equation determining production prices becomes:
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N _k N _k
-1k —g —1k ~1k =g ]
o= R ,..., R_, a R _,..., R ,..., R
gk [a /Ry a ” /Ry /Ry a /Ry a 7 /Ry
Then equation (60) becomes:

K 2k 2 g ]

p- = ; a~"pT o+ p/ o (1 + 1) (61)
4 N, g=2 =g =gk

Equation. (61) re-introduces the prices of all goods into
the determination of all other goods. The same reasoning may

be applied to second and third order goods. As a result,

equation (42) becomes:

~

p’ = (1 + mp'A (62)
where
[z !'x.c. ! Xc.c | AcG.cc
1, 28171 ) 17172 ) SEeEehs
NN AR R bommmmeme
) Opq | Az ! AZGZ ! AZGZG3
S P s i
G 39 i %37 : A3 E 3¢5
D . .
[ Cu1 1 w2 1 %w3 By
and
g = [gri1 cee ariN ] where lj € set of industries
S at hierarchical

level s.

In this modification of the hierarchical model, lower order

goods are reintroduced as inputs to higher order goods in the
form of spatial averages. However the spatial variance of
prices is still zero at geographical scales below that scale

at which each industry is realized. 1In this way a hierarchical
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spatial structure of prices is retained without the restriction

of a "top down" causal structure.

4. CONCLUSION

This paper has presented some faltering steps in the

direction of reorienting multiregional models so that they

can be used to discuss the hierarchical nature of human settle-
ment systems. The theme throughout is a search to integrate
perspectives emphasizing regional variations and city size as
factors mediating urban growth and change. The results show
that it is in principle possible to construct relatively simple
rules that translate multiregional into hierarchical systems.
However the approach taken is basically technical; reducing
essentially to aggregation and re-aggregation methods. One
example was provided, but it remains for future research to

determine if the methodology is applicable to more sophisticated

multiregional models. It is also highly questionable as to
whether such a technical adjustment is sufficient to capture

the essential differences, and interrelations, between regional
and urban systems. However it does seem at least to be a neces-
sary initial step in constructing a hierarchical approach

incorporating geographical interdependencies.
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