
Software for Regional Studies: 
Adjustment Procedures for 
Integrated Balances

Lenko, M. and Kim, K.

IIASA Working Paper

WP-83-049

May 1983 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33893734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Lenko, M. and Kim, K. (1983) Software for Regional Studies: Adjustment Procedures for Integrated Balances. IIASA 

Working Paper. WP-83-049 Copyright © 1983 by the author(s). http://pure.iiasa.ac.at/2263/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


NOT FOR QUOTATION 
WITHOUT PERMISSION 
OF THE AUTHOR 

SOFTWARE FOR REGIONAL STUDIES: 
ADJUSTMENT PROCEDURES FOR 
INTEGRATED BALANCES 

Miloslav Lenko 
Klim Kim* 

May 1983 
WP-83-49 

 h he Central Economic Mathematical 
Institute of the Academy of Sciences 
of the USSR, Moscow 

Working papers are interim reports on work of the 
International Institute for Applied Systems Analysis 
and have received only limited review. Views or 
opinions expressed herein do not necessarily repre- 
sent those of the Institute or of its National Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



PREFACE 

The Tuscany c a s e  s tudy  i s  t h e  l a s t  i n  t h e  sequence o f  
f o u r  r e g i o n a l  c a s e  s t u d i e s  c a r r i e d  o u t  i n  t h e  Regional  and 
Urban Development Group CRUD) a t  IIASA. The Tuscany s tudy  
has  developed a s  a j o i n t  e f f o r t  between t h e  RUD group and 
r e s e a r c h e r s  from t h e  Regional  I n s t i t u t e  f o r  Economic P lann ing 
of Tuscany ( IRPETI  . 

One o f  t h e  s e v e r a l  e f f o r t s  i n  t h e  Tuscany s tudy  h a s  been 
t h e  c o n s t r u c t i o n  o f  a r e g i o n a l  accoun t ing  ba lance  t a b l e  con- 
n e c t i n g  s o  c a l l e d  m a t e r i a l  and f i n a n c i a l  ba lances .  The 
c h a r a c t e r  of  such i n t e g r a t e d  economic ba lance  t a b l e s  i s  d i s -  
cussed by I s s a e v  and m n o v  i n  WP-82-118. 

The c u r r e n t  paper  p r e s e n t s  a n  a l go r i t hm which can be  
used a s  a means t o  c o n s t r u c t  and a d j u s t  i n t e g r a t e d  ba lances .  
I t  a l s o  i n c l u d e s  a d e t a i l e d  so f twa re  d e s c r i p t i o n .  I n  summary, 
t h e  paper  p rov ides  a documentat ion o f  work r e l a t e d  t o  t h e  
Tuscany s tudy .  

Bdr je  Johansson 
Ac t ing  Leader 
Regional  and Urban 
Development Group 

May, 1983 



CONTENTS 

INTRODUCTION 

STATEMENT OF THE PROBLEM 

NETWORK INTERPRETATION OF THE PROBLEM 

THE NETWORK ALGORITHM 

USER'S MANUAL FOR BALANCE PROGRAMS 
1. Definition of task and some items 
2. Usage of programs 
3. 1/0 files 
4. Configuration, error messages, remarks 

PROGRAMMER'S GUIDE FOR BALANCE PROGRAMS 
Programming conventions 

PROGRAMS 

COMMON 

ARRAYS AND VARIABLES 

ERROR MESSAGES 

FILES 

DESCRIPTION OF PROGRAMS 



Softwwe for Regional Studies: Adjrzstment Procedures 
fo r  Integrated Balances 

Milosl av Lenk o , H i m  Kim 

IIASA 

Introduction 
This report is devoted to the problem of analysis of sensitivity of balance 

tables, which arises by mathematical modeling, for example, economic-financial 
flow withn a region, a trade market, a transport system and so on. The report 
contains both the statement of the problem and the algorithms of solution, 
including a well detailed software description. 

Statement of the problem 
The object of a formal analysis in this problem is a square matrix (NxN), ele- 

ments of whch are real positive numbers. An example of this table is shown in 
Figure 1.  Everywhere further we will denote the element of the matrix placed in 
the i-th row and j-th column as Aij . 

The matrix A is called balanced, if the following relations 

take place for all i= 1, .. . , N. 
Generally speaking, considered matrixes need not be balanced, but a pro- 

cedure to make them balanced is a main aim of the analysis. 

Let us introduce vectors c  = ( c  l , c z ,  . . . c N )  and r = ( r l , rz ,  . . . , r ~  ) defined 
as row and column sums 

c .  z =C4.  
I 

i 
( 1 )  

for a l l i= l ,  ... , Nandavector B =  ( b I , b 2 ,  . .  . b N ) ,  where 

It is obvious, that for a balanced matrix ci =ri o r  bi =O are valid. 

Now we are able to state the following problem : 
Problem 1: if the given matrix A is not balanced, find such values Xij ,that 

will balance the new matrix with elements &j =Aj +Xij  . 
It is necessary to note that the problem does not have a unique solution. 

Moreover, this problem is not of practical value, because of the absence of any 
relations between new and old matrixes. For example, the simplest trivial solu- 
tion of problem 1 is the following. Let elements of the new matrix have 
sufficiently great numbers H , then Xij=H-A1,j are a solution of the problem. 



The statement of the problem should be defined more exactly. 

The most natural additional condition is a result of a natural trend to intro- 
duce the smallest possible changes in the initial matrix. 

There are two versions of the concept of the smallest change. Either the 
number of elements to be changed is kept to a minimum, or any changes in the 
relative values of the elements are kept as small as possible. Currently, only the 
second version is used in practice, although the f i s t  one may also be interesting 
from a theoretical point of view. 

A more general description for the nonlinear case is given in ( B.Issaev, 
A.Umnov, 1982 ) .  

Further we will consider only the following concrete formalization of the 
second concept, called below uniform balancing. Its mathematical statement is 

Minimi zed  Y with r e s p e c t  all Xij ,  

Subject to 

abs ( X i j ) ~  Y*Xij 

for all i,j=1,2 ,..., N and 

for all i=1,2, ... ,N. 

Using notatations ( I )  and (2), finally the main problem can be formulated 
as follows 

Minimi zed  Ywi th  r e s p e c t  Xij (3) 

Subject to 

It is easy to see, that the problem (3) - (6) is a linear programming problem 
(LP), which can be solved by a standard software tool. On the other hand, this 
LP-problem has a special structure. Therefore, i t  can also be solved by a more 
effective special algorithm. 

In practice the choice of the software tool should be made by compromis- 
ing. We have to provide possibilities of including some extra relations in the 
statement of the main problem. A general tool is required. But use of the model 
with many repetitions ( for example, an interactive regime ) is also possible. In 
these cases it is desirable to have a h q h  speed software. 

There is no doubt about what kind of general software tool may be used for 
the problem of the uniform balance. It is the standard simplex method. 

A special structure of the problem ( namely, a modified problem about the 
minimal flow in a network), may be a basis for developing both new, and more 
effective algorithm and software units. 



Before begining discussion of the network interpretation of the problem to 
be solved, let us formulate a modifiedproblem of the unifo-rn bdmee. 

We will suppose that the user is interested in solutions of the problem where 
some elements in the balanced matrix are fixed with a priori given values. 
Hence, we have 

Problem 2: the problem of the uniform balance iaith &zed elements. 
It is not necessary to give the mathematical statement of this new problem, 

because the statement will repeat the statement (3) - (6) of problem 1 with addi- 
tional constraints Xij = 0, subject to the initial matrix having Aj = f , where f is 
the given value. 

Network interpretation of the problem 
The suggested approach to problem 2 is a generalization of an algorithm for 

solving flow problems, which are formulated for a network. 

Now we give a network interpretation for problem 2. 
We associate each pair of rows and columns possessing the same index with 

a node of a network with t h s  same index. Each nonzero element of the matrix 
&j we associate with two oriented arcs (i,j) and ( j ,  i). The nonnegative value Xij 
of the flow along the arc (i,j) we will consider as increasing the value of 4, , 
and the nonnegative value Xij of the flow along the arc ( j ,  i) - as decreasing 
the value of &j . 

It will be convenient to enumerate all nonzero elements of the matrix A . 
The numbers will be k=1,2, ... ,M . In the same manner we will enumerate all 
arcs. The increasing arcs will have indexes k=1,2, ... , M and the decreasing 
arcs numbers k+M . The index k is the same for the pair of arcs belonging to 
the same element of the matrix A . 

Therefore, for M elements of A we consider 2M oriented arcs, the first M 
of whch are increasing and the last M are decreasing. Notice, that we will not 
take into account the diagonal elements, becau.se they do not change balance 
constraints at all. 

Now let us consider a small example. Let us have the following matrix 

Table 1 

Denote as K, IB, IE, A the arrays of indexes of nonzero elements of the 
matrix A , the beginning and ending of the arcs, and. the values of the elements. 
Then the total information about the network corresponding to the matrix can 
be collected in table 2. 



- 4 -  

Table 2 

In figure 1 the picture of the network is shown. 

Values bi can be interpreted as values of a uniform flow at i-th node. If bi>O, 
then the node is a source. If bi <0, then the node is a sink. 

In the given example we have bl=-20. ,  bz=O., b3=10. and bs=-lo . .  Hence, 
nodes 3 and 4 are sources and the node 1 is a sink. 

The given rules of data preparing are not of great importance here, of 
course. But they are sufficiently convenient to explain algorithms and to inter- 
prete results. From the formal viewpoint it is sufficient to consider the problem 
of the uniform balance as the following network problem 

Find the minimal value of Y , for which the feasible flow saturates all sinks 
of the network with channel capacities equal to Y*Ak . 
A particular result follows from the interpretation given above. If the net- 

work has only a single pair source-sink, then the problem of the uniform bal- 
ance can be reduced to the classical problem of the maximal flow. 

Let us have the solution of the problem where the maximal flow equals f , 
subject to Y = 1 . Then it is possible to equate this value of the flow to the given 
b. by mean proportional changes of all flows of the arcs &j and channel capaci- 
ties 4j . 

I t  gives us the solution of the special case of the uniform balance problem 
with value Y = b i /  f .  

Ths result is very useful as we have a balanced matrix with a single fixed 
element. 

One more imortant note. 

In. the above network interpetation of the uniform balance problem, some 
additional constraints can be introduced on the values of changes of the matrix 
elements. Namely, it is possible to forbid decreasing or increasing for some of 
the elements. To do this, we may simply adjust the corresponding channel capa- 
cities to the zero level. 

The network algorithm 
When the problem of the balance generates a network problem with several 

sources and sinks, the direct usage of the above simple algorithm is not possi- 
ble. Here a transportation problem. arises. The main specific feature of the 
problem is the fact that the channel capacities are linear functions of Y . It is 
necessary to find the minimal value of Y , when the problem is still feasible. 



A very short description of the approach applied here is given below. 

The whole process consists of two steps. At the first step a balancing flow is 
built without constraints on the channel capacities of the arcs. We may say that 
the problem is solved by a very large Y. 

At the second step an optimal ( with respect to Y ) flow has been found. 
During t h s  step the value of Y is iteratively changed. These changes are con- 
nected with a change of the structure of the optimal basis of the transportation 
problem. 

The whole process will be out, if there is no possibility to decrease Y by 
changing flows in arcs. 

Without going into details of proofs, we will formulate some geometrical pro- 
perties of these basis solutions of the transportation problem. 

If a value of Y and the corresponding distribution of the flows within the 
network are a basis solution of the LP-problem, then the set of flows in arcs 
can be described as follows. 

The set of the arcs is divided into three groups 

S -nonbasisarcs, 
D - basis nonsaturated arcs, 
G - basis saturated arcs. 

The flows Xk will have the following values 

The most important property is that the subset D contains exactly N-2 
arcs. The subset consists also of two tree-like components of connectedness 
D l  and D2 . There exists always an arc from G , which connects D l  and D 2  . The 
set, which connects D l  and D 2  , we will call pseudo-cut and denote as R . 

In figure 2 a possible structure of a current basis is shown. S-arcs are 
shown by dot lines, D-arcs are shown by t h n  pointers and G-arcs are shown by 
thick pointers. R-arcs are shaded. 

The above properties permit the formulation of optimal conditions for a 
basis solution. 

A basis solution is optimal, if all nonsaturated arcs from R are oriented in 
the same direction ( between D l  and Dz) and all saturated arcs from R are 
oriented in the opposite direction. 

In other words, a basis is optimal if the total channel capacity permitting 
the increase of the flow from D l  to Dz is zero. It means th.at the set R is a cut. 

Therefore, to decrease Y ( the norm of the channel capacity ) it is neces- 
sary to decrease flows in all arcs from G , including from R .  But to keep the bal- 
ance conditions valid, all the changes must form a nonzero circulation. If such a 
circulation cannot be built, then the current basis solution is optimal. Figure 2 
shows just t h s  situation. 

If R is not a cut, then the algorithm deflnes necessary circulations, in 
which arcs from G and at least one nonbasis arc are involved. The decreasing 
Y leads to increasing this circulation. It happens as long as the change of Y 
reaches its limit value. Then the rebullding of basis becomes necessary. 

The work of the algorithm may be illustrated for the network given in Figure 
1. The sequence of iterations is shown in Figure 3. 



The first balanced flow ( with Y = + ) goes from node 3 to node 1 through 
node 4. The minimal value of Y, granted the feasibility of the flow, is 
~ U X  (Xk / A ~ ) = X ~ /  ~5 = 20. /20. = 1. 
There is a nonsaturated 5-th arc here, which divides the network into two sub- 
sets D1=(3,4) and D2 = ( 2 , l ) .  

Nonbasis arc 8 permits the formulation of a circulation to decrease the flow 
through arc 5 . Increasing t h s  circulation leads to the saturation of arc 2 ,  which 
occured at Y = 0.66.  And so on. 

Notice, that for all nonsaturated arcs the inequality XksY*Ak takes place. In 
the optimal basis solution all arcs between Dl and D2 consist of a cut, and this 
does not permit the decrease of the value of Y further. 

The computer codes of the algorithm were elaborated by K.Kim in coopera- 
tion with a laboratory of mathematical programming of The Central Economic 
Mathematical Institute of the Academy of Science of the USSR and Regional 
Development Group of IIASA. 

Reference 
B. Issaev, A. Umnov INTEGRATED ECONOMIC BALANCE: ADJUSTMENT PRO- 
CEDURES, IIASA, WP-82-118, 1982 



User's manual for bdmee progrmas 

Ths manual describes how to use BALK, BALM programs for The Integrated 
Economic Balance model of Tuscany. 

The manual describes how to use these programs on a VAX 11/78Q com- 
puter under the UNM operating system. There are only several changes for 
using these programs on an IBM computer. 

The manual contains several chapters: 

1. Definition of task and some items 
2. Usage, compilation and linkage 
3. 1/0 files, their formats 
4. Error messages and other recommendations 

1. Delinition of task and some items 
Let's have a quadratic matrix, which contains n rows and n columns and 

which can be sparse. Let's call this matrix balance table. 
For reasons of flexibility, divide t h s  table equally rowwise and columnwise 

into several parts, let's call them groups, where each group can contain 1 to m 
sequential rows (and columns too). 

The whole table consists now of several groups. Each group has its own size 
(nro of rows/columns). For the marking of each group we can use 1 (non- 
numeric) character, so the table will contain e.g, groups A,B,C etc. 

Each row/column of our table - let's call it account should be marked by 
absolute number of this row/column or by the name of group and the relative 
number in it, e.g. B02, C01 etc. Let's call row income account and column out- 
come account. Similarly, each element of this table, let's call it flow. can be 
marked with the help of two numbers - number of the row and number of the 
column; or alternatively with the help of relative numbers in groups, e.g. 
B02C04, A01E04 etc. The places where groups are crossing these submatrices 
(which should not be quadratic) we call blocks. 

Our first task is as follows: 

Let's have one balance table, which is created from blocks. All these data 
create data base. For computing we use only some blocks. Let's call them 
included blocks according to our scheme. All flows from these included blocks 
must have the following property: The sum of data for each input account must 
be equal to the sum of data for the corresponding output account. Let's call this 
property balancing. 

Generally, the input balance table need not be balanced. Our task is to get 
this balance in such a way, that the maximum relative changes for all flows must 
be minimized. 

All t h s  structure (d.ivision of the table into grou.ps and so into blocks) was 
done from practical definition of the task. Each group and block has its own 
economic interpretation for t h s  model. In order to make t h s  construction more 
flexible, it is possible to change the size of groups with minor changes in input 
data etc. 

The second task is to balance this table if we do some exogenous changes. 
These changes may be of the following type: 



a/  let the resulting flow have exactly the initial defined value 
b /  let the resulting flow increase only 
c /  let the resulting flow decrease only (but still be >=0.) 

At the solution of t h s  task (and also the f i s t  task) we get new values of flows: 
and so a new table - le t 's  call it result table. The differences between new and 
old values create a so called correction table. Of course, should the situation 
occur that the solution is infeasible in both cases, then the table cannot be bal- 
anced. 

The third task is like the first two, but we have another additional property 
of data in the table. Some of t h s  da ta  must correspond to some other so called 
equations of proportionality. 

For the solution of all these three types of problem a software package has 
been developed which contains, as a main par t ,  2 different programs for optimal 
balancing (because this task can be formulated as a linear programming prob- 
lem). The first program is a network algorithm for optimization of flows in the 
network. The program was developed a t  the laboratory of applied software a t  
CEMI, Moscow. The second program is the MINOS linear programming package 
from Stanford University. 

What must the user define and prepare, and what results will he get? 
1. The user must prepare all input data files in appropriate form. Here the 

user  must divide the table into groups, giving names and sizes of each group. 
The user can also give the  name for each group (40 chars max) which will be 
printed on output files. Then the user must prepare the whole data base - all 
blocks which contain nonzero flows. Then the user must prepare a list of 
included blocks and file with names for each account (also 40 chars long). 

2. A so-called specification file will contain a description of our task which 
means names of all input and output files, some important parameters and type 
of task (balance only, balance with restriction, proportionality, compressed 
form of table etc.). If the user wants to fix some variables, he must prepare a 
so-called restriction file too. 

3. The user gets results stored on output files, according to the options he 
has chosen. All output files are  optional. There are e.g. input balance table file; 
table of correction file; results table file. All results can be stored on data file in 
the same format as data base file and used for further computing. 

The user can also display data in so called graphical form, where each 
result flow is displayed as 1 character;  for instance, , if it did not change; + or - 
if a maximum change was made, and so on (see chapter 3). Looking at this file 
the user can get an overview of how corrections data are distributed in the 
resulting table. 

The next possibility is to get the file with some chosen accounts which are 
interesting for the user (not a complete table); e.g. input, correction and result 
income and outcome accounts. Finally, the user can d.efine and get a file where 
input blocks will be stored in a form of matrix with subtotals for rows and 
columns. 

4. The user has the possibility of choosing some of the following functions: 



- balancing input table 
- balancing input table with restrictions 
- as before but with proportionality 
- work with compressed version of table (first two tasks only), where each 
block is interpreted as 1 flow which is the sum of all flows from this block. 

2. Usage of programs 
All programs are written in FORTRAN-77 language for V M  11/78Q computer 

under the UNIX operating system. The prcjgrams were written in such a way that 
their portability is very good, as generally, they are written in F O R T W  N, when 
only some statements must be changed. It is necessary to use virtual machine 
for their computing because of large volumes of arrays of variables (which 
depends on the type of work and amount of data) and the MINOS programming 
package. 

Generally the user has 2 different program packages for solving his prob- 
lems in IIASA's computer. There is a package using network algorithm (BALK) 
and a package using MINOS for solution (BALM). 

User must translate all the programs with the f77 compiler and link them to 
executable form. There are several FORTRAN subroutines in one source file. 

For package BALK, user must translate and link following files: ba1new.f 
bdata.f cornput-f flow-f maxfld.f subr1.f v5tup.f vystup.f There is file link-balk 
where commands can be found on how to link programs. 

For package BALM, user must translate the following files: ba1prp.f bdata.f 
subr1.f v9tup.f vystup.f gmpsp.f subp-f and link them together with files where 
the MINOS package is. File on how to link these is link-balm. 

Submitting the job for computing: 
Before submitting, user must prepare all input files (some of them are optional), 
according to type of job. All files besides spec file are opened internally in pro- 
gram, so user must submit the job simply by typing 
BALK l=spec or BALM l=spec 

Choice of appropriate algorithm: 
network algorithm enables solution of tasks of following types only: 
- balancing non-balanced table 
- balancmg with restriction of type equality (fixing result flows) 
This algorithm is very fast (approximately 30 times faster than MINOS). It 
serves for quick preliminary balancing of job. 

MINOS enables solving of all kinds of tasks (fixing of all types of restrictions, 
proportionality), by generating an mps-file but solving is relatively slow. 

General description of program: 
Program consists of 3 parts: 

- inputing of data 
- optimization 
- producing results. 

First, program reads specification file. According to defined task program 
does all necessary functions, reads groups and included-blocks file. Then pro- 
gram reads database file. If the user chooses option to compress table, data are 
compressed during reading input block and each block is considered as consist- 
ing of one flow. A t  the moment of reading data, the output file with output blocks 
is also prepared (if user wishes to have such a file). Reading the names of 



accounts follows (if user did not choose compress options - in that case names of 
accounts are equal to names of groups). If the user wants to have restrictions, 
restriction file is read, the same as for input account file and proportional file. 

Then two programs can be used: 
a /  network program - Description of this algorithm can be found in the first 

part of this paper. Program does the following: at first it checks whether 
the table is balanced. Then, according to user's wishes, it balances input 
matrix and/or balances it with restrictions. 

b /  MINOS program - For using PIINOS, a so called mps file must be ready 
before calling. This file is created automatically by a program genmps. If 
the user wants to use proportionality, the mps file is created slightly 
differently. First, a file mpsme is created, where all data for non- 
proportional variables are stored. After that a file mpsprop is created where 
data from proportional equations only are stored. Finally, the program 
merge merges these two files producing a file mpsall which will be standard 
input mps file for MIINOS. After calling MIINOS results are stored in working 
array z and a program solut transfers these results from this array into 
the appropriate positions in array res. Output part prepares all other out- 
put files (according to user demands). First the balance file, then the 
correction file, result file, output account file, output database file and 
finally the output graph file are produced. 

3. II/O files 
There is a difference in managing the files in IBM and VAX computers. For 

VAX all files are opened internally withn the programs. The user gives their 
numbers in specification file and their numbers are allocated at generation 
time. For IBM computers, files are opened externally and the numbers of files 
are given as they were made at the installation. The names of files in the 
specification file have here only information meaning. They are not used to open 
files. 

It is possible to connect several files into one file (input as well as output 
files), whch must be done during the installation, when the same numbers for 
several files are assigned. User must connect these files together and use blank 
line as EOF indicator of each file. Concerning input files, the user must know the 
sequence in whch input files are read. That is: spec, groups, include, database, 
names, restriction(optional), accounts (optional) and proport(optiona1). 

All necessary files could be divided into three parts: 

a /  Input files 
b/  Output files 
C /  Working files 



1. specification file 
2. database file 
3. groups file 
4. included blocks file 
5. names file 
6. restriction file [optional] 
7. accounts file [optional] 
8. proportional file [optional] 
9. specfile for MlNOS [optional] 

3.2. Output H e s  

All output files except fort.9 are optional 

1. standard output file fort.9 and t ty output 
2. balance table file 
3. corrections table file 
4. results table file 
5,  graph f l e  
6. output accounts file 
7. output blocks file 
8 ,  output database file 
9. outfile for MINOS 

3.3. Working files 
These files are used when MINOS algorithm is chosen only 

1.  rnps6le 
2, rnpsprop [only if proportionality] 
3, rnpsall [only if proportionality] 
4. scratch file for MINOS fort.8 
5. optional basis files for MlNOS 



a1 / Specification Ale: 

The following is an example of such a file: 

name of task : Tusc any 11. 
type of algorithm : MINOS 
database file : database 
groups file : group 
names file : names 
included blocks file: incl 
restriction file : rest751 
out bal. table file : outbal 
out correction file : outcor 
out result file : outres 
out graph File : outgrp 
inp & out account f .: acc outacc 
out database file : no 
proportional f le  : propor 
out blocks f l e  : no 
compress : no 
balance of input : no 
restr & bal, of inp. : yes 
tolerance eps : 1.0000e-5 
tolerance seps : 1.0000e-3 
tolerance epstol : 1.0000e-3 

The structure and position of elements are fixed. Each line starts with an 
explanatory text whch is 22 chars long after whch follow the parameter(s). All 
names of files are 12 characters long. Name of task (1.line) has a max of 40 
chars, this occurs on output f les. Type of algorithm should be keyword Kim or 
minos (2.line). If some file is optional and is not chosen, just type no. Two 
names of account files (input and output) must be given on line nro 12, name of 
output account file starts in column 35. Parameters compress (16.line), balance 
of input (17.line) and restr. & balance of input (l7.line) must be keywords no or 
yes. There is a check to some extent e.g. if user does not choose balancing and 
wants to have output result or output correction file then error message - wrong 
spec file - occurs. Tolerances eps  and seps  serve as criterion for accuracy when 
balancing with network algorithm, epstol serves as criterion if the variable is on 
upper or lower bound at preparing graph file. 

formats are: for lines 1-18 ( E x ,  10a4) 
for lines 19-2 1 (22x, e 12.5) 

a2/ database file 
All data are stored as a sequence of data belonging to blocks. Database can 

also contain blocks whch will not be included in scheme for computing (will not 
be in the list of incl. blocks). Blocks contain all nonzero flows. It is not possible 
to have 2 blocks with the same name in the database. Ths  error is not checked 
by the program and if left it may cause strange results. 

Block contains the head of block where name of block is 2 characters. If 
this name is not in list of included blocks, the data of this block are skipped. 
After head all nonzero flows follow for this block in a mode: 
row index, column index, value of flow 
Indexes are compared with values got from the table - dimensions of groups. All 



values must be greater than 0. Values need not be sorted. 
The tail contains the sequence: 0 0 0. Block can be empty. 

Formats are for the head: (6x,2al) 
for Aows:(2i5,e12.5) 

An example follows: 

block CD 
1,2,14. 
2,3,3. 
4,1,11. 
1,1,7. 
o,o,o. 
block C S  
4,4,1. 
o,o,o. 

a3/ group file 

File contains identifier of the group (1 character), dimension of the group 
and title of the group (40 chars). 
Format is (a1 ,i3, lx,  10a4) 
Sequence of groups defines division of table. 

a4/ included blocks file 

This file contains identifiers of all blocks (2 characters), which must be 
taken from database and included in the table. I t  is possible to put character Y 
at  the end of the row if you want to print this block on the output file of blocks 
(in matrix mode with subtotals). Blocks could be in the file in any order. 
Format is (2a1, lx ,a l )  

a5/ names files 

Ths  file contains names (titles) for each account (40 chars max). There 
must be the account name at first, e.g, name of group (1 char), than index in 
this group, and then the title for account (40 chars.) on each line. Accounts may 
not be sorted. If user chooses compress option this file is not read and titles for 
accounts are the same as for groups. 
Format is (al,i2,1x,lOa4) 

a6/ restriction file 

The file has similar structure to the database file. The data are grouped 
together according to blocks, which they belong to. For each restricted datum i t  
is necessary to give type of restriction, which can be one of three possibilities: 

- fixing datum for exact value, character is = 
- character > means, that flow can increase only 
- character < means, that flow can decrease only 

I t  is not necessary to give any value a t  the end of the line if modes < or > were 
chosen. Then at each line user must define: 
index of row, index of column, restr, type(1 ch), restr,  value (if type is '=') 
Format is (i3,i3,lx,al, lx,e12.5) 

Example : 



block AB 
1,4, = 15.6 
2,4, > 
o,o,o. 
block UA 
31 2 = 1234.56 
2 12 < 
0 0 0. 

a7/ accounts file 
Here user defines whch accounts (income and outcome) he wants to write 

in output accounts file. For each account it is possible to have its value for input 
flows, correction flows and result flows, what user defines by giving characters I, 
C, R to the fields for type of acc. The user defines on each line number of 
account (by means of identifier of the group and index in this group) and the 
type of account. User can, of course, choose C and R type only if he chooses an 
option for balancing input matrix (or bal with restr). If the user wants to write 
all accounts from one group, he uses char 0 (zero) instead of index within group. 
If the user wants to print sum of all accounts for the whole table, he uses char- 
acter * as name of group. 
Format is (al, i2,1x,3al) 

Example: 

+ 0 ICR (prints sums of all accounts for input,corrections and output) 
A21  
A31  
A 4 I (from group A user wants to print input accounts for rows 2,3,4 only) 
C 0 CR (print all accounts for group C,  and so correction and result) 

a8/ proportional file 
Ths file has fixed structure. 

Example: 

The file has 6 lines, for each proportionality one line. These lines show which 
variables are included in the relations of proportionality. If user does not choose 
a proportionality, he must put name X for the name of group. There are 6 vari- 
ous types of proportionality, first three for columnwise proportionality are for 
tables AK, AI, and AA respectively. C:olumnwise proportionality means, that if in 
input balance table value of one flow was 1/16, of the sum of this column of this 
block, the resulting flow must also be 1/16.-th of new sum of this column. The 
next three types of proportionality are concerning table CA (first and second 
row) and table P A  (first row). The values of these flows are defined by the set of 
equations. Numbers in prop files give lower and upper limits for proportional 
variables, these values are checked with dimension of groups. 

a9/ specfile for MINOS 



If user has chosen the MD4BS package, lie must prepare a so called 
specification file (see MU40S reference manual). Its name is always spacae. 
Here user can change number of rows, columns and nro of elements according 
to his task. User can also define usage of basis files. Number of rows, cols and 
elements is approximately: 

i f  our table has N accounts and M nonzero flows, then 
n r o o f r o w s = 2 * M + N +  1 
nro of cols = N + 1 
nro of elements= 6 * M 

b / Output files 
Output files are mostly created after solution. All files (except fort.9) are 

optional and their names are given in spec file. The fort.9 and the standard t ty 
output contain information about solution, e.g. number of accounts, flows, sum 
of flows , debalance, obj. function. 
The source balance table file contains the whole table with all data from 
included blocks. Rows and columns are signed absolutely and relatively within 
groups. Only nonzero flows are displayed. Blocks are separated by lines. I t  is 
possible to glue together the table into one large table. 
The correction and result table files (their format is equal to  format of balance 
table) contain corrections and result flows respectively. 
The graph table file contains the picture of the table, where each flow is 
presented by one of the following characters: 

. - there was no change or flow was equal to  zero 
e - element was fixed exogenously 
+ - change of t h s  flow is on the upper bound 
- - change of t h s  flow is on the lower bound 
o - change of this element is somewhere between lower and upper bounds. 

It is possible to get the graph only after balancing. 
If nro of accounts is > 128, graph is too big and it cannot be written. 

The output accounts file contains accounts according to  specifications from the 
input account file. 
The output blocks file has all blocks written separately, with sums for all 
rows /columns. 
The output database file has the same format as input database file. The values 
stored there are resul t~ng flows. In this way t h s  file can be used as input data- 
base file for next iteration. 
The outfile is standard output file when MINOS is used. It is used for information 
purposes only. 

c / Working files 

These files are created a t  the time of compu.ting. All files have given names 
and all are used if MINOS algorithm only was chosen. 
The mpsfle is mps file for MINOS 
The mpsprop is also mps file, wbch  is slightly different. It has only variables 
(rows,cols ,...), whch  are used in proportional equations only.. T h s  file must be 
merged with file mpsfile. It produces the file mpsall whch  will be the input mps 
file for MINOS if proportionality was chosen. 
The mpsall is produced as  merging of files mpsae and mpsprop 
The fort.0 is a scratch file for MINOS. 



4. ConQanratiaa, ewor messages, remarks 

a/  Program has defined some maximal sizes for some arrays: 

maximal number of groups - mxlng - 30 
maximal number of accounts - mxacc - 200 
maximal number of incl. blocks - mxinc - 150 
maximal number of flows - mxvar - 2000 
maximal number of restrictions - mxres - 1000 
maximal number of graph size - - 128 

In the case of a larger job it is necessary to change the dimensions of these 
arrays and also the value of the corresponding mx ... variables (see program- 
mers' guide), to translate programs and to link them together 

b /  Names of files are 12 characters long. Kames of groups and accounts have a 
max of 40 chars. All character variables are declared as integer*4 (it means 4 
characters per 1 variable). Hence for storing names of files it is array of 3 vari- 
ables. For storing names of groups it is array of 10 variables. Some variables are 
initiated by data statements. 

c /  For usage of MINOS single large array (of type real*8) with name z is neces- 
sary. The default length of t h s  array is 50000 (variable nwcore). If this is too 
small, error diagnostic 28, 40 occurs. 

d /  Real arrays and variables are declared as type real*8 for accuracy at input- 
ing and computing. 

e / Tolerances are of three types: 
eps, seps (1.e-3, 1.e-4) are used by network algorithm. They are used to check 
whether the difference income-outcome is small enough. User can change them 
in the spec file, 
toleps (1.e-3) is used at computing variables for graph file to check if the flow is 
close to the upper or to the lower bound. 

f /  objective function gives maximal relative difference for any flow in the table. 
This value can be read from the file fort.9 or the graph file. 

g /  error messages are displayed on tty output as 2 numbers. First number is 
code of error. Second number depends on the first one. Generally when reading 
input files it is the number of the line where the error occurs. At code 28 it is a 
program error (see Programmer's guide or MINOS manual). A list of error codes 
is at the end of this chapter. After you get an error message, you must either 
correct some data file or make changes in source programs. Look in Program- 
mers guide to see what action may be taken. 

h /  The following restrictions must be taken into account: 



- when preparing database file all data belonging to one block 
must  be stored in this one block 
- for proportionality purposes: 
- group A must be the first group in list of groups 
- max size of group A is 31 
- max size of group K is 10 
- max size of group L is 9 
- max size of group U is 1 
- all names for groups A,K,L,C,P,S,R must be the upper case letters 

i /  Restrictions for compressed form are like those for the compressed flows (not 
source flows). 

j /  How to fix element w h c h  is not in database file (whch is zero there)? 
You may add t h s  element into database with a very small value. 

BUGS: 
1. All output files are generated on finishng the optimization. 

2. The user should beware of not having data of one block in different par ts  of 
database file. 

3. There are some restrictions for the proportionality option as well. 



ERROR CODES 

1 [inpspc] - short or bad data on input file bdspec 
2 [inpgrp] - number of groups > mxgrp 
3 [inpgrp] - size in group is <O or >99 
4 [inpgrp] - wrong data on group file (size of group) 
5 [inpgrp] - group name is already used 
6 [inpinc] - such a group does not exist 
7 [inpinc] - block name is already used 
8 [inpdat] - parameters in base file are not correct(out of range or v=O.) 
CJ [inpinc] - number of included blocks > mxinc 
10 [inpgrp] - number of groups = 0 
13. [inpdat] - number of variables > mxvar 
12 [inpnam] - wrong data on name file 
13 [inpnam] - group not found 
14 [inpinc] - number of included blocks = 0 
15 [vstup ] -number of accounts > mxacc 
16 [inpdat] - last block was not closed 
17 [inpdat] - number of variables = 0 
18 [inpres] - number of restrictions > mxres 
19 [inpres] - bad data on restriction file 
20 [inpres] - number of restrictions = 0 
21 [absindj - element does not match 
22 [inpres] - restriction has no variable 
23 [pripr ] - error a t  computing graph elements 
24 [maluj ] - more than 128 accounts for preparing graph 
25 [comput] - number of variables > mmax 
26 [comput] - fatal error bad program 
27 [comput] - n or nel are too big, change dimensions 
28 [comput] - error in flow 
30 [comput] - number of fixed elements > nmax 
31 [inpspc] - error in spec file 
32 [inpinf] - error in data in input for acc f le  
33 [otvor ] - open error 
34 [outgrp] - obj < 0.000 000 01 
35 [isrest] - something strange with data in restriction file & source data 
36 [inpprp] - proport tables too small 
37 [inpprp] - description outside limits 
38 [inpprp] - such a group was not found 
39 [inpprp] - such a block is not included 
40 [inpinf] - groups outside limits for input acc file 
41 [inpinf] - not such a group for input acc file 
42 [inpprp] - error on proport. file 
43 [inpspc] - algorithm is not corresponding to program used 
44 [inpres] - restr. of such a type should not be solved with t h s  algorithm. 
45 [inpdat] - size of working arrays too small for storing block a t  preparing 

block output 
46 [whatva] - restr. of proport. not found 
47 [pprop ] - bad proportional data or program 
48 [inpres] - type of restriction does not match any type of < = > 



Programmer's Guide for Balance Programs 

Programming convemtioizs 
All programs are written in FORTRAN-77 programming language, mostly in 

FORTRAN lV subset. Only some subroutines use new features of FORTRl?lY-77 
language. The portability of programs is possible. Because of large arrays and 
large MINOS package computer for implementation must be virtual. Character 
variables are stored in variables of type integer (resp. integer*4 which is the 
same) as 4 characters per variable. Some of them are initialized in data state- 
ment. Comparison for equality is often used. Names of files are 12 characters 
long (3 variables), texts are stored as 40 characters (10 vars) generally. 

Real data are stored in real*B variables for the reason of maximum possible 
accuracy at computing and reading input data. 

For opening and closing f les  standard FORTFUN commands open, close are 
used. In some subroutines declaration  character*^ is used, also commands of 
type encode, decode (which is implemented as read or write from character 
variables) are used. It is used in functions inpinf (decode and character*2 
declaration), presn (encode and ch*8) and otvor (ch*12). There is also an 
equivalence statement in routine presn and some small inconsistencies with 
types of parameters. 

All these inconsistencies were corrected for the IBM version. Here com- 
mands marked as IBM or VAX must be chosen a t  implementation of programs for 
a particular computer. 

There are 2 versions of programs now: 
BALK - version where network algorithm for balancing is used. This is a very 
quick version but user can fix elements only. 
link: file 1ink.balk 
files: balnew.0, bdata.0, cornput-o. flow.0. rnaxl3d.o. subr1.0, atup.0. vystup.0 
BALM - version where MlNOS is used for balancing. The user can use all types of 
restrictions and proportionalities. 
link: file link-balm 
files: balprp.0, bdata-o, subr1.0. vstup.0, vystup.~, grnpsp.0, subp.0 and MINOS 
subroutines 

PROGRAMS: 
Main programs, subroutines and functions are grouped into several files. 

The following files contain the following subroutines: 
balnew.f - balnew, err  
balprp-f - balprp, err  
bdata-f - block data 
c0mput.f - comput 
fl0w.f - flow 
rnaxl3d.f - maxfld 
subr1.f - abs~nd, indabs, sums, cpf 
vstup.f - vstup, inpspc, inpgrp, inpnam, inpinc, inpdat, inpres, inpinf, inpipr, 
otvor, zatvor 
vystup-f - vystup, out bal, outcor, outres, zaptab, outgrp, pripr, maluj, outsum, 
outtab, head, indexy, vyber, presn, tlacri, outacc 
gmpsp-f - ries, genmps, isrest., solut, calcfg 
subp-f - pprop, isprop, genprp, merge, isresp, whatva 



COMMOPJ 
common /prop / lna,izc l,izc2,ikcr,izk,ikk,izl,ikl,izpl,iu, 

* izs,iks,izr,ikr,iprflg(6) 

in pgms: genprp.pprop.isreap,wba~~3~,inpip1.s01ut 

lna - length of group A 
izcl - absolute index starting of group C 
izc2 - absolute index for account C2 
ikcr - absolute index end of group C 
izk - absolute index for start  of group K 
ikk - absolute index for end of group K 
izl - absolute index for s tar t  of group L 
ikl - absolute index for end of group L 
izpl - absolute index for start  of group P 
iu - absolute index for s tar t  of group U 
izs - absolute index for start  of group S 
iks - absolute index for end of group S 
izr - absolute index for start  of group R 
ikr - absolute index for end of group R 
iprflg(6) - flags which proportionality is chosen l=yes/O=no 

common /dsi /  ndspc,ndmpsa,ndoldb,ndnewb,ndspcf ,ndoutf ,ndtty,  
* ndf9,ndgrp,ndincl,ndnam,ndprop,ndfB,nddatb,ndrest, 
* ndacc,ndobal,ndocor,ndores,ndogrp,ndoacc,ndoblk, 
* ndodat,ndmps,ndmpsp 

in pgms : balnew.balprp.block data. err,c omput.flow.maxfld.cpf .inpspc .inpgrp. 
inpnam,inpinc,inpdat,inpres.inpinf ,inpipr,outbal ,outcor,outres. 
outgrp.outacc,ries.genmps.genprp.merge 

All variables contain identifiers of files used in read/write statements. 
These values are assigned to  them with the help of data statement and must be 
prepared a t  the installation of both programs. Identifiers are for following files: 



ndspc - spec file for balans; 
ndmpsa - mpsd l  file; 
ndoldb - old basis file for MINOS; 
ndnewb - new basis file for MINOS; 
ndspcf - specfile for MINOS, it must be equal to 5; 
ndoutf - o u t a e  for MIPJOS, it must be equal to 6; 
ndtty - standard t ty output, it is usually 6; 
ndf9 - list output file fort.9; 
ndgrp - groups file; 
ndincl - included blocks file; 
ndnam - names file; 
ndprop - proportional file; 
ndf8 - scratch file for MINOS, it must be 8; 
nddatb - data base file; 
ndrest - restrictions file 
ndacc - input accounts file; 
ndobal - output balance table; 
ndocor - output corrections table; 
ndores - output results table; 
ndogrp - output graph table; 
ndoacc - output accounts file; 
ndoblk - output blocks file; 
ndodat - output database file; 
ndmps - mpsfle 
ndmpsp - mpsprop file 

next 4 commons are from MINOS subroutines and are used in program ries only 

common /lpcom / krhs,ns 1 ,maxr,ierr,jr 1 
common /intcom/ itn,itnitm,nphs, kmodlu,kmodpi 
common /fxcom / fx,sinf,wtobj,minimz,nfx,ninf,obj,nprob 
common /core / kzl,kzZ,kz3 

ARRAYS AND VARIABLES 

indl [mxvar ] - absolute row index of flow 
ind2 [mxvar ] - absolute column index of flow 
val [mxvar ] - input flow 
res [mxvar ] - result flow 
group [mxlng ] - identifiers of groups (1 char) 
lgr [mxlng ] - length of groups 
grpnam [lO,mxlng] - names of group parts 40 chars 
blinc 1 [mxinc ] - identifiers of included blocks 1 .part  (1 char) 
blinc2 [mxinc ] - identifiers of included blocks 2.part (1 char) 
inclpr [mxinc ] - output this block to file or not (1 yes/O no) 
accnam [10,mxacc] - names of accounts (40 characters each) 
infacc [mxacc ] - information which account to print 

( l=input balance, 2=correction, 4=results, other their sum) 
sincom [mxacc ] - income of account (sum of the row) 
soucom [mxacc ] - outcome of account (sum of the column) 
subory [3,15] -names of all files (12 character each) 
solnam [ lo ]  - name of our task (40 characters) 



iflg [12] -flags 
irest [mxres ] - absolute row index for restriction 
jrest [mxres ] - absolute column index for restriction 
nrest [mxres ] - type of restriction O =  -1< 1> 
west  [mxres ] - fixed value of restriction if type is = 
iplz [ l o  ] - absolute row index start  of proport var 
iplk [ l o  ] - absolute row index end of proport var 
ip2z [ l o  ] - absolute column index start  of proport var 
ip2k [ l o  ] - absolute column index end of proport var 
cut,head,headr,stk,dfr,dfO,df [mxacc] - arrays for network algorithm 
a [2+mxvar] - array for network algorithm 
arc,list,fl [4+mxvar] - arrays for network algorithm 
z [nwcore] - working array for MINOS 
alfa [31,31 ] - proport coefficients for block AA 
beta [31,9 ] - proport coefs for block AK 
gama [31,10 ] - proport coefs for block AL 
sa [31 ] - sum of columns for block AA 
sk [9 ] - sum of columns for block AK 
sl [ l o  ] - sum of columns for block AL 
c l a  [31 ] - first row from block CA 
c2a [31 ] - second row from block CA 
p la  [31 ] - first row from block PA 
zzz [31 ] - sum of column group A - AU(transp) 
x [31 ] -zzz() - R A -  SA 
y [31 ] -x ( )  - C2A - C3A - C4A 
zz [I = z(kz1) array where solution variables are stored after MINOS solution 
tb [50,50 ] - temporary array for storing block variables a t  preparing 

output block file 
s l  [50 ] - temp array for sum of the row for block 
s2 [50 ] - temp array for sum of the column for block 
sub [3 ] - name of file (12 chars) 
prvky [I28 ] - temp array for taking vars 
grupy [13 ] - names of groups (1 char) when printing out tables 
oddel [13 ] - separator after accounts (blank or 1) when printing out table 
ire1 [13 ] - relative number withn group when printing out tables 
prem [2,13 ] - various according to usage (value of variable at double 

precision or character format 
nwcore - length of array z 
ipflag - flag if proportionality yes= 1 / no=O 
kzl - index where results after MINOS solution start  in array z() 
imt - max length of arrays tb ,s l ,s2  default = 50 
nrnax - = mxacc 
mmax - = mxvar 
mmax2 - = mrnax + 2 
mmax4 - = rnmax + 4 
mx,. . - maximal length of some arrays 
eps - tolerance for network program 
seps - tolerance for network program 
epstol - epsilon tolerance a t  preparing graph 
obj - objective function after network algor. 
istate - state of solution 
infall - whch account of sums to print 
lngvar - actual number of flows 
lnggr - actual number of groups 



lnginc - actual number of included blocks 
lngacc - actual number of accounts 
lngres - actual number of restrictions 
lngip - actual length of propor 
minkim - what algorithm is used l=MIMBS 2=network program 



ERRORS: 
code of error [subroutine from which is called] - /subcode/ explanation 
A: Action to correct error 

1 [inpspc] - /line/ short file or bad data on input spec file 
A: correct spec file 

2 [inpgrp] - /line/ number of groups > mxgrp 
A: change dimension of arrays group(), lgr(), grpnam() and variable 

mxlng in main program 
3 [inpgrp] - /line/ size in group is < O  or >99 

A: correct groups file 
4 [inpgrp] - /line/ wrong data on groups file (size of group) 

A: correct groups file 
5 [inpgrp] - /line/ group name is already used 

A: correct groups file 
6 [inpinc] - /line/ such a group does not exist 

A: correct included-blocks file or add such group into groups file 
7 [inpinc] - /line/ block name is already used 

A: correct included-blocks file 
8 [inpdat] - /line/ parameters in database file are not correct (indexes out 

of range or v=O.) 
A: correct database file 

9 [inpinc] - /line/ number of included blocks > mxinc 
A: change dimension of arrays blinc 1 0, blinc2(), inclpr () and 

mxinc in main program 
10 [inpgrp] - /line/ number of groups = 0 

A: correct groups file (it is empty) 
11 [inpdat] - /line/ number of variables > mxvar 

A: change dimension of arrays indl() ,  ind2(), val(), res() value 
rnxvar and other arrays depending on it for network algorithm 
in main program 

12 [inpnam] - /line/ wrong data on names file 
A: correct names file 

13 [inpnam] - /line/ group not found 
A: correct names file 

14 [inpinc] - /line/ number of included blocks = 0 
A: correct included-blocks file (it is empty) 

15 [vstup ] - /0 /  number of accounts > mxacc 
A: change dimension of arrays accnam(), infacc(), sincorn(), soucorn() 

and mxacc and other arrays for network algorithm 
in main program 

16 [inpdat] - /line/ last block a t  reading database file was not closed 
A: correct database file 

17 [inpdat] - /line/ number of variables = 0 
A: correct database file (no input datum is included) 

18 [inpres] - /line/ number of restrictions > mxres 
A: change dimension of arrays irest(), jrest(), nrest(), west( )  and 

mxres and also some arrays for network algorithm 
in main program 

19 [inpres] - /line/ bad data on restriction file (e.g. block not closed or 
fixing at negative number) 

A: correct restriction file 



20 [inpres] - /line/ number of restriction = 0 
A: correct restriction file (it was empty) 

21 [absindj - /line/ element does not match (wrong group name or outside limits) 
A: correct database or restriction f le  

22 [inpres] - /line / you want to make restriction on non-existent flow 
A: correct restriction file 

23 [pripr ] - /0/  error a t  computing graph elements division by zero 
A: consult with author 

24 [maluj ] - / O /  more than 128 accounts for preparing graph 
A: not possible to have graph file, remove from spec file 

25 [comput] - /0/  number of variables > mmax 
A: consult with author 

26 [comput] - / O /  fatal error bad program 
A: something strange with program, consult with author 

27 [comput] - /0/  n or nel are too big, change dimensions 
A: consult with author 

28 [comput] - error in optimization algorithm, second number gives code of er r  
for network program: 

1 - problem.is unbounded 
2 - problem cannot be solved 
3 - y is too big 
4 - wrong data 

A: change task (change restrictions etc) 
[ries ] 
for MINOS 

1 - infeasible (change task) 
2 - unbounded (change task) 
3 - too many iterations (increase number of iterations on specme) 

>=4 - another error condition (look into MlNOS manuals) 
30 - not enough core a t  reading mps file (correct dimension of z() and 

nwcore in ries program) 
40 - fatal error a t  reading mps file (perhaps increase number of rows, 

columns, elements ...) 
30 [comput] - / O /  number of fixed elements > nmax 

A: consult with author 
31 [inpspc] - /0/  error in spec file definition of task is incorrect 

A: correct spec file 
32 [inpinf] - /line/ you want to have output correction or result accounts 

but no balancing function .was chosen 
A: correct input accounts f le  

33 [otvor ] - /0/ open error 
A: file cannot be opened, look for name of file, consult with 

system programmer 
34 [outgrp] - /0 /  obj < 0.000 000 01, it is not possible get graph file 

A: release out graph filename from spec file 
35 [isrest] - /0/  something strange with data in restriction file & source data 

A: consult with author 
36 [inpipr] - /line/ proportional tables too small 

A: consult with author 
37 [inpipr] - /line/ index in group outside limits at reading proportional file 

A: correct proportional file 
38 [inpipr] - /line/ such a group was not found a t  reading proportional file 

A: correct proportional file 
39 [inpipr] - /line/ such a block is not included at reading proportional file 



A: correct proportional file 
40 [inpinf] - /line/ index of group outside limits at reading input account file 

A: correct input accounts file 
41 [inpinf] - /line/ such a group does not exist a t  reading input accounts file 

A: correct input accounts file 
42 [inpipr] - /line/ error on proportional file - wrong number 

A: correct proportional file 
43 [inpspc] - /line/ algorithm is not corresponding to program used 

A: change algor. on spec file of used BALM instead of BALK or 
vice versa 

44 [inpres] - /line/ restr,  of such a type should not be solved with this 
algorithm 

A: correct restriction file 
45 [inpdat] - /line/ size of working arrays too small for storing block at 

preparing block output at reading database file 
A: change dimension of arrays tb(),  s l ( ) ,  s2() and imt in program 

inpdat 
46 [whatva] - /0 /  restr of proport not found; strange error 

A: consult with author 
47 [pprop ] - /code/ bad proportional data or program 

0 -group A is not first in list 
1 - size of group A is > 31 
2 - size of group C is < 2 
3 - size of group K is > 9 
4 - size of group L is > 10 
5 - size of group U is not = 1 
6 - 11 - limits on proportional variables does not match 

A: change task (size of groups) or change program (consult with 
author) or do not use proportionality 

48 [inpres] - /line / type of restriction does not match to any type of < = > 
A: correct restriction file 



0 - open (identifier of file), C - close, R - read, W - write 
All files are opened in subroutine otvor, but 0 means the subroutine from 

which otvor is called; same for close. 

Identifiers are assigned by user at installation time. There is standard 
assigning for VAX version in this paragraph. Files are opened and closed inter- 
nally for VAX version, but externally for IBM version. In this case if more files 
have the same identifier for VAX, they are still separate files. For IBM it means 
that several files are concatenated to one file, where blank line serves as EOF 
separator. 

For VAX version there are some files where names are given in program 
(user cannot define their names in spec file). They are files: specme, fort.8. 
f ort.9, mpsfile, mpsprop, mpsall. 

spec file: 
0: user( l ) ,  C,R: inpspc 

database file 
O,C,R: inpdat (1) 

groups file 
O,C,R: inpgrp (1) 

incl.blocks file 
O,C,R: inpinc (1) 

names file 
O,C,R: inpnam (1) 

restriction file 
O,C,R: inpres (1) 

accounts file 
O,C,R: inpinf (1) 

proportional file 
O,C,R: inpipr (1) 

specme for MINOS 
0,C: ries (5), R: MINOS 

standard tty output 
0: system (6); W: flow.m~d,ries.err.comput 

standard output file fort.9 
0,C: system (9), W: flow,err,maxfld.ries.comput 

balance table file 
0,C: outbal (2), W: outtab,head,tlacri 

correction table file 
0, C: outcor (2), W: outtab.head,tlacri 

results table file 
0, C : outres (2), W: outtab.head,tlacri 

graph f l e  
0,C: outgrp (2), W: maluj-head 

output accounts file 
0, C: outacc (2), W: outacc.head.outsum 

output blocks file 
O,C,W: inpdat (13) 

output database file 
O,C,W: zaptab (2) 



outfile for MINOS 
0 , C :  ries (6), W: MINOS 

mpsfile for MINOS 
O,C,W: genrnps ( I ) ,  R:MINOS, O,C,R:  merge (2), O,C,R:  cgf (1) 

mpsprop file for MINOS 
O,C,W: genprp (3), O,C,R: merge (3) 

mpsall file for MINOS 
O,C,W: merge (4), 0,C: ries (2), R: MINOS, O,C,W: cpf (2) 

scratch file for MINOS f ort.8 
0 , C :  system (8), W,R: MINOS 

Some remarks concerning how output files are prepared: 

a /  preparing output balance, correction and result files: calling sequence of 
subroutines for preparing these files is the same, only input data are 
different. For balance file input data are got from array val, for result file 
it is array res and for correction it is array r e s ,  which is difference 
res=res- val and which is corrected back to previous values after preparing 
correction file. Calling sequence is: sums prepares sums for whole columns. 
Then outtab for each page (which contains 13 output accounts) prints head- 
ing (name of task), page number - subroutine head) and names for each 
output accounts (it prepares subroutine indexy, name of account grupy 
and relative numbers within these groups are irel and also separators after 
end of group in array oddel which is either blank or 1 .  Then it prints for 
each input account values for corresponding 13 output accounts. These out- 
put accounts for each row are formed with a help of subroutine vyber. Then 
these numbers are stored in maximal possible accuracy into output array 
prem with a help of routine presn and are printed withn a subroutine tla- 
cri. The whole cycle is repeated for each page after the whole table is 
printed. 

b /  preparing graphical output: sequence of routines is pripr , which prepares 
array res in such a way, that i t  stores values 0,1,2,4.8 for each variable 
according to whether this variable is no change(O), is on upper band(l), on 
lower bound(2), between(4) or fixed(8). Then routine maluj is called. Within 
this routine at first heading is printed and then for each row values are 
taken for these variables for the whole row from array res with the help of 
routine vyber. Then each variable according to its code is replaced with its 
corresponding graphical symbol (.+-oe) and is printed on line. Because of 
length of line of prints, where a maximum of 132 characters is possible, the 
maximal size of 128 accounts was chosen, so as not to split one row between 
several lines on the printer 

Description of programs: 
For Parameter section: most parameters are described in ARRAYS & VARI- 

ABLES section, here we give only parameters which are not described there, or 
need more explanation.. 

For Method section: there is no description if method is trivial. 

BALPRP 



program balprp 
Call: vstup ries vystup 
Called from: - 
Purpose: main program for BALM where MINOS is used 

subroutine absind(bl1, bl2, in1 ,in2,iabl ,iabZ,group,lgr ,lnggr ,line) 
Call: err 
Called from: inpdat inpres 
Purpose: from relative indexes and group names gives absolute indexes for 

flow 
Parameters: bll,b12 - group names (1 char) for row and column 

inl, in2 - relative indexes within group 
iabl ,iab2 - absolute indexes 

Method: At  first computes absolute index of starting row for group, then 
index for particular row; the same for column 

BLOCK DATA 

block data 
Purpose: initiates variables in common /dsi / 

CALCFG 

subroutine calcfg(mode,n,x,f,g,nstate,nprob) 
Call: 
Called from: MINOS subroutine 
Purpose: dummy subroutine for YINOS, it will never be called 
Parameters: all are dummy variables 

CPF 

subroutine cpf 
Call: 
Called from: ries 
Purpose: copies file mpsfile to mpsall if no proportionality was chosen 

ERR 

subroutine err(i,j) 
Call: 
Called from: absind inpdat inpgrp inpinc inpinf inpipr inpnam 

inpres inpspc isrest rnaluj otvor pprop pripr 
ries vstup comput 

Purpose: prints error codes on fort.9 and standard tty output and STOP 
Parameters: i - code of error; j - subcode of error 



GENMPS 

subroutine genmps(indl,ind2,val,lngvar,irest,jrest,nrest,vrest,lngres, 
sincom,soucom,lngacc,ipflag,iplz,iplk,ip2z,ip2k,lngip) 

Call: otvor isprop isrest zatvor 
Called from: ries 
Purpose: prepares mps file mpsfile for MINOS 
Method: row, column, rhs and bound parts are prepared sequentially. 

If flow is proportional (call of routine isprop is = 1) skip 
commands whch generate part  of mpsfile for these variables. Similarly 
skip commands if flow is fixed. 
For flow with indexes i,j the column 'aiii.jjjl is generated 
(here iii=lOO+i jjj=lOO+j). Two rows 'lniiijjj' & 'upiiijjj' are 
also generated for each flow. Sequence of flows is the same as if they are 
stored in arrays indl,ind2,val. For each account i a row is generated 
with name 'bal.iiil. All input flows are going with coef 1. into this 
row and -1. for output accounts. 
Objective function has name 'aim' objective variable has name 'u ' .  
Rhs has name 'side' and bounds 'bnd'. 
For bounds part  for restricted variables we generate following rows: 
if type < then 2 rows: lo bnd aiii.jjj 0. 

up bnd aiii.jjj f kedsa lue 
if type = then 1 row: fx bnd aiii.jjj f ixedsalue 
if type > then 1 row: lo bnd aiii.jjj fixed-value 

GENPRP 

subroutine genprp(indl,ind2,val,lngvar,iplz,iplk,ip2z,ip2k,lngip,alfa, 
beta,gama,sa,sk,sl,cla,c2a,pla,zzz,x,y,irest,jrest, 
nrest,vrest,lngres) 

Call: otvor isresp isrest isprop whatva zatvor 
Called from: ries 
Purpose: prepares proportional mps file mpsprop 
Method: File mpsprop will contain only data for proportional variables 
Also here row, column, rhs & bounds are prepared. Ths subroutine was 
written especially for our 6 types of proportionality cases. For each 
type of proportionality corresponding rows, columns and bounds are 
generating only if particular type of proportionality was chosen. 
For propor. in blocks AA AK AI, names of variables will be a100.jjj which is 
sum for the whole column of this block. 

subroutine go(z,nwcore,lpi) 
Call: MINOS subroutines 
Called from: ries 
Purpose: main program for MINOS package 

HEAD 



subroutine head(odsi,sub,solnam,page) 
Call: - 
Called from: maluj outacc outtab 
Purpose: Prints heading to output balance, correction, result and graph file 
Parameters: odsi - identifier of file 

page - page number of output file 

subroutine indabs(iab1 ,iab2,bll ,bl2,in1 ,in2,group,lgr,lnggr) 
Call: - 
Called from: maluj zaptab 
Purpose: Converts absolute indexes of flow to indexes relative in block 
Parameters: see routine absind 
Method: at first it finds group to which indexes belong and then indexes 

INDEXY 

subroutine indexy(iab2z,iab2k,group,lgr,lnggr,grupy,oddel,irel) 
Call: - 
Called from: outtab 
Purpose:for each page it computes names of groups, accounts and their 

relative separators 
Parameters: grupy - names of corresponding 13 accounts for this page 

oddel - separators - for end of group it is I otherwise blank 
ire1 - array of relative indexes for corresponding 13 accounts 
iab2z - starting absolute index of column 
iab2k - ending absolute index of column 

INPDAT 

subroutine inpdat(sub,indl ,ind2,val,lngvar,mxvar,blincl ,blinc2, 
lnginc ,group,lgr,lnggr,iflag,iflgb, sub1 ,inclpr) 

Call: otvor e r r  absind zatvor 
Called from: vstup 
Purpose: Reads data from database file and prints output block fi1.e if 

necessary 
Parameters: sub1 - name of output block file 

INPGRP 

subroutine inpgrp(sub,group,lgr,lnggr,mxlng,lngacc,grpnam) 
Call: otvor er r  zatvor 
Called from: vstup 
Purpose: Reads data from groups file 

subroutine inpinc(sub,group,lnggr,blinc1 ,blinc2,lnginc,mxinc,inclpr) 
Call: otvor e r r  zatvor 
Called from: vstup 
Purpose: Reads data from include file 
. . 



subroutine inpinf(sub,infacc,lngacc,infall,group,lgr,lnggr,iflg) 
Call: otvor er r  zatvor 
Called from: vstup 
Purpose: Reads data from input accounts file 

INPIPR 

subroutine inpipr(sub,iplz,iplk,ip2z,ip2k,mxip,lngip,group,lgr, 
lnggr ,blinc 1, blinc2,lnginc) 

Call: otvor e r r  zatvor 
Called from: vstup 
Purpose: Reads data from input proportionality file 

subroutine inpnam(sub,group,lgr,lnggr,accnam,lngacc) 
Call : otvor err  zatvor 
Called from: vstup 
Purpose: Reads data from names file 

INPRES 

subroutine inpres(sub,group,lgr,lnggr,indl,ind2,lngvar,irest,jrest, 
nrest,vrest,lngres,mxres,natype) 

Call: otvor absind err  zatvor 
Called from: vstup 
Purpose: Reads restriction file 
Parameters: natype - type of algorithm user wants to use for solving lus 

problem (1 for PINOS, 2 for network program) 

INPSPC 

subroutine inpspc(subory,solnam,iflg,eps,seps, epstol,minkim,natype) 
Call: err zatvor 
Called from: vstup 
Purpose: Reads spec file 

function isprop(ii,jj ,ip lz,ip lk,ip2z,ip~k,lngip) 
Call: - 
Called from: genmps genprp solut 
Purpose: If flow is of proportional type returns 1, otherwise 0 
Parameters: ii,jj - absolute indexes for flow 

ISRESP 



subroutine isresp(ii,jj,irest,jrest,nrest,vrest,lngres,ifll,ifl2,value) 
Call: - 
Called from: genprp 
Purpose: If flow is in list of restricted & it is proport., returns i f l l=l  

and ifl2 & value according to parameters in list of restricted variables 
for proportionality for types 1,2 or 3 it returns also index 

Parameters: ii,jj - absolute indexes for flow 
ifll - returns 1 if restricted, 0 otherwise 
ifl2 - returns type of restriction 
value - returns restricted value 

subroutine isrest(ii,jj,irest,jrest,nrest,vrest,l~, 
value,indl ,ind2 ,val,lngvar) 

Call: err 
Called from: genmps genprp 
Purpose: tests if flow is in list of restricted variables, output is same 

as for routine isresp 

subroutine maluj(odsi,indl ,ind2,res,lngvar,lngacc, solnam,sub,obj, 
epstol,group,lgr,lnggr, blinc 1, blinc2,lnginc) 

Call: err head vyber indabs 
Called from: outgrp 
Purpose: routine prints output graph file 
Method: a t  first prepares head, gets absolute indexes. 

For each accounts it takes all flows(subr, vyber). According to their 
values assign one character for each flow ( ,+,- ,e,o,.)  and prints one 
line. Because of the limitation of paper width the whole graph can be 
on one page (not divided into several pages) the maximum number of 
accounts is limited to 128. If there are more accounts, it is not possible 
to have a graph output. 

MERGE 

subroutine merge 
Call: otvor zatvor 
Called from: ries 
Pur-pose: Merges mpsfle with mpsprop producing thus mpsall as input 

file for MINOS 

subroutine otvor(idsi,menof) 
Call: err  
Called from: genmps genprp inpdat inpgrp inpinc inpinf inpipr 

inpnam inpres merge outacc outbal outcor outgrp 
outres ries zaptab 

Purpose: Opens file with identifier idsi and name menof. This routine 
is empty for 3IBM version. 



subroutine outacc(sub,indl,ind2,val,res,lngvar,sincom,soucom,lngacc, 
infacc,infall,accnam,group,lgr,lnggr, epstol,solnam,grpnam) 

Call: otvor head outsum zatvor 
Called from: vystup 
Purpose: writes ouput account file 

OUTBAL 

subroutine outbal(sub,indl ,indZ,val,lngvar, sincom, soucom,lngacc, 
solnam,accnam,group,lgr,lnggr) 

Call: otvor sums outtab zatvor 
Called from: vystup 
Purpose: writes output balance file 

OUTCOR 

subroutine outcor(sub,indl ,indZ,val,res ,lngvar,sincom, soucom,lngacc, 
solnam,accnam,group,lgr,lnggr) 

Call: otvor sums outtab zatvor 
Called from: vystup 
Purpose: writes output correction table 

OUTGRP 

subroutine outgrp(sub,indl ,indZ,val,res,lngvar,irest, jrest,nrest., 
vrest,lngres,solnam,lngacc,obj,epstol,group,lgr, 
lnggr ,blinc 1, blinc2,lnginc) 

Call: otvor pripr maluj zatvor 
Called from: vystup 
Purpose: writes output graph fYe 

OUTRES 

subroutine outres(sub,indl,ind2,res,lngvar,sincom,soucom,lngacc, 
solnam,accnam,group,lgr,lnggr) 

Call: otvor sums outtab zatvor 
Called from: vystup 
Purpose: writes output results file 



subroutine outsum(ins,odsi,inl,in2,var,lngvar,sincom, soucom,lngacc, 
accnam,group,lgr,lnggr,epstol,grpnam) 

Call: sums 
Called from: outacc 
Purpose: routine prints sums or income/outcome accounts; it is called 

separately for input data, for results and corrections 
Parameters: ins - if it is 0 then produces sums of all accounts, otherwise 

there are accounts for row/column ins 
inl,in2,var - indexes and values for input, correction or 

results data 

subroutine outtab(odsi,inl,in2,var,lngvar,group,lgr,lnggr,sub, 
accnam,lngacc,solnam,sincom,soucom) 

Call: head indexy vyber presn tlacri 
Called from: outbal outcor outres 
Purpose: prints output table 
Method: Array var contains values to print, which may be input data, 

corrections or results (it depends from what subroutine it 
is called). A first routine prints heading. It must get absolute and 
relative addresses for each output account and separators after flows 
(call routine indexy).Then sequentially 13 output accounts are printed 
on one page. For each row it takes flows (call vyber), prepares values 
in maximum possible accuracy (call presun) & prints one row (call tlacri). 

PPROP 

subroutine pprop(indl,ind2,val,lngvar,soucom,lngacc,alfa,beta,gama,sa, 
sk,sl,cla,c2a,pla,zzz,x,y,group,lgr,lnggr,iplz,iplk, 
ip2z,ip2k,lngip) 

Call: err  
Called from: ries 
Purpose: prepares necessary arrays & variables if proportionality was chosen 

for later usage 

PRESN 

subroutine presn(prvky,prem,kon) 
Call: - 
Called from: outtab 
Purpose: prepares data from real*8 mode to formated mode In maximum 

possible accuracy 
Parameters: prvky - max 13 values of flows (real*€%) 

prem - array (2,13) of 4 characters (implemented as integer*4) 
where values in formated mode will be 

kon - number of arrays prvky (<=13) 
Method: This routine is strongly dependent on FORTRAN dialect. The best way 

to transfer data from real*8 form to formated form is with 
a decode statement, which 1s not available for IBM FORTRAN. For IBM it is 
done wlth the help of f le  8 (Data are written to file and read as character 



PRIPR 

subroutine pripr(indl,ind2,val,res,lngvar,irest,jrest,nrest,vrest, 
lngres,obj,epstol) 

Call: err 
Called from: outgrp 
Purpose: prepares array res for graph output in such a way that it stores 

numbers depending on whether the flow exists, if the change was to the 
upper or lower bound, if it was fixed etc. 

RIES 

subroutine ries(indl,ind2,val,res,lngvar,irest,jrest,nrest,vrest,lngres, 
istate,obj,sincom,soucom,lngacc ,ipflag,iplz,iplk,ip2z, 
ip2k,lngip,group,lgr,lnggr) 

Call: sums genmps pprop genprp merge otvor go zatvor 
solut err cpf 

Called from: balprp 
Purpose: controls solution with MINOS algorithm 
Method: at first it prepares file mpsfYe.lf proportionality was chosen 

it prepares file mpsprop. Then these two files merge to produce thus 
mpsall, which is input mps file for MINOS. It copies mps6le to 
mpsall if no proportionality. Then MINOS is called and after solution 
gets results (call solut). 

subroutine solut(zz,indl,ind2,res,val,lngvar,ipflag,alfa,beta,gama,sa, 
sk,sl,iplz,iplk,ip2z,ip2k,lngip,cla,c2a,pla) 

Call: isprop 
Called from: ries 
Purpose: gets results from working array z ( )  

subroutine sums(ins,inl,in2,var,lngvar,sincom,soucom,lngacc,sinp,sout) 
Call: - 
Called from: outbal outcor outres outsum ries 
Purpose: returns accounts or sum of accounts 
Parameters: ins - 0 for sum of accounts, integer number for corresp. account 

sinp - sum of the whole input account 
sout - sum of the whole output account 



subroutine tlacri(odsi,i,grp,irl,prem,oddel,kon) 
Call: - 
Called from: outtab 
Purpose: prints one line of output data, correction or results tables 
Parameters: i - row number = absolute account number 

grp - relative account name 
irl - relative account number 
prem - values of flows in character mode 
oddel - separators after each flow (blank of I after group) 
kon - number of columns 

subroutine vstup(subory,solnam,iflg,group,lgr,blincl,blinc2,accnam, 
indl,ind2,val,irest,jrest,nrest,vrest,infacc,infall, 
mxvar, mxlng, mxinc,mxacc,mxres,lngvar,lnggr ,lnginc, 
lngacc,lngres,eps,seps,epstol,iplz,iplk,ip2z,ip2k, 
mxip,lngip,grpnam, minkim, inclpr) 

Call: inpspc inpgrp err inpinc inpdat inpnam inpres inpinf 
inp ip r 

Called from: balprp balnew 
Purpose: calls sequentially all input routines (if necessary) to read input 

data 

VYBER 

subroutine vyber(inl,inZ,var,lngvar,il ,ia2z,iaZk,prvky) 
Call: - 
Called from: maluj outtab 
Purpose: searches in arrays inl,inZ,var for flows between interval 
ia2z ia2k for input account i l  

Parameters: i l  - absolute input account number 
ia2z - absolute output account starting interval 
ia2k - absolute output account ending interval 
prvky - values moved from array var 

subroutine vystup(ind1 ,ind2,val,res,lngvar,group,lgr,lnggr ,blinc 1, 
blinc2,1nginc,accnam,sincom, soucom,lngacc,infacc, 
infall,irest,jrest,nrest,vrest,lngres,subory,solnam, 
iflg,epstol,obj,grpnam) 

Call: outbal outcor outres outacc zaptab outgrp 
Called from: balprp balnew 
Purpose: Calls main output subroutines for preparing output files 

subroutine whatva(ii,jj,indl ,ind2,val,lngvar,alfa,beta,gama,oldval,value) 
Call: - 
Called from: genprp 
Purpose: returns value of restricted variables in tables AA, AK, AL 



subroutine zaptab(sub,indl,ind2,res,lngvar,group,lgr,lngg) 
Call: otvor indabs zatvor 
Called from: vystup 
Purpose: writes data (results flows) to output database file 

subroutine zatvor(idsi) 
Call: 
Called from: genmps genprp inpdat inpgrp inpinc inpinf inpipr 

inpnam inpres inpspc merge outacc outbal outcor 
outgrp outres ries zaptab 

Purpose: closes file with identifier idsi - empty for IBM version 

program balnew 
Call: vstup comput vystup 
Called from: - 
Purpose: main program for network version, it calls input module, then 

subroutines for solving problem with network algorithm and then output module 

COMPUT 

subroutine comput(cut,head,headr,stk,dfr,dfO,df,a,arc,list,fl,ind1, 
ind2,val,res,lngvar,irest,jrest,nrest,vrest,lngres, 
num,cc,y,eps,seps,nmax,mmax,mmax2,mmax4) 

Call: err flow 
Called from: balnew 
Purpose: controls solution with network a1gorith.m - checks balance, balances 

input data without or with restrictions 

FLOW 

subroutine flow(n,e,edge,fl,a,df,y,cc,dfO,cut,head,list,dfr,stk,headr, 
nmax,mmax,mmax2,mmax4,eps ,seps) 

Call: maxfld 
Called from: comput 
Purpose: finds minimax flow 
Parameters & method: see comments in program and another part of this manual 

subroutine maxfld(n,e ,edge ,fl,df,cut,flow,r,code,head,list,dfr,stk, 
headr,nmax,mmax,mmax2,mm.ax4,eps) 

Call: - 
Called from: flow 
Purpose: constructs maximal flow in directed network 
Parameters & method: see comments in program and another part of this manual 



Remarks concerning PINOS 
Changes into standard version of KINOS 3.4 

1. instead of #implicit realeB(c-g,o-z)# use #implicit reale8(a-g,o-z)# in all 
MINOS subroutines. 

2. in subroutine initlz set #nwordr= l# 

3. change #abs# to #dabs# in routines: crash, factor, forms, insert. iavert, 
loadn, mps. rgitn, setx. solprt 

4, in subroutine unpack set #realeB a# 

5.  in subroutine mpsin change parameters ne,m,krhs to ne2,mZ,krhs2 before 
#call mps(3, ...# instead of last 3 lines insert lines: 

ne2 = 2 * ne 
m m 2 = 2 * m  
krhs2 = 2 * krhs 
call move (...,O,ne,neZ) 
call move (...,krhs2,n,mm2) 
call move (. ..,krhs2,n,mmZ) 

6. in subroutine go description is #subroutine go(z,nwcore,lpi)# 

7 .  in subroutine go save ierr parameter: 
before label 100 insert line : icnt=O 
after label 100 add line : icnt=icnt+ 1 
after call minos add line : if(icnt.eq. 1) iersol=ierr 
after label 900 add line : ierr=iersol 

8. remove tabulator from all programs 
9. remove commands concerning measuring of time consumed by MINOS 



b3 = + 

F i g u r e  1 .  

F i g u r e  2 .  



I n i t i a l  bas i s  

Y = l  

Optimal bas i s  

Y  = 0 . 3 3  

X ( 5 j  = 6 . 6  = Y o A ( 5 )  

Figure 3 .  


