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PREFACE 

Much recent work in optimization theory has been con- 
cerned with the problems caused by nondifferentiability. 
Some of these problems have now been at least partially 
overcome by the definition of a new class of nondifferen- 
tiable functions called quasidifferentiable functions, and 
the extension of classical differential calculus to deal 
wit11 this class of functions. This has led to increased 
theoretical research in the properties of quasidifferen- 
tiable functions and their behavior under different con- 
di tions . 

In this paper, the problem of the directional differen- 
tiability of a maximum function over a continual set of 
quasidifferentiable functions is discussed. It is shown 
that, in general, the operation of taking the "continual" 
maximum (or minimum) leads to a function which is itself 
not necessarily quasidifferentiable. 

Andrze j Wierzbicki 
Chairman 
System & Decision Sciences 



DIRECTIONAL DIFFERENTIABILITY 
OF A CONTINUAL MAXIMUM FUNCTION 
OF QUASIDIFFERENTIABLE FUNCTIONS 

V. F . Demyanov 
I.S. Zabrodin 

1. INTRODUCTION 

Optimization problems involving nondifferentiable functions 

are reccgnized to be of great theoretical and practical sig- 

nificance. There are many ways of approaching the problems 

caused by nondifferentiabi.lity, Some of which are now quite well 

developed. while others still require much further work. A 

comprehensive bibliography of publications concerned with non- 

differentiable optimization has recently been compiled [1]-- 

major contributors in this field include J.P. Aubin, F.H. Clarke, 

Yu.M. Ermoliev, J.B. Hiriart-Urruty, A.Ya. Kruger, S.S. Kutateladze, 

C. ~emargchal, B. S . Morduchovich, E .A. Nurminski, B. N. P~her~ichniy, 

R.T. Rockafellar, and J. Warga. 

The notion of subgradient has been generalized to nonconvex 

functions in a number of different ways. One of these involves 

the definition of a new class of nondifferentiable functions 

(quasidifferentiable functions) which has been shown to represent 

a linear space closed with respect to all algebraic operations 

as well as to the taking of pointwise maximum and minimum [ 2 , 3  ] . 
This has led to the development of quasidifferential calculus-- 

a generalization of classical differential calculus--which may 

be used to solve many new optimization problems involving non- 

differentiability [ 4 1 . 



This paper dea ls  w i t h  the  problem of the d i r e c t i o n a l  d i f -  

f e r e n t i a b i l i t y  of a maximum funct ion over a cont inua l  set  of 

quas id i f f e ren t i ab le  funct ions.  I t  w i l l  be shown t h a t  i n  general  

the operat ion of tak ing the  "cont inual"  maximum (minimum) leads 

t o  a funct ion which is i t s e l f  no t  necessar i l y  quas id i f f e ren t i ab le .  

2.  AUXILIARY RESULTS 

L e t  us consider  a mapping G : En - 2 Em , where 2 Em 

denotes the  set of a l l  subsets  of E, . Fix x E En and 
0 

9 E En , Ogm=l. Choose y E G (x  ) and int roduce the  set 
0 1 

W e  s h a l l  denote the  c losure  of y (y)  by F (y )  , i. e . ,  

The set F (y )  is c a l l e d  the  s e t  of f i r s t - o r d e r  f e a s i b l e  

d i rec t i ons  a t  the po in t  y  E G(x ) i n  the  d i rec t i on  g . 
0 

Remark 1. I n  the case where G does no t  depend on x , the 

s e t  F (y )  = F (x , g , y )  does not  depend on x and g , and is  
0 0 

a cone ca l l ed  the cone of f eas ib le  d i rec t i ons  a t  y  . 
A mapping G is sa id  t o  al low f i r s t - o r d e r  approximation 

a t  a po in t  x  i n  the d i r e c t i o n  g E En , YgI-1 , i f ,  f o r  an 
0 

a r b i t r a r y  convergent sequence {yk} such t h a t  

t he  fol lowing representat ion holds : 

where vk E F(x  ,g ,y )  I akVk - 0 I !? 5 ( x  ) 
0 0 

In what fol lows it is assumed t h a t  the mapping G is 

continuous ( i n  the Hausdorff metr ic)  a t  a po in t  x and 
0 



allows f i r s t -o rde r  approximation a t  x  i n  any d i rec t i on  
0 

g E E n  , Ilgll = 1 . 
I t  is  a l s o  assumed t h a t  f o r  every 

the set G(x) is  closed and s e t s  G(x) a r e  j o in t l y  bounded 

on S ( X  ) , i .e. , there  e x i s t s  an open bounded set B C Em 
0 

such t h a t  

L e t  us consider the  funct ion 

f ( x )  = max $ ( x , y )  
YfG (x)  

where funct ion @ ( z )  = 4 (x ,y)  is  continuous i n  z = [ x,y] 

on S 6 ( x 0 )  x B and d i f f e r e n t i a b l e  on Z i n  any d i rec t i on  
0 

rl = [ g , q ]  E En+, , i . e . ,  t he re  e x i s t s  a  f i n i t e  l i m i t  

Here 

Suppose t h a t  the  fol lowing condit ions hold: 

C.-t;.dition 1. I f  qk - q then 



- 
Condit ion 2.  L e t  yk E R ( x  + akg) , yk - y s i nce  

0 

G al lows f i r s t - o r d e r  approximation a t  x .  , then 
0 

I t  is assumed t h a t  the q k l s  are bounded. 

Condit ion 3. Function 4 i s  L ipscn i t z ian  i n  some neigh- 

borhood of t he  set Z . 
0 

Then the fo l lowing r e s u l t  holds. 

Theorem I .  The function f  is differentiable at the point 

x in the direction g and 
0 

a f ( x  a@(x , Y )  
O = sup SUP 0 

ag ~ E R ( X )  O q f r ( y )  a[g,ql  

Proof. L e t  us denote by A the  r ight-hand s i d e  of (1). Fix 

y E R ( x )  and q E  y ( y )  . Then y + a q E G ( x  + ag) f o r  
0 0 

s u f f i c i e n t l y  smal l  a > 0 and 

a o  (X  , Y )  
0 f ( X  + ag) a @ (x +ag ,y+aq) = f (x + a 

0 0 0 

Hence 

1 a o  (X , y )  
l i m  h ( a )  l i m  - - - [ f ( x  + ag) - f ( x  1 1  0 

a-tO a+O a o o a t  MI 

Since y E R ( x  ) and q E y (y)  a r e  a r b i t r a r y  then 
0 

ao cx0,y) - liln 1 ( a )  2 sup 
a-+O SUP 

;.fRix ) qEy (y )  a[q,ql  
0 

Let qk - q , qk E y (y )  . Then q E r ( y )  . I t  fo l lows 

from Condit ion 1 t h a t  



But 

a4(x , Y )  a4(x , Y )  - < sup 0 

a[ gt4*1 4 E y  ( Y )  a [ g t s  I 

S ince  r (y )  = c l  Y ( y )  , then from ( 3 )  

a @ ( x  0 , y )  a $ ( x  0 t y )  a o  (xo / y )  
SUP 4 sup sup 

* ( Y )  a[g,qI  W ( Y )  a ~ g ~ q l  GY ( Y )  a [  g,ql 

From 

aq (x  , Y )  a w  , Y )  
suy: A = sup 0 

+ r ( y )  a [g l q i  +Y ( Y Y  a[g,q l  

and f  011 ows that 

NOW l e t  us  choose sequences {yk} and {ak} such t h a t  

The cond i t i ons  imposed on t h e  mapping G and t h e  con- 

t i n u i t y  of t h e  f unc t i on  ensure  tha t  the f unc t i on  f is 

cont inuous a t  x o  xence, from the  e q u a l i t y  f ( x  +'ikg) = o ( x  tCl, g , pki , 
0 0 - - 

one can conclude t h a t  f ( x  ) = ~ ( x  , y )  , e  y E R(x ) . 
0 0 0 



Since the mapping G allows first-order approximation - 
at x , then yk = y + akqk + o (ak) , where. qk 

0 
E r(?) , 

akqk ---40 . From Conditions 2 and 3 the qk' s are bounded and 1.;: 

function is Lipschitzian around Z . Without loss of 
0 

generality one can assume that qk - q . It is clear that 

q E r ( y )  . Hence 

where 

Since @ is a Lipschitzian function, then 

It follows from (6)-(8) that 

.front wnicn it is clear that 

a$(x ,Y) 
T r n  h(a) SUP SUP o = A .  

Comparison of ( 5 )  and (9) now shows that lim h(a) exist- 
a+c! 

ana is equal to A , thus completing the proof. 

Remark 2. Equation (1) has been proved under some different 

assumptions elsewhere [ 5 1 (see also [ 6 1 , $ 10 ) . The case where 

4 is differentiable was studied by Hogan [ 7 ] .  



3. QUASIDIFFERENTIMLE CASE 

L e t  us consider once again the funct ion 

f  (x = rnax Q ( x , y )  
a yEG ( X I  

where mapping G s a t i s f i e s  the condit ions spec i f ied  e a r l i e r  and 

funct ion Q ( 2 )  = Q (x,  y )  is continuous i n  z on S (x B 
g 0 

and quas id i f fe ren t iab le  on 2. , i . e . ,  f o r a n y p a i n t  z = [ x  
0 0 o f Y o l  E 0 - 

there  e x i s t  convex compacts - 20 (2 ) C En+, 
a and a + ( ~  a c E ~ + ~  

such t h a t  

+ n in  [ (wltg) + (w2fg) I 
[ W ~ ' W ~ I ~ ~ ~ ( ~  0 ) 

I t  is a lso  assumed t h a t  Condit ions 2 and 3 are  s a t i s f i e d .  

(Condition 1 fol lows immediately from ( l l ) . )  Thus, a l l  the 

condit ions of Theorem 1 a re  f u l f i l l e d  and we a r r i ve  a t  

Theorem 2. The function f  defined b y  ( 1 0 1  is directionally 

dtjfsrentiablz and, moreover, 

a f ( ~  1 
A = sup SUP \ max [ (v l Ig)  + ( v2 ,q )  I 

ag Y-(x o ) W(Y)  1 [v l fv21e2Q(x - , y )  
0 

+ min [ (wS&) + (w2tq) 1 / . ( 1 2 )  I 
[ w1,w21 ea4 (x , y )  

0 

Remark 3. Since y E R(x , y )  , the following re la t i on  holds: 
0 

SUP \ max (v2 'q)  + nin 
I 

(w2'q) j  = 0 
+ r ( y )  1 ~ ~ € 3 0  ( X  , y )  

- 

- Y  0 w2ES$y (x 0 I Y )  



- 
Here 39 (x ,y) and d $  (xo,y) are the projections of sets 

- Y  0 - Y 
ap (xo ,y) and a$ (xO ,y), respectively, onto Em . - 

Remark  4 .  Pshenichniy 18 1 considered the case where G (x) 

does not depend on x and F (x) = 4 (x,y) is a directionally 
Y 

differentiable function for every fixed y , i.e., there exists 

a9 (x,Y) 1 
= lim - [ $(x+ag,y) - $ (x,y)l 

ag a 4 0  
a 

Then 

Under an additional assumption about the behavior of o(a,y) 

in (13) , it has been proved that 

af (XI a4 (x,Y) 
= max 

ag yER (x) ag 

It is clear that equation (14) differs from equation (12). 

Example  I .  Let x E E l  , y E E 1  , G ( x )  G = [-2,2] , 
4(x,y) = x - 21y - xl , and 

f(x) = max (x - 2 I y - X I )  - 
yEl -2,21 

It is clear that 

Choose x E (-2,2) and verify equation (14) . We shall now 

compute the right-hand side of (14). Since 

4(x,y) = x - 2 max {y - x , -y + x) , then for y E R(x) = {XI 
it follows [ 9 I that 

a$ (x,Y) 
= g - 2 max E-g,g) . 

a4 



Hence f o r  gl = +l 

a +  ( x ,Y )  
max = 1 - 2 2 - 1 ,  

F R  (x)  

and f o r  g2 = -1 

But from ( 1 6 )  i t is c l e a r  t h a t  

Thus equat ion ( 1 4 )  does not  hold f o r  any d i r e c t i o n  g ( i n  El 

t he re  a r e  only two d i r e c t i o n s  g such t h a t  llgll = 1 : g = +1 

and g = -1). 

sow l e t  us v e r i f y  equat ion ( 1 2 ) .  Denote by D the t i g h t -  

hand s i d e  of (12) . The funct ion  $ ( x , y )  is q u a s i d i f f e r e n t i a b l e .  

From q u a s i d i f f e r e n t i a l  ca lcu lus  [2 -41  it fo l lows t h a t  i f  y  = x 
thenonecanchoose a$(x ,y )  = { ( 1 , O )  , 5$ (x , y )  = co { ( - 2 ~ 2 )  I ( 2 1 - 2 )  1 - - 
For the func t ion  f  descr ibed by (15) w e  have 

Computing D : 

I 
D = sup 1 (1.g)  + (0 .q )  + inin [(wl.g) + (w2.q)1 j 

-1 ["l' w 2 lEcoI(-2,2) , ( 2 , 2 )  I 

= g + sup min [ ( ~ ~ - 9 )  + (w, 41. ( 1 8 )  
$El [ w1 ,",I s[ ( -2 ,2)  , ( 2  , I - 

I t  is c l e a r  from Figure 1 t h a t  f o r  any g t he  second term on 

the  r ight-hand s i d e  of (18) is equal t o  zero,  i . e . ,  D = g . 
(The supremum i n  ( 1 8 )  is a t t a i n e d  a t  q = g . )  



Figure  1. 

Thus, from (17) , equat ion  (12) is c o r r e c t  ir, t h i s  case .  

Remark 5 .  When so lv ing  p r a c t i c a l  problems i n  which it is  

requ i red  t o  minimize a  max func t ion  over a  con t inua l  s e t  of 

po in t s ,  t h i s  maximum func t ion  is o f t e n  d i s c r e t i z e d  ( t h e  con- 

t i n u a l  s e t  rep laced by a  g r i d  of p o i n t s ) .  I n  many cases  t h i s  

opera t ion  is a l e g i t i m a t e  one [ l o ] ,  bu t  w e  s h a l l  show t h a t  i n  

the case  where is a q u a s i d i f f e r e n t i a b l e  func t ion  t h i s  

replacement may be dangerous. 

L e t  f  aga in  be descr ibed by (15) . Define f N  a s  

where aN = {x1 I . =  + I  I Xk E [ -2,21 . 



Th is  func t i on  has  N l o c a l  minima (see F igu re  2 1 ,  a l though 

t h e  o r i g i n a l  f  = x  has  no l o c a l  minimum which is no t  a l s o  

g l o b a l  on [ - 2 , 2 ]  . This  demonstrates t h a t  t h e  d i s c r e t i z a t i o n  

of t h e  max-type f unc t i on  must be c a r r i e d  o u t  very  c a u t i o u s l y .  

F igu re  2 

Ezample 2 .  This  example i l l u s t r a t e s  t h a t  Condi t ion 2 i s  

e s s e n t i a l  t o  ou r  argument. 

9 ( x ,Y)  = x  - 2 n i n  i / ( x -  t 3 1 2  + (y - t )  2 

tEE - 2 ,21  

f ( x )  = max @ ( x , Y )  
yEI - 2 , 2 1  



I t  i s  c l e a r  t h a t  f o r  x  E ( - 2 , 2 )  , 

I f  y  = \3J;- , then t he  minimum i n  ( 1 9 )  i s  achieved a t  t = x . 
Take x = 0 . Then R ( 0 )  = {O} , I'(y) = El . Construct  a  

0 

q u a s i d i f f e r e n t i a l  of t h e  func t ion  $ a t  t h e  po in t  ( 0 , O )  . 
By t h e  r u l e s  of q u a s i d i f f e r e n t i a l  ca l cu lus  one can choose 

L e t  us denote by D t h e  r ight-hand s i d e  of equat ion 

( 1 2 )  and eva lua te  it. 

D = 3 ( g . )  = s u p  min (wl.g + W2.q) I 
+El Lwltw21~co [ ( - 2 t O ) t  (2 ,O) I  

I 

If g1 = 1 then D(gl) = -1 if g2 = -1 then D ( g2 )  = - 3  . 

But it is  c l e a r  from ( 2 0 )  t h a t  a f  (O)/ag = g . Thus equat ion 

(12) does no t  hold,  and t h e  reason i s  t h a t  Condit ion 2 i s  not  

s a t i s f i e d .  Indeed, tak ing  an a r b i t r a r y  sequence xk = x + akg 
0 

where ak- + O  , pu t t i ng ,  f o r  example, g = 1 , x = 0 , w e  
0 

ob ta in  yk = + a v k k t Y k  E R(xk) . 
- 

For y  = 0 t h i s  l eads  t o  R(xk) = { V ak}  . But 
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