View metadata, citation and similar papers at core.ac.uk brought to you by Ji CORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ s International Institute for
- Applied Systems Analysis

[1AS A www.iiasa.ac.at

A Dynamic Interactive Decision
Analysis and Support System
(DIDASS). Users Guide (May 1983)

Grauer, M.

IIASA Working Paper

WP-83-060

June 1983

https://core.ac.uk/display/33893723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Grauer, M. (1983) A Dynamic Interactive Decision Analysis and Support System (DIDASS). Users Guide (May 1983).
ITASA Working Paper. WP-83-060 Copyright © 1983 by the author(s). http://pure.iiasa.ac.at/2252/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at

mailto:repository@iiasa.ac.at

WORKING PAPER

A DYNAMIC INTERACTIVE DECISION ANALYSIS
AND SUPPORT SYSTEM (DIDASS)

USER'S GUIDE (MAY 1983)

Manfred Grauer

June 1983
WP-83-60

TEIIASA

International Institute
for Applied Systems Analysis

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

A DYNAMIC INTERACTIVE DECISION ANALYSIS
AND SUPPORT SYSTEM (DIDASS)

USER'S GUIDE (MAY 1983)

Manfred Grauer

June 1983
WP-83-60

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member

Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

A DYNAMIC INTERACTIVE
DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS)

USER’'S GUIDE (MAY 1983)

Manfred Grouer

System and Decision Sciences Program
International Institute for Applied Systems Analysis (ITASA)
Laxenburg, Austria

PREFACE

The Interactive Decision Analysis group at 1IASA has recently
developed an interactive decision support system called DIDASS
(dynamic interactive decision analysis and support system). The
major advantage of this system over most other computerized
approaches to decision problems is that it is interactive, that is, it
involves the decision maker in the decision process. It is an
attempt to combine the analytical power of the "hard” computer
meodel with the qualitative assesments of the decision maker.

DIDASS is an interactive multicriteria programming package
based on the reference (aspiration) approach to multicriteria
analysis, and is capable of dealing with both linear and nenlinear
problems. It has been written in FORTRAN 77, avoiding the use of
any operating-system-dependent statements or commands, which
means that it can be transfered to almost any computer without
difficulty. This guide has been prepared for users both at 1IASA and
at the many collaborating institutions where DIDASS is now run-
ning, and is based on the version of DIDASS available on tape from
1TASA.

If you have any comments or suggestions concerning the sys-
tem or this guide, we would be glad to hear from you - DIDASS is
intended to be useful, useable, and used!

ANDRZEJ WIERZBIEKI
Chairman
Systems and Decision Sciences

1. INTRODUCTION

DIDASS is an interactive multicriteria programming package designed for
decision support. It is able to deal with both linear and nonlinear multicriteria
programming problems, and is based on the reference point approach to mul-

ticriteria analysis.

The basic idea of the reference point method is to rank multidimensional
decision alternatives g, defined as points in the FP (p=2), relative to a reference

point § which reflects the preferences of the user.

The ranking of the decision alternatives is based on a partial ordering of the

RF:

g'<q% q'<qf; i=12.p gL RP (1)
The decision problem is to determine an n-vector z of decision variables
satisfying all given constraints while taking into account the p-vector of objec-

tives. We will assume that each component of g should be as large as possible.

A reference point or reference objective is a suggestion ¢ supplied by the
user which reflects in some sense the "desired level" of the objective. An
achieverment scalarizing function s(gq—g) defined over the set of objective vec-
tors g is then associated with each reference point g [1]. If we regard the func-
tion s(g—7) as the "distance” between the points g and g, then, intuitively, the
problem of minimizing this distance may be interpreted as the problem of
finding from within the Pareto set the point § "nearest” to the reference point
g. (However, the function s is not necessarily related to the usual notion of dis-
tance.) With this interpretation in mind, reference point optimization may be
viewed as a way of guiding a sequence 6"’; of Pareto points generated from a
sequence | cj"{ of reference objectives. These sequences are generated through

an interactive procedure and should result in a set of attainable efficient points

§ ak} of interest to the user. If the sequence { §*] converges, the limit may be

-4 -

seen as the solution to the decision problem.

2. PROBLEM FORMULATION

Let us assume that the decision problem can be clarified by analyzing a

general constrained multicriteria problem in the following standard form:

[

Falzn) + clzy, + dfz, =g,

folzn) + clzny + dfiz, = gz
max (?)

R T T
fp(xnl) + CpZni + dpzl = 9p

subject to:
g(zm) + A1z, < b, ’ (3)
ATy + Asz; < b (4—)
[xnl
I < [21 < u (5)

T
where g(zy) = qu(xm),gg(zn;),,.,,gm (xn;)] is a vector of nonlinear constraints

and f,(Zy).f2(Zn). . .., fp(Zn) in (R) represents the nonlinear parts of the
performance criteria. The decision variables are divided into two subsets: a vec-
tor of “nonlinear” variables (z,,) and a vector of "linear" variables (z;). It is
clear that when vectors f and g are nonexistent, formulation (2)-(5) is identical
with the standard multicriteria linear programming problem. An overview of the
various ways in which the reference point approach can be used in the linear

case is given in [2], while the nonlinear case is described in [3].

The current computer implementation of the decision analysis and support
system DIDASS is based on a two-stage model of the decision-making process. In
the first stage - the exploratory stage - the user is informed about the range of
his alternatives, thus giving him an overview of the problem. In the second stage
- the search stage - the user works with the system in an interactive way to

analyze the efficient alternatives 'a"f generated by DIDASS in response to his

-5 -

reference objectives { §°} . The initial information for the exploratory stage is
provided by calculating the extreme points for each of the objectives in (R)
separately. A matrix Ds which yields information on the range of numerical
values of each objective is then constructed. We shall call this the decision sup-

port matriz.

gy g2 dp
2 gs - gf
De = . R B8
s g% g% 5 (8)
g% g8 - qp

Row i corresponds to the solution vector z; which maximizes objective g;. The
vector with elements gf = g;" i.e., the diagonal of Ds, represents the utopia
(ideal) point. This point is not normally attainable (if it were, it would be the
solution of the proposed decision problem), but it is presented to the user as an
upper guideline to the sequence } (j"} of reference objectives. Let us consider
.column i of the matrix Ds. The maximum value in the column is q;". Let qJ* be

the minimum value, where

min [qi } =qf

1<j<p

We shall call this the nadir value. The vector with elements g¢T.g%,....qp

represents the nadir point, and may be seen as a lower guideline to the values of

the user's objectives.

In the linear case we use the following scalarizing function s(w), where

minimization results in a linear programming formulation:

-6 -

s(w):—min[prniinwi;iwi]-sw (7)

i=1

Here w; = (g;—§;)/ 7. p is an arbitrary coefficient which is greater than or equal
to p, 7; is a scaling factor, and & = (&,,e5, .. ., z»:p) is a nonnegative vector of

parameters.

In the nonlinear version of the package the following achievement scalariz-
ing function is used:

s(w)=-—1—1n[%—

o (wy)p] (B)

i=1

where w;=v; {(iji—qi)/ (q,-—zj,-)]. g; is an upper limit to the sequence of reference

points, p=2 is again an arbitrary coefficient greater than or equal to p, and v;
acts here as a weighting factor. This achievement scalarizing function meets the

following requirements:

- It yields scaling factors which make additional scaling of objectives

unnecessary.
- It is a smoothly differentiable function that approximates the nonsmooth
function s = max wy.
1
- It is strongly order-preserving and weakly order-approximating.

The resulting singie-criterion programming problems are solved using the

solution package MINOS [4].

3. INFORMATION FOR IMPLEMENTATION

The current version of the DIDASS package has been designed specifically to
be portable, and it has therefore been written completely in FORTRAN 77, avoid-

ing the use of any operating-system-dependent statements or commands.

The DIDASS source code is normally supplied by IIASA on tape (9-track,

-7 -

unlabeled, ebcdic, upper case, BOO bpi, block size BOO characters, record length

BO characters) under the following names:

list_of_files

mtibn: Tape formmat: upper case ebedic '
mtibn Record length: 80. Block length: 800. Density: 800. bpi.

File:1 Records: 9 Blocks: 1 Filenare:constr_1.f
File:2 Records:5 Blocks: 1 Filenare:constr_nl . f
File:3 Records: 1407 Blocks: 141 Filenare:didass. f
File: 4 Records:R7 Blocks:3 Filenare:list_of_files
File:5 Records: 45 Blocks:5 Filenare:npdel .1
File:6 Records: 100 Blocks: 10 Filenare rrodel .nl
File:7 Records: 6765 Blocks: 677 Filenare:nonlp. f
File:8 Records: 9 Blocks:1 Filenare:object_1.f
File:9 Records: 103 Blocks: 11 Filenare:object_nl . {
File: 10 Records:4 Blocks: 1 Filepare:rfp.1
File:11 Records: 4 Blocks:1 -Filenare:rfp.nl
File:12 Records:R2 Blocks:3 Filenare:specs.]
File: 13 Records: 46 Blocks:5

Filenare:specs.nl

To prepare DIDASS to solve linear problems only the user must read all files
(including data and FORTRAN files) from the tape, compile, link and load the fol-

lowing FORTRAN files:
constr_l.f, object_1.f, didass.f, nonlp.f

To prepare DIDASS to solve mixed linear and nonlinear problems, or nonlinear
problems only, the user must read all the files (including data and FORTRAN
files, excluding the files constr_l.f and object_1.f), compile, link and load the fol-

lowing FORTRAN files:

constr_nl.f, object_nl.f, didass.f, nonlp.f.

To support the implementation of the system, data for a linear and a non-

linear example are also given on the tape.

4. SOLVING A LINEAR PROBLEM

The solution of a linear problem is demonstrated by example I (hypoth.1):

-B-

1.5z) + 8xp —x3 + 324+ Zs +Z7 = obj1
max 1.2z, + g + T3+ x4 + 2.75x5 + z5 = obj2
2.5z, +xgt 2z, % 1725 —zg —ZT7 = 0bj3

subject to:

+ T1 1+ 8T2 4 T3 4 T4 4 RT5 4 x4 4 *T7< 12,25
—RT) — xp + T4 + RZs + Ty <18.75
— I + z3 + Rxs — Rz, < 14.00

+ 2‘:2 + ZZS"I4 + xs _‘xs_ z,, S 165

z; =0, i=1,2,...,7

The MPS input file should be prepared in a certain way - the user must list
objectives of type e (equalities) as the first entries in the row definition section
in the same order as they appear in the reference point file (see later). The
input file must contain a section on bounds, even if this section is empty. The
MPS file {"model.l") and the specification file ("specs.l") for the above example

are given in Appendix 1.

The reference point file ("rfp.l1") has the format (RX,2A4,2X,8F12.5). The
first two characters are blanks, the next eight characters contain the name of
the objective, and there are then two more blanks. The first in F12.5 field gives
the value of the reference point. The next field contains the max-min indicator,
which is + for maximization, and - for minimization; the corresponding digits
can be used as scaling factors. The last contains the values of the control
coeflicients, p=p on the first line, and £ on the second line. The last line of the
file must contain four dots (....) as characters 5-8 in the A4 field. For example I

the reference point file would take the following form:

obj1 35.0 +1.0 3.00
obj2 150 +1.0 0.100e-08
obj3 250 +1.0

The files "constr_1.f" and “object_1.f" contain dummy subroutines which are

needed if the user intends to solve linear problems only. The steps taken in the

-g-

program for the linear case are explained in Figure 1.

start
linear case ({Ip) @ nonlinear case (nip)
model. | 3% Q;@ model. ni
DIDASS
specs. | specs. nl
rfp. ni
rip. | constr nl. f
object ni.f
decision utopia
support
matrix
v @
interactive editor
i n c rfp scalc | ccoef X .

fil—6 i
{output file)
run
MINOS
sol
(history file)
yes/no]
end

Figure 1 Structure of the DIDASS-system

-10 -

The interactive procedure begins with the program asking which type of
problem is to be considered (lp in this case). The program then enters the
exploratory stage and informs the user of the range of values possible for each
alternative. This leads into the search stage, which is split into two parts: editing

and problem solving. In the editing mode the following commands may be used:

| - list the names of the objectives and the components of the
reference points

n - neutral solution - zero is the reference point

i+ - positive infinite reference point (+10°)

i- - negative infinite reference point (—10°)

¢ - copy solution from previous session as reference point

The following commands are also available:

rfp - change to reference point definition status
scalc - change to scaling factor modification status

ccoef - change to control coeflicient definition status

In order to define a new value of p (or g), it is sufficient to type ccoef and
then rho (or eps) ; the program moves to the corresponding definition status,
the new value of the parameter may be typed in and the program returns to

waiting status.

. The reference point components may be redefined in rfp status. To do this,
it is necessary to type two lines - one containing the name of the objective, the
other the new value of the reference point component. Redefinition of scaling
factors is carried out in scaling factor modification status. Here again it is
necessary to type two lines - one containing the name of the objective, the other

the new value of the scaling factor. The only way to leave editing status is to

-11 -

type an asterisk (*).

In the next phase of the interactive process the program asks the user for
the names of the RHS and BOUNDS sections. (In our example these are "rhs" and
“bnd"”.) Using this option the user can change the set of constraints between ses-
sions, thus modifying the problem. The system then generates a new MPS file
and the single-criterion LP problem (7) is solved. Finally, the necessary informa-
tion from the LP output file is extracted and presented to the user in the same

form as the original problem.

The user then repeats the search stage until he obtains satisfactory results.

5. SOLVING A NONLINEAR PROBLEM

The solution of a nonlinear problem is demonstrated by example II (theo):

(2,-3° 4+ (z2-R)% 4 (z6—6)% . (z,—4)? = obj1
min { 0.5(zg—4)? + (zg—8)% + (zg—11)? = obj2
(z4~1)% T (z5-8)2 % (z ;-4 + (z)2—1)% + (z10—8)% = 0by3
subject to:
Rz ,+0.52p—xg+x,; =5
r1+2xp~Z7+x); =0
z3+0.5xg—zg—212 = 0
0.5zg+zg—xgt+zi2 =0
z,4+0.525+0.523—z,0 =0
RZ4+xs~Zg—x,; =0
3z4—x5+zp—ZT12=0
er +r+R2x; < B
Rrg+3z;2< 12
bz +3z5< 15
3z4+Rz5+3zg < 12

331+222 <13

and

z; =0, i=1,2,..,12

xlsz, x2$6. Isss, I4$2, x5$4, IBS4, IBSB, IIISB' Ilzsz

- 12 -

The corresponding MPS file ("model.nl"), including the linear part, is given

together with the specification file ("specs.nl”) in Appendix 2.

The subroutine constrn ("constr_nl.f”) (see Appendix 2) may be used to
compute the nonlinear constraint functions g(z) (here f(m)) and the
corresponding elements of the Jacobian matrix 8g /8z; (here g(m,n)). As exam-
ple 1I does not contain nonlinear constraints the subroutine is "empty" in this

case,

In subroutine objectf (“object_nl.f") the user has to insert the nonlinear
objective functions f;(z,) under the name obj(i) as indicated in Appendix 2.

The gradients are calculated automatically.

The reference point file ("rfp.nl") has the format (2X,2A4,2X,3F12.5). The
first two characters in each line contain blanks, the next eight characters the
name of the objective, and there are then two more blanks. The first F12.5 field
contains the value of the reference point, the second a variable that can be used
as a weighting coefficient and the third a control variable. In example II the
value of the control coefficient is p=24 . The last line must contain four dots (....)

as characters 5-8 in the 2A4 field.

ripl 25.0 1. 24.0
rfp2 50.0 1. 1.0
1.0

rip3 45. 1,

To start the interactive procedure in the nonlinear case, having prepared
the files, the user must first initialize DIDASS. The program steps correspond to
those already outlined for the linear case (see Section 4 and Figure 1). Appendix
3 contains examples of the interactive use of DIDASS in the linear and nonlinear

cases.

- 13 -
ADDITIONAL REMARKS

The (May 83) implementation of DIDASS described in this guide is still being
tested and improved. We would be glad to receive any suggestions or comments

you might have concerning the system.

ACKNOWLEDGMENT

DIDASS developed from work carried out by W. Orchard-Hays, M. Kallio, A.
Lewandowski and M. Grauer at IIASA. - The author would like to thank T. Nova-

chkova and Z. Fortuna for their help in structuring the system.

- 14: -
References

1. A. Wierzbicki, "A mathematical basis for satisficing decision making,"” pp.
485-485 in Organizations: Multiple Agents with Multiple Criteria, ed. J.N.

Morse,Springer-Verlag, Berlin, New York (1981).

2. A Lewandowski and M. Grauer, ‘'The reference point optimization approach

- methods of efficient implementation,” WP-82-26, IIASA (1982).

3. M. Grauer, ''Reference point optimization - the nonlinear case ,” pp. 126-135
in Essays and surveys on Multiple Criteria Decision Making, ed. P.

Hansen,Springer Verlag, New York (1983).

4, B.A. Murtagh and M.A. Saunders, ''Minos/Augmented,’’ Technical Report

SOL-80-14, Systems Optimization Laboratory, Stanford University (1980).

-15 -
APPENDIX 1

The MPS file ("model.]") for example I is;

nare hypoth. 1

rows

e objl

e obj2

e obj3

] constl

1 constl

] const3

] const4

colums
x1 obj1 1.5 obj3 .
x1 objR 1.2
x1 constl 1.0 constg
x1 const3 -1.0
X2 obj1 2.0 objR2
X2 constl 2.0 const?
X2 const4 1.0
x3 objl -1.0 obj2
x3 obj3 1.0 constl
x3 const3 1.0 const4
x4 objl 3.0 objR
x4 obj3 2.0 constl
x4 constg 1.0 const4
x5 obj1 1.0 objR
x5 obj3 1.7
x5 constl 2.0 const?
x5 const3 2.0 const4
x6 objR 1.0 obj3
x6 constl 1.0 const4
X7 obj1 1.0 obj3
X7 constl 2.0 const2
X7 const3 -2.0 const4

rhs
rhs constl 12.25
rhs const® 13.75
rhs const3 14.0
rhs const4 16.5

bounds

lo bnd x1 0.0

lo bnd x2 0.0

lo bnd x3 0.0

lo bnd x4 0.0

lo bnd X5 0.0

lo bnd x6 0.0

lo bnd X7 0.0

oo

voooooo

ocoocoooo

- 16 -

The specification file ("specs.l") for example I is:

begin hypoth.1

minimi ze

objective mocob j
rhs rhs
bounds bnd
rows 1400
colums 1500
elarents 11000
aijtol 0.000001
mps file 9
crash option 1
iterations 6000
log frequency 50
factorize frequency 100
partial price 1
solution yes

feasibility tol 1.0e-5

problan nurber 0
endrun

17 -
APPENDIX 2

The MPS file ("model.nl"), including the linear part, for example I is:

naTe theo
rows
e gll
e gl?
e gl3
e gl4
e glb
e gl6
e gl7
1 ugll
1 ugl?
I ugl3
1 ugl4
1 ugld
celuims
x1 gll 2.0 gl@ 1.0
x1 ugll 2.0 uglb 3.0
X2 gl 0.5 gl 2.0
X2 ugll 1.0 uglb 2.0
x3 gl3 1.0 gl4 0.5
x4 gl 1.0 gl 2.0
x4 gl7 3.0 ugl3 5.0
x4 ugl4 3.0
x5 glb 0.5 gl 1.0
x5 gl7 -1.0
x5 ugl3 3.0 ugl4 2.0
x6 gli -1.0 gl3 0.5
x6 gla 1.0 ugl?2 2.0
X7 gl2 -1.0
xB gl3 -1.0 glb 0.5
x8 gl -1.0 gl7 1.0
x8 ugl4 3.0
x9 gl4 -1.0
x10 gld -1.0
x11 gli 1.0 gld 1.0
x11 glé -1.0 ugll 2.0
x12 gl3 -1.0 gla 1.0
x12 gl7 -1.0 ugl? 3.0
rhs
rhs gll 5.0
rhs ugll 8.0
rhs ugl? 12.0
rhs ugl3 15.0
rhs ugl4 12.0
rhs ugld 13.0
bounds
up bnd x1 2.0
up bnd X2 6.0
up bnd x3 3.0
up bnd x4 2.0

up bnd x5

up bnd xB
up bnd xB
up bnd x11
up bnd x12

fx initial x1
fx initial X
fx initial x3
fx initial x4
fx initial x5
fx initial x6
fx initial X7
fx initial x8
fx initial x8
fx initial x10
fx initial x11
fx initial x1R
endata

PP NP, OO, O = OWW D D
OOU\@O*—‘OBN*P\?ODKDOOOOO

The specification file ("specs.nl") is:

begin theo
minimi ze
nonlinear constraints 0
nonlinear jacobian vars 12
nonlinear objectiv vars 12

objective = object

problan no. 1
bounds “bnd
rhs rhs
rows 20
colums 20
elarents 100
aijtol 0. 000001
nps file 9
crash option 1
iterations 1000
solution yes
feasibility tol 1.0e-5
lower bound 0.
carpletion full
jacobian dense
lagrangian yes
nmejor iterations 10
minor iterations 20

penalty parareter 0.1

- 19 -

dj tolerance 1.0e-6
row tolerance 1.0e-6
radius of conver 0.01
superbasics 12
hessian dirension 12
linesearch toler 0.1

print level (jfixi) 101

derivative level 2
difference interval 1.0e-08

call function routines when optinal

end

The subroutine constrn for example 1l is:

subroutine constrn(mpde m.n.njac.x, f,g,nstate, nprob)
inplicit real*8(a-h,o-2)

real*8 x(n),f(m),gmn)

return

end

The subroutine objectf for example II is:

subroutine objectf(mpde,n, x, f,g,nstate,nprob)
inplicit real*8(a-h,o-z)

real*8 x(n),g(n)

logical ityp

character*4objnam, ipoint
camrpn/tables/nc,objnan(2, 100),sig(100), ityp(100)
campn/err/ierr

camon/rfp/rip(100)

camron/gamma/gan{ 100) , obj (100) ,di f (100)
camron/gamal /gant (100), rfp1(100),sig1(100)
camon/gammaw/obju(10000) , objmin(100) , objmex(100) ,w(100)
data ipoint/'...."/

if (nstate .ne. 1) go to 741

c
c first entry
c
nc=0
c repeat
23041 continue
ne=nc+l

read(11,290)objnan(1,nc),rfp(nc),gan{nc),sig(nc)
write(6,290)objnam(1,nc), rfp(nc),gan(nc),sig(ne)
ityp(nc) = .false.
if(.not.(objnan(1l,nc).eq.ipoint)) goto 23044

R
R

- 20 -

goto 280

3044
3042

280
290

7

()

o000 0000

OO0 006

1
1

o000

Do ooo

41

701

720

00
03

101

8011

cont inue

goto 23041
nc=nc-1
fonmt (Rx,a4,6x,3f12.5)
continue

normmal entry

Insert the criteria functions as
FORTRAN-statarents.

This is the exarple 11 ("theo") with quadratic
criteria functions and linear constraints.

= WM —

e

1 n
(@)
@)
*
—
>
(@)
SN’
|
S
A
*
20
L
JaX
(0]
S
]
(@]
St
*
0
X
>
[<s]
S
P
-
S
*
*
(4]
~

if (nprob .ne. 1) go to 720

A quadratic scalarizing function is used to
calculate the decision support matrix.

f=0.0
do 751 k=1,nc
t=(gan(k) *(rfp(k)-obj (k)) /sig (k))*
(gam(k) *(rfp(k)-obj (k))/sig (k))+t
continue
go to 714
continue
if (nprob .ne. 2)go to 714
if (nstate .ne. 1)go to 103

The decision support matrix is stored for
future sessions.

formt (f12.5)

do 100 i=1,nc

read (7,295)objmin(i)
continue

continue

The autaratically scaled achievarent variables
are calculated.

if (nstate .ne. 1) goto B013

do 101 i=l,nc

if (rfp(i) .le. objmin(i)) goto BO11
obju(i)=.5*cbjmin(i)

continue

go to 8013

contirme

do B801% i=1,nc

o000

[¢)

BO1R

8013

102

714

BOZ
801
800

- 21 -

obju(i)=.5*rfp(i)
continue

The logaritimic scalarizing function
is used.

continue

rho=sig(1)

f=.0

s=.0

do 102 i=1,nc
w(i)=((obju(i)-obj(i))/(obju(i)-rfp(i)))*gan(i)
s=s+w(i)**rho :
continue

s=s/nc

f=+(dlog(s))/rho

continue

if (nstate .ne. 2) return

Final entry

do B0Z k=1,nc

write (10,801) obj (k)
continue

fommat (Rx,f12.5)
cont inue

return

end

22

APPENDIX 3

didass
Enter the problem type

linear(enter lp) or nonlinear(enter nlp)

lp

Each line of the matrix gives the

results of the selfish optimizations.

The diagonal represents the utopia point.

ob3j(1) obij(2) obj(3)

extreme obj(1) 36 .75000 12 .25000 24 .50000
extreme obj(2) 6.12500 16 .84300 10 .41200
extreme obj(3) 18.37500 14 .70000 30.62500

You can now:

list the names of the obj. and components of ref.pts.(enter 1),
ask for neutral solution(enter n),

ask for plus infinite reference point(enter i+),

ask for minus infinite reference point(enter i-),

copy solution from last session as ref.p.(enter c),
change the values of scal.coef.(enter scalc),

change the values of control coef.(enter ccoef),

change the values of ref. point components (enter rfp).
If you wish to make no more changes, type *

to exit from editing status

obj.name refpt.value scal.coef. contr.coef.

objl 20.0 4.00 3.00
obj2 30.0 1.000 0.100e-06
obj3 28.0 1.000

enter name of rhs set
rhs i
: 3 objectives
eps 0.100e-06

rho 3.00
enter name of bounds set
bnd

eps 0.100e-06

rho 3.00
objective utopia reference efficient dual scale
names poirit point point
obj(1) 36 .8 20.0 8.55 0. 4.00
obj(2) 16 .8 30.0 l6 .4 2,72 1.000
obj(3) 30.6 28.0 14 .4 0.288 1.000

Do you want to run the program once more with edited inpdt data(enter yes)
or terminate the session (enter no)?

no

-23-

didass

Enter the problem type
linear (enter lp) or nonlinear(enter nlp)

nlp

Each line of the matrix gives the

results of the selfish optimizations.

The diagonal represents the utopia point.

obj(1) obj(2) obj(3)

extreme obj(1) 24 .01900 89 .69800 92.13700
extreme obj(2) 38.56200 38.31200 108 .99000
extreme obj(3) 42 .50000 128.00301 48 .86200

You can now:

list the names of the obj. and components of ref.pts.(enter 1),
ask for neutral solution{enter n),

ask for plus infinite reference point(enter i+),

ask for minus infinite reference point(enter i-),

copy solution from last session as ref.p.(enter c),
change the values of scal.coef. (enter scalc),

change the values of control coef.(enter ccoef),

change the values of ref. point components (enter rfp).
If you wish to make no more changes, type *

to exit from editing status

1
obj.name refpt.value scal.coef. contr.coef.
objl 25.0 1.000 24.0
obj2 50.0 1.000 1.000
ob3j3 45 .0 1.000 1.000
*
-enter name of rhs set
rhs _
"enter name of bounds set
bnd
objective utopia reference efficient nadir
names point ‘point point point
obj(1) 24.0 25.0 31.6 42.5
obj(2) 38.3 50.0 63.7 128.
obj(3) 48 .9 45.0 59.5 109.

Do you want to run the program once more with edited input data(enter yes)
or terminate the session (enter no)?

no

