A Dynamic Interactive Decision Analysis and Support System (DIDASS). Users Guide (May 1983)

Grauer, M.
IIASA Working Paper
WP-83-060

June 1983

Grauer, M. (1983) A Dynamic Interactive Decision Analysis and Support System (DIDASS). Users Guide (May 1983).
IIASA Working Paper. WP-83-060 Copyright © 1983 by the author(s). http://pure.iiasa.ac.at/2252/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

WORKING PAPER

A DYNAMIC INTERACTIVE DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS)

USER'S GUIDE (MAY 1983)

Manfred Grauer

June 1983
WP-83-60

```
A DYNAMIC INTERACTIVE DECISION ANALYSIS
AND SUPPORT SYSTEM (DIDASS)
USER'S GUIDE (MAY 1983)
Manfred Grauer
June 1983
WP-83-60
```

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

A DYNAMIC INTERACTIVE

DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS)

USER'S GUIDE (MAY 1983)

Manfred Grauer

System and Decision Sciences Program
International Institute for Applied Systems Analysis (IIASA)
Laxenburg, Austria

PREFACE

The Interactive Decision Analysis group at IIASA has recently developed an interactive decision support system called DIDASS (dynamic interactive decision analysis and support system). The major advantage of this system over most other computerized approaches to decision problems is that it is interactive, that is, it involves the decision maker in the decision process. It is an attempt to combine the analytical power of the "hard" computer model with the qualitative assesments of the decision maker.

DIDASS is an interactive multicriteria programming package based on the reference (aspiration) approach to multicriteria analysis, and is capable of dealing with both linear and nonlinear problems. It has been written in FORTRAN 77, avoiding the use of any operating-system-dependent statements or commands, which means that it can be transfered to almost any computer without difficulty. This guide has been prepared for users both at IIASA and at the many collaborating institutions where DIDASS is now running, and is based on the version of DIDASS available on tape from IIASA.

If you have any comments or suggestions concerning the system or this guide, we would be glad to hear from you - DIDASS is intended to be useful, useable, and used!

ANDRZEJ FIERZBIEKI

Chairman
Systems and Decision Sciences

1. INTRODUCTION

DIDASS is an interactive multicriteria programming package designed for decision support. It is able to deal with both linear and nonlinear multicriteria programming problems, and is based on the reference point approach to multicriteria analysis.

The basic idea of the reference point method is to rank multidimensional decision alternatives q, defined as points in the $R^{p}(p \geq 2)$, relative to a reference point \bar{q} which reflects the preferences of the user.

The ranking of the decision alternatives is based or a partial ordering of the R^{p} :

$$
\begin{equation*}
q^{1} \leq q^{2} ; \quad q_{i}^{1} \leq q_{i}^{2} ; \quad i=1,2 \ldots p ; q^{1} ; q^{2} \in R^{p} \tag{1}
\end{equation*}
$$

The decision problem is to determine an n-vector x of decision variables satisfying all given constraints while taking into account the p-vector of objectives. We will assume that each component of q should be as large as possible.

A reference point or reference objective is a suggestion \bar{q} supplied by the user which reflects in some sense the "desired level" of the objective. An achievement scalarizing function $s(q-\bar{q})$ defined over the set of objective vectors q is then associated with each reference point \bar{q} [1]. If we regard the function $s(q-\bar{q})$ as the "distance" between the points q and \bar{q}, then, intuitively, the problem of minimizing this distance may be interpreted as the problem of finding from within the Pareto set the point \widehat{q} "nearest" to the reference point $\overline{\boldsymbol{q}}$. (However, the function s is not necessarily related to the usual notion of distance.) With this interpretation in mind, reference point optimization may be viewed as a way of guiding a sequence $\left\{\hat{q}^{k}\right\}$ of Pareto points generated from a sequence $\left\{\bar{q}^{k}\right\}$ of reference objectives. These sequences are generated through an interactive procedure and should result in a set of attainable efficient points $\left\{\hat{q}^{k}\right\}$ of interest to the user. If the sequence $\left\{\hat{q}^{k}\right\}$ converges, the limit may be
seen as the solution to the decision problem.

2. PROBLEM FORMULATION

Let us assume that the decision problem can be clarified by analyzing a general constrained multicriteria problem in the following standard form:

$$
\max _{x_{n l}, x_{l}}\left[\begin{array}{c}
f_{1}\left(x_{n l}\right)+c_{1}^{T} x_{n l}+d_{1}^{T} x_{l}=q_{1} \tag{2}\\
f_{2}\left(x_{n l}\right)+c_{2}^{T} x_{n l}+d_{2}^{T} x_{l}=q_{2} \\
\cdots \cdots \\
f_{p}\left(x_{n l}\right)+c_{p}^{T} x_{n l}+d_{p}^{T} x_{l}=q_{p}
\end{array}\right]
$$

subject to:

$$
\begin{gather*}
g\left(x_{n l}\right)+A_{1} x_{l} \leq b_{1} \tag{3}\\
A_{2} x_{n l}+A_{3} x_{l} \leq b_{2} \tag{4}\\
l \leq\left[\begin{array}{l}
x_{n l} \\
x_{l}
\end{array}\right] \leq u \tag{5}
\end{gather*}
$$

where $g\left(x_{n l}\right)=\left[g_{1}\left(x_{n l}\right), g_{2}\left(x_{n l}\right), \ldots, g_{m}\left(x_{n l}\right)\right]^{T}$ is a vector of nonlinear constraints and $f_{1}\left(x_{n l}\right), f_{2}\left(x_{n l}\right), \ldots, f_{p}\left(x_{n l}\right)$ in (2) represents the nonlinear parts of the performance criteria. The decision variables are divided into two subsets: a vector of "nonlinear" variables ($x_{n l}$) and a vector of "linear" variables $\left(x_{l}\right)$. It is clear that when vectors f and g are nonexistent, formulation (2)-(5) is identical with the standard multicriteria linear programming problem. An overview of the various ways in which the reference point approach can be used in the linear case is given in [2], while the nonlinear case is described in [3].

The current computer implementation of the decision analysis and support system DIDASS is based on a two-stage model of the decision-making process. In the first stage - the exploratory stage - the user is informed about the range of his alternatives, thus giving him an overview of the problem. In the second stage - the search stage - the user works with the system in an interactive way to analyze the efficient alternatives $\left\{\hat{q}^{k}\right\}$ generated by DIDASS in response to his
reference objectives $\left\{\bar{q}^{k}\right\}$. The initial information for the exploratory stage is provided by calculating the extreme points for each of the objectives in (2) separately. A matrix D_{S} which yields information on the range of numerical values of each objective is then constructed. We shall call this the decision support matrix.

$$
D_{S}=\left[\begin{array}{cccc}
q_{i}^{i} & q_{2}^{1} & \cdots & q_{p}^{1} \tag{6}\\
q_{1}^{2} & q_{\dot{2}}^{\dot{2}} & \cdots & q_{p}^{2} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
q_{1}^{i} & q_{2}^{i} & \cdots & q_{p}^{i} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
q_{1}^{p} & q^{p} & \cdots & q_{p}^{\dot{p}}
\end{array}\right]
$$

Row i corresponds to the solution vector x_{i} which maximizes objective q_{i}. The vector with elements $q_{i}^{i}=q_{i}^{*}$, i.e., the diagonal of D_{S}, represents the utopia (ideal) point. This point is not normally attainable (if it were, it would be the solution of the proposed decision problem), but it is presented to the user as an upper guideline to the sequence $\left\{\bar{q}^{k}\right\}$ of reference objectives. Let us consider - column i of the matrix D_{S}. The maximum value in the column is q_{i}^{*}. Let q_{i}^{n} be the minimum value, where

$$
\min _{1 \leq j \leq p}\left\{q_{i}^{j}\right\}=q_{i}^{n}
$$

We shall call this the nadir value. The vector with elements $q_{1}^{n}, q_{2}^{n}, \ldots, q_{p}^{n}$ represents the nadir point, and may be seen as a lower guideline to the values of the user's objectives.

In the linear case we use the following scalarizing function $s(w)$, where minimization results in a linear programming formulation:

$$
\begin{equation*}
s(w)=-\min \left\{\rho \min _{i} w_{i} ; \sum_{i=1}^{p} w_{i}\right\}-\varepsilon w \tag{7}
\end{equation*}
$$

Here $w_{i} \equiv\left(q_{i}-\bar{q}_{i}\right) / \gamma_{i}, \rho$ is an arbitrary coefficient which is greater than or equal to p, γ_{i} is a scaling factor, and $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p}\right)$ is a nonnegative vector of parameters.

In the nonlinear version of the package the following achievement scalarizing function is used:

$$
\begin{equation*}
s(w)=-\frac{1}{p} \ln \left[\frac{1}{p} \sum_{i=1}^{p}\left(w_{i}\right)^{p}\right] \tag{B}
\end{equation*}
$$

where $w_{i}=\gamma_{i}\left[\left(\tilde{q}_{i}-q_{i}\right) /\left(\tilde{q}_{i}-\bar{q}_{i}\right)\right], \tilde{q}_{i}$ is an upper limit to the sequence of reference points, $p \geq 2$ is again an arbitrary coefficient greater than or equal to p, and γ_{i} acts here as a weighting factor. This achievement scalarizing function meets the following requirements:

- It yields scaling factors which make additional scaling of objectives unnecessary.
- It is a smoothly differentiable function that approximates the nonsmooth function $s=\max _{i} w_{i}$.
- It is strongly order-preserving and weakly order-approximating .

The resulting single-criterion programming problems are solved using the solution package MINOS [4].

3. INFORMATION FOR IMPLEMENTATION

The current version of the DIDASS package has been designed specifically to be portable, and it has therefore been written completely in FORTRAN 77, avoiding the use of any operating-system-dependent statements or commands.

The DIDASS source code is normally supplied by IIASA on tape (9 -track,
unlabeled, ebcdic, upper case, 800 bpi, block size 800 characters, record length BO characters) under the following names:
list_of_files
mtitm Tape fomat: upper case ebcdic mtikm: Record length: 80. Block length: 800. Density: 800. bpi.
File:1 Records:9 Blocks:1 Filename:constr_].f
File:2 Records:5 Blocks:1 Filenare:constr_nl.f
File:3 Records:1407 Blocks:141 Filenane:didass.f
File:4 Records:27 Blocks:3 Filenare:list_of_files
File:5 Records:45 Blocks:5 Filename model.1
File:6 Records:100 Blocks:10 Filenate:model.nl
File:7 Records:6765 Blocks:677 Filenare:nonlp.f
File:8 Records:9 Blocks:1 Filename:object_l.f
File:9 Records:103 Blocks:11 Filename:object_nl.f
File:10 Records:4 Blocks:1 Filename:rfp.1
File:11 Records:4 Blocks:1 Filename:rfp.nl
File:12 Records:22 Blocks:3 Filenare:specs.1
File:13 Records:46 Blocks:5 Filename:specs.nl

To prepare DIDASS to solve linear problems only the user must read all files (including data and FORTRAN files) from the tape, compile, link and load the following FORTRAN files:
constr_l.f, object_l.f, didass.f, nonlp.f
To prepare DIDASS to solve mixed linear and nonlinear problems, or nonlinear problems only, the user must read all the files (including data and FORTRAN files, excluding the files constr_l.f and object_l.f), compile, link and load the following FORTRAN files:
constr_nl.f, object_nl.f, didass.f, nonlp.f.

To support the implementation of the system, data for a linear and a nonlinear example are also given on the tape.

4. SOLVING A LINEAR PROBLEM

The solution of a linear problem is demonstrated by example I (hypoth.1):

$$
\max \left\{\begin{array}{l}
1.5 x_{1}+2 x_{2}-x_{3}+3 x_{4}+x_{5}+x_{7}=\text { obj } 1 \\
1.2 x_{1}+x_{2}+x_{3}+x_{4}+2.75 x_{5}+x_{6}=\text { obj2 } \\
2.5 x_{1}+x_{3}+2 x_{4}+1.7 x_{5}-x_{6}-x_{7}=\text { obj3 }
\end{array}\right\}
$$

subject to:

$$
\begin{gathered}
+x_{1}+2 x_{2}+x_{3}+x_{4}+2 x_{5}+x_{6}+2 x_{7} \leq 12.25 \\
-2 x_{1}-x_{2}+x_{4}+2 x_{5}+x_{7} \leq 13.75 \\
-x_{1}+x_{3}+2 x_{5}-2 x_{7} \leq 14.00 \\
+x_{2}+2 x_{3}-x_{4}+x_{5}-x_{6}-x_{7} \leq 16.5 \\
x_{i} \geq 0, i=1,2, \ldots, 7
\end{gathered}
$$

The MPS input file should be prepared in a certain way - the user must list objectives of type e (equalities) as the first entries in the row definition section in the same order as they appear in the reference point file (see later). The input file must contain a section on bounds, even if this section is empty. The MPS file ("model.l") and the specification file ("specs.l") for the above example are given in Appendix 1.

The reference point file ('rfp.l") has the format (2X,2A4,2X,3F12.5). The first two characters are blanks, the next eight characters contain the name of the objective, and there are then two more blanks. The first in F12.5 field gives the value of the reference point. The next field contains the max-min indicator, which is + for maximization, and - for minimization; the corresponding digits can be used as, scaling factors. The last contains the values of the control coefficients, $\rho \geq p$ on the first line, and ε on the second line. The last line of the file must contain four dots (...) as characters $5-8$ in the A 4 field. For example I the reference point file would take the following form:

obj1	35.0	+1.0	3.00
obj2	15.0	+1.0	$0.100 \mathrm{e}-06$
obj3	25.0	+1.0	

The files "constr_l.f" and "object_l.f" contain dummy subroutines which are needed if the user intends to solve linear problems only. The steps taken in the
program for the linear case are explained in Figure 1.

Figure 1 Structure of the DIDASS-system

The interactive procedure begins with the program asking which type of problem is to be considered (lp in this case). The program then enters the exploratory stage and informs the user of the range of values possible for each alternative. This leads into the search stage, which is split into two parts: editing and problem solving. In the editing mode the following commands may be used:

1 - list the names of the objectives and the components of the reference points
n - neutral solution-zero is the reference point
i+ - positive infinite reference point $\left(+10^{5}\right)$
i- - negative infinite reference point $\left(-10^{5}\right)$
c - copy solution from previous session as reference point

The following commands are also available:
rfp - change to reference point definition status
scalc - change to scaling factor modification status
ccoef - change to control coefficient definition status

In order to define a new value of p (or ε), it is sufficient to type ccoef and then rho (or eps) ; the program moves to the corresponding definition status, the new value of the parameter may be typed in and the program returns to waiting status.

The reference point components may be redefined in rfp status. To do this, it is necessary to type two lines - one containing the name of the objective, the other the new value of the reference point component. Redefinition of scaling factors is carried out in scaling factor modification status. Here again it is necessary to type two lines - one containing the name of the objective, the other the new value of the scaling factor. The only way to leave editing status is to
type an asterisk (*).
In the next phase of the interactive process the program asks the user for the names of the RHS and BOUNDS sections. (In our example these are "rhs" and "bnd".) Using this option the user can change the set of constraints between sessions, thus modifying the problem. The system then generates a new MPS file and the single-criterion LP problem (7) is solved. Finally, the necessary information from the LP output file is extracted and presented to the user in the same form as the original problem.

The user then repeats the search stage until he obtains satisfactory results.

5. SOLVING A NONLINEAR PROBLEM

The solution of a nonlinear problem is demonstrated by example 11 (theo):

$$
\min \left\{\begin{array}{cl}
\left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2}+\left(x_{6}-6\right)^{2}+\left(x_{7}-4\right)^{2} & =\text { obj1 } \\
0.5\left(x_{3}-4\right)^{2}+\left(x_{8}-6\right)^{2}+\left(x_{9}-11\right)^{2}+\left(x_{12}-1\right)^{2}+\left(x_{10}-8\right)^{2} & =\text { obj } 23 \\
\left(x_{4}-1\right)^{2}+\left(x_{5}-8\right)^{2}+\left(x_{11}-4\right)^{2}+\left(x_{12}\right.
\end{array}\right\}
$$

subject to:

$$
\begin{aligned}
2 x_{1}+0.5 x_{2}-x_{6}+x_{11} & =5 \\
x_{1}+2 x_{2}-x_{7}+x_{11} & =0 \\
x_{3}+0.5 x_{6}-x_{8}-x_{12} & =0 \\
0.5 x_{3}+x_{6}-x_{8}+x_{12} & =0 \\
x_{4}+0.5 x_{5}+0.5 x_{8}-x_{10} & =0 \\
2 x_{4}+x_{5}-x_{8}-x_{11} & =0 \\
3 x_{4}-x_{5}+x_{8}-x_{12} & =0 \\
2 x_{1}+x_{2}+2 x_{11} & \leq 8 \\
2 x_{6}+3 x_{12} & \leq 12 \\
5 x_{4}+3 x_{5} & \leq 15 \\
3 x_{4}+2 x_{5}+3 x_{8} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 13
\end{aligned}
$$

and

$$
\begin{gathered}
x_{i} \geq 0, i=1,2, \ldots, 12 \\
x_{1} \leq 2, x_{2} \leq 6, x_{3} \leq 3, x_{4} \leq 2, x_{5} \leq 4, x_{8} \leq 4, x_{8} \leq 3, x_{11} \leq 3, x_{12} \leq 2
\end{gathered}
$$

The corresponding MPS file ("model.nl"), including the linear part, is given together with the specification file ("specs.nl") in Appendix 2.

The subroutine constrn ("constr_nl.f") (see Appendix 2) may be used to compute the nonlinear constraint functions $g(x)$ (here $f(m)$) and the corresponding elements of the Jacobian matrix $\partial g / \partial x_{j}$ (here $g(m, n)$). As example II does not contain nonlinear constraints the subroutine is "empty" in this case

In subroutine objectf ("object_nl.f") the user has to insert the nonlinear objective functions $f_{i}\left(x_{r l}\right)$ under the name obj(i) as indicated in Appendix 2. The gradients are calculated automatically.

The reference point file ("rfp.nl") has the format ($2 \mathrm{X}, 2 \mathrm{~A} 4,2 \mathrm{X}, 3 \mathrm{~F} 12.5$). The first two characters in each line contain blanks, the next eight characters the name of the objective, and there are then two more blanks. The first F12.5 field contains the value of the reference point, the second a variable that can be used as a weighting coefficient and the third a control variable. In example II the value of the control coefficient is $\rho=24$. The last line must contain four dots (....) as characters $5-8$ in the 2A4 field.

rfp1	25.0	1.	24.0
rfp2	50.0	1.	1.0
rfp3	45.	1.	1.0

To start the interactive procedure in the nonlinear case, having prepared the files, the user must first initialize DIDASS. The program steps correspond to those already outlined for the linear case (see Section 4 and Figure 1). Appendix 3 contains examples of the interactive use of DIDASS in the linear and nonlinear cases.

ADDITIONAL REMARKS

The (May 83) implementation of DIDASS described in this guide is still being tested and improved. We would be glad to receive any suggestions or comments you might have concerning the system.

ACKNOWLEDGMENT

DIDASS developed from work carried out by W. Orchard-Hays, M. Kallio, A. Lewandowski and M. Grauer at IIASA. The author would like to thank T. Novachkova and Z. Fortuna for their help in structuring the system.

References

1. A. Wierzbicki, 'A mathematical basis for satisficing decision making,' pp. 465-485 in Organizations: Multiple Agents with Multiple Criteria, ed. J.N. Morse, Springer-Verlag, Berlin, New York (1981).
2. A. Lewandowski and M. Grauer, "The reference point optimization approach - methods of efficient implementation," WP-82-26, IIASA (1982).
3. M. Grauer, "Reference point optimization - the nonlinear case ," pp. 126-135 in Essays and surveys on Multiple Criteria Decision Making, ed. P. Hansen, Springer Verlag, New York (1983).
4. B.A. Murtagh and M.A. Saunders, "Minos/Augmented," Technical Report SOL-80-14, Systems Optimization Laboratory, Stanford University (1980).

APPENDDX 1

The MPS file ("model.l") for example I is:

e obj1				
e obj2				
e obj3				
1 const1				
1 const2				
1 const3				
1 const4				
colums				
x 1	obj1	1.5	obj3	2.5
x 1	obj2	1.2		
x 1	const 1	1.0	const2	-2.0
x 1	const3	-1.0		
x2	obj 1	2.0	obj2	1.0
x2	const1	2.0	const2	-1.0
x2	const4	1.0		
x3	obj 1	-1.0	obj2	1.0
x3	obj3	1.0	const1	1.0
x3	const3	1.0	const4	2.0
x4	obj 1	3.0	obj2	1.0
x4	obj 3	2.0	const1	1.0
x 4	const2	1.0	const4	-1.0
$\times 5$	obj 1	1.0	obj2	2.75
x5	obj 3	1.7		
x5	const1	2.0	const2	2.0
x5	const3	2.0	const4	1.0
$\times 6$	obj2	1.0	obj3	-1.0
$\times 6$	const1	1.0	const4	-1.0
$x 7$	obj 1	1.0	obj3	-1.0
x7	const1	2.0	const2	1.0
x 7	const3	-2.0	const4	-1.0
rhs				
rhs	const1	12. 25		
rhs	const2	13.75		
rhs	const3	14.0		
rhs	const4	16.5		
bounds				
lo bnd	x 1	0.0		
10 bnd	x2	0.0		
10 bnd	x3	0.0		
lo bnd	x 4	0.0		
lo bnd	$\times 5$	0.0		
10 bnd	x 6	0.0		
10 bnd	x 7	0.0		
endata				

The specification file ("specs.l") for example I is:

begin hypoth. 1	
minimize	mocobj
objective	rhs
rhs	bnd
bounds	1400
rows	1500
colums	11000
elements	0.000001
aijfol	
	9
mps file	
	1
crash option	6000
iterations	50
log frequency	100
factorize frequency	1
partial price	yes
solution	$1.0 e-5$
feasibility tol	
problem nunber	0
endrun	

APPENDIX 2

The MPS file ('model.nl"), including the linear part, for example II is:

name	theo			
rows				
e gl1				
e gl2				
e gl3				
e gl4				
e gl5				
e gl6				
e gl7				
1 ugl1				
1 ugl2				
1 ug 13				
1 ugl4				
1 ugl5				
colums				
x 1	gl1	2.0	g12	1.0
x1	ugl1	2.0	ugl5	3.0
x2	gl1	0.5	g12	2.0
x2	ugl1	1.0	ugl5	2.0
x3	gl3	1.0	gl4	0.5
x 4	gl5	1.0	gl6	2.0
x4	gl7	3.0	ugl3	5.0
x4	ug 14	3.0		
x5	gl5	0.5	g16	1.0
x5	gl7	-1.0		
x5	ug 13	3.0	ugl4	2.0
$\times 6$	gl1	-1.0	gl3	0.5
$\times 6$	gl4	1.0	ug 12	2.0
$x 7$	gl2	-1.0		
x8	gl3	-1.0	g15	0.5
x8	gl6	-1.0	gl7	1.0
x8	ug 14	3.0		
$\times 9$	gl4	-1.0		
x10	gl5	-1.0		
x11	gl1	1.0	gl2	1.0
x11	gl6	-1.0	ugl1	2.0
$\times 12$	gl3	-1.0	gl4	1.0
x12	g17	-1.0	ugl2	3.0
rhs				
rhs	gl1	5.0		
rhs	ug 11	8.0		
rhs	ugl2	12.0		
rhs	ugl3	15.0		
rhs	ug 14	12.0		
rhs	ug 15	13.0		
bounds				
up bnd	x 1	2.0		
up bnd	$x 2$	6.0		
up bnd	x3	3.0		
up bnd	X4	2.0		

up bnd	x5	4.0
up bnd	$x 6$	4.0
up bnd	$x B$	3.0
up bnd	$x 11$	3.0
up bnd	$x 12$	2.0
fx initial	$x 1$	1.9
fx initial	x2	1.6
fx initial	x3	1.7
fx initial	$x 4$	0.4
fx initial	$x 5$	1.2
fx initial	$x 6$	0.6
fx initial	$x 7$	6.1
fx initial	$x 8$	1.0
fx initial	$x 9$	2.45
fx initial	$x 10$	1.5
fx initial	$x 11$	1.0
fx initial	$x 12$	1.0
endata		

The specification file ("specs.nl") is:


```
dj tolerance 1.0e-6
row tolerance 1.0e-6
radius of conver 0.01
superbasics 12
hessian dimension 12
    linesearch toler 0.1
print level (jfxi) 101
derivative level 2
difference interval 1.0e-06
call function routines when optimal
end
```

The subroutine constrn for example Il is:

```
subroutine constrn(mode,m,n, njac, x,f,g,nstate,nprob )
implicit real*B(a-h,o-z)
real*B x(n),f(m),g(m,n)
return
end
```

The subroutine objectf for example II is:

```
    subroutine objectf(mode,n,x,f,g,nstate,nprob)
    implicit real*B(a-h,o-z)
    real*B x(n),g(n)
    logical ityp
    character*4objnam, ipoint
    common/tables/nc,objnam(2,100),sig(100), ityp(100)
    cammon/err/ierr
    common/rfp/rfp(100)
    ccmmon/gamma/gam(100) , obj (100), dif(100)
    cammon/ganma1/gami (100),rfp1(100), sig1(100)
    cammon/gammau/obju(10000) ,objmin(100),objmax(100) ,w(100)
    data ipoint/'....'/
    if (nstate .ne. 1) go to 741
c first entry
    nc=0
c repeat
23041 continue
        nc=nc+1
        read(11,290) objnam(1,nc),rfp(nc),gam(nc),sig(nc)
        write(6,290) objnam(1,nc),rfp(nc),gam(nc),sig(nc)
        ityp(nc) = .false.
        if(.not.(objnam(1,nc).eq.ipoint)) goto 23044
```

c
c

```
    goto 280
23044 continue
23042 goto 23041
280 nc=nc-1
290 fomat(2x,a4,6x,3f12.5)
741 continue
c
c nomal entry
c
c Insert the criteria functions as
c FORTRAN-statements.
c
c This is the example II ("theo") with quadratic
c criteria functions and linear constraints.
c
    obj(1)=((x(1)-3)**2+(x(2)-2)**2+(x(6)-6)**2+(x(7)-4)**2)
    obj(2)=(0.5*(x(3)-4)**2+(x(8)-6)**2+(x(9)-11)**2)
    obj (3)=((x(4)-1)**2+(x(5)-8)**2+(x(11)-4)**2
    *+(x(12)-1)**2+(x(10)-8)**2)
    if (nprob .ne. 1) go to 720
c
c A quadratic scalarizing function is used to
c calculate the decision support matrix.
c
        f=0.0
        do 751 k=1,nc
            f=(gam(k)*(rfp(k)-obj (k))/sig(k))*
                    (gam(k)*(rfp(k)-obj (k))/sig(k))+f
    751 continue
        go to ?74
    720 continue
        if (nprob .ne. 2)go to 714
        if (nstate .ne. 1)go to 103
c
c The decision support matrix is stored for
c future sessions.
c
295 format(f12.5)
    do 100 i=1,nc
    read (7,295)objmin(i)
100 continue
103 continue
c
c The autoratically scaled achievement variables
c are calculated.
c
        if (nstate .ne. 1) goto 8013
        do }101\textrm{i}=1,\textrm{nc
        if (rfp(i) .le. objmin(i)) goto 8011
        obju(i)=.5*objmin(i)
    101 contimue
        go to }801
B011 continue
        do 8012 i=1,nc
```

```
    obju(i)=.5*rfp(i)
    8012 continue
c
c The logarithmic scalarizing function
c is used.
c
    8013 continue
        rho=sig(1)
        f=.0
        s=.0
        do 102 i=1,ne
        w(i)=((obju(i)-obj(i))/(obju(i)-rfp(i)))*gam(i)
        s=s+w(i)**rho
    102 continue
        s=s/nc
        f=+(dlog(s))/rho
    714 cont inue
        if (nstate.ne. 2) return
c
c Final entry
c
    do 802 k=1,nc
    write (10,801) obj(k)
    802 continue
    B01 fomat (2x,f12.5)
    800 continue
    return
    end
```


APPENDIX 3

didass

Enter the problem type linear (enter lp) or nonlinear (enter nlp) $1 p$

Each line of the matrix gives the results of the selfish optimizations. The diagonal represents the utopia point.

$$
\text { obj(1) obj(2) obj(} 3
$$

extreme obj(1) $36.75000 \quad 12.25000 \quad 24.50000$
extreme obj(2) $6.12500 \quad 16.84300 \quad 10.41200$
$\begin{array}{lllll}\text { extreme obj(3) } & 18.37500 \quad 14.70000 \quad 30.62500\end{array}$

You can now:
list the names of the obj. and components of ref.pts. (enter l), ask for neutral solution(enter n),
ask for plus infinite reference point (enter i+),
ask for minus infinite reference point (enter i-),
copy solution from last session as ref.p. (enter c),
change the values of scal.coef. (enter scalc),
change the values of control coef. (enter ccoef),
change the values of ref. point components (enter rfp).
If you wish to make no more changes, type *
to exit from editing status
1

obj.name	refpt.value	scal.coef.	contr.coef.
objl	20.0	4.00	3.00
obj2	30.0	1.000	$0.100 e-06$
obj3	28.0	1.000	

enter name of rhs set
rhs
3 objectives
eps $0.100 \mathrm{e}-06$
rho 3.00
enter name of bounds set
bnd
eps $0.100 \mathrm{e}-06$
rho 3.00

objective		
names	utopia point	reference point
efficient point		

$\operatorname{obj}(1)$	36.8	20.0	8.55	0.	4.00
$\operatorname{obj}(2)$	16.8	30.0	16.4	2.72	1.000
$\operatorname{obj}(3)$	30.6	28.0	14.4	0.288	1.000

Do you want to run the program once more with edited input data(enter yes)
or terminate the session (enter no)?
didass
Enter the problem type
linear (enter l_{p}) or nonlinear (enter nlp) nlp

Each line of the matrix gives the results of the selfish optimizations. The diagonal represents the utopia point.

	obj(1)	obj(2)	obj(3)
extreme obj(1)	24.01900	89.69800	92.13700
extreme obj(2)	38.56200	38.31200	108.99000
extreme obj! 3)	42.50000	128.00301	48.86200

You can now:
list the names of the obj. and components of ref.pts. (enter l), ask for neutral solution(enter n),
ask for plus infinite reference point (enter $i+$),
ask for minus infinite reference point (enter i-),
copy solution from last session as ref.p. (enter c), change the values of scal.coef. (enter scalc), change the values of control coef. (enter ccoef), change the values of ref. point components (enter rfp). If you wish to make no more changes, type * to exit from editing status

1

```
    obj.name refpt.value scal.coef. contr.coef.
        Objl 25.0 1.000 24.0
        obj2 50.0 1.000 1.000
        obj3 45.0 1.000 1.000
    enter name of rhs set
rhs
    enter name of bounds set
```

*

bnd

objective	utopia	reference	efficient	nadir
names	point	point	point	point

$\operatorname{Obj}(1)$	24.0	25.0	31.6	42.5
$\operatorname{obj}(2)$	38.3	50.0	63.7	128.
obj(3)	$48^{\circ} .9$	45.0	59.5	109.

Do you want to run the program once more with edited input data(enter yes)
or terminate the session (enter no)?
no

