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Preface

The System and Decision Sciences Area has been involved in procedures
for approximation as part of a variety of projects involving uncertainties.
In this paper, the authors discuss approximation methods for stochastic
programming problems. This is especially relevant to the Adaptation and
Optimization project since it directly applies to the solution of optimiza-
tion problems under uncertainty.

Andrzej P. Wierzbicki
Chairman

System and Decision
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APPROXIMATIONS AND ERROR BOUNDS

IN STOCHASTIC PROGRAMMING

John R, Birge Roger J-B., Wets*
Industrial and Operations and Mathematics
Engineering University of Kentucky

University of Michigan

ABSTRACT

We review and complete the approximation results for stochastic
programs with recourse., Since this note is to serve as a preamble to
the development of software for stochastic programming problems, we

also address the question of how to easily find a (starting) solution.

*Supported in part by a grant of the National Science Foundation.



We consider the stochastic program with (fixed) recourse [1]:
(1) find x € R,' such that Ax = b
and z = c¢x + 9(x) is minimized
where A ism;x o, b€:Rm1, and
(2) Qx) = E{Q(x,E)} = fq(::,g) P(dE)
with P a probability measure defined on = CZRFZ, and
3) Qx,E) = inf riz lay [ Wy = € -,
W ism2.x n,s T ism2 X 05 q € R 2 and F,Can. We think of Z as the set of
possible values of a random vector, Technically this means that Z is the
support of the probability measure P. We shall assume that £ = E{f} exists.
Many properties are known about problems of this type [l], for our
purposes, the most important ones being
(4) £ b Q(x,8) is a convex piecewise linear function
for all feasible x, i.e., x€ K = K1 n K2

where

~
1]

{x | Ax = b, x > 0}

~
1

, = {x | VEE€E, dy > 0 such that Wy = § - Tx},
and
(5) x b Q(x,£) is a convex piecewise linear function which implies that

(6) x P Q(x) is a convex function, finite on K, (as follows from the

2

integrability condition on Z).
It is also useful to consider an equivalent formulation of (1) that
stresses the fact that choosing x corresponds to generating a tender x = Tx

to be bid by the decision maker against the outcomes £ of the random events,

viz,



7 find x € Ry}, X € K"2 such that Ax = b, Tx = ¥,

and z = cx + Y(¥x) is minimized,

where

®) YOO = E(W(x,8)) = ﬁ(x,a) P(dE),
and

(9) P(x, &) = infy c Riz {qv | wy = & - x}.

The functions Y and Y have basically the same properties as Q and 0,
replacing naturally K2 by the set
L, = {x | VE€Z, dy > 0 such that Wy = & - x}.
Let z* denote the optimal value of (1) or equivalently (7). We are
interested in finding bounds on z* by approximating Q or Y.
1. LOWER BOUNDS

A lower bound for z* can be obtained by solving the linear program

an) find x>0,y>0
such that Ax =b
Tx + Wy = £
and cx + qy = z is minimized.

To see this note that (10) can also be expressed as
(11) find x € R}! such that Ax = b
and z = cx + Q(x,g) is minimized,
and with z denoting the optimal value of (11). We certainly have that
E_i z* if we show that
(12) Q(*,8) < Q).
But this follows from (4) and Jensens' inequality:

(13) Q(x,EE) < E{Q(x,8)}



for every x €:K2. There is another way to obtain this inequality,
relying on the dual solution to (10):
(14) find 0 € R, 7 € R"?

such that CA + 7T i c

™ < q
cb + né = w is maximized.

Let (0,T) be an optimal solution to this linear program. Since ™ < d,
it follows again from the duality theory of linear programming that

Q(x,8) = SUp, ~ g2 {m(g - Tx) | ™ < q}

2 7W(E - Tx)

and also that, for x €K,

cx + Q(x) > ex + TeEf - TTx = EE + (¢ - T)x

= TE 40 = TE +5b=w =

Hence

(15) z < in cx + Q(x) = z*

fxCK
Madansky (2] was the first to point out that this type of reasoning pro-
vided error bounds for stochastic programs. We can refine this lower
bound in a number of ways.

The first one is to use a sharper version of Jensens' inequality.

Let S¥= {EQ, 2 =1, «.., V} be a partition of Z and let us denote by EQ

the conditional expectation of & given that its values are in EQ, i.e.,
= i -
g = E{t‘;'gC:Q}

and let
£, = P(5))

i.e., f, is the probability that & CZEQ. The convexity of Q(x,.) yields
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(16) QGx,B) < Ip_£,065,E) < E{QG, 8} = 0G0

as follows from a generalization of Jensens' inequality [3]. Let us denote

by z¥ the optimal value of the linear program:

a7) find x>0
such that Ax = b
Tx + Wyt = EX, =1, ..., V
d + Zv f - i inimized
an cx g=15007 = 2 is minimi ,
which can also be written in the form
(18) find x € RI_:_l such that Ax = b

and z = cx + Zv_ f Q(x,gl) is minimized.
2=1"2
In view of (16), it follows that

19) T <E <2k,

-

. . A = Y . .
The same reasoning shows that if S ={= k=1, ..., V'} is a finer parti-

tion of 5, i.e., for all k=1, ..., V°, Ek(: El for some El€:SV, and if

z" is the optimal value of the linear program of type (17) that corres-

ponds to this partition. Then

-

-V
< z < z%

(20) zZ <z’

In fact the 2z’ converge to z* provided that the partitions SV are such
that the probability measures they generate, viz.

p”(A) = Zi P arP ()
converge in distribution to P, as follows from Theorem (3.9) that we prove
[1, Section 3]. The suggestion to rely on conditional expectations to
refine (15) is due to Kall [4] and to Huang, Ziemba and Ben-Tal [5] who
give a detailed analysis of these bounds when Y is separable.

Another method is to proceed as follows: For every £ € =, and
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some gG:coE (the convex hull of %), we define

(21) ¢(£,£) = inf cx + Pqf + (1-flay,
s.t. Ax = b
Tx + WY = g
Tx + Wyp = £
x>09>0 yg20

with p€[0,1]. If (1) is solvable, so is (21) for all £ € = as follows

directly from [6, Section 2]. let x° solve (1) and for all &,
yo(g) CargminyCRI-‘:.z {qylWy = g - Tx°}

It is well known that the y°(f) can be chosen so that as a function of
£, v°(*) is measurable, cf. [6]. Now let g = E and
y* = Ely°(®1.

The triple (x°, v°, y°(£)) is a feasible solution of the linear program
(21) when 8 = £, However in general it is not an optimal solution,
Whence
(22) $(E,8) < & +Bay "+ (1-B)ay’ (©)
and integrating this on both sides with respect to P we obtain
(23) E{6(E,E)} < cx® + Q(x°) = z*
which gives us a new lower bound for z*. This bound can be refined in
many ways: first instead of using just one point E we can use a collection
of points obtained as conditional expectations of a partition of Z. Second
we can increase the number of points that are taken to build (21) as an
approximation to (l). These bounds are due to Birge, cf. [7] where a
detailed discussion appears.

A lower bound of a somewhat different nature still using the con-
vexity of Q, but not based on Jensens' inequality per se, can be obtained

as follows. Let {EQ, =1, ..., V} be a collection of points in = and let
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Tﬁ'C argmax [H(EQ - Tx)|mW < ql
Then Wge BEQ(X,EQ), i.e. the subgradient of Q with respect to £ at Eg
(for given x). We have that
Qx, £ = (" - o)
and
(24) Q(x,8) > wg(g - Tx) for all §C E.
The last inequality follows from the simple observation that
Q(x,&) = sup [m(§ - Tx) | < q]
and that WQ is a feasible, but not necessarily optimal, solution for the
sup-problem defining Q. Since (24) holds for every %, we have

Q(x,£) > max TTSL(E - Tx).
1<y

Integrating on both sides yields

(25) 0(x) > E{ max T°(f - Tx)}
1<2<v

In general finding the maximum for each § may be difficult. But we may
assign each Wg to a subregion of Z; this bound is not as tight as (25)

but we can refine it by taking successively finer and finer partitions.
However one should not forget that (25) involves a rather simple integral
and the expression to the right could be evaluated numerically (to an
acceptable degree of accuracy) without major difficulties. Note that the
calculation of this lower bound does not require the Eg to be conditional
expectations or chosen in any specific manner, however it should be obvious
that a well chosen spread of the {El, 2=1, ..., V} will give us sharper

bounds. Also, the use of larger samples, i.e. by increasing Vv, will also

yield a better lower bound.



2, UPPER BOUNDS
If Q(x) is easily computable, a simple upper bound is given by
z* < ck + Q(X)
for any feasible £ in K, In particular, if X solves (10) and it turns out
that x € K, then we have that

(26) Z = cX + Q(X,8) < z* < cx + Q%)

In general we cannot infer that x € K simply from knowing that x solves (10),
unless we know that we are dealing with a stochastic program with complete
recourse, or more generally with relatively complete recourse [1], i.e.
when K = {xle = b, x Z_O}. Ref inements of this bound, relying on different
values of x may be found in [8] and [9], but they always involve the
evaluation of Q(x).

Without evaluating @, we may find upper bounds for Q by considering
the extreme points of coZ. Let us assume in what follows that = is compact,
then so is its convex hull and Z = co(ext =) where ext Z are the extreme
points of Z. Since Q(x,£) is convex in £, we have that for all § € Z

Q(x,8) < SUPy ¢ 3 Qx,8),

(x)

= Q(x,e(x)), for some e

€ ext =,
= maxe € ext EQ(X’e)
Now e(x) may depend on x, but we always have that
27) 2(x) < max € ext EQ(x,e) = Q(x,e(x))
and hence
(28) z*< infX € K[cx + (maxe CextEQ(x’e))]°

If there are only a finite number of extreme points of Z, as is usually

the case in practice, the function appearing on the right hand side of the
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inequality can be minimized without major difficulties, Let {ej, i=1l, <.,
J} = ext E be this finite collection of extreme points. We have to solve
the mathematical program
(29) find x € K,' and 6€R such that Ax = b,
Q(x,ej)_i 8 for j=1, ..., J,
and cx + 6 is minimized
The last condition can also be expressed as
6 Z'qyj Wyj = ej - Tx, yj > 0 for j=1, ..., J.
Thus (29) becomes equivalent to the linear program
(30) find x€R:‘_1 6 €R and (ychiz, j=1, ..., J) such that
Ax = b, Tx + wyj = ej, 6 z_qyj for j=1, ..., J
and c¢x + 0 is minimized.
The optimal value yields the upper bound for z*,
This is a very crude bound. We can improve on this, as follows:
every £ €% also belongs to co(ext Z). We can thus find {Aj(g), i=l, ...,

J} such that

J
Z._qA =
@ 20, T @) =1,

and

J

Ty

(SIS
J
We write Aj(E) to indicate the dependence of the Aj on £, By convexity of
Q(x,°*) we have that
Qx,8) < I % (®) qix,ed).
- =1

Taking the expectation on both sides we have

. ;
-[Zj=1>‘j (&) Q(x,e’) P(dE)

(5

31D Q(x)

| A

A Zj=l)\jQ(x,e ) 6@\



where G is the distribution function induced by P on A = {A € RJIZi=1Xj =1,

)\. > O}a
j—

If coZ is a simplex, then each £ € = is obtained by a unique convex
combination of the extreme points and it is not difficult to actually derive
G, calculate the last integral and then minimize the resulting function to
obtain an upper bound for z*. In general = is not a simplex, and we shall
see later what to do in the general case, but there is an important class of
problems that reduces to the case when = is a simplex.

Suppose the random variables (of the m, vector) are independent.

Then the distribution function (or the probability measure) is separable

and (31) can be written as

B 3 8
(32) Q) =/ i /2 /1
| 7 @y ee ) Bp@E) | By (2] QG B8y )
m, 2 1
Bmz 8, 1
1
ifpmz(dgmz)... /Pz(dsz)fcl(dxl) Q (%, (A 1655 s gmz))
o o 0
m, 2
where
Ql(x,(xl,gz,....,gmz)) = Q0 Gy ByeenBy D)+ X Q06 (B, s B )
m

and for each i, Ei = [ai,Bi] and = =X

Since

gl = (1 - Al) oy + ABl

we get the following expression for kl(El),

£, - a B, - &
A, = 1 1 and 1 - 1 S S
1 1~ % Bl =0y
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Hence, with Wy = E{El},

1
(33) 1 _
/ Q (x, (>\19 Ez’ LALIA ] Em)) Gl (dxl) =

B, = - a
1 1 1 1
2 D ox, (058 e e 08 D) + (2D (x, (B 5Ey s )
(Bl_al) 1772 m2 Bl—a 1272 m2
which we can substitute in (32) for the integral with respect to Xl. We can
repeat this process for each Ei to obtain a bound on Q involving only the

evaluation of the function Q(x,*) at the vertices of the rectangular region

(1]

The whole argument really boils down to the use of the simple in-
equality for real-valued convex functions ¢ of a random variable £, with

distribution P on [a,B] and expectation u.

(34) B ,
&) (o Vo[
N “\E-= s —w/? ‘

This inequality is due to Edmundson. Madansky [2] used it in the context

of stochastic programs (with simple recourse) to obtain a simple version
of (32). A much refined version of this upper bound can be obtained by
partitioning the interval [a,R] and using (34) for each interval in the
partition, substituting the end points of the subinterval for o and B,
and the conditional expectation (with respect to this subinterval) for u.
In the case of stochastic programs with simple recourse this was carried
out by Huang, Ziemba and Ben-Tal [5] and by Kall and Stoyan [10] who
also consider stochastic problems of a more general nature.

Also, when P is not separable we can improve somewhat on (28) by
observing that we can use (34) with respect to one random variable, say

El. We have
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[xx,a) P(E s Eys vrns £ )
2

< sup ﬁ(x,a) PE., £,, ooy &)
{(€ys ves £ D ]E €5} 1* 72 m,
)

B~ uteh) -
sup -1 -3, i s Bl al Q(xa (al’ej))
{e, «o., e']ed = (ei,ej) € extZH\"1 ~ 1

U (ej) - o .
1 1 -3
+ Q(x’ (B ’e )

where ul(eJ) is the conditional expectation of £l given eJ (the last (mz—l)

coordinates of eJ). From this it follows that

B, - u, (el .
(35) Q(x) < min  sup _. . (—Bl—a—l )>1(x,(a.,63>>
lfﬁjmz {ed|ed €extz}|\P1 =M *
3 .

. (ui(e ) - oai) Q(x,(Bi,EJ)) ,

B. -a,

1 1

3 J

where it must be understood that e- consists of the (mz—l) components of e

that are not indexed by i. Further refinements through the partitioning of =

and the use of the corresponding conditional means, tighten up this inequality.
Another refinement of (28), in the case of nonseparable measure P,

can be obtained by considering simplicial decompositions of %, assuming

naturally that = admits such a decomposition (which means that = should be

polyhedral). Let 3={SQ, 2=1, ..., L} be such a decomposition (technically

S is a complex whose cells s* are simplices). Let {eg, cees ei} be the

2

vertices of the simplex S%, assuming that dim Z = m Then each § €:S£

2.

. , 2 2
determines a unique vector of barycentric coordinates (A5, ..., Am ) such
2
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that

m
2 Agel

W2 .2
3=0"3°3" 7 '

L
On S§7, we are thus given a simple formula for the relationship between the

distribution of & and the induced distribution for the k?'s. We have

™2 8 )
-S[CQ(x,E)P(dé) <f 126000 6 @) = F G, S

m2+1 m, o 2
where A = {A€R ,Zj=OAj =1, Aj >0} and G, is the measure induced by
the preceding transformation. If we assume that the measure P is absolutely

m
. . 2 .
continuous (with respect to the Lebesgue measure on R "), then P assigns

zero measure to every face (of dimension less than mz) of the simplices

Sz and hence

36) 060 = Zgﬁ(x,E)P(dE) < 1,8,0,5h.
;
s

This new upper bound can again be refined in two ways, first by considering
finer simplicial decompositions, and second by considering for every &
the smallest upper bound given by a number of possible simplicial repre-
sentations, We sketch this out.
o g . . 1 2

Suppose = is a convex polytope (of dimension m2) and v, ..., v}
is a finite collection of points in Z that includes the extreme points of
%, Let P be the set of all (m2 + 1) subsets of {vl, ceey vl} such that

co(de, cee, Vv 2) dis am -simplex. The convexity of Q(x,°*) yields

2

mz ji
Qx,8) < ZJ._:O)\in(x,v )

where
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. i
i.e. £ €:CO(VJ°, eeey V mz)o With P(§) denoting the elements of P that
have £ in their convex hull, we get
m j

2 i
: J m h| L0 A, Qx,v 7).

(o, ., v™) € P(g)lziioxj oo gy 1207y

i

Q(x,£) < inf
Each element of P(&) induces a measure on A, we can integrate on both
sides to obtain an upper bound on § and thus also on z¥*,
3. GETTING A STARTING SOLUTION

The inequalities, and thus the resulting error bounds, presented
above depend upon the chosen sample points of Z or the partitioning scheme
used, Choices for initial samples can be based on the solutions of
simplified problems in which the constraints have been relaxed. It is
convenient to use here version (7)-(8)-(9) of the original problem. We
shall assume that we are dealing with stochastic programs with relatively
complete recourse (K = Kl). In terms of (7) this means that if x € K

1

and ¥ = Tx, then X € L2, cf. the expression for L, following (9).

2
Suppose XO is a guess at the optimal tender, i.e. as part of a pair

(xo,xo) solving (7). Cost considerations might lead us to such a choice,

but there is no guarantee that XO is actually part of a feasible pair for

problem (7), that we repeat here for convenience sake:

(7) find x€ R, XER 2 such that Ax = b, Tx = X

and z = ¢x + Y(x) is minimized.

To obtain a feasible solution we might solve the linear program (with

(37) find x€R}!, w'E€R}2, w € E"? such that
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Tx+u+ +u-=)(0

and z = cx + h'u'= h"u"is minimized.
We can use the resulting solution to start the optimization algorithm, 1In
the case of simple recourse, a suitable choice of nt and h™ may be the
vectors q+ and q that determine the recourse costs., Recall that for
stochastic programs with simple recourse, the function § as defined by (9),
is given by

)
LP(X’ g) = Zi=l¢i (Xl’gl)

and
) + + - -+ - + -
= - = - > >
U (x;,8;) = inf {qgy; +ay,ly; - vy = & - X v 20, y; >0},
+ .
= - <
[qi(i__.L X4) if x; 2 &5
- _ . S
In this situation, we could proceed as follows: for every i=1, ..., m, ,
solve the single constraint stochastic program
. 0y -
(38) find x€R+ » X;E€R such that T.x = y_,
and z, = cx + ¥ (x,) is minimized,
i i°i
here T'i is the i-th row of T and
Y, (xg) = BV, (.8
This problem is equivalent to
; ny =
(39) find x€R+ » X € R such that Xy = T,%,
+ -
and z, = cx + / qi(Ei - Xi) Fi(dgi) + f qi()(i - gi)Fi(dEi)
€2X5 €. <X,

1—1 1— 1
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with Fi denoting the marginal distribution function of Eio The optimal
solution of (38) is the pair (xo,xg) such that

x? >0 for j=1, ..., n,

"1, 0_ .0
j=1745%3 T M

0. _ .+ +, 0. + 0
8 € -3V, (xg) = lag - q;F; ()5 a3 = a;F; (x;)]
c., -6t,, >0 for j=1, ..., N,

(c. - Gt,j)xj =0 for j=1, ..., n.
+ - _ +
where q, = q, + q;, F.(z) = P[g; < 2], and Fi(Z) = Plg, <zl.

In order to simplify the presentation, we make the following
assumptions:
(1) Fi is strictly continuously increasing on its support,
(i) T, > 0,
(1ii) infj [cjt;§] € [-ql, qz]o
The last assumption is only introduced to render the problem nontrivial.
Without such a condition the problem is either unbounded or of a type

that has no practical interest., With this, we have

[}

3] 1nfj[cj/tij] = cs/tiS

-1

., = F, qf -c /t,
i i i s’ "is

. . . 0 .
This method gives us a starting vector X , which we can then use to

>
[}

generate a feasible pair (8,%), as indicated at the beginning of this
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section. Some justification for this choice comes from the fact that we
are solving for each i the problem "optimally". This boils down to
finding the solution to a newsboy problem (having more than one supply
source). For a detailed study of this class of problems, when viewed as
simple stochastic programs, comsult [11].

If we are not dealing with simple recourse we may still proceed in a
very similar manner. For each i, the problem to be solved is
40) find xCRil, X; € R such that T.x = X and

¥ . - _ . {nimized.
cx / inf [qylwiy gi Xi]dPi(gi) is minimize

i
Here again P, is the marginal distribution of Ei and EiC: R its support.

We note that the integrand above is

[f [
£, < X(TJJa By xR B+ s xe}L) (&; - x;)dp (&),
1 1\ 1j/min 1 — "1 1lj/max

assuming here that

q. - q.
— inf |——, j=1, R,
min Yy

W.,. .
ij | 1)
W = Ssup W » 3=1, '--,nz
ij fmax | Vi
and that the coefficients w;; appearing in (qj/wij)min and (qj/wij)max are

negative and positive respectively., The infimum in (40) then occurs at

a point such that

q; 9. q.
X W, , W,.| . i W, .
1 1] /max 1]/min ij/ max
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If we restrict Xi to Xy = tjxj for fixed j, we get

0 , c,

X. € argmin J . - -

i 3 [tij Xij + / 1nf[qy[Wiy &y Xij]dPi(Ei)]
i

where q. c,
-1 W, , t,.
X,,. = F ij/max ij

ij
q. q.
ke ()
Wij max Wij min

0 . ey . . .
Again this leads us to a vector X , The intuitive justification for the

use of this vector being the same as in the case of stochastic programs
with simple recourse,

After the initial choice of XO, other values of Y may be chosen by
minimizing the expected error in approximating the function Y¥(x), by
using an a priori distribﬁtion on X. As new X values are found in an
optimization procedure, this distribution may be changed using Bayesian
updates; in the case of simple recourse the expected error is easily

measurable since Y(x) can be evaluated precisely on each subregion.,



REFERENCES

[1] R. Wets, Stochastic Programming: approximation schemes and solution
techniques, in Mathematical Programming 1982: The State-of-the-Art,
Springer Verlag, Berlin, 1983,

[2] A. Madansky, Inequalities for stochastic linear programming problems,
Management Science 6(1960), 197-204,

[3] M. Perlman, "Jensen's inequality for a convex vector-valued function
on an infinite dimensional space," J. Multivariate Analysis 4(1974),
52-65,

[4] P. Kall, Approximations to stochastic programming with complete fixed
recourse, Num. Math,,22(1974), 333-339,

[5] C., Huang, W. Ziemba, and A. Ben-Tal, Bounds on the expectation of a
convex function of a random variable: with applications to stochastic
programming, Operations Research, 25(1977), 315-325.

[6] D. Walkup and R, Wets, Stochastic programs with recourse, SIAM J.
Applied Math., 15(1967), 1299-1314,

[7] J. Birge, The value of the stochastic solution in stochastic linear
programs with fexed recourse, Mathematical Programming, 24(982),
314-325,

(81 P. Kall, Computational methods for solving two-stage stochastic linear
programning problems, ZAMP 30(1979), 261-271,

[9] J. Birge, Solution methods for stochastic dynamic linear programs,
Technical Report 80-29, Systems Optimization Laboratory, Stanford

University, 1980.



[10] P. Kall and D. Stoyan, Solving stochastic programming problems with
recourse, including error bounds, Math. Operationsforschung Statist.,
Ser. Optimization 13(1982), 431-447,

[11] R. Wets, Stochastic programming, lLecture Notes, 1974,




