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FOREWORD

Low fertility Tevels in IIASA countries are creating aging populations
whose demands for health care and income maintenance (social security) will
increase to unprecedented levels, thereby calling forth policies that will
seek to promote increased family care and worklife flexibility. The new
Population Program will examine current patterns of population aging and
changing 1ifestyles in IIASA countries, project the needs for health and
income support that such patterns are likely to generate during the next
several decades, and consider alternative family and employment policies
that might reduce the social costs of meeting these needs.

A central feature of the Population Program's research agenda is the
development of a theoretical model of human aging and mortality. This paper
reports the results of some preliminary efforts along that line. In it,

a Soviet mathematician, Dr. Yashin, collaborating with a demographer and a
policy analyst from the United States, describes a multidimensional stochastic
process model that generalizes earlier models of aging dynamics. The authors
introduce the effects of non-Markovian behavior, unobservable varijables, and
measurement error, showing how additional information about state variables
influences an observer's understanding of temporal changes in the physiological
system.

Andrei Rogers
Leader
Population Program



ABSTRACT

A number of multivariate stochastic process models have been de-
veloped to represent human physiclogical aging and mortality. In
this paper, we extend those efforts by considering the effects of unob-
served state variables on the age trajectory of physiological parameters.
This is accomplished by deriving the Kolmogorov-Fokker-Planck equations
for the distribution of the state variables conditionally on the process
of the observed state variables. Proofs are given that this form of the
process will preserve the Gaussian properties of the distribution.
Strategies for estimating the parameters of the distribution of the un-
observed variable are suggested based on an extension of the theory of
Kalman filters to include systematic mortality selection. Implications
of individual differences on the trajectories of the unobserved process
for observed aging changes are discussed as well as the consequences of
such modeling for dealing with other types of processes in heterogeneous

populations.
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I. INTRODUCTION

A. Background

There have been a number of efforts to develop a theoretical model for
human aging and mortality. The law of mortality due to Gompertz (1825) was
an early such attempt. Here, human mortality is modeled as a uni-dimen-
sional failure process based on a constant loss of vitality. It is inter-
esting that the "Gompertzian model" of human aging dynamics continues to
be applied especially for mortality at advanced ages (Fries, 1980).

Such simple 'failure process'" models of human aging and mortality,
although perhaps useful descriptive tools, are not totally satisfactory
models of human aging processes for a number of reasons. First, they im-
ply that human aging processes are uni-dimensional. It seems extremely
unlikely that the physiological dynamics of the genetic and environmental
determinants of huﬁan aging could be described by a uni-dimensional pro-
cess. Second, considerable empirical evidence has accumulated to show
that human mortality patterns at later ages are not well-described by the
Gompertz function (e.g., Horiuchi and Coale,1983; Wilkin, 1982). Third,
we often have a wide range of physiological covariates available for ana-
lysis from longitudinally followed populations. The simple model of Gom-
pertzian aging dynamics cannot use information on those covariates. In-
deed, such models de not explicitly describe the physioclogical mechanisms
underlying the aging process. Thus, it is necessarv to develop models
which can successfully utilize this information.

A number of models of human aging and mortality have been developed
which do describe the physiological mechanisms underlying aging changes.
Several of these are reported in Chapter 7 of Strehler (1977). Perhaps

one of the most successful of these models was due to Sacher and Trucco



(1962). This model describes physiological aging as a process by which
homeostasis was maintained in a multi-variate state space. Mortality

was described in the model in one of two ways. First, if one assumed that
the state space was of high dimensionality, mortality was described as a per-
manent loss of homeostasis due to the exceedance of some physiological
threshold. Since such a formulation would only be of theoretical use,

it was argued that mortality might also be modeled as an absorbing bound-
ary.

Such absorbing boundary formulations of mortality lead to serious dif-
ficulty in empirical applications since: a.) they imply that one must deal
with truncated distribution functions, and b.) they represent mortality
as a deterministic function of the state space variables. To deal with
this problem, Woodbury and Manton (1977) presented a theory of human aging
and mortality composed of two parallel processes. The first is a multi~
variate stochastic process describing the change in the distribution func-
tion for the state variables. The second is a jump process which repre-

sents mortality as a probabilistic function of an individual's state space

values. This model has been successfully applied to both epidemiological
studies of chronic disease risk (Woodbury et al., 1979) and to longitudi-
nal studies of normal aging processes (Woodbury and Manton, 1983, Manton
and Woodbury, 1983).

In the Woodbury and Manton (1977) model, it is assumed that all
relevant state variables are observed. Clearly, in practice such an as-
sumption is only an approximation. Consequently, in this paper we ex-
tend the Woodbury and Manton theory of human aging and mortality to in-
clude explicit consideration of the effects of unobserved state variables

in the process.



B. A Generalization of Aging Dynamics To Deal With Observed and
Uncbserved State Variables: The Problem

In Woodbury and Manton, a theory of human aging is based on a math-
ematical model of the change over time of a multivariate distribution func-~
tion that describes the location of a population in a multidimensional space
of state variables. Alternatively, the distribution function can be in-
terpreted as describing the prmbability that an individual has some set of
characteristics at some age. The state space does not include all factors
relevant to the time path and survival of an individual. The omitted fac-
tors manifest themselves in two ways. First, the movement of an individual
in the space is to some extent random: an individual's time path is gov-
erned by a set of stochastic (rather than deterministic) differential eq-
uations. Second, an individual's position in the space does not deter-
mine mortality, but merely the hazard or force of mortality.

Woodbury and Manton describe the change in the multivariate distri-
bution of the state variables by a Kolmogorov-Fokker~Planck (KFP) equation.
In the KFP equation, they specify four types of physiological dynamics:
drift (i.e., systematic change in mean values), regression (i.e., conver-
gence to mean values, due perhaps to homeostatic tendencies), diffusion
(i.e., divergence due to random influences), and mortality selection (i.e.,
loss from the population of frail individuals). To apply the KFP equation
they assume that the process is Markovian. Some aspects of an aging pro-
cess, however, may depend on an individual's entire life history.

In this paper, we generalize Woodbury and Manton's model to deal
with non-Markovian processes, unobservable variables, and measurement er-
ror. We present our results in a way designed to show how additional infor-
mation about the state variables influences an observer's understanding of

the temporal change of the physiological system.



Our model assumes that each individual is characterized by a set of

variables that change over time. Some of these variables are measured;
the rest are not observed over time, but as in the Woodbury-Manton model,
some information is available about them. Specifically, we assume know-
ledge of the probability distribution of the unobserved variables at the
initial time zero as well as of the stochastic differential equations de-
scribing their random time path. The stochasticity in the aging process
is generated by a Wiener (i.e., Brownian motion) process, as well as by
the randomness in the initial values of unobserved variables. The force
of mortality is a function of an individual's position in the state space.

We deal with the observed variables by developing a form of the KFP
equation that describes the change in the distribution of the unobserved
variables conditional both on survival to age t and on the trajectories
of the observed variables. We then show that if the force of mortality
for an individual is a quadratic function of the unobserved variables, it
is possible to estimate the means and variances of the unobserved variables
over time. The equations used are similar to the Kalman filter equations
developed by communication theorists to estimate signals. The equations,
however, generalize the usual Kalman filter equations to include mortality.

The force of mortality as a function of age and observed life history
can be directly estimated. As noted above, however, estimates based dir-
ectly on the observed data pertain only to the surviving population and
not to the population as a whole or to any homogeneous subgroup within it.
The surviving population differs from the entire population because of
systematic mortality selection. Specifically, individuals at high mortal-
ity risk on the unobserved variables will die off more rapidly and thus
will be underrepresented in the surviving population. Thus, to retrieve

the parameters of the process for the whole population, or for select in-



dividuals, one's model of the process must adjust for selection on both
observed and unobserved state variables. We show that, given the esti-
mates of the means and variances of the unobserved variables, one can
calculate the force of mortality for individuals at age t with identical
observed as well as unobserved characteristics. Thus, the impact on
aging and mortality of each of the observed and unobserved variables can
be identified.

C. Orientation

Our presentation is organized as follows:
~--We describe three different formulations of a model of aging and mortal-
ity based on Woodbury and Manton's suggestions. The first formulation
describes the process for a single unobserved variable using a simple ver-
sion of the Woodbury-Manton model. The second formulation shows how the
basic process is modified to include observations of time of death. The
third formulation introduces a second state variable which is continuously
monitored over time. For these three cases, we derive the equations, based
on the KFP equation, that give the (conditional) density of the unobserved
variable. We discuss how the various increments in information affect the
description of the dynamics of the aging and mortality process. In a fourth
section of this part of the paper, we sketch two extensions of the mo-
del: we allow the stochastic differential equations that describe the
trajectories of the variable to depend on the entire history of the obser-
ved variable, and we indicate how the model can be generalized to an arbi-
trary number of observed and unobserved Qariables.
~-We then briefly review the restrictions and assumptions suggested by Wood-
bury and Manton to estimate the distribution of the unobserved variables.
We make some analogous restrictions and assumptions and prove some results

concerning the Gaussian form of the distribution. By extending the theory



of Kalman filters, we present equations for the mean and variance of this
distribution. 1In addition, we give the equation for calculating the force
of mortality of individuals at time t with any specified set of observed
and unobserved characteristics.

--Next we discuss applications of the model to empirical studies of aging
and mortality processes with observed and unobserved variables.

-~We conclude with a discussion of how our model of human aging and mor-
tality relateS to other attempts to study the general problem of determining
the effects on a stochastic process of systematic population loss due to
selection or transition to an alternate state.

IT. ALTERNATIVE FORMULATIONS OF A MODEL OF AGING AND MORTALITY

A. The Basic Model

In this section we describe a model of aging and mortality of the
general type suggested by Woodbury and Manton (1977). For ease of compari-
son with the alternative formulations presented below, we describe this
model in terms of a single physiological or environmental variable Y(t):
generalization to an arbitrary number of variables is straightforward.

In addition to the process describing changes in physiological states we will
represent time of death by a nonnegative random variable T whose distribu-
tion depends on the value of Y(t). Hence, in addition to the evolution of
Y(t) described by a stochastic differential equation, the model includes

an additional random process that is described by a mortality indicator

I(t). The time path of each individual is thus described by I(t) where

I(t) = 1 if T>t, otherwise I(t) = O, (1)

and by Y(t) satisfying

dy(t) = a(t,¥Y(t)) I(t)dt + b(t,Y(r)) I(t) dW(t). (2)

In (2), W is a Wiener process that is independent of the initial value Y(0),



which is a random variable with known distribution. It is assumed that
the coefficients a and b are known, but that no observations are available
on Y(t) or I(t). Note that when an individual dies, the effect of I(t) in
(2) is to make further change in the coefficients a and b irrelevant: this
is reasonable for physiological processes. In the case of environmental
variables, I(t) can be omitted from (2): air temperature does not depend
on the survival of a given individual. The conditional distribution of T
is given by
-t
t _JO U(S,Y(S))ds, (3)
P(T>t|Y;) = e
0
where p is a bounded function, assumed known, that can be interpreted as the
force of mortality for individuals at time t with characteristic Y(t), and
t
where YO represents the entire history of Y from time 0 to time t.

The density function of Y(t) may be written as

ft(y) = a;'y P(Y(t)<y, T>t) = 'aa—y P(Y(t)<y, I(t)=1). (4)

As Woodbury and Manton note, the change in this density function over time

is governed by the Kolmogorov-Fokker-Planck equation:

3 ft(y) 5 1 2, .
TR gy-[a(t,y) £, + % 'a—y—z'[b (t,y) £, - ult,y) £ (). (3)

The three additive terms in this equation reflect the different forces
affecting the dynamics of change in the distribution of Y(t). The first
term describes the effects usually called drift and regression; the second
term, the effects of diffusion; and the third term, the effects of mortality

selection.



B. The Model When Death Is Observed

Suppose now that individuals' deaths are observed, so that it is known
whether T, the time of death for an individual, exceeds t. Define the con-
ditional demnsity of Y(t) by:

2

5y P(Y(t)<y|T>t). (6)

fg(y) =

Then it follows from the more general proof outlined in Appendix A that

— = - ——la(t,y) £*(y)]+ 3 —= [b7(t,y) £*(y)]
3¢ 3y t 3y t (7

- u(e,y) £5(y) + W) £2(y)
where
T(t) = Elule,y)|T>t]. (8)
This generalization of the KFP equation is similar to (5) except for the
additional factor given by (8). This factor, which may be interpreted as
the observed force of mortality at time t, can be considered a correction
term arising from the additional information known about whether an individ-
ual is alive.

C. The Model When Death And A Variable Are Observed

Now suppose that there is an additional physiological or environmental

variable X(t) that is observed over time. In particular, suppose that in

addition to (1) the following two equations describe the time path of an

individual:

dy(t) = a(t,Y(t),X(t)) - I(t)dt + b(t,¥(t),X(t)) - I(t)dWl(t) (9)
and

dX(t) = A(e,¥(t),xX(t)) - I(t)dt + B(t,x(t)) - I(t)dwz(t) . (10)

where Wl and WZ are Wiener processes independent of each other and of the

initial values X(0) and Y(0). Define the conditional density of Y(t) by



3 t
k% = - <y|T> 6'
B (y) = 55 PA(D[ e, X, (6"
where Xt represents the entire history of the process X from time 0 to time

0

t. Then as indicated in Appendix A,

3 £.(» 3 3% 2
o = - 2lat,y,X(©) £RR ()] + % =5 (bT(5,y,X(0) Ex%(y)]
y t 3 2 t
7 (11)
~u(E,y,X(0)) E25(y) + T(E,X) £5(y)
{A(t,y,xu))-zi(t,xg) S
+ £R%(y) - © (dy, - A(e,X))dt) s,
¢ B (£,%(t)) e 0
where
X(:,xg) = E(A(t,Y(t),X(e)| Tot, xg). (12)

Note the similarity of (1l1l) to (5) and (7). The additional, final term in
(11) describes the effect of observing X(t).

D. Further Extensions Of The Model

The processes considered up until now have been Markovian processes:

the coefficients in the stochastic differential equations (2), (9), and (10)

depend only on the current values of the variables. That is, it is assumed
that the current values on the individual's physiological variables are rea-
sonable approximations of the individuals' physiological "state'" and, conse-
quently, will describe the future changes of that state except for stochastic
innovations. When X(t) is observed, it is possible to generalize the process

to depend on the entire history of X This implies that the prior physio-

t
0
logical characteristics of the individual, and possibly the trajectory of
change of those physiological characteristics, must be included in the defini-
tion of physiological state. For example, having elevated blood pressure at
the current time may not be sufficient to describe the state of the individ-

ual with respect to mortality risks. Risk may be more dependent upon accumulated

damage (perhaps represented by the elevatien ef pressure over a long
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period of time) or upon extreme values (e.g., the number of times a blood
pressure threshold was exceeded). Such processes may be modeled by replacing
X(t) in (9), (10), (11) and (12) by Xé. A sketch of the proof is given in
Appendix A.

Each of the three formulations presented above can be readily extended
to the general case of any number of state variables. This extension
requires the substitution of the appropriate matrices.

ITI. ESTIMATING THE UNOBSERVED VARIABLE

Woodbury and Manton (1977) suggest some assumptions and restrictions
for estimating the parameters of the observed process. Some of these
will be useful for estimating characteristics of the unobserved variables.
In the following we apply their general time series approach to the var-
ious formulations described above..

A. The Basic Model

Consider the first formulation of the model, presented above in sec-
tion ITIA, in which neither death nor the state variable are observed. This
case is primarily of theoretical interest although if enough parameter esti-
mates are available from auxiliary data, the equations below will define the
evolution of the distribution of the unobserved variables. Assume that
the observed variable follows a Gaussian distribution at time 0., Further-

more, restrict the stochastic equation in (2) as follows:
d¥(t) = ao(t) + al(t) Y(t)dt + b(t)dwl(t). (13)
It is obvious that the distribution of Y(t) is Gaussian at any time t.

The mean, m(t), and variance, y(t), of this distribution are given by:

dm(t)

It = ao(t) + al(t) m(t) (14)

and
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dy(t)

He) _ga (6) v(o) + bo(t). (15)

B. The Model When Only Death Is Observed

Now consider the second formulation presented above. Assume that the
unobserved variable follows a Gaussian distribution at time O and that the
force of mortality is a quadratic function of this variable:

M(E,T(E) = ug(e) + Y(8) u (8) + Y2 () 1,y (o). (16)
Furthermore, restrict the stochastic differemtial equation in (2) as follows:
dy(t) = 1(t) - [ao(t) + al(t) Y(t)dt + b(t)dwl(t)]. (17)

It follows that the distribution of Y(t) conditional on I(t) = 1 or
T>t (in other words, among the surviving population) is Gaussian at any time
t: proof of this is a special case of the more general proof sketched in
Appendix A; a specific proof may be found in Yashin (1983). The mean, m(t),
and variance, y(t), of this distribution are given by:

dm(t)
dt

ao(t) + al(t) m(t) - vy(¢) ul(t) - 2m(e) v(t) uz(t) (18)

and

dy(t)
dt

2a,(6) Y(£) = 2uy(t) Y2e) + bi(e). (19)

Note the additional terms in (18) and (19) compared with (14) and (15). The

observed force of mortality is given by the following formula:
H(E) = u () + m(0) u(6) + (@ (6) + ¥()) wy(e). (20)

If restrictions are placed on the u's in this formula--e.g., so that they
are constant or follow certain specified functional forms--then it may be
possible to estimate their values given the observed values of U. Another
approach is to restrict (16) to:

uCe,Y(E) = ¥7(e) "u(e). (21)
This constraint is analogous to the formulation in Vaupel et al. (1979)-

Y2 corresponds to the variable called "frailty". The formula in (20)
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reduces to

- 2
u(e) = (o (e) + y(e)) - u(e), , (22)
so that the time path of u(t) can be calculated from the observations of

u(t) and the estimates of m(t) and y(t).

C. The Model When Death And X(t) Are Observed

Suppose now that X(t) is observed. Assume that the distribution of the
unobserved Y(0) conditional on the observed X(0) is Gaussian and that the

force of mortality is a quadratic function of Y(t):

(e, 7(e), %5 = 1 (6,x5) + v(e) u(e,x5) + vi(0) u,(£,X0). (23)
A ¢ 07’70 1770 27’70

In adaition, restrict the stochastic differential equations as follows:

av(e) = [ao(t,Xg) + al(t,Xg) Y(t)ldt + bl(t,Xé)dWl(t) + bz(t,Xg)dWZ(t) (24)
and

ax(e) = [A(t,X) + Al(t,Xg) ¥(t)1de + B(t,X ) dW,(c) . (25)

Note that (24) and (25) are more general than (9) and (10). First, the

coefficients may depend on the entire history of X this represents the

t .
o
extension to the non-Markovian case. Second, the first equation now de-

pends on both Wiener processes (i.e., W, and wz). This is a straight-

1

forward generalization that may be useful in estimation.

As outlined in Appendix B, it follows that the distribution of Y(t)
conditional on X(t) and T>t is Gaussian. Furthermore, the mean and variance
of this conditional distribution are given by:

dm(t) = [a (t,X0) + a,(£,X0) m(t) - v(£) u (£,X5) - v(O)m(t) u(e,X)lde
0"7’"0 17’70 1°7°70 2°7°70

t t t
bz(t’xo) B(t,xo) + Al(t,XO) y(t)

+ ]
Bz(t,xg) (26)

[dX(t) - (Ao(t,xg) + Al(t,XS)m(t))dt].

and



13

t
. (£,X7)
dy(t) _ , ty _ 200 £y - £y o,
el L[al(t,xo) 5 Al(t,XO) “2(t’xo) r(t)]
t,Xg), . 27
2t A (e, X0) )
- y(t) + bl<t,XO) - Y.
B (t,XO)

These two equations are similar to the previous expressions for the mean and
variance in (18) and (19) except for the final terms (and terms arising from
the inclusion of W2 in (24)). These final terms can be viewed as corrections

introduced because information is available about XS. The terms will look

familiar to students of continuous-time Kalman filters. Indeed, one way of
interpreting (26) and (27) is that they generalize the usual Kalman filter

equations to include the force of mortality.

The observed force of mortality can be related to the observed vari-

ables and the distribution of the unobservable variables by

H(E,%0) = ug(E,X0) + m(e) up(6,X5) + (a(6) + () uy(t,%). (28)

D. Discrete Time Observations

In most empirical studies, the observed variables are not monitored
continuously but are observed from time to time. This section describes how
the formulas developed above may be applied to the case of discrete time
observations. Assume that the unobserved process is governed by the stochas-
tic differential equation

dy(t) = (ao(t,X) + al(t,X) Y(t)) dt + b(t,X)dwt, (29)

where the process X is now the sequence of (tn’Xn)’ n>0. That is, there is

a sequence of observation times tl’ tz,..., tn’ and a sequence of measure-
ments Xl’ X2,..., Xn' The Xn sequence can be described by the generating
procedure:

D, = +

X = a(T,% Y(T) + (T % € (30)

where A(t,X) and D(t,X) (as well as ao(t,X), al(t,X), b(t,X)) are known
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functions of t and the entire history of the process X up to but not including
time t and where £n is a sequence of Gaussian-distributed random variables
with mean O and variance 1. From a straightforward manipulation of (30), we
see that the time series of the unobserved variables, Y(Tn) can be generated
from the observed time series in X and the assumption of the Gaussian diffu-
sion process, with appropriate normalization, for Y(Tn). Likewise, (30) il-
lustrates how the unobserved variables affect the observed process. As before,

we assume that the force of mortality may be represented by

BCELX,T(E)) = (8,50 + ¥(0) (6,5 + v2 () b (.30, (31)

where the ul(t,X) are nonnegative, measurable functions of t and the entire
history of X up to but not including time t.

By generalizing the method of proof used in Yashin (1980) it
can be shown that the conditional distribution of Y(t) given I(t) = 1 (i.e.,

T>t) and X is Gaussian. The mean and variance of this distribution are:

n(t) = m(0) + Jylag(s, 0 + a;(s,0) m(s) - ¥(s) 1 (s,%)

\ - 2
- v(s)m(s) uz(s,X)]da + tilt A(tn,X) Y(tn) (ﬁ.(tn,X) Y(tn) (32)
s
2 -1
+ D7 (t ,X)) < (X - At ,Xm(t ).
n n n n

and
\ = t 2 2
((e) = y(0) + IO[Zal(s,X) Y(s) +b7(s,X) -~ 2u,(s,X) v (s))ds
2 2 2 ) -1 (33)
+ I t =) A (t ,X -
e yo(e =) AT LX) fAT(e LX) y(e ) 4+ DT(e LK T
—
These equations may be viewed as gzeneralizations of both continuous time
and discrete time Kalman filter algorithms.

IV. APPLICATIONS

A. General Observations
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To use the model empirically, it is necessary to produce estimates
of the values of the coefficients in the stochastic differential equations
(25) and either (24) or (29). Although discussion of the details of statis-
tical estimation is beyond the scope of this paper, we note that if obser-
vations are available on a population of individuals across time and over
age, then the coefficients of these equations are estimable given the appro-
priate identifying constraints. For example, by specifying that in equation
(29) certain coefficients can vary by age, but not time (i.e., the con-
straint of no cohort effects operating through X), we can estimate certain
coefficients for (24) if cohort effects do emerge. Alternately, previous
theoretical and empirical research may suggest values or functional forms
for the coefficients that will facilitate estimation. In particular, there
have been a number of longitudinal studies of aging processes (e.g., the
first and second Duke Longitudinal studies of normative aging) which can
provide estimates of the age rate of decline of a broad range of physiolo-
gical parameters. These estimates could be employed directly in the equations.

Given the coefficients, (26) and (27) or (32) and (33) permit estima-
tion of the mean and variance of the conditional distribution of the un-
observed variable. Equation 28) can then be used as the basis for estimating
the force of mortality for amn individual with any specified characteristics
and at any age. As noted earlier, this estimation might require specifying
certain functional forms for UO’ ul, and uz. Alternatively, it might be

assumed that and ul are equal to zero, in which case the values of uz

4o

over time can be immediately calculated from the observations of Y over time.

B. Unobserved Risk Factors

The model may be useful in a varietv of applications where data are
available over time concerning some variables, but there is reason to be-

lieve that other significant variables are unobserved. In some cases
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enough theoretical or empirical knowledge may be available about these unob-
served variables so that the initial probability distributions and stochastic
differential equations can be specified with some confidence. In

such cases estimation of the evolution of the unobserved variables may be

of considerable interest. In other cases, it may be suspected that some
unmeasured factor such as "frailty'" is an important source of heterogeneity
in the population. Such a variable may have to be introduced by im-

posing constraints in the model. For instance, Vaupel et al. (1979)

assume that an individual's frailty is constant over age and that the
distribution of frailty among individuals follows some simple distribu-
tional form. In some studies the unobserved variable may not be of much
interest: it may be viewed as a nuisance important only because it ob-
scures the actual relationships among the variables of direct interest.

As a specific example of this kind of application, consider a longi-
tudinal analysis of chronic illness based on the kind of information col-
lected, say, in the Framingham study. Manton et al. (1979) and Woodbury
et al. (1979, 1981) present analyses of this sort, based on the insights of
the Woodbury-Manton model. In their analyses, the change in coronary heart
disease risk factors in the study population was modeled as an auto-
regressive process adjusted for the effects of systematic mortality selec-
tion. It seems likely the population was subject to risk factors not
fully represented by the available measurements, i.e., systolic and diastolic
blood pressure, serum cholesterol, uric acid, etc. The stochastic dif-
ferential equations presented here, and the Kalman filter equations gen-

eralized to represent the effects of mortality selection offer a range

of strategies for a.) estimating the impact of unobserved risk factors,

and b.) identifying the "true' effects of observed risk variables.
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C. Partially Overlapping Studies

Sometimes longitudinal data are available from several related studies
such that some variables are observed in all studies, but other variables
are observed in only some studies. Having a set of such studies can greatly
facilitate the estimation of the model parameters. For instance, the Wood-
bury-Manton model has served as the basis for analyses of coronary heart dis-
ease risks not only in the Framingham study population, but also in the popu-
lations observed in the Duke Longitudinal Study of Aging (Manton and Woodbury,
1983), and of a Kaunas, Lithuania study. Partially overlapping sets of ob-
served variables were available for these three analyses. The Duke study
differed from the Framingham study in that uric acid concentrations were not
observed, but scores were taken on the Wechsler Adult Intelligence Scale.
In the Kaunas study, intelligence test data were not available, but unlike
the other data sets, observations were available of smoking behavior and of
an index of body mass.

To compare and synthesize such imperfectly coordinated data sets, it
may be useful to employ a model that includes all of the variables observed
in any of the studies. The model could then be applied to the different
studies by specifying which variables were observed and which were not ob-
served. The effects of all of the variables across all of the studies could
then be compared. Furthermore, process parameters estimated for an "ob-
servable'" in one study could be applied to another study where that vari-
able was ''unobserved".

D. Measurement Errors and Indirect Measurements

Most variables can only be measured with some error: sometimes the
noise can be severe. In other cases, a variable of prime interest can not
be observed directly, but a correlated variable can be monitored and used as

an index. For instance, the elasticity of blood vessels may be important in
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coronary heart disease processes, but observations may only be available on
blood pressure. Indeed, most of the measurements available in studies of
aging processes may only indirectly reflect the underlying physiological
state variables.

As noted above, the formulas presented for estimating the mean and
variance of the unobserved variables can be interpreted as extensions of
the Kalman filter equations developed to detect signals in noisy measurements.
Thus, the Kalman filter type equation presented here can be useful in id-
entifying thé& true variables of the process, in the face of measurement er-
ror or indirect assessment, from studies with multiple measurements taken
over time.

E. Assumptions

Efforts to apply the model will, of course, be dependent on the rea-
sonableness of model assumptions for a specific application. In this sec-
tion, we discuss assumptions and some strategies for extending their appli-
cability to certain situations.

l. Gaussian Distribution

The distribution of the unobserved variables conditional on the ob-
served variables at time zero is assumed to be Gaussian. Furthermore, the
model implies that this conditional distribution among survivors will be
Gaussian at any time t. For some variables this may not be true, but a
transform of a variable may be more or less Gaussian distributed. For
example, Manton and Woodbury (1983) use as their variables the logarithms
of pulse pressure, diastolic blood pressure, and serum cholesterol level.
Consideration of the reasonableness of this assumption must be based om
available theoretical insight about the dynamics of the unobserved
variable (see Manton and Stallard, 1981).

2. Quadratic Hazard
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The force of mortality is assumed to be a quadratic function of

the unobserved variables. This assumption is closelyv tied to the Gaussian

assumption, as the following example illustrates. Let u(t,Y) be the force
of mortality at time t for an individual with unobserved characteristic

Y. Suppose

uCe,v) = v2 uce), (34)
where u(t) might be interpreted as the force of mortality for some standard
individual for whom Y equals one. Now consider an alternative formulation:
u(t,z) = z ue), (35)
where z is a characteristic that equals Y2. This formulation is the omne
used in the "frailty' model proposed by Vaupel et al. (1979) and applied in
studies by Manton et al. (198l) and Horiuchi and Coale (1983). Finally,
consider the formulation where

u(t,x) = u(e) ¥, (36)
where X is a characteristic that equals the logarithm of YZ. This approach
has been adopted in a variety of studies, including Heckman and Singer (1982).
Given the appropriate probability distributions, all three formulations can
be made equivalent. For instance, the first formulation with Y following a
Gaussian distribution with mean zero and variance ome is equivalent to the
second formulation with z following a Gamma distribution with scale para-
meter one and shape parameter 0.5.

In some respects the second formulation, involving z, is the most
transparent since z can be interpreted as measuring the relative risk of
mortality for an individual compared to some "standard" individual. Since
Y does not have to be a single variable, but can be a vector of variables,
it is possible to consider z defined by

z =Y aYa (37)
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where a is a matrix. In this case, z will have a distribution known as a
quadratic form of the Gaussian distribution. Such quadratic forms are very

flexible and can take on a variety of shapes. Thus, the assumption that

each variable in the unobservable set of variables Y is Gaussian distributed
can be readily generalized to the case where the unobserved variables can,
in effect, follow a quadratic form of the Gaussian distribution. Biologically
the quadratic form of the hazard is reasonable for physiological parameters
subject to homeostatic forces. That is, variables that are essential to
physiological functioning should have a viable interior range and non-
viable external ranges where homeostasis breaks down.

3. Differential Processes

Both the observed and unobserved variables in our model are assumed
to be continuous and governed by a differential process. In a variety of
studies this may be satisfactory. In some instances, however, categorical
variables that are either constant over time or that follow some jumping
process may be important. Constant categorical variables, like sex, race,
or national origin, can be handled by stratifying the data. Discrete-
state variables that jump from one state to another pose a much more diffi-
cult problem. Examples of such variables that may be relevant to studies
of aging and mortality include marital status, type of employment, place
of residence, and such factors as whether an individual is hospitalized or
in a nursing home, has had a stroke or a heart attack, has quit smoking,
and so on. It is possible to extend the models presented here to the more
general case where some of the observed or unobserved variables follow
a jumping process as opposed to a differential process.
V. DISCUSSION

In both empirical and theoretical studies of human aging and mortality,
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the need for modeling individual differences in aging processes has been
repeatedly demonstrated (e.g., Strehler, 1977; Economos, 1982; Manton and
Woodbury, 1983). Unfortunately, there aremany instances where those differences
are due to unobserved variables. 1Indeed, the nature of the sources of these
differences, such as differences in the age-related loss of functional
"vitality" or the impact on longevity of genetic factors, suggest that dif-
ficulties in measurement and conceptualization will dictate that such in-
dividual properties will remain at least partially hidden for a long time.
Nonetheless, successfully coping with the effects on  aging processes of
such latent heterogeneity will be a necessary component of adequate models
of human aging and mortality. For example, Economos (1982) has argued
for the necessity of joining "Simm's idea of statistically distributed
individual aging rates'with Gompertz's concept of "accelerated decline
of vitality"in order to relate the observed pattern of rates of aging with
the observed pattern of the rates of dying. Indeed, the logic by which
these concepts are related is that of a diffusion process where temporary
sojourns above a threshold value cause the rate of increase in mortality
rates to be more rapid than the rate of decline of physiological vitality.

The model we have presented provides a flexible strategy for assess-
ing the impact of such heterogeneity on human aging and mortality processes.
In particular, it generalizes the notion of the effects of heterogeneity
from that of a fixed distributicm to the effects of an unobserved process.
Thus, it can lead to an empirical strategy for assessing both function
change and mortality which is rich enough to represent the complexity of
current conceptual models of human aging and mortality.

We presented our model as a development of the Woodbury-Manton model
of aging and mortality published by this journal. Our model can also be

viewed as having roots in analyses done by numerous researchers in a variety
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of disciplines. Often analysts working in the various fields of sta-
tistics (e.g., Lundberg, 1940), labor economics (e.g., Blumen, Kogan
and McCarthy, 1955), sociology (e.g., Singer and Spilerman, 1974), re-
liability engineering (e.g., Harris and Singpurwalla, 1968), demography
(e.g., Sheps and Menken, 1973), and health policy analysts (e.g.,
Shepard and Zeckhauser, 1977), were only partially aware of the mutual
relevance of their methodological research.

The thrust of much of this diverse body of research is how to cope
with the effects of population heterogeneity on the parameters of the
process of interest. The most common conceptualization of the problem is
that there is some unobserved variable that influences the likelihood that
an individual will ''die" at some particular time. Sometimes this vari-
able is of direct interest; in other cases, it is essentially a nuisance.
When it is of direct interest, methods to estimate parameters of its
distribution, may be important. But whether it is of interest or just a
nuisance, one must be concerned with its effects in order to uncover the
underlying relationship between the force of "mortality" and the variables

of interest.
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APPENDIX
A. Proof of the Generalized Kolmogorov-Fokker-Planck Equation
Consider the random process (YxX) defined on probability space (Q,H,P)

by the relations:

a¥(e) = (ale,¥(£),%5) T(£)de + b(e,¥(t),X)) T(£)dW (£),Y(0) (A1)
and
dx(t) = (H(t,Y(t),XS) I(t)de + B(t,Y(t),Xg) I(t)dw,(t),X(0) (a2)

where Wl(t) and W2(t) are independent Wiener processes that are also inde-
pendent of the initial conditions Y(0) and X(0). Coefficients a, A, and b
are measurable functions of t, Y(t), and the entire history of the process
X from time O to time t. B is a positive, measurable function of t and the
entire history of the process X. I(t) is a two state (1,0) continuous time
process with I(0)=1, such that the transition intensity function

BCE, (), X, T(E)) = u(e,¥(6), %) 1(b) (43)
where t(t,Y(t),XS) is a measurable function of t, Y(t), and the entire his-
tory of the process X up to time t.

The proof of the generalized Kolmogorov-Fokker-Planck equation for the
density of the unobserved variable conditional on I(t)=1 and XS is based on
the formula for the conditional mathematical expectation of an arbitrary,
bounded, doubly differentiable function F(Y(t)). This formula may be de-
rived as a consequence of the general estimation approach based on semimartin-
gale theory (Jacod, 1979; Bremand, 1981l), as well as the methods of filtration
of random processes with jumping components (Yashin, 1969) and the analagous
methods given in Liptzer and Shirjaev (1977). Here we sketch the proof.

Using Bayes' formula, one can write

t

E(£(Y(e)) [1(e) = 1, X)) = E'(F(Y(t)- ¢(t)) (a4)

where ¢(t) is the likelihood ratio given by
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A " 2
o(t) = exp{fg A(u,Y(;i;%;)— A(u,X) dW(a) - & IS(A(u,Y(uZEX) - A(u,X)) i
B (u,X)
# LoD = u(,Y(w),0)du 5)
where
ey = 8 4 X)) - Alu,X)du »

0 B(u,X)
is the Wiener process with respect to the family of O-algebras generated by

the process X and where

A(t,X) = E(A(t,Y(t),Xg)II(t) = 1,%;) (A7)
and
H(E,X = B, ¥(0),X) |1(8) = 1,%) (48)

The symbol E' means the operation of mathematical expectation with respect

to the marginal probability measure concentrated on the component Wl of the

Wiener process.
Using Ito's differential rule (Liptser and Shirjaev, 1977), one can

readily transform (AS5) into the differential relationship
ACt,Y(t),X5) - A(t,XS) _
o(t) dw(t)

Tt
B(t,XO)

do(t)

(49)

(uCe,¥(0),Xy) = H(r,X5))de

In order to calculate (A4), represent the product of F(Y(t)) and ¢(t) by
using Ito's differential rule. This yields

F(Y(t)) ®(t) = F(Y(0)) 9(0) + fg F'(Y(u)) ¢(u) a(u,Y(U),Xg) du

A(u,Y(u) axg) - K(U,X) _
dw(u)

+ Jp F(E(w) (w) :
B(u,XO)

-, Y (), X)) - T,XDdu + S5 F (10w b(u,¥(w),X0)dW, ()

- % 5 ) S b2(u,Y(u),X8) du

where F' and F" are the first and second order derivatives of F with respect

to Y.

(A10)
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Taking the mathematical expectation E' of both sides of (Al0), we get

E(F(Y()) | 1(2) = 1,%)) = E(F(Y(0)[T(0) = 1,%)) + [5 E'(F'(¥(w) a(u,¥(w),X)¢(u))du

4 7B E ) 6200, Y (W) ,0) 9(w))du

- S5 EYFOE @)L, Y(w,X) - ¢(w)du
. _ (All)
+ [ EN(F(Y(w) H(w,%) ¢(u))du
+ TG N EF(aCw) p(uy - ATE = AR, gy,
By again using Bayes' formula one can show
E(F(Y(£)) | T(e=1) ,X)) = E(F(Y(0)[1(0) = 1,X)
+ Jg E(FU(Y(W)* a(u,¥(w,0 [ 1(w)=1,X)du
- g E(FU(Y (W) Bz(u,Y(u),X)|I(u)=l,Xg)du (412)

+ fg E(FCY (W) (H(u,Xy) = u(u,¥(w),%)|I(w=1,%))du
AU, Y (w),X) - A(u,xg)
B(u,X)

+ S5 E(F(T(w) | T(w=1,X) i (w).

Using the arbitrary doubly differentiable function F(Y) such that

F(+® =F' () =F'(+= =0 (A13)
and rewriting (Al2) in terms of the integral with respect to the conditional

density

9 t
X N = 35 PAO|1(0)=1,%0) _ (AL4)

one can finally get the conditional Kolmogorov-Fokker-Planck equation given
in the main text.
B. Proof that the Conditional Distribution is Gaussian

In order to prove that the conditional density ft(y) is Gaussian,
some additional assumptions are needed. We assume that the coefficients a,

A, and u have the following forms:
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a(u,Y(u),Xg)

ao(u,Xg) + al(u,Xg) Y (u)

AGu,Y(w),X5) = Aj(u,X0) + A (u,X0) Y(w

L t t t t
M, Y (u),X ) uo(u,XO) + ul(u,XO) Y(u) + “2(U’X0) Y%u)

of time and of the entire past of the process X from time O up to time t.
We assume also that the initial condition Y(0) is Gaussian distributed con-

ditional on I(0)=1 and XS,

F(y(e)) = et & Y(E) (B2)
Denote by
v = B 1(e)=1,x) (83)
For this special case (Al2) may be written as

- ..t t oy
Wt WO + o anO(u,Y(u)) Wu du + a fO Wn al(u,X)du

- 93 ft Yy b2( X)du + ft (u,X) ¥" d

2 70w’ W o Hzlu.f) F, v
(B4)

+

78 uy(u,%) 72 () Yo+ S5 (0B n(w ¥ du

Lt :
i fO ul(u,X) Wu du

-1 st e A gy gty ALD Bl gy,

u B(U,X) 0 u B(U.,X)

where X' and X" denote the first and second derivatives with respect to a

and

n(t) = E(Y(t)[I(t)=l,X8) (B5)
Denote by Ty and Yo the mean and variance of the conditional distribution of

YO. Then the function WO can be written as

Yy = exp {iom, - % azy } (B6)
0 0 0

Given this particular form and the equation for Yt’ we seek Ytin the similar
form:

Wt = exp {iom(t) - % uzy(t)} (B7)
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where m, and Ye satisfy the following stochastic differential equatioms

dm(t)

c () dt + dl(t) dW(t) (B8)

it

dy(t) = C,(t) dt + dz(t) dw(t)

The coefficients in (B8) can be found from (Bl) and (B7).

Using the equalities

U= da¥ WM = - qlY, Yy = - L 4 o0 ¥ (B9)
m mm m

fr=-h¥a, W o =-kva

and comparing the stochastic differential of wt represented in terms of m_

and Ye with the right hand side of (B5), we have

cle) = ay(e,X) + a,(t,X) m(t) - v(e) (1, (e, %) + uy(e,X) m(t))

d; (t) = %%%f%% Y(t), d,(t) =0 (B10)
¢ (t) = b%(e,x) - 2 a (6,0 y(8) - u(t,X) ey - §E§§§§ I

It remains to be shown that the equation for Yt has a unique solution.
Proof of this follows easily from the approach suggested by LiptZer and
Shirjaev (1977). Furthermore, generalization to the case described in
Section III.C.--i.e., when noise in X and Y is correlated--also follows

easily from Liptzer and Shirjaev.
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