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SOME GENERAL RELATIONSHIPS 
IN POPULATION DYNAMICS 

W. Brian Arthur and James W. Vaupel 

Important recent research by Samuel Preston and Ansley Coale 
(1982) extends the Lotka system of stable population equations (Lotka 
1939) to any population. Here we present an alternative general system 
and describe its duality with the Preston-Coale system: We derive these 
results by considering the calculus of change on the surface of population 
density defined over age and time. We show that analysis of this Lexis 
surface leads to all the known fundamental relationshps of the dynamics 
of single-region human populations, as well as some interesting new rela- 
tionship s. 

The Lexis Surface 
A useful concept in population dynamics is the notion of a population 

surface that represents the size-density of a population at various ages 
and times (Lotka 1926, 1931, and 1940; Preston and Coale 1982). Let 
No (a ,f ) be the number of live individuals in some population in a unit age 
and time interval, at age a and time f. Over the age and time plane, 
No (a ,f ) will form a surface, with discontinuities at the boundaries of each 
small age-time interval. If the population is large, we can approximate 
this No (a ,t) surface with a continuously differentiable surface N ( a ,  t) 
which we may interpret as representing the density of the population at 
instantaneous age a and time t .  Generahzing the notion of a Lexis 
diagram, we will call the surface defined by N (a, t )  a Lexis surface. 



The Fundamental Local Identity 
Assume, for the time being, that the population is closed to migra- 

tion. In exploring the dynamics of change in population size, it is useful 
to focus on rates of change in three directions--as age increases, as time 
increases, and as age and time increase in tandem. It is convenient to 
work with relative or proportional rates of change known as intensities, 
rather than with absolute rates. Consequently, define: 

~ ( a , t )  = ( a ~ ( a , t ) /  a t ) /  ~ ( a , t ) ,  ( 1) 

p ( a , t ) =  - ( t l ~ ( a + z , t + z ) / a z ) / I V ( a , t ) ,  a t x  = O .  ( 3) 

The importance of the age-specific growth rate r was brought to the 
attention of demographers by Preston and Coale (1982). The age inten- 
sity v, which gives the relative rate of change in the density of the popula- 
tion with age, is also a useful quantity to consider, as we will show. The 
value p gives the relative rate of change in the density of the population 
in the cohort direction where age and time increase together. In a popu- 
lation closed to migration, p is equivalent to the well-known force of mor- 
tality'. 

The values of r ,  v and p are related by what we might call the funda- 
mental local identity of the Lexis surface. In any population at any age a 
and time t : 

Preston and Coale prove t h s  result in the appendix to their 1982 paper. 
(See also Horiuchi 1983.) Here we give an alternative derivation that may 
be of some pedagogical value. As shown in Figure 1, one can imagine r ,  p, 
and v as vectors pointing in three directions in a Lexis surface. In one 
unit of time, the height of the surface, N ,  changes at an intensity r .  Simi- 
larly, over one unit of age, IV changes at an intensity -v. Over the diago- 
nal, N falls off at an intensity p-but t h s  diagonal is d 2  long, so the 
change over one unit of distance is -p/ c 2 .  Projecting T and v in t h s  45' 
direction must also give t h s  magnitude2: 

Substituting 1/ c 2  for cos(45) and multiplying by - c 2  yields (4 ) ,  the fun- 
damental local identity. 

The fundamental local identity in (4 )  turns out to be equivalent to 
one of the main representations of population dynamics. Substituting (1)  
and (2) in ( 4 )  and multiplying by - N ( a , t )  yields the von Forster (1959) 
equation: 

1 The minus sign in the definition of V and p and its absence in the definition of r is a 
mathematical nuisance. This convention, however, is consistent with demographic usage and 
has the advantage that in a population closed to migration p d l  always be positive and in 
many populations r and v will be positive a t  most ages. 
2 Technically, T and v are the components of the (normalized gradient of IV(a , t ) .  P r e  4 jecting this gradient into the cohort direction must yield - p /  2.  



t T i m e  

Flgure 1. Vector proof of the fundamental local identity. 

Through Time and Age on a Lexis Surface 
The fundamental local identity and its von Forster equivalent 

describe local relationships at a point on the Lexis surface. We now intro- 
duce a calculus of line integrals that permits comparisons of population 
densities a t  distant points on the surface in terms of the local intensities 
defined above. To begin, recall that the standard differential equation 

has the solution (see Coddington and Levinson 1955): 

Using t h s  equation, population densities a t  different ages and times can 
be related by integrating intensities of change over appropriate direc- 
tions. For example, to arrive at:  

(i) the population density a t  some age a2 knowing that of a younger age 
a a t  the same point in time t , we use (2) 



so that 

(ii) the population density a t  a given age a at some time t z  knowing that 
a t  an  earlier time t l ,  we use (1) 

a N ( a , y ) / a y  = ~ ( a , y ) N ( a , y )  

so that 

(iii) the population density for a cohort at some age a2 knowing that at  
an earlier age and time a l , t  , we use (3) in an equivalent form 

so that 

With these three expressions in hand, it is possible to navigate a t  will 
around a Lexis surface. For instance as shown in Figure 2, to  construct 
the population density at a position (a2,tz),  knowing it at a reference 
position (a l , t l )  (where az > a l  and t z  > t l )  one illustrative (if not very 
useful) route would be to travel down the cohort line from a l  and t l  to 
some point a g  and t 1+a3-a1, then to move along the time line to tz ,  and 
finally to move up the age line to az.  The formula for the entire voyage 
would be 

A New Generalized System 
This "navigational" calculus can be used to derive a new generalized 

system of demographic relations as well as the Preston-Coale system. 
The relationship at  time t between the population density at age a com- 
pared with the population density at birth could be expressed via an infin- 
ite number of different routes on a Lexis surface. One particularly simple 
route is to travel back from t along the birth axis and then follow the 
appropriate cohort up the diagonal to age a .  For convenience in notation 
let g (y , t )  equal T (0,t  -y) , so that g (y , t )  gives the growth rate of births 
y years before time t :  

g ( ~ , t )  = - ( a ~ ( o , t - y ) / a y ) / ~ ( t - y ) .  (13) 



P o p u l a t i o n  
D e i l s i  t y  
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Figure 2. A voyage on a Lexis surface. 

Then, 

and from ( 1  1) 

The exponential in (15)  simply the cohort survival function pc ( a  ,t ). Com- 
bining (14) and (15) thus yields the relationshp we seek 

This identity will form the basis of the new generalized system. 
Let the crude birth rate a t  time t  be defined by 

b ( t )  = N ( O , ~ ) /  j Y ~ ( n  . t )da  , 
0 (17) 

where w is some advanced age beyond whch no one survives. Let the pro- 
portional age distribution of the population be given by 

c ( a , t )  = ~ ( a , t ) / j ' ~ ( a . t ) d a  o . 



so that from (17)  

c ( a , t )  = b ( t )  N ( a , t ) /  ~ ( 0 , t )  (18)  

And let rn ( a  , t )  be the maternity function such that 

Using (16) to substitute for N ( a  , t )  in ( 17 ) ,  ( 18 )  and ( 19 ) ,  and canceling 
N ( 0 , t )  where possible, we obtain, 

The new generalized system is given by ( 20 ) ,  (21)  and ( 2 2 ) .  As with the 
Preston-Coale system, t h s  system is valid over age and time for any  
closed population and is readily extended, as noted below, to any popula- 
tion open to migration. 

When the population is stable, p , ,  m ,  and the growth rate in births, 
g ,  are constant over time, so that the system reduces to the standard 
Lotka set of equations: 

b = l / L Y  e-ga p C ( a )  d a  , (23)  

~ ( a )  = b e'ga pc ( a )  , (24)  

It turns out that just as the fundamental local identity is the von 
Forster equation in a different guise, the new general system is closely 
related to the Lotka-Volterra integral equation, the most standard 
representation of population dynamics (see Keyfitz 1968). Let ~ ( t ) .  
instead of ~ ( 0 , t )  denote the number of births at time t .  The identity in 
(14) implies 

e -J ) (yo t )dy  = B ( t  - a ) /  B ( t )  . (26) 

Making the substitution in the characteristic equation (22)  and multiply- 
ing through by B ( t  ) yields 

B ( t )  = J W l ? ( t - a )  o p , ( a . t )  m ( a , t )  d a  . (27)  

which is the familiar homogeneous form of the Lotka-Volterra integral 
equation. 



The Preston-Coale System 
The Preston-Coale system can also be readily derived using the cal- 

culus of the Lexis surface. Taking the direct route from age zero to age a 
at  time t yields 

Using the fundamental local identity in (4), the exponential term in (28) 
may be rewritten as: 

The second term in this expression is simply the period survival function 
pp(a,t). Thus, 

which is the identity that forms the basis of the Preston-Coale system. As 
illustrated in Figure 3, t h s  identity can be thought of as describing a 
route from age 0 to age a at time t that consists of a series of tacks, up 
the cohort direction, then back along the time direction, and so on. The 
new generalized system is based, on the other hand, on 9 voyage back in 
time along the birth axis and then up the cohort diagonal . 

In the same way that the new system can be derived from (16), the 
Preston-Coale system follows from (29): 

, D 

As Preston and Coale remark, when population is stable this system also 
reduces to the familiar Lotka system. 

9 Other routes on the Lexis surface lead to other systems. Such routes run from some arbi- 
trary point N (a ,t ) to some reference point N (ao ,t ), where a. does not have to  be zero 
but could be five, say, or fifty. The simplest route, straight up the age line from age zero, is 
described by (28). The corresponding system is: 



t-a t Time 

Figure 3. Two routes between ~ ( 0 , t )  and ~ ( a , t )  on a Lexis surface 
(viewed from above), 

The Duality Between the Two Systems 
The equational form of the new general system is the same as that of 

the Preston-Coale system although the meaning of the symbols is quite 
different: the two systems are essentially complementary or dual to each 
other. Where Preston and Coale use T along the age axis, the new system 
uses i t  (as g )  along the time axis. Where Preston and Coale use the 
period lifetable, the new system uses the cohort one. Preston and Coale 
require information on age-specific rates of population change, the new 
system requires information on rates of change of births over time. 

The Preston-Coale system has been applied usefully to estimate vari- 
ous demographic statistics when two censuses are available (Preston and 
Coale 1982; and Preston 1983). In more advanced countries reliable birth 
series and cohort survival functions can be obtained, so that the new sys- 
tem might in principle also be used for estimation. The new system has 
the disadvantage that it asks for data from the past; but it has a certain 
convenience in that (26) provides a simple way of calculating the 
exponential involving g . 

The basic identities underlying the two systems are (16) and (29). 
Equating these identities gives a duality or correspondence between the 
period and cohort lifetables: 



This complementarity condition expresses a simple and general relation- 
ship between period and cohort lifetables that holds for any closed popu- 
lation (and that is readily generalized, as noted below, to any population). 
Where three of the functions r ,  g ,  pp or p ,  are available, the fourth can 
be deduced. Where all are available, (33) provides a consistency check on 
the data. 

We can use (33) to express the period lifetable explicitly in terms of 
the cohort lifetable. Let (o(a, t )  denote the intensity of change over time 
in the cohort survival function p, : 

By substituting p ,  in (15) and the resulting expression in ( 1 )  and then 
using the product rule of differentiation, i t  can be shown that 

Note that t h s  identity implies that r will change over time if either the 
number of births changes or if mortality rates change. Multiplying (33) 
through by its first term, and substitut~ng p for r -g yields: 

Horiuchi (see footnote 2 in Preston and Coale's I982 paper) presents a 
similar result. In general studies, either (33) or (36) could be used to 
evaluate the error in using period instead of cohort lifetables. 

Three Time-Specific Averages 
The fundamental local identity 

looks similar in form to the basic time-specific identity 

d ( t )  = b ( t )  - r ( t ) ,  (37) 

where d ( t )  is the crude death rate at time t , b ( t )  is the crude birth rate 
and T ( t  ) is the crude growth rate. The calculus of the Lexis surf ace per- 
mits a deeper correspondence to be drawn: the identity in (37) can be 
seen to follow from the fundamental identity (4)  via three remarkable 
equivalences : 

K n o w  that 



d ( t ) ,  b ( t  ), and r ( t  ) can be interpreted as population-weighted averages 
or population mean values of p ( a  , t  ), v(a , t  ), and r (a , t  ) .  Collectively, the 
three relationshps might be called the basic time-specific averages of 
demographc accounting. 

Proof of (38), (39), and (40) and derivaticn of (37) from the funda- 
mental local identity is as follows: 

(i) To prove (38) note that, by definition, d ( t )  gives the proportional 
decrease, in the cohort direction where time and age increase in tan- 
dem, in the total size of a population. Formally, 

Reversing the order of differentiation and integration in the numera- 
tor (permissible here), and substituting (3) yields 

d ( t )  = (LY N(a . t )p (a . t )  d a ) /  j Y ~ ( a . t )  o da (43) 

whch  reduces via (18) to (38). 

(ii) To prove (39), use the fact that N(o , t )  is zero, so that 

whence from (2) 

b ( t )  = N ( o , ~ ) /  j Y N ( a  o . t )da = j Y v ( a , t ) ~ ( a , f ) d a  o / j Y N ( a , t ) d a  o (44) 

(iii) To prove (40) note that,  by definition, r ( t )  gives the proportional 
change over time in total population size: 

r ( t )  = [ ~ ~ ~ ~ N ( a . t ) d a ~ / ~ t ] / ~ ~ N ( a , t ) d a  o . (45) 

Reversing the order of differentiation and integration, and substitut- 
ing (1) and (18) in the resulting expression, we obtain (40). 

(iv) Finally, (37) follows easily from the fundamental local identity (4), 
simply by multiplying it through by c ( a  , t )  and integrating over age. 

Time-Specific Averages for Age Segments 
In addition to the relationship between p (a  , t ) ,  v(a , t ) ,  and T ( a  , t )  at  

any age and time and the parallel relationshp between d ( t ) ,  b ( t ) ,  and 
~ ( t )  across all ages a t  any time, an analogous relationship exists for any 
age segment of the population at any time. For a population at time t 
between the ages of a and p ,  let the size of the population in the age seg- 
ment be given by 



let the age distribution of t h s  age segment be described by 

c a p ( a , t )  = N ( a , t ) /  Na8( t )  , a s a < p ,  (47) 

and let the crude growth rate be denoted by 

r a B ( t )  = ( a i v , P ( t ) / a t ) /  Na8( t )  

Define a generalized "b i r th  rate b a g ( t )  that represents the rate of net 
inflow into the population segment, i.e., the rate of inflow minus outflow: 

b a p ( t )  = (N(a1t )  - N ( B l t ) ) /  N a p ( t )  (49) 

Then, analogously to ( 4 )  and (37),  the crude death rate in the popula- 
tion segment is given by: 

d a a ( t )  = b a p ( t )  - r a P ( t )  . (50) 

Furthermore, the proofs given above can also be readily extended to 
show: 

These time-specific averages may be useful in estimating age compo- 
sition and mortality rates of population segments for whch data are 
sparse or unreliable, for example, the population above age 85. In addi- 
tion, the relationships may be useful in interpolating the values of c and p  
withn narrower age segments, such as various five-year segments. 

Migration 
Consider now a population open to migration. Define the net migra- 

tion intensity, y(a , t  ), as the difference between in-migration I ( a ,  t )  and 
out-migration ~ ( a  , t )  at age a  and time t ,  normalized by population den- 
sity: 

? ( a n t )  = ( ( r ( a , t )  - E ( a , t ) ) /  N ( a , t )  (54) 

The value of p, defined by (3 ) ,  can no longer be interpreted as the force of 
mortality; in a population open to migration p  equals the difference 
between the force of mortality, p', and the net-migration intensity y: 

p ( a , t )  = p'(a , t )  - y ( a , t )  (55) 

Consequently, the fundamental local identity becomes 

p ' ( a , t )  = v ( u , ~ )  - T ( u , ~ )  + y ( a , t )  . (56 )  

To separate the effects of migration from the effects of mortality, (55) 
can be substituted for p  in all the relationshps given above that involve p. 



In particular, note that in a population open to migration 

and 

where p,  and pp are the cohort and period survival functions. Hence, in 
each of the three equations of the new system and of the Preston-Coale 
system the survival function should be multiplied by the appropriate 
exponential term involving y. 

Equation (55) can also be used to generalize the fundamental time- 
specific identity and to derive a fourth time-specific average. Let y ( t )  
denote the crude net-migration rate at time t .  Then, using the approach 
sketched above, it can be readily shown that 

where 

7 ( t )  = L Y c  ( a . t )  l ( a . t ) d a .  (60) 

Discussion 
Until recently, much of demographc analysis and demographc esti- 

mation has been built upon stable population theory, and for a compelling 
reason. When a population is stable, the Lotka system gives a unique and 
explicit correspondence between individual life-cycle behavior (as 
represented by the standard fertility and morality functions) and the pro- 
portions a t  various ages in the aggregate population (as represented by 
the age distribution). Where dernographc behavior is changing over time, 
this convenient correspondence fails, and the analyst is forced to choose 
uncomfortably be tween numerical simulation, and the assumption that 
the population somehow approximates stability--a particularly faulty 
assumption where transitional behavior is concerned. 

In a general time-varying population, the aggregate age distribution 
at a certain time depends not only on life-cycle behavior a t  that time, but 
also on life-cycle behavior in the past. Theoretically then no 
corr'espondence between the age distribution at one time and life-cycle 
behavior a t  that time can exist, but a correspondence could be restored, 
providing information summarizing past demographic behavior were 
added. Remarkably, the Preston-Coale system shows that not only is the 
addition of information on present cohort-growth sufficient to restore the 
analytical correspondence between life-cycle behavior and the aggregate 
age distribution but the resulting expressions change only minimally the 
Lotka three-equation system. With. the Preston-Coale system in hand, we 
might surmise that other information summarizing past behavior-- 
perhaps the past birth sequence--may be sufficient to restore the 
correspondence between life-cycle behavior and the aggregate age distri- 
bution. The new generalized system shows that indeed this is the case; 



and once again the additional information necessary can be incorporated 
with only minor changes to the standard Lotka system. 

Where repeated censuses are available, the Preston-Coale system is 
useful in demographic estimation. MThere the past birth sequence is avail- 
able or can be indirectly reconstructed, the new generalized system may 
also be useful for estimation. Other identity systems in this paper--the 
period-cohort duality and the time specific averages for example--may 
have similar use. Indeed, increasingly it becomes possible to "triangu- 
late" upon unknown qualities from several directions, using different data 

4 sources and different identities . 
It may well be that the new generalized system will find its main 

application in theoretical investigations. For instance, Arthur (1982) used 
a discrete form of the characteristic equation (22 )  to prove the weak and 
strong ergodic theorems of demography. Where population patterns are 
changing in some regular fashon--as with the fertility or mortality transi- 
tion say, or with the "Chnese" constant-birth policy case--the new system 
may be especially useful in demonstrating the time-varying implications. 

Finally, notice that all the relationships presented in t h s  paper are 
either definitions or accounting identities. They could be applied to any 
population where entry and exit depend on age (or duration) and time, 
including, for example, populations of married men, small business, 
machine tools, or vintage wine". 

Conclusion 
The concept of a Lexis surface is useful in unifying the major ideas of 

the theory of population dynamics. Local changes are described by the 
intensities r ,  p, and v. Changes from one point to some distant point are 
readily calculated by "navigating" on the Lexis surface using the calculus 
of line integrals. All the major relationships of single-region human popu- 
lation dynamics can be derived withn the framework, including the fun- 
damental local identity, the von Forster equation, the Lotka stable popu- 
lation system, the Preston-Coale system, the new generalized system, the 
Lotka-Volterra integral equation, the duality between period and cohort 
lifetables, the basic time-specific identity, and the basic time-specific 
averages for the entire population and for any age segment within it. 
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