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PREFACE 

The work discussed in t h s  paper was carried out withn the Adaptation and 
Optimization Project a t  IIASA. The author describes and evaluates the compu- 
tational effectiveness of an adaptive nonlinear least squares method which was 
developed, in particular, for parameter estimation when the residual sum of 
squares a t  the optimum solution is large. 

Andrzej Wierzbicki 
Chairman 
System and Decision Sciences Area 



ABSTRACT 

The Gauss-Newton and the Levenberg-Marquardt algorithms for solving 
nonlinear least squares problems, minimize F ( z )  = zgl ( f i ( z ) ) 2  for z E Rn, 
are both based upon the premise that one term in the Hessian of F ( z )  dom- 
inates its other terms, and that the Hessian may be approximated by t h s  dom- 
inant term JTJ.  where J=, = (6f i /  bz,) We are motivated here by the need for 
an algorithm which works well when applied to problems for which this premise 
is substantially violated, and is yet able to take advantage of situations where 
the premise hclds. We describe and justify a method for approximating the 
Hessian of F ( z )  which uses a convex combination of JTJ and a matrix obtained 
by making quasi-Newton updates. In order to evaluate the usefulness of this 
idea, we construct a nonlinear least squares algorithm whch  uses this Hessian 
approximation, and report test results obtained by applying it to a set of test 
problems. A merit of our approach is that it demonstrates how a single adap- 
tive algorithm can be used to efficiently solve unconstrained nonlinear optimi- 
zation problems (whose Hessians have no particular structure), small residual 
and large residual, nonlinear least squares problems. Our paper can also be 
looked upon as an investigation for one problem area, of the following more 
general question: how can one combine two different Hessian approximations 
(or model functions) which are simultaneously available? The technique sug- 
gested here may thus be more widely applicable and may be of use, for exam- 
ple, when minimizing functions whch  are only partly composed of sums of 
squares arising in penalty function methods. 



AN ADAPTNE METHOD FOR MINIMIZING A 
SUM OF SQUARES OF NONLINEAR FUNCl'IONS* 

Larry Nazareth 

1. In t roduct ion 

We are concerned here with solving the problem 

m 
minimize F ( x )  = ( f , ( ~ ) ) ~  

z eRn i = l  

The gradient of F ( x )  is J T f  , where J  is the rn x n Jacobian matrix 

Jij  = (6 f  / 6 x j )  at  the point x  , and f  is the m-vector of function values 

( f  l , . . . , f , )T .  The 7t x n Hessian matrix H of the function F ( x )  has the special 

form 

where Hi is the n x n Hessian matrix of f  (z). 

*%s paper is based upon :research begun at  the Argonne National Laboratory, Illinois, USA. A 
renewed interest in methods of this type ~t the 1982 Mathematical Programming Symposium held 
in Bonn, led us to  prepare this substantially revised version of an earlier unpublished report. 



Most methods for solving (I. 1) are a specialized version of Newton method, 

and differ from one another primarily in the way in whch H is approximated. 

The most popular of these methods are briefly summarized in Table i . 

There are numerous practical examples for whch the term zcl f iH i  

cannot be neglected in favour of J T J .  McKeown [ 1 4 ]  has provided several 

examples where quasi-Newton optimizers which do not take account of the spe- 

cial structure of the Hessian ( 1 .2 )  perform better than specialized routines like 

Gauss-Newton or Levenberg-Marquardt. The method which we propose here is 

motivated by the need to solve such problems efficiently and is based upon an 

alternative method for approximating the Hessian of F ( z ) .  Thm is done by tak- 

ing a convex combination of J T J  and a matrix obtained by making quasi- 

Newton updates. In order to evaluate the usefulness of t h s  idea, we construct 

a simple adaptive algorithm whch uses this Hessian approximation, and report 

results obtained by applying it to a test problems. A merit of our approach is 

that it demonstrates how a single algorithm can be used to efficiently solve 

general unconstrained optimization problems, small residual and large residual 

nonlinear least squares problems. The technique for combining two Hessian 

approximations may also be applicable to other situations for which more than 

one model furic tion is available. 

2. The Hybrid Method for Approximating the Hessian 

2.1 We approximate the Hessian by taking a convex combination of J T J  and a 

matrix BQN obtained by quasi-Newton updates. Thus 

BH = a J T J  + ( 1  - a)BQN ( 2 . 1 )  

where a is a real number such that 0 < a S 1.  The ides of using a convex com- 

bination of updates has been employed elsewhere, for example, see Fletcher 



Table 1 

- 

Hessian approx. B, search Method 
dirn. d -- 

B=I Gradient Method 

Gauss-Newton 
(GN) 

d = - J C  f where J C  is the  Fletcher [2],[1] 
generalized inverse of J .  

B= J T J  + AD,h>O,D is po- Levenberg- 
sitive and diagonal. d is de- Marquardt [3], 
fined by solving Bd = - J T  f . [4], [13] 

B obtained by quasi-Newton e.g. BFGS [12], 
updates Davidon [16] 

B = J T  J + xfi Bi where Bi Brown-Dennis [8] 
is a quasi-Newton approx. to 

Hi 

B= J ~ J + S  where S is Broyden-Dennis 
chosen so that  B satisfies a [ I l l ,  Betts [21], 
quasi-Newton relation Dennis e t  a1 [22] 

d is chosen suitably in sub- Powell VA05A [6], 
space spanned by negative Steen-Byrne [7] 
gradient and GN or LM direc- 
tions 

Augmenting GN direction in Gill & Murray [I?] 
certain subspaces 

Comments 

Robust but slow 

Rapid convergence for zerc- 
residuai problems. Not 
robust. 

Useful when J  is not of ful l  
column rank since d is still a 
direction of descent.  

Approx. min. GN model func- 
tion in a region of t rust .  d 
lies on a r c  A of Figure 1. 

Does not take account of spe- 
cial s t ructure in Hessian. 

Very expensive in  terms of 
storage. 

B can become indefinite so 
that  search dirns. may not 
be descent dirns. unless S is 
sized. 

For the lat ter,  search dirns. 
lie on a rc  B of Figure 1. 

When J  is not close to rank 
deficiency, method is essen- 
tially t he  GN method 

[24] and i t  is a simple and natural choice when combining the Hessians of two 

different model functions, since a bias toward one model simultaneously 

reduces the contribution of the other. We also thlnk th.at it is preferable to 

first construct a model function and then use it to determine a search direc- 



tion, rather than to form search vectors from two different model functions 

determined by J - ~ J  and BQh' and then choose a search direction in the sub- 

space that such vectors define, for example, by taking a convex combination. 

BH has the following properties: 

a) BH  is positive semidefinite (BH %O) whenever BQN 2 0. 

b) If J o  denotes the Jacobiau matrix at the initial point and B$" is set to J;J,-,, 

an algorithm based upon (2.1) converges in one step when applied to a problem 

(1.1) for whlch each f i  is linear. Furthermcre, for zero residual problems, 

BQN + JLJ,, here J ,  is the Jacobian matrix a t  the optimum and we assume 

that the search spans the full n-dimensional space. Thus B H  + J; J,, and this 

leads us to expect that an algorithm based upon (2.1) shares the rapid conver- 

gence properties of the GN method on zero residual problems. 

c) Let A z  be the step just taken, so that BQNAz = Ag, where Ag is the change 

of gradient for the steps A z .  

Then 

B" does not satisfy the quasi-Newton relation. However, when J T J h z  approxi- 

mately equals Ag , then BHAz approximately equals Ag . Further, through a we 

have explicit control over the extent to which the quasi-Newton relation is 

violated, this being in turn determined by the extent to whch known informa- 

tion J T J  can be trusted as being a reasonable approximation to the Hessian. 

d) If we write ~a~ = J T J  + M ,  then (2.1) becomes 

BH = J T J  + (1 - a )#  

and thus (1 - a)M is implicitly an approximation to z,zl f i H i .  The method of 



Dennis et a1 [ 2 2 ] ,  (see also [ 1 5 ] ) ,  forms an explicit approximation S to 

zz ,  f i H i .  Tlie approximation to the Hessian is therefore J T J  + S ,  and when 

this is used in place of BQN in ( 2 . 1 )  we obtain BD = J T J  + (1 - a)S. ( I  - a )  

acts as a sizing factor and its use was found to be quite central to the success 

of the method of Dennis et a1 [ 2 2 ] .  In particular, we can ensure that B D  r 0, by 

choosing a suitably. This is an example of how the idea of combining Hessian 

approximations may be more widely applicable. 

2.2. Reasons which motivate the Levenberg-Marquardt (LM) extension of the 

Gauss-Newton (GN) Method apply equally well to the Hessian approximation 

(2 .1) .  Perhaps the most convincing argument for the LM method is that it asso- 

ciates a region of trust with the GN model function and, through suitable 

choice of a parameter A> 0, seeks an approximate minimum of the model 

function within the region of trust. See, for example, [ 1 3 ] .  Solving t h s  is 

equivalent to adding a term AD to J T J  (where D is a positive definite diagonal 

matrix ) and h r 0 is an appropriately chosen scalar. Other related justifica- 

tions for the LM approach are that we thereby improve the conditioning of J T  J ,  

permit a unidimensional search in A, and bias the associated direction of 

search towards the negative gradient, thus making the algorithm more likely 

to converge from distant starting points. We propose therefore to implement 

our Hessian approximation in the form 

B = ( B H  + AD) = a J T J  + ( 1  - a ) ~ ~ "  + AD 

Search directions d are defined by solving 

and lie on the arc C of Figure 1. An algorithm which uses ( 2 . 4 )  can easily be 

specialized to the LM method by fixing ct at value 1 ,  and to a version of a quasi- 

Newton (QN) method by fixing a at value 0. 



Gradient direction 

Quasi-Newton 
direction 

.---.--.-. Arc spans full ndimensional space - Arc spans 2-0 space containing endpoints and 0 

Figure 1 

We can also adopt the following alternative view of (2.4) and (2.5). Suppose 

given the Hessian approximation BH a t  a point z ,  with associated gradient 

g = J~ f , we make a model function 

and we seek to solve the problem 

minimize M ( z  ) 
z€Rn 

subject to ( z  - Z ) ~ D ( Z  - z) s A 

where A > 0 and fixed. By forming the Lagrangian, it is easily seen that the 

solution to ( 2 . 7 ) ,  say x,, is given by 



vrhere A ,  is the vector of optimal Langrange multipliers. If now A is some 

approximation to these optimal multipliers, then the step to x +  = x + d ,  given 

by (2.5), solves instead the following version of (2.7):  

minimize M (z ) 
z € R n  

subject to (z - z ) ~ D ( z  - 2 ) s  (I+ - z ) D ( z +  - 2 )  

The reduction in model function value (or predicted reduction) for a step 

d is easily shown to be 

and from (2.8) it follows that   AM^ 2 0. (For the actual reduction in function 

value for this step we use the notation AF.) 

3. Implementation 

The main purpose behnd  our implementation is to investigate whether the 

Hessian approximation (2.1) is viable. Therefore we formulate a quite rudimen- 

tary, (but we t hnk  a.lso elegant) algorithm. Its main cycle consists of an inner 

loop for revising A and improving the approximation to the minimum, con- 

tained within an outer loop for revising a and updating various other quantities. 

We shall denote the curent estimate of the solutior, by z ,  the Jacobian a t  z 

by J ,  the vector of function values by f , the gradient by g ,  the function value 

by F, the current quasi-Newton approximation by B Q ~ ,  and the identity matrix 

by I. The symbol + will be attached to denote another set of such quantities at 

the point z + .  The algorithm is as follows: 

T Initialize 1A: Given an initial point z+ form F+ , f + , J+ , g + = J+ f +; 

Set A 6 O and a 6 0.5; 

Comment: In the absence of other information we set a to the 



halfway point; 

Reinitlalize 1B: Set BQh' + I ;  

Outerloop 2A: Make proposal z+  the current  est imate of the ~olutiol i .  

z t z + , g + g + , F + F +  I .. f + f + , J C  J + ;  

Innerloop 3A: Develop search direction d by solving 

( ~ J ~ J  + (1  - a)BQN t XI)d = -JTf ; 

Comment: In our implementation we do not use the 

scaling matrix D.  

3B: Develop next point z+ = z + d and compute F+ and 

f +, J+ need not be evaluated yet. 

3C: Revise A, (see a) below); 

3D: If F+ 2 F then goto Innerloop; 

2B: Revise a ,  (see b) below); 

2C: Compute J+ and g +  = JTf +; 

2D: Check for convergence. If (g Tg+)l" r to1 then stop; 

2E: If ( g +  - g ) T ( z +  - z )  s 0 then a + ? and goto Reinitialize; 

Comment: W-e reinitialize a when a positive definite update 

of BQN cannot be ensured. T h s  occurs so infrequently on 

most examples, that another strategy would make llttle 

difference. 

2F: Update BQN,  (see c) below, and Goto Outerloop; 

We have taken the view that if the Hessian approximation (2.1) or (2.4) is 

indeed worthwhle, then the above algorithm should not  be unduly sensitive to 

strategies for choosing A ,  a and BQ", provided of course, they are reasonable. 

Therefore, we have utilized very simple strategies for choosing X and a ,  drawing 



up techniques already utilized elsewhere, and in particular, ones whose imple- 

mentations were conveniently a t  hand. Details in each case are given in the 

Appendix. Of course, when developing a more practical implementation, care- 

ful attention must be paid t c  these choices, and we make some further com- 

ments to this effect in Section 5. 

a) Choice o f  A: Withn each iteration of the above algorithm, h is updated at 

Step 3C using the method of Fletcher [ 5 ] .  There are now more effective ways of 

choosing A,  see [13] and [25], but for our experimental needs, Fletcher's 

method is quite adequate. (Details are given in the Appendix for the interested 

reader.) Note in particular that if F+ r F then A will be increased. 

b) Choice of a: Consider a step (z, - z )  = d determined by the solution of 

(2.5). Instead of the model function (2.6) with Hessian approximation (2.4) we 

see whether a Gauss -Newton  mode l  given by 

or a Quasi-Newton mode l  given by 

would be more appropriate, and give predicted reductions that better match 

the actual redcution A F .  Again we use a simple method, details of whch are 

given in the Appendix. 

c) Choice of  BQN: since the subroutines implementing the optimally condi- 

tional method of Davidon [16] were conveniently available, see Davidon and 

Nazareth [25], we used them in our implementation. Some advantages of using 

this method are discussed in the Appendix. 



4. Test Results 

Although test results on a few test problems should be viewed with cau- 

tion, they help to discern certaln broad trends in performance and to  confirm 

the theoretical soundness of an algorithm. We report here the results of 

exercising the hybrid algorithm on a set of 11 test problems, 6 of them having 

zero residuals at the solution, and the remaining 5 having non-zero and usually 

large residuals at the solution. The test problems were as follows: 

a) Zero Residual Problems 

1. Rosenbrock's parabolic valley. See Brent [lR] page 139. 

2. Powell's quartic. See Brent [I81 page 141. 

3. Powell's badly scaled function. See Powell [19] page 146. 

4. Fletcher's helical valley. See Brent [18] page 140. 

5. Watson's function, n = 9. See Brent [18] page 142. 

6. Wood's quartic. See Brent [18] page 141. 

b) Non-zero Residual Prcblems 

7. Modified Box's exponential problem obtained by adding 20 to the second 

function and 10 to the fourth function. This gives a residual of 0.30BE3 at 

the solution. See Brent [18] page 140. 

8. Brown-Dennis. See Brown [9] page 12. 

9. Freudenstein and Roth problem. See Aird [20j page 90. 

10. Davidon's large residual problem. See Davidon [23]. 

11. Jennrich and Sampson problem. See h r d  [20] page 95. 

In addition to running the hybrid algorithm on this set of test problems, 

we were able to obtain results for the Levenberg-Marquardt algorithm by flxing 

a at value 1, and for the Quasi-Newton algorithm by fixing a at value 0. For 



each algoriihm (under headings Hybrid, LevenbergMarquardt and Quasi- 

Newton) we report a pair of numbers associated with each test problem. The 

upper number is the num.ber of function calls and the lower the number of 

Jacobian calls. In the column headed 'Di.mensionm, each entry is of the form 

n 

(m) 
where n is the number of variables and m is the number of functions f i .  

We feel that our comparison between the Hybrid, Levenberg-Marquardt 

and Quasi-Newton algorithms are entirely fair, since the implementations used 

in the comparisons differ only in the essentials. Note however that since the h 

strategy used is a simple one, and since no scaling matrix D is used, our LM 

specialization cannot. be expected to perform as well as a more sophsticated 

implementation. Note also that in our Quasi-Newton specialization, search 

directions are obtained by solving (88" + hI)d = - ~ ~ f ,  Ths  is an alternative 

to using a line search, but costs 0(n3) operations per iteration. It has however 

the advantage of approximating an optimal local step. 

Our test results are shown in the next table 

On zero residual problems, we see that the Levenberg-Marquardt algo- 

rithm does very well, as compared to the other two. Only on problem 6, namely 

Wood's quartic, does i t  fare substantially worse than the hybrid, but since 

minor variations of initial path can lead to substantial difference in perfor- 

mance on this function, this negative result should be somewhat discounted. 

On non-zero residual problern.~, however, the hybrid method comes much more 

into its own. On problems 7 and 0 it becomes competitive with the L-M algo- 

rithm, and on problems 9 and 10 it does much better. Only on problem 11 does 

it fare badly, and here the results of the Q-N method indicate that the QN 

approximation is not behaving as expected. (However, -we have not investigated 

this further.) Note also that the results show the hybrid method doing better 

than either of its specializations on non-zero residual problems, which is what 



Problem Dimension Hybrid Levenberg- Quasi- 
Marquardt Newton 

+ found a different local minimum 

we had hoped to see 

We summarize the results in the next table, where figures in columns 1 

and 2 are equivalent function evaluations i.e. number of function calls + dimen- 

sion x number of gradient (Jacobian) calls. The t h r d  column gives for each 

problem the amount by which the be t t e r  method outperforms the other, 

expressed as a percentage. A figure in column 3 if given in italics, and followed 

by a + indicates the hybrid is the better method, and if in regular script indi- 

cates the L-M did better than the hybrid. The percentage is calculated as 

stated in the Table. 



Problem Hybrid Levenberg-Marquardt JiEQF(H)-EQF(I,M)I*109 

EQF(H) EQF(LM) max(EQF(H) ,EQF (LM) ) 

5. Conclusions and Comments on a More Practical Implementation 

The test results indicate that  on large residual problems the hybrid 

approximation may very well be worthwhile. It would also seem evident that a 

better strategy for choosing a whch takes into account, for example, the size 

of the residual at the current iterate, would improve the performance of the 

h.ybrid on zero residual poblems, and make it much more competitive with the 

L-M method on such problems. 

I f  one were to develop a practical implementation based upon the hybrid 

approximati.on to the Hessian, there are many potential improvements to the 

skeletal algorithm of Section 3. These include: 

a) a better a strategy as mentioned above and a X strategy following More [13] 

and Hebden [25] 

b) use of a diagonal scaling matrix D and an initialization of the quasi-Newton 

approximation to the starting ( J ~ J ~ ) ,  provided it is nonsingular, of course, 

rather than to the identity matrix. 

c) use of the currently favoured BFGS update rather than the one in [16], and 

maintaining B Q ~  as the product of a lower and an upper triangular matrix for 



stability of the update 

d) use af the QR factorization to solve the system of equations that define the 

search direction. See, again, More [13] .  

e) reformulation of calculations to avoid destructive overflows and underflows. 

f )  an overall design that makes it possible to solve general nonlinear uncon- 

strained optimization problems, small (or zero) residual nonlinear least 

squares problems and large residual nonlinear least squares problems withn 

the framework of a single adaptive algorithm. Indeed, one of the goals of this 

paper is to promote the development of such an implementation. 
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6.  Appendix 

As mentioned earlier, the particular strategies for choosing A, a and 

8QN are not central tc  cjur experimental implementation However, for 

compleieness, we give them here. 

a) Choice of h  : 

When BH = a i T J  + (1 - ~ ) B Q ~  and g = J T f ,  and we define 

a = d Tg , b = d T ~ T i d  , c = d T ~ Q h ' d ,  then the predicted reduction, 

which we denote by  AM^ is 

Fletcher's method 151, as adapted to our needs, is based upon a com- 

parison between AM and AT. If we define 

the method, is as follows: 

If p s T s (T for certain constants 0 < p < a < 1 (typically p = 0.25 and 

o = 0.75), h  is left unchanged. 

If T > o then h is decreased by a fixed factor. We use 1/10. If h  < A c ,  

where hc = 1/  1 I G-' ( ~,pect,al. then h  is set to zero. Ths  device 

increases the rate of convergence near the minimum. 1 1 G-' 1 / pectrd 

is overestimated from trace (G-I), and as stated above, G is given by 

~ J ~ J  + ( i  - a)BQN. 

If T < p ,  then h  is increased to vh .  v  is chosen by making a quadratic 

fit to 6(d) = F ( z  + d d )  at 6(0) , dl(0) and 6(1), subject to ensuring 



that 2 5 u I 10. If h is zero and must be increased, then h 4- h,v / 2,  

and A, is only recalculated under these circumstances, making the 

estimation of i i G-' { very infrequent. 

b) Choice of a : 

Step 2: 

(i) To determine the model towards which to bias 

Step 1: AMG" = -a - 1 /26  ; b M Q N = - a  - l / 2 c  ; A F > O ;  

Comment :  Thls uses (3.1) and (3 .2) .  a,  b and c were 

defined earlier. 

if ( b  > c )  

t h e n  

Comment :  we know that  AM^^ 2 0 since it is a t  least as 

large as  AM^ and we know that  AM^ r 0 .  y and T are con- 

stants whch  we set to 0.8 and 0.2 respectively; 

if AF/  AM^^' r y t h e n  bias to G N  (as discussed under (ii) 

below) and re tu rn ;  

if AM Q'' I 0 t h e n  r e t u r n ;  

if AF/  AN'^ s T t h e n  bias to QN (see (iii) below) and 

r e t u r n ;  

if  AM^^ / A f  2 y t h e n  bias to QN and r e t u r n ;  

Step 3: else 

Comment :  we now know that A M Q ~ '  2 0; 

if  AM^^ / A-F 2 y t h e n  bias to GIV and r e t u r n ;  

if  AM^^ / AF S T t h e n  bias to QN and r e t u r n ;  

if AF/  AM^^ r y t h e n  bias to QN and r e t u r n ;  

(ii) Bias toward G N  is carried out as follows: 



if a = 0 then a c 0.05; 

if 0  < a I 1 / 3 then a c 2a;  

if l / 3 < a  < 0 . 9 5  t h e n a + ( ! + a ) / 2 ;  

if a 2 0.95 then a + 1; 

(iii) Bias toward Q N  is carried out by replacing a in (ii) above by (1 - a) 

c) Choice of B~~~ 

We use the variable metric update developed by Davidon [16]. Many 

variable metric methods have the property of finite termination on a func- 

tion ~ ( z )  defined by (1.1) with fi linear for each i, provided line searches 

are. exact and search directions d a t  each iteration are defined by 

BQNd = - g ,  where g is the gradient a t  the current point. Davidon's 

method [I61 whch can be viewed as a stabilization of the symmetric 

rank-1 method, (see Powell [ lo]), does not suffer from these limitations 

and allows a great deal of flexibility in choice of search directions and 

iterates. We find this property helpful because seach directions are 

defined in our hybrid algorithm, by Bd = -9 with B given by (2.4). The 

use of Davidon's updates in forming BQN thus ensures finite termination of 

the hybrid algorithm on functions for whch f i  are linear, in at  most n 

steps, regardless of the initial approximation BY. BQN is maintained in 

factored form xTx.  

Given a step Ax along d with corresponding change in gradient 

Ag , BQN is updated to B?', say, by a rank-2 matrix composed from 

(Ag - BQ''Az) and "updating vector" w, rather than the more conventional 

Ag. (The factored form xTX could have XT lower triangular.) The optimally 

cond.itiona1 update is made at  each iteration. 


