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The Core Concepts group of the System and Decision Sciences Area is con- 
cerned with the study of fundamental systems concepts, one of which is hetero- 
geneity. Much systems work mistakenly treats populations as homogeneous, 
disregarding the fact that different elements of the population often react in 
different ways to the same set of conditions. 

In t h s  paper, Anatoli Yashin examines mathematically how individual 
differences in frailty ("susceptibility" to death), defined as a quadratic function 
of the environmental factors, affect the mortality rates in a population. He 
goes on to show how our chances of survival depend on the extent of our 
knowledge about the processes affecting death. 
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CHANCES OF SURVIVAL IN A CHAOTIC ENVIRONMENT 

A.I. Yashin 

1. Introduction 

When there are unexpected changes in crucial social, economic, or physi- 

cal variables, the natural human response is to look for and try to analyze the 

factors responsible for the change. For example, sociologists and psychologists 

studylng human behavior try to understand the motivation mechanisms that 

cause people to change their place of work, their place of residence, or their 

life-style. Health-care managers try to find environmental, social and economic 

factors influencing the incidence of particular diseases or causes of death, and 

use them to explain changes in the disease spectrum. Ecologists attempt to 

link industrial development with ecological changes. Geologists try to identify 

environmental factors which could warn them of earthquakes or volcanic erup- 

tions. Engineers attempt to find the particular conditions responsible for the 

failure of components. Economists may study the social and political environ- 

ment hoping to find an explanation of structural changes in the economy. 



The resulting investigations involve the collection of a wide variety of data 

associated not only with the primary event itself (the unexpected change) but 

also with possible related processes. This additional information provides a 

more detailed description of hazard rates, thus increasing our knowledge of 

the chances of a certain event occurring under various circumstances. 

The number and variety of factors and processes influencing a given 

phenomenon are often such that it is impossible to take all of them into 

account or to exercise any control over their individual behavior. Thus, in 

these multicausal cases a description of the combined effects of all of the 

related processes is sometimes more helpful in understanding the mechanisms 

generating unexpected change than descriptions of the individual effects. 

The probabilistic laws of large numbers and limit theorems provide a for- 

mal basis for these "macrodescriptions"; different formulations may be used 

under different conditions. Some forms of the limit theorems produce random 

variables or stochastic processes with Gaussian distributions; experience has 

shown that in many situations this Gaussian approximation of the uncertainties 

is justified. 

In t b s  paper we will concentrate on the concept of frailty introduced and 

studied in [1,2]. We will assume that the influence of many external factors on 

the changes (transitions from one state to another) experienced by individuals 

may be represented by a Gaussian random variable or a Gaussian stochastic 

process. Frailty will be defined as a quadratic function of the environmental 

factors. We will consider here one particular change: the transition from life to 

death. As before, differences in frailty will imply individual differences in "sus- 

ceptibility" to death under specified circumstances. We will also assume that 

the process is monitored by an observer whose aim is to evaluate the age- 

specific mortality rates for the observable cohort. 



Making some additional assumptions, it can be shown that the conditional 

distribution of the unobservable environmental parameters or processes is also 

Gaussian. This situation recalls the well-known generalization of the Kalman 

filter scheme [3,4,5,6]. A similar problem was studied in [?I; in thls case the 

mortality rate was assumed to be influenced by the values of some randomly 

evolving physiological factors. The purpose of this paper is to show how our 

chances of survival depend on the level of our knowledge about the processes 

affecting death. 

2. Evaluation of Mortality Rates 

Assume that the frailty of an individual can be described in terms of a ran- 

dom variable Z = y2 where Y is a Gaussian random variable with mean m0 

and variance 7 0 .  Let u(Z) be a a-algebra in R generated by the random vari- 

able Z . Denote by ~ ( t  ,Z) = P ( T I t ( u(Z) ) the u(Z)-conditional distribution 

function of termination times T . Assume that F ( t  ,Z) has the form 

where A(t) , t 2 0 ,  may be interpreted in some applications as the age- 

specific mortality rate for an average individual [2]. Using X(t) to denote the 

observed age-specific mortality rate determining the nonconditional distribu- 

tion F ( t )  of death times T , we have [2] 

where 

is the conditional mathematical expectation of Z given the event I T > t j . 



The form of the h ( t )  depends on the conditional distribution of frailty Z . 

I t  turns out that if the frailty Z is generated by Gaussian random variable Y , 

it is possible to calculate the conditional distribution of Y and find an analyti- 

cal form for % ( t )  . Moreover, t h s  conditional distribution is Gaussian, as 

shown by the following theorem. 

Theorem 1. Let Z = y2, w h e r e  Y is a Gauss ian  r a n d o m  v a r i a b l e  w i t h  

m e a n  a a n d  v a r i a n c e  u 2 .  Then the  condit.lona1 dk tr ibut . lon  of Y g i v e n  the 

e v e n t  1 T > t j is also Gauss ian ,  w i t h  a m e a n  9 a n d  v a r i a n c e  yt t h a t  

satisfy the  equa t ions  

Proof. From Bayes' rule the conditional density of random variable Y 

may be represented in the form: 

where (from the definitions of Z and T ) 

and 



Substituting the formulas for h (z) and P ( T > t ) into the equation for 

P (z I T > t ) leads to 

where 

and f ( t  ) is some function which does not depend on z and whch acts as a 

normalizing factor. I t  is evident that t h s  formulation of the conditional density 

P ( z I T > t )  corresponds to a Gaussian distribution with a / [ 2 u 2 ~ ( t ) + 1 ]  and 

u2/ [ 2 u 2 ~ ( t ) + 1 ]  as mean and variance, respectively. Substituting these values 

for mt and yt , it is not difficult to check that they satisfy the equations given 

in the theorem. 

Assume now that the environment evolves over time. Denote by 

Y(t), t 1 0 , the continuous time process describing the evolution of the ran- 

dom environmental factors. 

Let process Y ( t )  , t r 0 ,  satisfy the linear stochastic differential equa- 

tion 

dY ( t )  = a o ( t )  + a l ( t )Y ( t )  dt + b(t) dw( t )  , ~ ( 0 )  = yo (3) 

where Yo is a Gaussian random variable with mean rno and variance y o ,  

w ( t  ) is an H-adapted Wiener process, H = (Ht)tro is some nondecreasing 

right continuous family of u-algebras, and Ho is completed by sets of P-zero 

measure from H = H ,  . Denote by Hy the family of a-algebras in !J gen- 

erated by the values of the random process Y(u) : 



Assume that process Y ( t )  determines the rate of occurrence of some unex- 

pected event, characterized by the random time of occurrence T  : 

Notice that process Z ( U )  = y2(u)  , u 2 0 , may be interpreted as frailty 

changing stochastically over time. Using the terminology of the martingale 

theory one could say that the process 

is an W -predictable compensator of the life-cycle process 

This means that the process 

Mt = 1 ( T < t ) - A ( t ) ,  t r o  

is an W-adapted martingale. If the termination time T is viewed as the time 

of death the process y 2 ( t )  , t  2 0  , may be regarded as the age-specific mor- 

tality rate for an individual with hstory Y; = Y ( u ) ,  0  I u I t  j .  

Letting X ( t ) ,  t r 0, denote the observed age-specific mortality rate we 

have [ Z ] :  

- 
h ( t ) = h ( t ) % ( t ) ,  t  2 0  , 

where 



In order to calculate the observed mortality rate X ( t )  , t  r 0 , it is neces- 

sary to compute the second moment of the conditional distribution of the 

Y ( u )  given 1 T > t j . It turns out that t h s  moment may be calculated easily 

using the result postulated in the next theorem. 

Theorem 2. Assume t h a t  process  Y ( t )  and  t e r n i n a t i o n  t i m e  T are  

r e l a t e d  b y  f o r m u l a s  (3) a n d  (4) .  Then the  condit ional  d i s t r i bu t ion  of Y ( t )  

g i v e n  [T > t  is Gaussian. The m e a n  mt a n d  v a r i a n c e  yt of this d i s t r i bu t ion  

a re  g i ven  b y  the  f ollowing equat ions:  

The f o r n u l a  fo r  ( t  ) is t h e n  

The proof of this theorem is given in the Appendix. 

3. Population Structure in a Random Environment 

Assume that a population may be represented as a collection of several 

groups of individuals (defmed on the basis of sex, ethnic group, etc. ). Intro- 

duce a random variable U taking a fmite number of possible values (1,2, ... , K) 

with a priori probabilities p l ,p2,,.. , p ~  , Let the age-specific mortality rate of 

the average individual depend on the value of the random variable U ;  each 

value of U is associated with a particular population group. In t h s  case the sur- 

vival probability of a person from group U with a history Hp of environmen- 

tal or physiological characteristics up to time t  may be written as follows: 



If the observer takes into account the differences between people belong- 

ing to different population groups he should produce K  different patterns of 
- - 

age-specific mortality rates h ( i , t )  , i = 1 , K .  These mortality rates 

correspond to the conditional survival probabilities 

- 
In order to calculate h ( i , t ) ,  i = l , K  it is necessary to have K  different esti- 

mations q ( i) ,  yt (i) that are solutions of the following equations: 

The formula for ( i  , t )  is 

- - 
A( i , t )  = A( i , t )  ( m:(i) + yt (i) ), i = l , K  . 

Note that the evolution of the environmental or physiological factors may also 

be dependent on the population group. In this situation we have K different 

processes influencing the mortality rates in K  population groups: 

where the are Gaussian random variables with means mo(i) and vari- 

ances yo( i )  , and the wi ( t )  are H-adapted Wiener processes. The formula for 
- 
A ( i , t )  will be the same as before, but the equations for mt (i) and yt (i) will 

contain different parameters a O ( i , t ) ,  a l ( i , t ) ,  b ( i , t )  : 



If the observer does not differentiate between people from different 

groups, the observed age-specific mortality rate A(t ) will depend on the pro- 
- 

portion rri ( t ) ,  i = 1,K,  of individuals in the different groups. These proportions 

- 
coincide with the conditional probabilities of the events 1 U = i ] , i = 1,K , 

given I T > t ] , and can be shown to satisfy the following equations: 

In t h s  case A ( t )  may be represented as follows: 

Appendix: Proof of Theorem 2 

Introduce the conditional characteristic function f t  (a) defined as fol- 

lows : 

f t ( a ) = ~ ( e i a Y ( ' ) 1 T > t ) ,  t r O  . 

According to Bayes' rule, this can be approximated by 

j t  (a )  = E' ( eiaY(') p(t  ) ) 

where 

and E' denotes the mathematical expectation with respect to the marginal pro- 

bability measure corresponding to the Wiener process W(t ) . 

Before proceeding further we must recall Ito's differential rule 131, which 

is summarized in the following lemma. 



Lemma. Let w ( t  ) be a n  H-adapted Wiener process and A ( t  ) and B ( t  ) 

be H-adapted random functions such that 

Define the process Xt by the equality 

where X o  is some integrable and Ho-rneasnrable random variable. Let func- 

tion F ( z  ,t ) be twice (continuously) dinerentiable in the first variable z and 

once (continuously) differentiable in the second variable t . Then F(Xt , t )  m a y  

be represented as follows. 

Using t h s  result we have for the product e iaY( t )p( t )  : 



Taking the mathematical expectation of both sides of t h s  equality leads to 

t t 
f t  (a) = f o(a) + i a  f ao (u )  f u ( a )  du + i a  f a l ( u )  E [ eiaY(U) P(U) Y(u) 1 du 

0 0 

Notice that f o(a) has the form: 

This particular form and the equation for f (a)  suggest that we should search 

for an f (a)  in the same form: 

where mt and yt satisfy ordinary differential equations 

(We assume that the equations for mt and yt have unique solutions.) The 

functions g ( t  ) and G(t ) can be found from the equation for f (a) as follows. 

First, note that the following equalities hold: 

f t '  = E ( ieiaY(') q ( t )  ~ ( t ) )  

f;' = -E ( e i a Y ( t )  ~ ( t )  y2(t)> 

where f ;  and f t" denote the first and second derivatives, respectively, of the 

function f (a)  with respect to  a . 



Applying these formulas to the equation for f (a)  we obtain (omitting the 

dependence of f on a for simplicity): 

D-erivatives f; and f ;' may be calculated from equation (A. 1): 

f ; = f t ( i m t  - a ~ t ) ~ - f t Y t  . 

Substituting these derivatives into the equation for f (a) ,  differentiating with 

respect to t and using equations ( ~ ~ 2 )  and (A.3) for mt and yt we obtain: 

Taking the real and imaginary parts of t h s  equation yields 

whch lead to the equations for mt and yt described in the theorem. 

Notice that the above form of the f (a) is equivalent to the Gaussian law 

for conditional distribution of the Y(t) given the event fT > t 1 .  

We now have to show that equation (A.3) with G(t) given by (A.5) has a 

unique solution. To do this we first assume that ylvt and y2 are two different 

solutions of equation (A.3). We then have 



Let r ( u )  denote the function 

Then inequality (A.6) may be rewritten in the form: 

The Grenuolli-Bellman lemma shows that ylnf  and yzrf  must coincide, and 

this completes the proof. 
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