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FOREWORD

Contributions to the Metropolitan Study:6

The project "Nested Dynamics of Metropolitan Processes
and Policies" was initiated by the Regional and Urban Develop-
ment Group in 1982, and the work on this collaborative study
started in 1983. The series of contributions to the study is
a means of conveying information between the collaborators in
the network of the project.

This paper examines search and choice behavior of individ-
ual agents in an environment in which alternatives become
available stochastically. Such a process may, for example,
relate households searching for dwellings, individuals search-
ing for workplaces, shopping and service centers, etc. The
results are based on asymptotic properties of maxima of
sequences of random variables, and hold under comparatively
weak assumptions. Altogether the paper enlarges the platform
which is common to various model specifications that are used
by different groups in the Metropolitan Study.

In particular, both preference maximizing and satisfying
behavior are shown to be asymptotically equivalent. Moreover,
the asymptotic (and average) properties of the search process
are described by a logit-type model, which on an aggregate level,
is formally equivalent to solutions obtained through entropy-
maximizing procedures. Hence, in a certain sense the latter
type of solutions may also be conceived as being compatible with
the search process described. Finally, the paper illustrates
a fruitful approach to the problem of determining consistent
rules for aggregating processes defined on the micro-level to
aggregate descriptions of such processes.

B8rje Johansson
Acting Leader
Regional & Urban Development Group

November, 1983
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ABSTRACT

The paper explores the properties of some simple search
and choice behaviors, by exploiting the asymptotic properties
of maxima of sequences of random variables. Heterogeneity in
the preference is introduced by means of additive random utili-
ties, and the actor is assumed to choose points in a plane region,
by sampling them according to a stochastic process. It is shown
that asymptotic convergence to a Logit model holds under consider-
ably weaker assumptions than those commonly found in the litera-
ture to justify it. This asymptotic property is treated in de-
tails for utility-maximizing behavior, and outlined for satis-
fycing behavior. The asymptotic equivalance of the two behaviors
suggests that progress in widening the family of asymptotically
Logit-equivalance behavors can be made with further research.
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TRANSIENT AND ASYMPTOTIC BEHAVIOR
OF A RANDOM-UTILITY BASED STOCHASTIC
SEARCH PROCESS IN CONTINUOUS SPACE
AND TIME

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

This paper is a follow-up to a previous one (Leonardi, 1982)
addressing the general problem of weakening the disaggregate
assumptions giving rise to Logit models. The specific assump-
tion weakened here (as in the previous paper) is the form of
the random utility distribution. It is shown how, by replacing
the usually assumed Gumbel distribution with the broader family
of distributions having an asymptotically constant hazard rate,
the Logit model arises quite naturally as an asymptotic approx-

imation to a suitably defined search behavior.
The general method outlined in Leonardi (1982) is as follows:

i) the choice behavior is formulated as a search, with
sampling from the set of alternatives, evaluating the
sampled alternatives, choosing the best one,

ii) the search process is formulated as a stochastic process,
1ii) the limiting behavior of the stochastic search process
is analyzed by using the asymptotic theory of extremes
(Galambos, 1978).

While in Leonardi (1982) the above method was applied to a

discrete choice space-discrete time process, here the theory is
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extended to cover the case of a continuous choice space-continuous
time process. Namely, the enviromnment in which the choice is made
consists of a plane region (the choice space), which may be thought
of as a geographic one, a deterministic utility evaluation, asso-
ciating a value to each point in the region, and a density of
alternatives, specified by a probability measure defined on the
plane region. The choice behavior for a given actor in the above
environment is described by a probability distribution for the
random part of the utility evaluation and by a stochastic point
process (a Poisson process is used in the paper), giving the
distribution of the sample size as a function of the time spent

in the search. The mechanics of the search are simple: at each
random point in time the actor draws a point of the region with
probability proportional to the density of alternatives at that
point, evaluates the point by drawing a random utility term and
adding it to the deterministic one, compares this value with those
obtained from the previously generated random points, and even-

tually updates the best alternative found so far.

The above search model is defined in section 2 and 3, and
its general transient properties are derived in section 4 and 5.
In section 6, the main limiting results are obtained by letting
the search time go to infinity. The main result of section 6 is
theorem 6.2, stating the asymptotic convergence of the above search

process to a Logit model.

In section 7 a further extension is outlined, showing how
similar asymptotic results can be obtained by replacing utility-
maximizing with satisfycing behavior, and suggesting that a broader

family of Logit-convergent micro-behaviors can be found.



2.

THE ENVIRONMENT

Let the following objects be given:

rgIRZ
W
A = [a,b] CIR
vl +A
_ 2
L, (T,W) = {g:Jg dW < » }
r
*
Ly

a (usually bounded) subset
of the plane; it defines the
choice space, and each reTl

is a possible choice;

a probability measure on T;
it defines the density of

alternatives:

an interval on the real line,
a>x, b<=»; this is the deter-

ministic utility space;

a function which maps each
r&el into a v(r)e A; v(r) is
the deterministic utility of
rerl;

the Hilbert space of square-
integrable functions g :T + IR,
in the measure W; the norm and

scalar product in L2 are de-

fined as:
lgl = (J g’am'/? ,  vger,
r

(g, f) =Igfdw ,  ¥g, feL,

r
the conjugate space of L2, i.e.

the set of all continuous linear
o0 if g*eL*, the
value of g* applied at ge&lL

operators on L

2 is
denoted by < g, g >.



The following proposition (stated without proof) and defi-
nition will be useful.

Proposition 2.1 (Riesz isomorphism theorem for Hilbert spaces):

There is one and only one c_—;eL2 such that <g, g°> = (g,9) = /ggdHw,
vg¥e L, " '
g€ by
Proposition 2.1 (a classic result in functional analysis)
states an isomorphism between L; and L2, such that each linear
operator g*eL; can be represented by a §eL2, and its application

to a geL2 can be represented by a scalar product (g,9) .

Definition 2.1 ( Gateaux derivative) :
Let H: L2 >~ TR be a functional on L2 such that, for gEI?
lim H(g+Af) -H(g) _ %
*>0 T =< £, u >, vf L2
Let further H'(g)EL2 be such that
<f,u*> = (£, H'(g)) according to the isomorphism

stated in proposition 1,
then H'(g) is called the Gateaux derivative of H at g.

Note 2.1 Due to the Riesz isomorphism, u* and H'({g) can be
interchangeably called the Gateaux derivative of H.
Choosing H'(g) is a matter od convenience, since it
makes an explicit representation of u* available.
In the case where H(g+ Af} is differentiable with

respect to A, one calls H'(g) the Gateaux derivative
of H at g if:

d v
ax H(g + Af) | oo = (£,H (g9)) . (1)

Note 2.2 It is easily checked that veL Indeed:

2°

Jvzdw < b% < w

r



3. THE SEARCH AND CHOICE BEHAVIOR

Let the search and choice behavior be defined by the follow-

ing objects and assumptions:

F(x) a probability distribution on IR ;
this is the random utility distri-
bution. The density F'(x) is

assumed to exist for all x€R,

ot

(At

Rn(t) - n!

a Poisson process with intensity X;
Rn(t) is the probability that n
trials are made in a time interval

[o,t),

Assumption 3.1 (The sampling process) at each trial in [o,t)

an rel is drawn according to the measure W, i.e. Pr{r€A} = W(a),
VACT

Assumption 3.2 (The evaluation) any drawn alternative r&l is

given a utility U = v(r) + 8 where 8 is a random variable with
distribution F(x) (the random utilities are thus Zndependent
identically distributed--i.i.d.-—-at each trial). The distribu-

tion of U is given by:

G(x) = P {a<x} = J Flx-v(r)ldw(r)
rel
Assumption 3.3 (Utility maximizing behavior) the actor is

assumed utility maximizer, i.e., if after n trials he has drawn

alternatives CireeerTyreeer T with utilities 61,...,ﬁk,...,ﬁ ,

n
he chooses an alternative i ,1<ig<n , such that

~ ~

u, =max u
1ikin k

Note 3.1 1In order to keep the choice unique, it can be assumed
that when there are two or more maxima, the one drawn

at the earliest trial is kept. This assumption is not



really needed, as long as the probability distribu-
tion involved are smooth enough to consider the

occurrence of a tie an event of zero measure.

4., THE DISCRETE SEARCH AND CHOICE PROCESS

The search and choice behavior as a function of the number

of trials is now analyzed. Define:

X =ma X u the utility of the best alterna-
1

— = tive found after n trials

s €T the best alternative found

after n trials

The process is described by the following three objects:

Qn(X) = Pr{§n<X} the distribution of the maximum

utility found after n trials

Pn(r) the density of choice after n
trials; it is defined in such a

way that

n

Pr{%ﬁEA} = j P _(r)ydw(r) , ¥ACT
r<A

(2)

Vn(v) = J den(x) the exvected utility after n
- trials; Vn(v) will be regarded
as a functional mavwning v into

a real number, i.e. Vn : L2+H2

A closed form for Qn(x) and Pn(r) is given in the following

proposition:

Proposition 4.1 for n < «

0, (x) = G"(x) (3)



[o o]

P_(r) =n J " N (x)daF[x-v (r)] (4)
Proof . To prove equation (3), note that the occurrence of the event
X_ < x
n

is equivalent to the joint occurrence of the events

ﬁ1 < x,...,ﬁn < x
and since the ﬁk’ k=1,...,n are i.i.d. random variables with

distribution G(x), equation (3) follows.

To prove equation (4), the event §n € A can occur if, and
only if, an r&A has been drawn at some trial, with a utility
greater than the ones found in all other trials. The probability

that this occurs for some trial k = 1,...,n is

J Jw " V(x) aF[x-v(r)] aw(r)
rea

- 00

and multiplying this by the number of trials n yields:

Pr{éﬁEA} = J {Il[ Gn-](x) dF [x-v (r)]} dw(r)
rcA
and comparison with equation (2) yields equation (4). Q.E.D.

An important property of Vn(v) is stated in the following

proposition:

Proposition 4.2 for n < =

P (r) €L, (5)



Proof. To prove that Pn(r) is square integrable, one uses the

Cauchy inequality in the following form:

® g2 (=1

{nj Gn-1(x) dF[x—v(r)]}zsnzf (x) dF[x-v(r)]

[ee]

From this, the definition of G(x) and equation (4) it follows:

o]

f Pi(r) aw (r) <n2f 21 (4 4G (x) =
YT -

< o

2n-1

To prove equation (6), from the definition of Vn(v) and G(x) it
follows for all ﬂELz:

é%vp(v+Xf) = —J xd{nGn_1(x)J F‘[x—v(r)—Xf(r)]f(r)dw(r)}
' — e’

and by using the rule of integration by parts and substituting

from equation (&4):

é% Vn(v+Kf)' = { {nJ_Gn_1(x)dF[x—V(r)]}f(r)dW(r) =

A=0 rel

= (£, P))

(e ]

Comparison of this result with equation (1) establishes egquation
(6). Q.E.D.

Note 4.1 Equation (6) is the continuous-space counterpart of the
integrability conditions property, already known for
random utility models in a discrete choice space, and
extensively discussed in ¥illiams (1277), Ben Akiva and
Lerman (1979), Daly (1979), Leonardi (1981, 1982).



In the general economic theory of demand, these are
known as the Hotelling necessary conditions for the
existence of a consumer surplus function (Hotelling,
1938). Equation (6) can thus be restated by saying
that Vn(v) is the consumer surplus associated with

the demand funetion Pn(r).

5. THE CONTINUOUS TIME PROCESS

In analogy with the discrete search process, the behavior
of the continuous time process is analyzed by means of the follow-

ing three obijects:

Q(x,t) = I Qn(x) Rn (t) the distribution of the
n=0 maximum utility found in
a time interval [0,t),
P(r,t) = I Pn(r) Rn (t) the density of choice for
n=0 a time interval (0,t),
V(v,t) = I V_(v) R (t) the expected utility for
n=0

a time interval [0,t).

Use of equations (3) and (4) and easy calculations yield the

following proposition, stated without proof:

‘Pronosition 5.1 for t < «

Q(x,t) = e MEIT=G(X)] (7)
P(r,t) = AtJ e MG gp v (2)) = J v 8] aox,t)  (8)
Note 5.1 For t < », Q(x,v) is not a proper distribution. Indeed
Q(=», t) = e->‘t = R . (t) >0

0

A similar comment applies to the choice density, since
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J P(r,t) dw(r) = 1-e " <1 .

rel

This is because, in a finite time interval [0,t), there is always
a non-zero probability that no alternative is drawn, and therefore

no choice is made.

From propositions 4.2 and 5.1, the following proposition follows,

whose proof is obvious.

Proposition 5.2. For t < «

_ T e
V(v,t) = it J xXe [1 G(X)]dG(x) (9)
P(r,t)EL2 (10)
P(rlt) =V‘(Vlt) . (11)

6. SOME ASYMPTOTIC RESULTS

The purpose of this section is to explore the behavior of
the continuous time process as t + «». The following additional

definition and assumption will be used.

Definition 6.1

F'(x) = -4 log [1-F(x)] is the #hagzard rate of

) = TFmy T &
the distribution F(x).

Assumption 6.1

lim p(x) = B,0 < B <

X >0

Note 6.1 Assumption 6.1 implies the property:

. 1-F(x+y) _ _-By - - -
lim == = © , <y < (12)

X oo
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Indeed, it is true (and easily checked from definition.6.1) that

X+y
1-F(x+y) = [1-F(x)] exp [ - J p(z)dz] =
X
Y
= [1-F(x)] exp [ - J plz+x)dz] . (13)
0

Applying the mean value theorem for integrals, there is some

£el0,y) for which

Y
J plz+x)dz = y o (£+x) (14)
0

Replacing the estimate (14) on the right-hand side of (13) yields

1-F(x+y) = [1-F(x)] e-yp (£+x)
or

1=-F(x+y) _ e ¥YP (E+x)

1-F(x)

and, taking the limit as x » o,

lim p (£+x) = B
K>

.1 =-F(x+y) _ =By
lim ——————3—= = e
. 1 -F(x)

The asymptotic results which follow make use of the follow-

ing objects:

Bv(r)
o = |e dW(r) (15)
T
.
Y o= 3 log ¢ (16)

a(t) root of the eguation



-12=-

1-Fla(t)] = 1/Xt (17)
or

a(t) = F 1 (1=1/)t) (18)

Note 6.2. ¢ and Y can be regarded as functionals on L i.e.:

2 [4

¢ :L2 - R , Yo L2-+IR

In this case, their value for a specific\/€L2 will be denoted by

¢ (v) and ¢ (v). From equation (18) it follows that:
lim a(t) = F (1) = = (19)
t>oo

Theorem 6.1. (Asymptotic form of the maximum utility distribution).

Under assumption 6.1,

_BX

lim Qla(t)* ¥ *+ X,t] = exp (-e ), — © < x < =

t o0

Proof. Due to definitions (15) and (16) and properties (12) and
(19):

1-Fla(t) +Pp+x-v(x)]

lim
t o T-Flal(t)]

- _ Bv(r)
- o By +tx-v(r)] _ -8Bx e ;

From this and equation (17) it follows:

_ax er(r)
lim At{1-Fla(t) +y +x-v(r)]} = e —_— (29)

t>o
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This and definition (15) imply:

lim At{1-Gla(t) +y +x]} = & J BV (Dawiry = ™ (21)

- o)
e rel

Result (21) and equation (7) finally yield

lim Qfa(t) +y +x,t] = exp (—e_BX

too

) Q.E.D.

Theorem 6.2 (Asymptotic form of the choice density). Under

assumption 6.1,

eBv(r)

lim P(r,t) = 3

too

Proof. From definition 6.1:

F'(x) = p(x) [1-F(x)]

On the other hand, it is of course true that

F'lx-v(r)] - AtF' [x-v(r)]
G[ (x) AEG' (x)

Therefore, the right-hand side of (8) can be written as:

[ ola(t) + ¥ +x=-v(r)]At{1-Fla(t) + vy + x-v(r)]}
dola(t)+y+x,t]

—o [ pla(t) +y+x-v(r)]At{1-Fla(t) + ¢y +x=-v(r)] }dW (r)
rel
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Now taking the limit for t -+~ and using assumption 6.1, defini-

tion (15), theorem 6.1 and equation (20):

e-Bxeev(r)

o B
lim P(r,t) = J d[eXP(-e—BX)] =
> e Be_BX JeBV(r)dW(r)
rel
Bv(r) (o _ Bv(r)
_ e [ BXyy & o.E.D.

— j dl[exp (-e

-0

Corollary 6.1 (Asymptotic form of the expected utility).

Theorem 6.1 implies:

lim [V(v,t) = a(t)] = ¢(v) + v/B

too
where vy is Euler's constant.
Proof. By definition

V(v,t) = ] V_ (VIR (t) = J xdl ] o (x,t)R (£)] = J xdQ (x, t)

n=0

-0 -0

Ne~3 8

n=0

Now changing variables of integration

Viv,t) = J la(t) +yp +x]dQ [a(t) +y +x,t]

- OO

and using theorem 6.1.

-Bx)]"+liﬁ [a(t) —a(t)] =y +Yv/B

t oo

lim [V(v,t) —a(t)] = w~+J xd [exp(-e

t>o
- 00
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Corollary 6.2 (Asymptotic validity of the relationship between

expected utility and choice density).

Theorems 6.1 and 6.2 imply:

lim P(r,t)e L

to>o 2
lim P(r,t) = y'(Vv)
t>c0

Proof. From theorem 6.2:

J[er(r)]Z aw(r) < €
o}

reTl

hence the asymptotic choice density is square integrable.

definitions (15) and (16).

p(v+rf) = % log J er(r)eABf(r)dw(r)
reT
therefore:
j eBVIEY ABE(E) £ 1) aw (r)
L yverg) = XL
J er(r)eXBf(r)dw(r)
re’l
and
d Rv(r)
= U (v+Af) | = J e
dax 1 =0 T f(r) dW(r)

rel

Bv
- (f e
( r ¢

—)

From

Q.E.D.
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Discussion of theorems 6.1 and 6.2- and corollaries 6.1 and 6.2.

The above results extend to continuous space and continuous
time the results proved for discrete space and discrete time
in Leonardi (1982). The main result is theorem 6.2, stating that
the choice density is asymtotically approximated by a Logit form,
even with no specific assumption on the form of F(x). The crucial
assumption used here is assumption 6.1, which is much weaker than
the one commonly used to derive a Logit model, namely, F(X) =
exp(-e-BX), a Gumbel extreme value distribution (see Domencich
and McFadden, 1975, for instance). Actually, the Gumbel distri-
bution appears in theorem 6.1, but as an asymptotic result, not
as an assumption. Since the family of distributions satisfying
assumption 6.1 is very broad, a Logit-type choice behavior can
be expected to be produced by a wide variety of random-utility
evaluation processes. It might also be observed that there is
a formal equivalence between the results obtained here and Boltzman
Statistical Mechanics. Indeed, theorem 6.2 defines a Boltzman
Distribution, ¢ can be identified with the Partition Function of
statistical mechanics, while y canbe identified with the Thermo-
dynamic Potential (up to a multiplicative constant). This statis-
tical mechanics analogy is developed in Leonardi (1977), although
it must be stressed that it is based on totally different assump-

tions than the random-utility ones.

7. A NOTE ON THE ASYMPTOTIC EQUIVALENCE BETWEEN UTILITY
MAXIMIZING AND SATISFYCING BEHAVIOR

It has been shown in the previous section how the Logit choice
model is obtained as an asymptotic approximation to a utility maxi-
mizing choice over a plane region, when the random utility distri-
bution satisfies assumption 6.1. It is interesting to explore to
what extent the utility maximizing assumption is crucial to this
result, by comparing it with other popular behavioral assumptions.
Here the comparison with the so-called "satisfvcing behavior" assump-
tion will be outlined, and it will be shown that, under suitable

conditions, the two behaviors are asymptotically indistinguishable.

Let assumptions 3.1 and 3.2 be kept, but assumption 3.3 be re-

placed by:



-17-

Assumption 7.1 (satisfycing behavior) the actor is assumed

satisfycer, i.e., a real number y (threshold utility or

aspiration level) exists such that, if after n trials he

has drawn alternatives r1,...,rk,...,rn, with utilities
ﬁ1""’ﬁk""’ﬁn’ the search stops if and only if

u, >y

ﬁk <y ’ Kk =1,...,n-1 .

In other words, a choice is made as soon as an alternative whose

utility exceeds the threshold y is found.

The search behavior considered in assumption 7.1 is a some-
what simplified version of more general satisfycing models, where
the threshold y might itself be changing during the search. How-
ever, the results to be derived do not depend that much on the

detailed mechanism for updating y, provided it can be assumed

that it is, or becomes in the long run, large.

On a purely intuitive ground, it is clear that, whenever the
search stops, the alternative which is chosen (the last one) has
the highest utility among all these of the sample generated so
far. Therefore, if the threshold y becomes large enough, it be-
comes unlikely that the search stops soon, and the sample size
to be generated is likely to become large. One is thus led again
to make probability statements on the maximum over a large sequence
of random variables, and an asymptotic equivalence between utility
maximizing for n (or t) » « and satisfycing for y +- « can be ex-

pected. This conjecture is proved rigorously in the next theorems.

Define:

P(r,y) The density of choice when a threshold
utility y is used.

A closed form for P(r,y) is given in the following theorem:

Theorem 7.1 for y < =
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1-F[y=-v(r)]
1-G (y)

P(r,y) (22)

Proof. Let SET be the chosen alternative. The event SEACT
can occur after n trials if and only if an reA has been drawn

at the nth trial, with a utility greater than or equal to vy,
while alternatives have been drawn in the previous n-1 trials,
with utilities less than y. Using the distribution G(r) defined

in assumption 3.2, the probability of this event is:

J {1—F[y—v(r)]}Gn_1(y)dW(r) . (23)
red
Summation of (23) over n = 1,...,> yields:

pr{Sea) = J f1-Fly=v(r) 1} 576" (y)] aw(r) =
n=0
reh
- 1-Fly-v(r)]
= J T=61y) dw(r)
rea
and this establishes equation (22). Q.E.D.

The asymptotic result is straightforward:

Theorem 7.2. (Asymptotic form of the choice density).

Under assumption 6.1.

er(r)

lim P(r,y) = ——5———

y+o

Proof. Using the definition of G(x), equation (22) can be re-

written as
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1-F [y=-v(r)]
1-F(y)
FlEy) [y-v (r) ]
1-F[y-v(r
) T=F (y) dw(r)
re'l

and assumption 6.1, used in the form specified by equation (12)

of note 6.1, yields immediately:

. ( : eBV(r)
im P(r,y -
y > PV D) qu ()

rel

which, due to definition (15), establishes the theorem. Q.E.D.

The result in theorem 7.2 is identical to that in theorem
6.2, although the proof is different and, in a sense, simpler
and more elegant. The issue raised by the results in this sec-
tion, that is the asymptotic equivalence of different behavioral
assumptions, 1s worth further research developments, and of course,
is not exausted by the relatively simplified examples given here.
What is pointed out is the possibility of obtaining stable asymp-
totic results not only by changing or generalizing specific assump-
tions within the same behavioral structure (the issue explored
in section 6) but even by changing or generalizing the behavioral

structure itself.

8. CONCLUDING REMARKS

A considerable difference of opinions exists on the theoret-
ical underpinnings of logit-type models. A broad two-fold classi-
fication can be made dividing them in two: the disaggregate school
(typically represented by Domencich and McFadden, 1975, or Ben-
Akiva and Lerman, 1979, although rcoted in the work of Luce, 1959,
and Manski, 1973), which would insist on justifying such models
on very specific micro-level behavioral assumptions, as well as

very detailed functional and parametric specifications of the
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underlying probabilistic structure; and the aggregate approaches,
the statistical mechanics analogue (entropy maximizing) being the
most popular one (Wilson, 1970, and more recently, Lesse, 1983,
for some very interesting theoretical developments), and the
"cost-efficiency" principle of Smith (1978) being its macro-

economic counterpart.

Loosely speaking, while the first school stresses the de-
pendency of choice patterns on the specific behavioral assump-
tions, the second one stresses what seems to be the opposite,
that is the relative insensitivity of choice patterns observed
at the aggregate level from specific behaviors at the disaggregate
level.

This paper is a contribution towards reconciliation of the
two extremes, although the point of view adopted here is quite
different from both. Rather than overspecifying micro-behavioral
assumptions, or neglecting them at all, it has been shown how a
wide, but still micro-economically sensible, family of behaviors

can be mapped into a single asymptotic model.

The concept of "asymptotic" is proposed here as a replacement
for the more restrictive "aggregate". A key argument to the de-
rivation of the results, both in sections 6 and 7, has been iden-
tifying some quantity in the system which becomes large (the sample

size, the time spent in search, or the threshold utility level).

The results of section 7 are particularly important for future
developments, since they suggest that the family of micro-level be-
haviors generating the same asymptotic model can be considerably
broader than what one obtains by just generalizing some functional
forms. In other words, different decision eriteria, and not only
different probability distributions, may lead to the same asymp-

totic model.

Two final notes concern space and dynamics. The role of space,
in the geographic sense, does not appear as crucial in the results
of this paper. However, it should be stressed that the continuous
nature of the choice set Zs crucial to the derivations (and indeed
it corrects some otherwise artificial results in Leonardi, 1982),

and geographic space is perhaps the only known phenomenon in nature
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whose description in continuous terms is not a mathematical

artifact.

What is really missing in the geography implied in the paper
is the effect of space on the state of knowledge of the actor in
the choice process. This knowledge is summarized by a measure W,
which does not change over time. It is plausible to think of a
learning mechanism which updates W as alternatives over the region
are explored; it is also plausible to think of the metric of space
(distance) playing a role in determining or constraining the learn-
ing mechanism. One future development should therefore be to pro-
duce asymptotic results, similar to those given here, for choice
processes including a suitably general family of geography-dependent

learning mechanisms on the choice set.

As for dynamics, a comparison between utility maximizing and
satisfycing behavior is interesting. Although both behaviors lead
to the same asymptotic form, they imply a different economy of
aescription when used in a dynamic framework. The utility maxi-
mizing behaviors needs to keep track of the previously found
maximum utility, in order to make the next move. The satisfycing
behavior does not need to keep track of any information on pre-
viously tested alternatives, since, if the search is still going
on, by definition they where below the threshold level, and any
newly drawn alternative need not be compared with them, but only
with the threshold.

The satisfycing assumption seems therefore superior, in terms
of economy of description, to the utility maximizing one, since it
leads to a simple Markovian structure in the choice dynamics, with-
out the need to expand the description of the state of the system
by including utility distributions in it. The use of this prop-
erty as a simplifying device is under study for applications to
housing and labor mobility, and the models proposed in Leonardi

(1983a,b,c) are under revision from this point of view.
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