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PREFACE

The System and Decision Sciences Area has been involved in
procedures for approximation as part of a variety of projects
involving uncertainties. In this paper, the authors discuss
approximation methods for stochastic programming problems. This
is especially relevant to the Adaptation and Optimization project

since it directly applies to the solution of optimization problems
under uncertainty.

Andrzej P. Wierzbicki
Chairman

System and Decision
Sciences Area



DESIGNING APPROXIMATION SCHEMES FOR
STOCHASTIC OPTIMIZATION PROBLEMS,
IN PARTICULAR FOR
STOCHASTIC PROGRAMS WITH RECOURSE

John Birge and Roger J-B. Wets
Industrial and Operations Engineering Department of Mathematics
University of Michigan University of Kentucky
ABSTRACT

Various approximation schemes for stochastic optimization
problems involving either approximates of the probability mea-
sures and/or approximates of the objective functional, are in-
vestigated. We discuss their potential implementation as part
of general procedures for solving stochastic programs with re-
course.
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1. INTRODUCTION

We take
(1.1) find x ¢ R® that minimizes Ef(x) =E{f(x,£(w))}

as prototype for the class of stochastic optimization problems under investiga-

tion, where

(1.2)  E{f(,E())} = J £(x,£(w))P(dw)

¢ is a random vector which maps the probability space (2,A,P) on (RN,BN,F) with
F the distribution function and E(:RN the support of the probability measure

induced by & (i.e. Z is the set of possible values assumed by &), and

f: RanN—>RLJ{+w} is an extended real-valued function. We shall assume:

(1.3) for all x, we f(x,5£(w)) 1is measurable ,
and the following integrability condition:
(1.4) if Plw/| f(x,&(w)) <+o] =1 then Ep(X) < +o0

We refer to Ef:=E{f(-,g(w))} as an expectation functional. Note that it can

also be expressed as a Lebesgue-Stieltjes integral with respect to F:

(1.5) Ep(x) = JRN f(x,2)dF ()

A wide variety of stochastic optimization problems fit into this (abstract)

framework; in particular stochastic programs with (fixed) recourse [1]

(1.6) find x ¢ RTI such that Ax=D)b ,

and z=cx+Q(x) 1is minimized

. . m
where A is an mIan—matrlx, beR ?,

(1.7) 2(x) = E{Q(x,&(w))} = J Qx,&(w))P(dw) ,

and, the recourse function is defined by

(1.8) Q(x,&(w)) = inf nz{q(w)y | Wy =h(w) - T(w)x}
yeR

+



The (mzxnz)-matrix W is called the recourse matrix. For each w : T(w) is mZan,
q(w) ¢ R"2 and h(w) R™ Piecing together the stochastic components of the pro-

blem, we get a vector £ ¢ RN with N==n2 +m, +(m2xnl), and

£ = (ql""’qnz’hl""’h ’tll""’tlnl’tZI""’t

my mz ,My

We set
(1.9) f(x,£) = cx + Q(x,&) if Ax=b , xz0,

+ o otherwise .
Provided the recourse problem is a.s. bounded, i.e.
(1.10) Plw|3n such that nWsqw)] =1,

which we assume henceforth, the function Q and thus also f, does not take on the
value - . The measurability of f(x,s«) follow- directly from that of &m» Q(x,£)
[1, Section 3]. If £ has finite second moments, then Q(x) is finite whenever

we Q(x,E(w)) is finite [1, Theorem 4.1] and this guarantees condition (1.4).

Much is known about problems of this type [1]. The properties of f as de-
fined through (1.9), quite often motivate and justify the conditions under which

we obtain various results. The relevant properties are

(1.11) (h,T)»Q(x,&8=(q,h,T)) 1s a piecewise linear convex function
for all feasible xe K = Klerz,
where
K1 = {x | Ax=b, x20}
K, = {x |VE(W) e Z, 3y 20 such that Wy=h(w) - T(w)x} ,
(1.12) qr»Q(x,£=(q,h,T)) 1is a concave piecewise linear function ,
and
(1.13) x=»Q(x,8) 1s a convex piecewise linear function

which implies that



(1.14) x»Q(x) 1is a Lipschitzian convex function ,

finite on K2, as follows from the integrability condition on £(°).

When T is nonstochastic, or equivalently does not depend on w, it is some-
times useful to work with a variant formulation of (1.6). With T=T(w) for all
w, we obtain
(1.15)  find xeR]}, xeR™ such that

Ax=b , Tx=X , and
z=cx+¥Y(X) 1is minimized
where

(1.16) Y(X) = Efu(X,Ew))} = J Y (X, € (w)) P (dw)

and

(1.17)  0GEW)) = inflq(w)y | Wy =h(w)-X, yeR,?}

This formulation stresses the fact that choosing x corresponds to generating a
tender X = Tx to be "bid" against the outcomes h(w) of random events. The func-
tions Y and Y have basically the same properties as Q and Q, replacing naturally
the set K, by the set L, = {x=Tx | xeKz} ={X |¥h(w) €E, 3y 20 such that Wy =h(w)-Tx}.
The function f is now given by

(1.18) £F(x,X),8) = | ex+yP(X,E&) if Ax=b , Tx=X , x20 ,

+o0 otherwise .

A significant number of applications have the function y separable, i.e.

P(X,&) = Z?il wi(xi,gi) such as in stochastic programs with simple recourse

[1, Section 6]. This will substantially simplify the implementation of various
approximation schemes described below. When separability is not at hand, it will
sometimes be useful to introduce it, by constructing appropriate approximates for

P or Q, see Section 3.




Another common feature of stochastic optimization problems, that one should
not lose track of when designing approximation schemes, is that the random behavior
of the stochastic elements of the problem can often be traced back to a few inde-

pendent random variables. Typically

(1.19)  E() = gy @E + (W + +ee s g (WE
where the

{gi: Q~>R; i=1,...,M}

are independent real-valued random variables, and

i i i i i i i

£ = (ql’""qnz’hl""’hmz’tll’""tmgnl)
are fixed vectors. In fact many applications -- such as those involving scenario
analysis -- involve just one such random variable (+); naturally, this makes the

components of the random vector £(+) highly dependent. Last, but not least, only
rarely do we have in practice adequate statistics to model with sufficient accur-
acy joint phenomena involving intricate relationships between the components of §&.
Hence, we shall devote most of our attention to the independent case, remaining

at all times very much aware of the construction (1.19).

This will serve as background to our study of approximation schemes for
calculating

Ee(x) = [ f(x,&(w))P(dw)

After taking care of some general convergence results (Section 2), we begin our
study with a description of possible approximates of f in the context of stochas-
tic programs with recourse (Section 3.) We then examine the possibility of ob-
taining lower or upper bounds on Ee by means of discretization (of the probability

measure) using conditional expectations (Section 4), measures with extremal



support (Section 5), extremal measures (Section 6) or majorizing probability mea-
sures (Section 7). In each case we also sketch out the implementation of the re-
sults in the framework of stochastic programs with recourse, relying in some
cases on the approximates to f obtained in Section 3. In the last section, we
give some further error bounds for inf Ef that require the actual calculation of

Ef(x) at some points.



2. CONVERGENCE RESULTS

The purpose of this section is to free us at once from any further detailed
argumentation involving convergence of solutions, infima, and so on. To do so
we rely on the tools provided by epi-convergence. Let {g; gv, v=1l,...} be a col-
lection of functions defined on R" with values in R=[-»,+»]. The sequence

{gv, v=1l,...} is said to epi-converge to g if for all xe¢ Rn, we have

(2.1) lim inf gv(xv) > g(x) for all {xv, v=1,...} converging to x ,
Voo
and
(2.2) there exists {xv, v=1,...} converging to x such that lim sup gv(xv) <g(x)
Vo

Note that any one of these conditions implies that g, the epi-limit of the gv,
is necessarily lower semicontinuous. The name epi-convergence comes

from the fact that the functions {gv, v=1,...} epi-converge to g if and only if
the sets {epi gv, v=1l,...} converge to epi g={(x,a) | g(x) <a}; for more details
consult [2,3]. Our interest in epi-convergence stems from the following proper-

ties [4].

2.3 THEOREM. Suppose a sequence of functions {gv, v=l, ...} epi-converges to g.

Then

(2.4) lim sup (inf gv) < inf g ,
Vo

and, 1f

v v v
K e argmin g ¥ = {x | g X(x) < inf g KX}

v
for some subsequence of functions {g ¥, k=1,...} and x-=iim xk, it follows that
—C0O
X ¢ argmin g ,
and v
lim (inf g k) = inf g .

koo

Moreover, if argmin g=z#, then lim (inf gv) =inf g if and only if xe argmin g
Vo0
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implies the existence of sequences {e\’zo, v=1,...} and {xv, v=1,...} with

. Y
1im €, = 0, and lim x~ = x ,
Yoo Voo

such that for all v=1,...,

X, € € -argmin g’ = (x| g’ (x) <inf gv-fev} .

2.5 COROLLARY. Suppose a sequence of functions {gv, v=l,...} epi-converges to g,

and there exists a bounded set D such that

argmin g” nD = ¢

for all v sufficiently large. Then

lim (inf gv) = inf g
oo

and the minimun of g is attained at some point in the closure of D:

PROOF. Since D is bounded, it follows that there exists a bounded sequence

{xV, v=1,...} with
v . v
X eargmin g nD .

v
This means that a subsequence converges {x k, k=1l,...} to a point x both in
the closure of D and in argmin g as follows from epi-convergence. Theorem 2.3
also yields

lim g k(x'kK) = g(x) = inf g .

koo
There remains only to argue that the entire sequence {(inf gv), v=1,...} converges
to inf g. But this simply follows from the observation that the preceding argu-

ment applied to any subsequence yields a further subsequence converging to inf g. []

The following proposition provides very useful criteria for verifying

epil-convergence.



2.6 PROPOSITION. [5, Proposition 3.12] Suppose {g”: R" >R, v=1,...} is a col-

lection of functions pointwise cowverging to g, i.e. for all x, g(x) =1im gv(x).
V>0

Then the gv epi-converge to g, if they are monotone increasing, or monotone de-

ereasing with g lower semicontinuous in this latter case.

For expectation functionals, we obtain the next assertion as a direct conse-

quence of the definition of epi-convergence and Fatou's lemma.

2.7 THEOREM. Suppose {f; £Y, v=1,...} is a collection of functions defined on
R with values in Ry {+x} satisfying conditions (1.3) and (1.4), such that for
all & e 2 the sequence {fV(-,g), v=1, ...} epi-converges to f(+,£). Suppose more-
over that the functions £Y are bounded below uniformly. Then the expectation

funetionals E ,, epi-converge to E ¢

f\)

When instead of approximating the functional f, we approximate the proba-
bility measure P, we get the following general result that suits our needs in

most applications, see [6, Theorem 3.9], [7, Theorem 3.3].

2.8 THEOREM. Suppose {Pv, v=l, ...} 28 a sequence of probability measures con-
verging in distribution to the probability measure P defined on Q, a separable

metric space with A the Borel sigma-field. Let
(x,w) ¥ £(x,Ew): R™Q>Ru {+»}
be continuous in w for each fixed x in K, where
K = {x| E£(x) <+w} = {x| f(x,Ew)) <+», a.s.} = @ ,

and locally Lipschitz in x on K with Lipschitz constant independent of w. Sup-
pose moreover that for any xe K and € >0 there exists a compact set Se and Ve such

that for all V2V



(2.9) f |f(x,€(w))lpv(dﬂ) <TE
Q\SE

and with V={w | f(x,w) = +»}, P(V) >0 <f and only if Pv(V) >0. Then the sequence

of expectation functionals {EE, v=1,...} epi- and pointwise converges to E, where

Ep(x) = [ £(x,£(w))P, (dw)

PROOF. We begin by showing that the E¥ pointwise converge to E.. First let

X ¢ K and set
glw) = f{x,w)

From (2.9), it follows that for all €>0, there is a compact set S_ and index Ve

such that for all vzv€

J |g(w) [P (dw) <€ .
NS _

Let M_=sup |g(w)|. We know that M_ is finite since S_ is compact and g is
> weSg € £

continuous, recall that xe K. Let g6 be a truncation of g defined by

glw) if [gw)] =M
g (w) = 1 M if g(w >M_

-M_ if g(w) <-M_

The function gE is bounded and continuous and we have that for all we {
£
g W] < [gw] .
Hence from the convergence in distribution of the Pv

(2.10)  1lim (B = J ge(w)Pv(dw) - J ¢S (WP (dw) = g°

\Vass Q

and also for all \>2v€,
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J ge[w)Pv[dw) <e .
2\,
Now let

B, = Ep(x) = f g(wP (dw) + J g(w)P (dw)

SE Q\SE

We have that for all v 2\%

8, - 8] = ‘j [g(w) - g"(w)IP (dw)| < 2¢

Q\SE

and also that
€
[Eg(x) - 87| < 2e .

Combining the two last inequalities with (2.10) shows that for all € >0, there

exists \)E such that for all \);2\)E
IEf(x)-BV| < 6g ,
and thus for all x eK,

lim E?(x) = Ec(x)
Voo

If x4 K, this means that
P[V={w| f(x,5(w)) =+=}] >0
which also means that for all v
P,(V) >0,
from which it follows that for all v

. v = e =
lim Ef(x] = + Ef(x)

Vo0
And thus, for all x«¢ Rn, Ef(x) = 1lim E?[x). This gives us not only pointwise
-0

convergence, but also condition (2.2) for epi-convergence.
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To complete the proof, it thus suffices to show that condition (2.1) is
satisfied for all xe¢ K. The function x» f(x,£(w)) is Lipschitzian on K, with
Lipschitz constant L independent of w. For any pair x,xv in K, we have that

for all g

| £, EW)) - £(x7,5w)) | s L dist(x,x”)
which implies that

£(x,E(w)) - L dist(x,x”) < £(x,E(w))

v .
Let us now take x° as part of a sequence {x ', v=1,...} converging to x. Integrat-

ing on both sides of the preceding inequality and taking lim inf, we get
V0

Eg(x) = lim Eg(x) - L lim dist(x,x")

V>0 oo

= lim inf (E;(x) - L dist(x,x"))
oo

in

1lim inf Ez(xv) ,
00

which completes the proof. [J

2.11 APPLICATION. Suppose {Pv’ v=1,...} 18 a sequence of probability measures

that converge in distribution to P, all with compact support Q. Suppose

0" (x) = f Q(x, & (w))P,, (dw)

with the recourse function Q defined by (1.8) and Q by (1.7). Then the Qy both

epi- and pointwise converge to Q.

It suffices to observe that the conditions of Theorem 2.8 are satisfied.
The continuity of Q(x,£) with respect to £ (for xe Kz) follows from (1.11) and
(1.12). The Lipschitz property with respect to x is obtained from [1, Theorem 7.7];
the proof of that Theorem also shows that the Lipschitz constant is independent of

£, consult also [8].
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2.12 IMPLEMENTATION. From the preceding results it follows that we have been
given great latitude in the choice of the probability measures that approximate P,
However, in what follows we concern ourselves almost exclusively with discrete
probability measures. The basic reason for this is that the form of f(x,%) --

or Q(x,£) in the context of stochastic programs with recourse -- renders the numer-
ical evaluation of Ef (or EE) possible only if the integral is actually a (finite)
sum, Only in highly structured problems, such as for stochastic programs with
simple recourse [9], may it be possible and profitable to use other approximating

measures.
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3. APPROXIMATING THE RECOURSE FUNCTION Q
When f is convex in &, it is possible to exploit this property to obtain

simple but very useful lower bounding approximates for Ef.

3.1 PROPOSITION. Suppose Ew £(x,E) is convex, {&Q, 2=1,...,V} Zs a finite collec-

tion of points in Z, and for 2=1,..., ,
e £x,eh)
g
. L . . L
t.e. V18 a subgradient of f(x,+) at & . Then

(3.2 B0 2 Bl max (e (b -viEb1}

1<V

PROOF. To say that v is a subgradient of the convex function of f(x,+) at &2,

means that
L L L
£(x,8) - £(x,87) 2v7(§-8&7)
Since this holds for every %, we obtain

F(x,£) = max [V'E+ (£(x,£%) -vieH]
1<<v

Integrating on both sides yields (3.2). 0O

3.3 APPLICATION. Consider the stochastic program with recourse (1.6) and suppose
that only h and T are stochastic. Let {g2= (hz,Tz), 2=1,...,V} be a finite

number of realizations of h and T, xe K, and for 2=1,...,V,

2
e argmax[w(hz-sz) | TW < q]
Then

(3.4) 9(x) > E{ max 7¥(h (W) - T(w)x)} .

1<f<v
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This is a direct corollary of Proposition 3.1. We give an alternative proof
which could be of some help in the design of the implementation. Since x¢ KZ’
for every £=(h,T) in Z, the linear program

(3.5) find Te R™ such that ™ <q

and w=7(h - Tx) is maximized

is bounded, given naturally that it is feasible as follows from assumption (1.10).

Hence for 2=1,...,v,
L 2.8 2
Q(x,£7) = m7(h™-Tx) ,

and moreover since WQ is a feasible solution of the linear program (3.5), for
all £e¢=

Q(x,) = m(h - Tx)
Since this holds for every 2, we get

Q(x,8) =z max Wz(h-Tx)
1<fsv

Integrating on both sides yields (3.4).

3.6 IMPLEMENTATION. 1In general finding in expression (3.4), the maximum for

each £ -- or equivalently for each (h,T) ¢ £ -- could be much too involved. But

we may assign to each NQ a subregion of Z, without resorting to (exact) maximiza-
tion. The lower bound may then not be as tight as (3.4), but we can refine it

by taking successively finer and finer partitions. However, one should not forget
that (3.4) involves a rather simple integral and the expression to the right could
be evaluated numerically to an acceptable degree of accuracy, without major dif-
ficulties. Note that the calculation of this lower bound imposes no limitations
on the choice of the EQ. However, it is obvious that a well-chosen spread of the

{82, 2=1,...,v} will yield a better approximation. For example, the EQ could be
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the conditional expectation of £(+) with respect to a partitioning S ={SQ, 2=1,...,v}

of = which assigns to each S, about the same probability. Also the use of a

2
larger collection of points, i.e. increasing v, will also yield a better lower

bound.

3.7 CONVERGENCE. Suppose that Em £(x,£) s convex. For each v=1,..., let

Sv=={SZ, 2=1,...,Lv} denote a partition of = with

AN SR

the conditional expectation of E(+) given Sz. Suppose moreover that Sv<:Sv+1
and that
(3.8) lim | max Plw | &(w) ¢ Sz]] =0 .
Voo ISQSLv
Then, with v'%e agf(x,gvg) and
(3.9) Eﬁu)=E{mw:[v“gMJ+ﬂL:”J-¢“§H},

1<2<L,
v
we have that the sequence of functions {E%, v=1,...} 18 monotone increasing, and

for all x:

Ef(x) = lim E¥(x)

Yoo

Hence the sequence {E¥, v=l,...} s both pointwise- and epi-convergent.

PROOF. From Proposition 3.1, it follows that E¥:;Ef for all v. The inequality

V) v+l
£ < Ef < Ef

\Y

then follows simply from the fact that Sv+1 58”. Now observe that

L s yVEevR

(3.100  max [v'% + fix,g"h) £V 2 gV(x,8)

1<2<L
v
where gv is defined as follows:

Vi Vvl vi

g (x,8) = v+ £k, - vV if £eS) .
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It follows that

Y

L
\Y

ELx) = Bl (GE@N) = T PIEW) € S)1E(x,"Y)
2=1

which gives us

[\

lim E?(x) > 1im E{g"(x,£W))} = Eg(x) ;
Vo V0

Ec(x)

the last equality following from assumption (3.8).
We have thus shown that the sequence {E¥, v=1l,...} is monotone increasing

and pointwise converges, and this implies epi-convergence, see Proposition 2.6. [

If f(x,+) is eoncave, the inequality in (3.2) is reversed and, instead of a
lower bound on Ef, we obtain an upper bound. In fact, we can again use Proposi-
tion 3.1, but this time applied to -f.

3.11 APPLICATION. Consider the stochastic program with recourse (1.6) and sup-

L

pose that only the vector q is stochastic. Let {£2=(q , 2=1,...,V} be a finite

number of realizations of q, xe K, and for 2=1,...,v

2
2 . L _
y~ e argmin[q’y | Wy = p-Tx, y 20]
Then

(3.12) Q(x) < E{ min q(w)yﬁ} :
1<f<v

Again this is really a corollary of Proposition 3.1. A slightly different proof
proceeds as follows: Note that for all q=& ¢ Z, for every %, y2 is a feasible,

but not necessarily optimal, solution of the linear program

find y e R?z such that Wy =p-Tx,
and w=qy is minimized.

Hence 2

Q(x,&) £ min qy
1<8<v

from which (3.12) follows by integrating on both sides.
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The remarks made about Implementation 3.6 and the arguments used in Convergence 3.7
still apply to the concave case since we are in the same setting as before provided
we work with -f or -Q.

Proposition 3.1 provides us with a lower bound for Ef when £~ f(x,8) is

convex, the next result yields an upper bound.

3.13 PROPOSITION. Suppose & f(x,8) is convex, {Eg, 2=1,...,V} is a finite col-

lection of points in Z. Then

(3.14)  Eg(x) < Ep(x) = { £Y(x, £ (w) )P (dw)
where
v B Y- 1 g I
(3.15) £ °(x,£) = inf, _y A E(x,E7) | € = AEY L1 = A
ARy em1 F =1t =1t

If the function &wf(x,£) is sublinear, the £¥ can be defined as follows:

Y} . v % 7 .
(3.16) £Y(x,8) = 1nfxeRf QZI Af(x,67) [ € = 221 AGE

(Note that fv(x,g) 18 +w 1f the corresponding program is infeasible.)

=1, and

PROOF. Convexity implies that for all AIZO,...,AVZO with Z;=1 AQ

g = Z;=1 Aggg we have
4 )
(3.17) f(x,8) < 221 AgE(x,€7)

from which (3.14) follows using (3.15). Sublinearity (convexity and positive

homogeneity) also yields (3.17) but this time without Z;=l A, =1, and this in

L
turn yields (3.14) using (3.16) this time. [J

3.18 APPLICATION. Ray fumctions. Consider the stochastic program with recourse
in the form (1.15) and suppose that only h is stochastic, i.e. with fixed matrix T
and recourse cost coefficients q. Now suppose that for given X, we have the values of

{W(X:€2=h2): 2=1,...,v} for a finite collection of realizations of h(-).
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Let £ ¢ = and define

v N 2 v 2
(3.19) ¢’ (x,8) = inf, py 22 AVOGED | € = x-+22 A (E7-)
+ =1 =1

Then

Yoo < vWoo = J 0¥ (5, £ (w) )P (dw)

The above follows from the second part of Proposition 3.13 provided we observe

that from the definition (1.17) of ¥, we have that

h » Y(h+x)

is sublinear. From this it follows that for any Ae¢ Rf

Vv
YOG E-D) < ) ng(x,(iz-x)+x)
%=1

whenever

4 )
E-x = ) A (€70
=1
and this leads to the construction of wv in (3.19). [J

3.20 IMPLEMENTATION. Finding for each &, the optimal value of a linear program
as required by the definition of wv in (3.19), could involve much more work than
is appropriate to invest in the computation of an upper bound. One way to remedy
this is to subdivide = such that each £ is automatically assigned to a particular

region spanned by a subset of the {gz, 2=1,...,v} or to the subset whose points

are such that

V

E-Xépos(gl—x,...,g\)_x) =<t I t = z
=1

L v
A (E7-X), Ae R+} :
One case in which all of this falls nicely into place is when a stochastic

program with recourse of type (1.15) can be approximated by a stochastic program

with simple recourse [1, Section 6] where the function y(yx,E) is separable,
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ma

(3.21) w068 = 1 W (x,E;)

i=1

and

. + + - - + - + -
(3.22) by (xy58;) = inflayy; +q.y; Iyi-yi-hi-xi, y; 20, vy, 20],

here £i==(q;,q;,hi). The function ¥ is then also separable and can be expressed as
m2
Yoo = 1 ¥ 0)
1=1
where

¥, (x) = E{wi(xi,ai(w))} .

(This is the linear version of the simple recourse problem.)

3.23 APPLICATION. Approximation by simple recourse. Consider a stochastic program
with recourse of the type (1.15), with only h stochastic and complete recourse
[1, Section 6], this means that the recourse matrix W is such that

pos W= {t|t=Wy, y20} = R™2

i.e. the recourse problem is feasible whatever be h or x. For i=1,...,m2, define

(3.24) q; = inf{qy |Wy:=e1, y=0} ,
and
(3.25) q; = inf{qy | W=—el, y=20} ,

where e' is the unit vector with a 1 in the ith position, i.e.

el = (0,...,0,1,0,...,007 .

The recourse function Y(x,£) is then approximated by the recourse function
(3.21) of a stochastic program with simple recourse using for q; and qi the
values defined by (3.24) and (3.25). This is a special case of the ray func-
tions built in Application 3.18; each (£-x) falls in a given orthant and is thus

automatically assigned a particular positive linear combination of the chosen
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points (tel—x, i=1,...,m2). To improve the approximation we have to introduce
A 2 . . . .
additional vectors & , which brings us back to the more general situation de-

scribed in Application 3.18.

3.26 APPLICATION. Consider a stochastic program with recourse of type (1.15),

with only q stochastic. The function
q " (X, q=5): R"Z >R

is not only concave and polyhedral (1.12), it is also positively homogeneous.

2

L
For any finite collection {€"=q", 2=1,...,V} we have that

4 g 3 g
(3.27)  b(X,q) 2 supy v | L AW0Ga) [a= ]} Ak
+ [ 4=1 =1
. . . . 2 L2
This again follows directly from Proposition 3.13; note that yY(x,q ) =q y where

y*e argmin[qzy | Wy =h-x, y=20].

3.28 IMPLEMENTATION. Calculating for each g, the upper bound provided by (3.27)
may be prohibitive. We could assign each qe¢ Z to some subregion of Z spanned by
the positive combinations of some of the {qR, 2=1,...,v}. Such a bound is much

easier to obtain but clearly not as sharp as that generated by (3.27).

Another approach to getting upper and lower bounds for stochastic programs
with recourse is to rely on the pairs programs as introduced in [10, Section 4].
One relies again on convexity properties and once again one needs to distinguish
between (h,T) stochastic, and q stochastic. To begin with, let us consider h, and

T stochastic. For every (h,T)=%£¢Z, and (h,T) = ge co = (the convex hull of Z), let

(5.29)  o(£,6) =  inf [cx+pay + (1-p)ay,]
such that Ax =b
%X"‘W;’ =ﬁ
Tx +Wyg = h

x20, y=20, Yg 20,
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with pe [0,1]. If (1.6) is solvable, so is (3.29) as follows from [1, Theorem 4.6].

Suppose x° solves (1.6) and for all £=(h,T), let
o} .
y2(€) e argming pnz [ay | Wy = h-Tx]

It is well-known that yo(g) can be chosen so that £r+yo(£) is measurable

[1, Section 3]. Now suppose

(Hs ) = E{E} )

3

and

y = B2 (®)T .
The triple (xo,ylyo(g)) is a feasible, but not necessarily optimal, solution of

the linear program (3.29) when (ﬁ,?) = (h,T). Hence
—_ 0 P —— A 0
p(€,€) < cx” +pqy + (1-p)ay (€)
and integrating on both sides, we obtain

(3.30)  E{p(E,5)} < ox®+Q(x°)

This bound can be refined in many ways: first, instead of just using one point £,
one could use a collection of points obtained as conditional expectations of a
partition of =, and create a pairs program for each subregion of Z. Second, in-
stead of just one additional point 2, we could use a whole collection

{21,...,€V} to build a program of the type (3.29). All of this is described

in detail in [10] for the case when only h is stochastic but can easily be gener-
alized to the case h and T stochastic.

When only q is stochastic, we consider a dual version of (3.29), viz. for

every q=§& e = and a=geco =, let

(3.5) %G8 = sup  [ob+Bih+ (1-P)mph]
such that oA+ 7T < c
™ <q
T.W =£q
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with ﬁe [0,1]. The same arguments as above with §:=z; but relying this time on

the dual [11] of problem (1.6), lead to

3.32)  ELpdE )} 2 ex®+Q(x°) := inf(ce+Q)
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4. DISCRETIZATION OF THE PROBABILITY MEASURE P THROUGH CONDITIONAL EXPECTATIONS
Jensen's inequality for convex functions is the basic tool to obtain lower

bounds for Ef when f(x,+) is convex or upper bounds when Ef is concave. Here, it

leads to the use of (molecular) probability measures concentrated at conditional

expectation points. In the context of stochastic programming this was first done

by Madansky [12] and further refined by Kall [13] and Huang, Vertinsky and Ziemba [14].

4.1 PROPOSITION. Let S={s, 2=1,...,v} be a partition of E, with
e = BlEw |SY and  p, = P[E(W €57

Suppose first that &w f(x,§) is convex. Then

P E(x,EY)
1

o~

(4.2) E.(x) =
£ L

If £e» £f(x,&) is concave, then

3 2
(4.3) Ec(x) < QZI p f(x,87)

PROOF. Follows from the iterated application of Jensen's inequality:

f(x,E{&€(w)}) <E{f(x,&(w))} when f(x,+) is convex; consult [15]. O

4.4 APPLICATION. Consider the stochastic program with recourse with only h and T
stochastic. With S=={Sl, 2=1,...,v} a partition of Z and for 2=1,...,v, let

L L L L

£ = (h",T7) = E{(h(w),T(w)) | $7}

and p2:=P[€(w)€ Sl]. As follows from (1.11) and (4.2), we obtain

J 2
(4.5) I pQx,87) < 2(x)
2=1

and thus if

v
v . L
z =1n%d@1&x+ £1p¢ML£)|Ax=b,x2ﬂ
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where

. )
inf pnzlay [ Wy =h"- T, y=0] ,

Qx,gh

we have that

\Y

z” < z* = inflex+ Q(x) | Ax=b, x20]

Each z” is thus a lower bound for the optimal value of the stochastic program.
(An alternative derivation of (4.5) relying on the dual of the recourse problem

that defines Q(x,£) appears in [16].)

.6 CONVERGENCE. Suppose SV=={SQ, 2=1,...,v} for v=1,..., are partitions of

n

with §¥c s¥*l

[1l

and chosen so that the Pv’ v=1,... converge in distribution

to P. The PV are the (molecular) probability distributions that assign probability
pQI=P[E(w)e SQ] to the event [£(w) =£2] where 52 is the conditional expectation
(with respect to P) of £(+) given that &(w) € SQ. The epi-convergence of the

{Qy, v=l,...} to Q, with the accompanying convergence of the solutions, follows

-~

from Theorem 2.8, where

%
0"(x) = ] pAx,EY = J Qx, & ()P, (dw)
2=1

To make use of these results we need to develop a sequential partitioning
scheme for Z, i.e. given a partition SV of % how should it be refined so as to im-
prove the approximation to Q as much as possible. P. Kall has also worked out

various refinement schemes [17].

4.7 IMPLEMENTATION. Stochastic programs with simple recourse, with h stochastic,
q and T are fixed. Recall that for a stochastic program with simple recourse V¥

takes on the form:
mz

YOO = By L 05 0GaE ) s
i1
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where Ei =hi and, as follows from (3.21),

+ .

qi(xi-hi) if hisx.l .

Aﬂbi

\‘\
'
L[]
1
!
1
i
|
t
|
¢
3
a
1

4.8. Figure: The function wi(xi")

Let [ai,Bi] be the support of the realizations of hi(-), possibly an unbounded
interval. If we are only interested in a lower bound for ¥ that approximates it
as closely as possible at the point i, then the optimal partitioning of [ai,Bi]

is given by

1 A -
Si = [ai,xi) and ST = [x.,B8.]

+— + . 1
iRy - 95X o £ xj<h;
a _ + 2 -1 - + . 1 2
Y1) = 9 (aghyPyy - ahipy) F (aypyg - aypylxg - AF Ry sxg <y
ST . 2
Q3 by a5 X; if x;zhy

where for £=1,2,

hf = E{hi(w)| Sl} and = P[hi(w)e 52] s

Pig

and H} =E{hi(w)}. Note that
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¥ () = q J (¢ = h; (W))P(dw) + qj f (hy (W) - X;)P(dw)
h (0)<X; h, (w)2X;

a. N
¥ (%)

a . . . ~
Thus Wi:SWi with equality holding for X; SOy X4 2 Bi and at X3 =Xj-

a

\‘\§§§: ¥ Y.
i 1
!
t

7

-

o - -
v

—é

a.
1

w
g

l
‘2
gi

a
] St

X
4.9. Figure: The function 2

If the interval [ai,Bi] has already been partitioned in v intervals

v-1 v_ » L+l . -
,[OLi ,ai—Bi]} and X; € [ai,ai ). Then again the optimal
L 2+1 2+1

subdivision of the interval [ai,ai ) into [ai,ii) and [%i,ai ) yields an exact

o1
{[ai—ai,ai),...

bound for Wi at Qi' An alternative is to split the interval under consideration
around ii such that Qi turns out to be the conditional expectation of the new
region. This would provide a quite good bound for Wi in the neighborhood of Qi
and this would be very useful if the value of X3 is not expected to change much

in the next iterations.

4.10 IMPLEMENTATION. General recourse matrix W, with h stochastic; q and T are

fixed. The function

h +» y(x,h)

is not separable, it is convex and polyhedral (1.11). Note also that
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h g li)(X,vh_X)

is a sublinear function. Because of this we shall say that Y(X,*) is sublinear
with root at x. We assume that ZcR™ is a rectangle and that we are given a

partition {SR, 2=1,...,v} illustrated below.

4.11. Figure: Partition S= {Sl,...,SV} of =

We shall take it for granted that the next partition of Z will be obtained by
splitting one of the cells SR. Other partitioning strategies may be used but
this single cell approach has the advantage of increasing only marginally the
linear program that needs to be solved in order to obtain the lower bound.

(i) Let us first consider the case when X ¢ SR<:E. We plan to split S2 with
a hyperplane containing x and parallel to a face of SR, or equivalently parallel
to a hyperplane bounding the orthants. To do this, we study the behavior of

hr»y(x,h) on each edge Ek of the cell SR. Let

h 0, (h) = $(x,h) : E, >R .

This is a piecewise linear convex function. The possible shape of this function
is illustrated in Figure 4.12 below; by Xp we denote the orthogonal projection

of x on Ep-
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D
D

o]

®-

XP

4.12. Figure: The function ek on Ek

If ek is linear on E it means that we cannot improve the approximation to ek

k,
by splitting S2 so as to subdivide Ek. On the contrary if the slopes of ek at

the end points are different, then splitting Sz so as to subdivide Ek would im-
prove the approximation to ¥. On the subdivided cells, the resulting functions

8, would be close to, if not actually, linear. Among all edges Ek’ we would then

k

choose to partition the cell S2 so as to subdivide the edge Ek that exhibits for

ek the largest difference of slopes at the end points. What we need to know are

the subgradients of the function

h » Y(x,h)

at each vertex {hs, s=1,...,r} of the cell Sz. This is obtained by solving the

linear programs
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(4.13) find me R™ such that ™ < q

and ws==w(hs-x) is maximized

for s=1,...,r. The optimal ™ is a subgradient of Y(x,*) at h® [1, Proposition 7.12].
From this we obtain the directional subderivative of {(x,*) in each coordinate
direction (which are the slopes of the functions Gk); they are simply the compo-
nents of the vector {ﬂi, i=l,...,m2}. We now construct a subdivision of SZ with
a hyperplane passing through y and orthogonal to the edge of SQ that exhibits
maximum slope difference. If the underlying probability structure is such that
the random vector h(+) is the sum of a few random variables, such as described
by (1.19), the calculation of the directional subderivatives of £w{(X,&) again
begins with the calculation of the optimal solution of the programs (4.13) each
h® being obtained as the map of a vertex of Sz through the map (1.19). To obtain
the subderivatives, we again need to use this transformation.

(ii) We now consider the case when yx ¢ Z. This time we cannot always
choose a hyperplane passing through y that generates a further subdivision of
some cell SQ. Even when this is'possible, it might not necessarily improve the
approximation, the function £»{(x,&) being linear on that cell for example.
Ideally, one should then search all cells S2 and each edge in any given cell to
find where the maximum gain could be realizéd. Generally, this is impractical.
What appears reasonable is to split the cell with maximum probability, on which
P(¥, *) is not linear.

Concerning the implementation of this partitioning technique, we are seeking
the approximation to ¥ which is as good as possible in the neighborhood of .
We are thus working with the implicit assumption that we are in a neighborhood
of the optimal solution and that ¥ will not change significantly from one inter-

action to the next. If this is the case, and the problem is well-posed, then we
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shouldn't really have to deal with case (ii), since it would mean that the opti-
‘mal tender XO would be such that we would consistently underestimate or overesti-

mate the demand!

4.14 APPLICATION. Consider the stochastic program with recourse with only q
stochastic. With S=={SQ, 2=1,...,v} a partition of Z, and for 2=1,...,v, let

£t - q2 = E{q(w) | s

and p2==P[£(w) € SQ]. As follows from (1.12) and (4.3) we have

v 2
(4.15) I PQx,E7) = 2(x)
2=

1
Thus, with

v
v . 2
z = 1nfx€Rn1 cX + 221 pQQ(x,E ) |Ax =b, x;zéJ

where

. 2
Qx,£") = inf _pna[q’y | Wy =h-Tx, y 201 ,

we have that

zv > z*

inflex +Q(x) | Ax=b, x20]

Each z” is thus an upper bound for the optimal value of the stochastic program.

4.15 IMPLEMENTATION. The function

qQ ¥(x,q) = max{m(g-x) | ™ <q}

is polyhedral and suplinear. What changes from one y to the next are the slopes
of this function, so we cannot use the present Y as a guide for the design of the
approximation. One possibility in this case is to simply subdivide a cell of the

partition with maximum probability.
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5. DISCRETE PROBABILITY MEASURES WITH EXTREMAL SUPPORT

The maximum of a convex function on a compact convex set is attained at an
extreme point; moreover, the function value at any point (of its domain) obtained
as a convex computation of extreme points is dominated by the same convex combin-
ation of the function values at those extreme points. These elementary facts are
used in the construction of measures that yield upper bounds for the expectation

functional Ef.

5.1 PROPOSITION. Suppose Ew f(x,E) is convex, E the support of the random vari-
able £(+) is compact, and let ext E denote the extreme points of co Z, the convex
hull of 5. Suppose moreover that for all &, v(E,+) is a probability measure de-
fined on (ext =,E) with E the Borel field, such that

Je v(g,de) = £,

ext E

and
w+ V(E(w),A)

18 measurable for all AecE. Then
(5.2) Ef(x) < J f(x,e)A(de)
ext =
where X 1s the probability measure on E defined by
(5.3) A(A) = J v(E(w),A)P(dw)
Q
PROOF. The convexity of f(x,+) implies that for the measure v as defined above
f(x,8) < J f(x,e)v(g,de)
ext 2
Substituting £(+) for £ and integrating both sides with respect to P yields the

desired inequality (5.2). [
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5.4 COROLLARY. Suppose &v £(x,8) 1s convex, T the support of the random vari-
able £ (+) is compact, and let ext = denote the extreme points of co Z, the convex

hull of 2. Then

(5.5) Ef(x) < maxg o o¢ Ef[x,e) = f(x,ex)

PROOF. Simply follows from f(x,ex)z f(x,&) for all £e€ Z, or use Proposition 5.1

with v concentrated on e, B

5.6 APPLICATION. Consider the stochastic program with recourse (1.6) with only h
and T stochastic. Let us assume that = the support of the random variables h(*)

and T(.) is compact, with
ext T = {g2’=(h2,T2), 2=1,...,L}

the extreme points of co Z. We explicitly assume that L is finite. As usual

.

Q(x,£%) = minfqy | Wy =h*- 1%, y =0}

Then with

g% e argnax{Q(x,£%, 2=1,...,L} ,
as follows from (5.5), we have that

2(x) < Q(x,E%) ,
and thus

(5.7) z* = inf{cx +Q(x) | Ax=b, x20}

inf{cx+qy|Ax=b, Tsx+Wy=hs, x20, y=20} .

IA

This is a very crude bound that can easily be improved by partitioning =. Say
S= {Sk, k=1,...,v} is a partition and for each k we compute Eke argmaxgesk Q(x,&).

Then
v

V
Qx) = ) { Qx,E(w))P(dw) < ) J Q(X,Ek)P(dw)
k=1 k=1
Sk Sk
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With pk==P[£(w]e S7], we obtain

v
(5.8) z* < inf {cx + ) pwwk|Ax=b,Tkx+m*=h ,xzo,ykzo
k=1

The potential use of this inequality as an approximation tool for solving stochas-

tic programs with recourse was pointed out by Kall and Stoyan [18].

5.9 APPLICATION. We take the same situation as in Application 5.6. Let us de-

fine a probability measure v(£,*) on ext E=={€1,...,£L}, i.e. scalars

{p,(€),...,p (E)} such that J5_  p (£)=1 and

(5.10) £ = (h,T) =
L

e

Py (E)+(h*, T
1
Then

S )
Qx,8) = ] P ()Qx,E)
2=1

and

Voo 2
(5.11) Q00 < ) PQx,ED
=1

where for each 2=1,...,L
P, = J P, (£ ()P (dw)

The {52, 2=1,...,L} determine a probability measure on ext Z. The right-hand term
of (5.11) may however be quite difficult to compute since the dependence of the
pz on £ may not be easy to express: they must be chosen so as to satisfy (5.10).
There are some important cases when all of this can be worked out relatively easily.
We review them next.

(i) 5 (or co E) Zs a simplex. Each £ in = has a unique representation in
terms of the extreme points ext Z, viz. in terms of its barycentric coordinates.

For example, if co £ is the fundamental simplex in RN whose extreme points are

{Ox(eJ’ j=1’---’N)} with eJ=(O,'-',0,1,0,'--,0) >
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then each point
= (&,.--,5) in Z

has the barycentric representation

po(g) = l'lg' > (p2/=€21 Q,=1,...,N)

where |g| = 22=1 £p- ALl other cases can be brought back to this one by an in-
vertible linear transformation.

(ii) = Zs an interval. This is a special case of the preceding one. Let
£=[a,B], then &= (1-p)a+pp with 0 <p<1; and thus p=(&-a)/(B-a) from which it
follows that

(1-p) = (B-8)/(B-o) and P = (E-a)/(B-0)

with £=E{£}. Thus

(5.12) Q(x) < (1-p)Q(x,a) +p Q(x,B)

This inequality is due to Edmundson. Madansky [12] used it in the context of sto-
chastic programs with simple recourse random right-hand sides h. ‘A much refined
version of this upper bound can be obtained by partitioning the interval [a,R]
and computing for each subinterval the corresponding version of (5.12). The ex-
pression for the p will now involve conditional expectations. For stochastic pro-
grams with simple recourse this was carried out by Huang, Ziemba, and Ben-Tal [19]
and by Kall and Stoyan [18].

(iii) = s a rectangle and £wQ(x,£) = Z§=l Q; (x,€,) ie separable. This is
the case of stochastic programs with simple recourse with stochastic h, for ex-

ample. Then

N
Qx) = ] JQi(x,Ei(wJ)P(dw)

i=1

We can now find bounds for Q by seeking bounds for each Qi(x,-) separately.
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We are in the situation considered in (ii). The inequality (5.12) becomes
N — —

where [ai,Bi] is the support of the random variable Ei(') and Ei defined as above.
(iv) Z is a rectangle and the random variables are independent. Let

F. :R—+>[0,1] be the distribution function of the random variable Ei. We have that

1
By 8
0(x) = [ dF(E) +oer [ dF (€)Q0x, (€5 .0 »E))
N %1

_ N . . .
where = = Xi=1[ai,8i]. With 52,...,£N fixed, for each Ele [al,Bl], it follows

from convexity that

Bl—gl
QW0 (818> w05 £~ Q0 (B By
' 17 %
S
EPESRL CECHIREY
17 %

Integrating on both sides with respect to dFl, and with E&==E{£1} we have

R —
' Bl-gl
f AFLEDA (BB B) < Q0 (g, 8y, 05
o 1™ %
gl -0
FT A0 (B By By
1™ %

We can now repeat this process for gz, considering the two functions
£y QAUX, (@),855 - 058)
€2 Lad Q(x)(Bl’gz)"',gN)

One obtains
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8, B,
j dFZ@ZJJ dF (A0, (E],Eps - Ey))
% %

. -1

[(B;-0) (By-a,)] [(Bl-gi)(Bz-Eé)Q(x,(al,az,...,EN))
+ (Bl -E&)(Eé-az)Q(x,(al,Bz,...,ﬁN) +(E&-—al)(Bz-Eé)Q(x,(Bl,az,,,,,gN))
+ (gl - 0'1) (—52 - az)Q(x’(Bl’BZ’ -..,gN))]

Doing this, in turn, for every 53""’£N yields an upper bound for Q of the fol-

lowing type:

==

8, -7 ]

(5.14) Q(x) <
i=1 YeG |i=1

1

|-‘§1 - Y1|Q(x’(Y1’ . o-,YN))

==

is absolute value, and G is the collection of ZN vectors defined by

where

G = {y=(yps.e5Yy) |Yi=°‘i or By, i=l,...,N} .

One can also interpret (5.14) as follows: Let ext E = {EQ, 2=1,...,L=2N} and now

define on ext = a probability measure v which assigns probability p, to gz, where

p,Q,_

=

= L

i=
Note that with this probability measure, suggested first in [18], yields an

upper bound for Q that does not require passing through a transformation assign-
ing to each £ a particular combination of the extreme points.

(v) £ is a polytope, possibly a rectangle. Let S ={Sk, k=1,...,v} be a sim-
plicial decomposition of %, i.e. the partition is generated by a complex whose
cells are simplices. Then in each cell we are in the situation described in (i).
On each one we have an upper bound of type (5.11) for

Q(x, & (w))P(dw)
1€ (w)esK}
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which we can then add up to obtain a bound for Q. The bounds can be improved by
refining the partition, for example. Another way is to consider for each &£ not
just one possible representation, but to look for the smallest upper bound given
by a number of possible simplicial decompositions. Again, let
{g“, 2=1,...,L} = ext 5 < RN, and P the sets of all N+1 subsets of ext Z. Let
P(£) be the elements of P such that £ belongs to their convex hull. Then

N N

bop. (©)Qx,EY) | )
(g*, .., eMNepe) =0 i=0

Yo

(5.15) Q(x,£) < min pj(£)£

Integrating on both sides, after replacing £ by &(w), gives the desired upper
bound on Q(x), and thus also on z* as defined by (5.7).

A last suggestion, in this general case, is for £ a rectangle but the

{gj(-), j=1,...,N} not independent. We still have that for all j, gjr>Q(x,£)
is convex. Set j=1. Using (5.5), and with F the distribution function of &£(*)

on =, we have that

(5.16) Q) J Qx,£)dF (£)

~

< max{(gz,...,é\N)|g€E} f Q(X’gl’gZ’""gN)dF(gl’gZ""’gN)

1750 (%, (o, 8))
= max, 9 P R _— x, (o
(&, ... .8 [EeE} Qx, (ay,
2 N By -y
Z,.(8) -
o |2 Qe 8,60
Bl -

where El(é) is the conditional expectation of gl(-) given é. A bound of this

type can be computed for each j and then we should choose the smallest one to

bound Q.
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5.17 APPLICATION. Consider the stochastic program with recourse (1.15) with only
q stochastic. If we now assume that Z, the support of the random variable

E(+) =q(+), is compact, all the bounds obtained for @ when h and T are stochastic
have their counterparts in this case, except that this time we get lower bounds

instead of upper bounds.

5.18 IMPLEMENTATION. We are in the same situation as in Section 4. Given a par-
tition (simplicial decomposition, interval subdivision, or a rectangular cell
splitting case such as illustrated by Figure 4.11) the question which arises is to
find a refinement of the partition that adds only a few cells and improves the
approximation as much as possible. In practice, this boils down, as in Implemen-
tation 4.10, to subdividing just one cell. The piecewise linear character

of £+ Q(x,£) plays the predominant role; as a matter of fact, all the arguments
used to justify subdivision by a hyperplane passing through x still apply. We
would thus follow the same strategies as those suggested in Implementations 4.7,
4.10 and 4.15. The situation is illustrated by considering the simple recourse
case (with h stochastic). Then hik*wi(xi’hi) is a 1-dimensional piecewise linear

function. If [ai,Bi] is the support of hi(-), we have as a first bound

B; - hy hy - oy

.= O .= 0.
1 1 B1 1

Subdividing [ai,Bi] at x; =X; we get

Yo0G) S Yy ¥y (o) FY U OGaxg) F Y ¥y 00 By)

where
Yo = (X4 - Elhy(+) [hy @) e fog,X;0 D /7 (X - op)
vg = (E{hy (+) | hy(w) e [X;,8;13 - %;) / (B; - ;)
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This is a much tighter bound, with equality holding at ii' To illustrate what is

going on, compare the graph of the approximating function a, to wi(xi’.) before

1

subdividing at ii and the graph of a, after subdivision.

I
t
{
4
1

Xy By

Y e = - e S e —— =~

5.19. Figure: Splitting [a,8;]1 at ii

5.19 CONVERGENCE. The same argument as that used to obtain Convergence 4.6 in
Section 4, again relying on Theorem 2.8, applies to this case. Except

here, we start with Z compact and for all 2, EQ is the extreme point of the cell
SQ at which £v»Q(x,£) attains its maximum or minimum, depending on Q(x,+) being

convex or concave.
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6. EXTREMAL PROBABILITY MEASURES

The use of extremal measures to construct upper and lower bounds is intim-
ately related to a number of questions usually raised in the context of stochas-
tic optimization with partial or incomplete information. In order to find a
bound for

Eg(x) = J £(x, & (w))P(dw)

we intend to replace P by another probability measure, say Pv, that automatically

guarantees

(6.1)  Eglx) 2 J £(x,6(w))P(dw) = Eg(x)

or its converse. One way to do this is to find a measure Pv in a certain class P
of probability measures on (Q,A), which contains P, and that maximizes (or mini-
mizes) the linear functional P'+ [ f(x,E(w))P'(dw) on the set P. Since by

assumption P e P, we have

(6.2) ian'eP J f(x,E(w))P'(dw) < Ef(x) < SUPpy_p J f(x,E(w))P' (dw)

Note that the measures that minimize or maximize the preceding expressions in gen-
eral depend on x, but not always. And if they do, quite often the same measure
remains extremal for a relatively large neighborhood of x.

To exploit (6.2) in the search of upper and lower bounds for stochastic pro-
gramming problems, the choice of P is of utmost importance. On one hand we want
P to be '"marrow" eﬁough to give us a measure in the immediate neighborhood of P;
on the other hand, the chosen measure Pv should be such that finding E?(x) is
easy. In the context of the applications we have in mind, this means that Pv
should be a discrete measure. One possibility is to define P as a neighborhood
of P such as

(6.3) P = {prob. meas. Q | sup, 4 |P(A)-Q(A) | <€} ,
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or even

(6.4) P = {prob. meas. Q | Supy_q |J e(w)P(dw)-J 6 (w)Q(dw) | se} ,

where O is a class of test functions. Or with F the distribution function of

£(+) defined on RV
(6.5) P = {dist. funct. G | sup, |F(2)-G(z)| <€} .

The class P can be further restricted by limiting the acceptable class of mea-
sures to those having finite molecular support, etc. .

The construction of bounds through extremal measures will however follow a
quite different course: P will be defined by a finite number of equalities and
inequalities which lead automatically to extremal measures with finite support.
For a number of reasons that will become apparent later on, it is easier to work
here with Ec:RN as the support of the measure P (technically, £(+) is then the
identity map and Q=%). So let P be the set of probability measures Q on (E,BN)

that satisfy

(6.6) J vi(g)Q(dg) <A, , i=l,...,s ,

(6.7) i=s+l,...,M ,

1}
Q

v, (£)Q(dE)

(18— (1]

where M is finite and the v; are bounded continuous functions. We shall always
assume that Pe P, i.e. satisfies the relations (6.6) and (6.7). The problem of

finding a measure that satisfies these conditions and maximizes or minimizes

(6.8) v, (8)Q(dg)

frY———

where vo(g):=f(x,£), can be viewed as a generalized moment problem [20]. For

problems of this type, we have the following general result:
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6.9 THEOREM. Suppose = is compact. Then the set P is convex and compact (with
respect to the weak* topology), and P = cl co(ext P). Assuming that vy 18 con-
tinuous relative to =, then Qb [ vo[g)Q[dg) attains 1ts optimum (maximum or mini-
mum) at an extreme point of P. Moreover the extremal measures of P are precisely

those having finite (molecular) support {gl,...,gL} with L <M+1 such that the

vectors
_ } - ;
V) v (&)
v | T ] v
1 1

are linearly independent.

Except for the presence of inequalities in the definition of P, this result
can be found in [21, Theorem 2.1],. Dupagova, whose minimax approach to stochastic
programming [22] led to the investigation of extremal measures was first in ob-
taining results of this type [23],[24] for a more classical formulation of the
moment problem. The proof we give here, based on generalized linear programming
[25, Chap.24], is due to Ermoliev, Gaivoronsky and Nedeva [26]. The reason for

reproducing it here is that it is constructive and used in the sequel.

PROOF. Suppose the constraints (6.6),(6.7), and

J Q(dg) =1

are consistent, otherwise there is nothing to prove. The convexity of P is easy
to verify, the compactness for the space of measures on a compact metric space

follows from Prohorov's Theorem, and P = cl co{ext P) from the Krein-Milman Theorem
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about the representation of the elements of a convex set as convex combinations
of its extremal points.

Now suppose that {gl,...,gv} is a finite collection of points of = that we
view as part of the potential support of the extremal measure that maximizes (6.8);
the case of minimization of (6.8) involves the same arguments and does not need to
be dealt with separately. The question now is to assign to these points
{gl,...,gv} a probability distribution that maximizes (6.8). This can be ex-
pressed as a linear programming problem, with variables {pl,...,pv}, formulated

as follows:

V
(6.10) find p, 20,...,p 20 such that }

p, =1,
g=1 %
N %
2 vi(g )pz < o5 for i=1, ,S
2=1
v g
Y vi(EDp, = o, for i=s+l,...,M
1 L i
2=1
M %
and z = 2 v (§7)p, is maximized .
Lo L
=1
Assuming the points {El,...,Ev} have been picked so as to make this problem

feasible, it is then also solvable. Let {pz, 2=1,...,v} denote the optimal solu-
tion and let

VoV VoV
(6 T s ee s,

Vy _ 4V V
s S+1"..’TTM) - (8 ,'TT)

be the simplex multipliers associated at the optimum to the constraints of

(6.10). The measure determined by

QV[EQ] =P, » 2=1,...,v

is the desired extremal measure, unless some £ in = can be found such that

M
(6.11) v (E) - izl ni v (8) - 6¥ > 0
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This follows directly from the optimality criteria for linear programs, when we

{1}

note that each £ in % potentially generates a column that could be added to (6.10).

If (6.11) holds for some £, let

v+1

M
(6.12) £ € argmax vo(g) - izl n; vi(E)I EelZ

. v+l . . . . . - .
The existence of ¢ is not 1n question since the v, are continuous and Z is com-

pact. Adding the column

to the linear program (6.10) is guaranteed to yield a new solution {pz+1, 2=1,...,v+1}

and a measure

L1 _ v+l _
Q\)+1[€ ] = PQ > 2—1,...,\)4'1

such that

[ v, (£)Q (dE) < f v, (8)Q,,, (d8)

Repeating this until the point £ generated by (6.12) fails to satisfy (6.11) yields
the extremal measure that maximizes (6.8). Since this is generalized linear pro-
gramming, the convergence proof of Dantzig [25, Chap.24] applies; a variant ap-
pears in [27, Chap.11.B] which can be exploited to obtain convergence of a modified
procedure that only requires verification of (6.11) up to € [26, Theorem 5], a
most desirable feature in practice.

To complete the proof of the Theorem, it suffices to observe that the opti-

mal basis, associated with the solution of (6.10) will involve at most M+l columns
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of the type [l,vl(gz),...,VM(Ez)]T that are linearly independent. And this holds
for every possible objective [ vo(g)Q(dg), which by varying v yields all extreme

points of P. [J

Theorem 6.9 can now be applied to a variety of cases. The simplest one is
when E==[a,6]<:Rl, and the only condition is that the expectation with respect to

Pv should match the expectation £ with respect to P. The problem reads:

find Q a measure on (E,Bl) such that Q=0 ,

B 8 —
JQ(dEJ=1,J £ Q(dg) = ¢,

a a

B8
and J vo(g)Q(dg) is maximized .

o
Using the mechanism of the algorithm for generating Pv, in particular (6.12), it

is not difficult to see that

(6.13) with v, concave , Pv{z} =1,
(6.14) with v, convex , Pv{u} = g: 2 s Pv{B} = %::g .

This result and extensions thereof involving conditional expectation conditions,
variance and unimodality conditions have been obtained and then applied to sto-
chastic programming problems by Dupaéova [23],[24], and Cipra [28]. Observe
that the extremal measure defined by (6.14) is precisely the discrete measure with
extrgmal support obtained in Application 5.6 when = is an interval (Case (ii)) and
gk>vo(£)==Q(x,£) is convex. 1In fact, many of the results obtained in Sections 4
and 5 can be recovered by a judicious application of Theorem 6.9.

What limits the use of Theorem 6.9 in practice is solving (6.12)! In gen-

eral, the function
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M
V
(6.15)  £& v (€) - izl miv, (8)

is neither convex nor concave, whatever be the properties of the Vi since the
ﬂ; are not restricted in sign. The remainder of this section is concerned with
how to handle this global optimization problem in the context of stochastic

programs with recourse. We begin with the simplest case.

6.16 APPLICATION. Consider the stochastic program with simple recourse with
random right-hand sides h, i.e. of the form (1.15) with ¥ (x,&) defined through
(3.21) and (3.22). The problem is then separable and the function v, can be

expressed as

mz

Z Vs (x50€5)

m,
v ()= ] v .(E) =
o] j=1 0] 7] ;

1
and consequently is also separable. Each generalized moment condition of type
(6.6) or (6.7) would only involve the gj(-) separately (it would not make much

EM \)V

sense otherwise). Thus finding the maximum (or the minimum) of Vo< li=1Mi

i
is reduced to N (=m2) 1-dimensional maximization problems that can be handled

in practice in a number of ways, see also [29].

6.17 IMPLEMENTATION. We have to solve

v

(6.18) find £ ¢ [0,B] such that z = voj(E) - ivij(E) is maximized .

T
1

e =Z

i
We consider the case when M=2, vij(g) =£, vzj(g) =£2; we want to match the first
two moments. The function ¢(§) =voj(£) is convex (1.11). Reformulating (6.18)
we have:

(6.19) find £ ¢ [a,B] such that ¢(&) -WYE-—ﬂggz is maximized .

If WE:;O, the objective function is convex, in which case we only need to examine
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its values at the boundary points of the interval. If ﬂ;l>0, the interval can

be divided up into regions of convexity and concavity and on each one the maxi-

mum can be found by conventional methods. Another possibility when higher moments

are involved, is to use the bounds on the expected value of a convex function, obtained
by Don [30], for a class of sample based probability measures. The optimal points

of density gl,...,gl and the associated probabilities Py>---,P, are then straight-
forward to calculate provided the measure P has certain symmetries. When this

last condition is not satisfied, we could still use the so-generated discrete

measure to initialize an algorithmic procedure for solving (6.18).

6.20 APPLICATION. Consider the stochastic program with recourse (1.15) with

random right-hand sides h. Suppose
S = {:i, i=1,...,M}

is a partition of =, for every i=1,...,M, vy is the indicator function of Ei and
ai==E{h(-) |Ei} is the conditional expectation of h(-+) given Ei. For i=1,...,M,

let

p; = P(;) = P[h() € &]

and again let VO(E) = ¥(x,&). The problem of maximizing v, subject to (6.7) is

then decomposable, in that each subregion Ei can be dealt with separately. Indeed,

M
f v, (E)P(dE) = ) J v, (E)P(dE)

i=1 2

i

and thus the original problem decomposes into solving M subproblems of the type

(6.21) find a probability measure Qi on Ei

such that J 3 Qi(dg) =0y
S
and J VO(E)Qi(dE) is maximized (or minimized)

{1]

i
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With P; the optimal solution to (6.21), the desired measure is given by

Solving (6.21) is in principle not any easier than solving the general problen,
except that we are only dealing with linear functions 4 (which means that the
convexity of v, yields the convexity of the objective function of the subproblem
(6.15)) and if the partition S of = is left to us, we can choose it so that it

corresponds to linear pieces of ZwV¥(x,&).

6.22 APPLICATION. Consider the stochastic program with recourse (1.15) with
random right-hand sides h, with the hi(-) independent random variables for
i=1,...,m2; we also have that vo(€)==W(X,£). With the independence of the random
variables comes the separability of the constraints (6.6) and (6.7). We would
thus have a relatively easy problem to solve if it were not for the intricate re-

lationship between the gi_=hi that appears in the objective A

6.23 IMPLEMENTATION. If we are interested in the probability measure that mini-
mizes [ vo(g)Q(dg) we can rely on the approximation to ¥ provided by Application 3.3.

We have that

V(&) 2 max (£ - )
1<g<L

where y = Tx and, as in Application 3.3,

n* ¢ argmax[n(g” - x) | nW<q]

for {£2=h2, 2=1,...,L} a finite number of realizations of h(+). Minimizing the
function (6.15) that appears in the subproblem can then be expressed as

find 6 ¢ R, and (gie Ei, i=1,...,m2) such that

1
eznl(g_X) > Q,=1,...,L,
M \V
and 6 - z wivi(g) is minimized .

i=1
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If, for example, the functions 1 correspond to first- and second-order moments,
then this is a quadratic program, not necessarily convex. To solve it, we can

rely on existing subroutines [31].

6.24 IMPLEMENTATION. If in Application 6.22, we are interested in the probability
measure that maximizes [ ¥(¥x,£)Q(d&), we rely instead on the approximation to
¥(e,x) which comes from Application 3.23, which gives a separable function Vs
actually of the same type as for stochastic programs with simple recourse. This
brings us to the case already studied in Application 6.16 and Implementation 6.17.

We note that the use of the approximating functions for the recourse func-
tion makes the calculation of extremal measures a reasonable undertaking, the

global optimization problem of finding the £ ¢ Z that maximizes (or minimizes) the

M

function v_(-) _Zi=1

ﬂgvi(-) would be too involved to solve exactly, just to ob-
tain error bounds. Finally, we observe that all the results derived here could
be extended to h,T and gq stochastic; each case however requires a separate analy-
sis to take full advantage of the properties of the problem under consideration.
As more information is gathered about these types of approximation and resulting
bounds, we expect to see a more detailed analysis of each case. The use of these
techniques in an overall scheme for solving stochastic programs with recourse
alsoneeds further study in that here we have limited ourselves to finding extremal
measures that yield the best possible lower and upper bounds for a given x or .
Changing x only affects the function v, and all that may be needed when passing
from some x to another is a recalculation of the weight factors Pys--+sP, in

(6.10), the points {51,...,£V} remaining unchanged. Moreover at each new x, it

may not be necessary to solve the generalized moment problem to optimality.
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6.25 CONVERGENCE. To obtain convergence, we need to consider sequences of gen-
eralized moment problems with an increasing number of restrictions on the moments
of £(+). If this is done, we obtain a sequence of extremal measures {Pv’ v=1l,...}

that converge in distribution to P, and we are then in the setting of Theorem 2.8.
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7. MAJORIZING PROBABILITY MEASURES

The role that convexity played in obtaining many of the bounds in the pre-
vious sections is taken over here by order preserving properties. The approxima-
tions are based on stochastic ordering [32, Chap.17]. They are especially useful
because of their simple calculability. The use of majorizing measures to approxi-

mate stochastic programs was first advocated in [7].

We denote by :E the partial ordering induced by the closed convex cone C on
RN. We write
¢! 5C t? if t2 - tlecerl

and say that t1 precedes t2 {(with respect to :E). A random vector gl :Q-*RN

stochastically precedes the random vector 52 :Q-+RN (with respect to :E) if
1 2
Plo| & (w) 5 &7l =13
. 1 2 . N . . .
we write £ () :E E°(+). A function ¢ from R into Ru {+x} is order preserving

with respect to :E if

- ~ t? implies ot < ¢(t?)
For ¢ order preserving and El(-) :% &2(-), obviously

(7.1)  E{6(' @)} < E{o(E7 W)} .
From this, it follows directly:
7.2 PROPOSITION. Suppose &vw f(x,£) is order preserving with respect to :E and

for i=1,2, gi(-): (Q,A,P)-+(RN,BN,F1) are two random vectors such that El(-) sto-

chastically precedes Ez(-). Then

7.3 ey = | £gl@)p@w) < [ £ w@nrs - B
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7.4 APPLICATION. Consider the stochastic program with recourse (1.15) with only

h(+), the right-hand sides, stochastic. Let
pos W = t| t = z WJy. s Y. 20%

the convex cone generated by the columns of W, see (1.17). Let {tge Rmz, 2=1,...,L}
be a frame for this polyhedral cone, i.e. the vectors t2 are positively linearly
independent and pos(tg, 2=1,...,L) =pos W. Suppose that for all g2=1,...,L, and

£ e =, the function
2. . =
AP P(x,E+AtT) 1 R >R

. . . . L
is monotone increasing. Then, if £ () :%os

WE()

(7.5)  v¥lgo := J VOGES W) P(dw) < ¥(x)
and, if £(+) 3, £ (")
(7.6) ¥ < ¥W(x) = J 00 ES W))P (dw)

This all follows directly from Proposition 7.2. It suffices to verify that the
conditions imply that £~y (x,&) is order preserving with respect to :}oskv’ de-

tails are worked out in [7, Proposition 3.2].

Below, in Application 7.8, we give an example where the monotonicity of y
in each direction t2 can be verified directly. In other cases, one may have to
rely on various properties of the problem at hand. The construction of the random
variables gL(-) and EU(oj relies on subdividing the range of £(+) into subsets

generated by the partial ordering < This is done in [7, Section 3]. Con-

pos W °
vergence can be obtained by relying on finer and finer subdivisions of =
and by relying on a special form of Theorem 2.8. We shall concentrate instead

on questions of implementability and special cases.
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7.7 APPLICATION. Consider the stochastic program with recourse (1.15) with only

q(+) stochastic. Let
D(W) = {y | y=7mW for some meR"2}

and let {uQ, 2=1,...,L} be a frame for the convex polyhedral cone D(W). Suppose

that for all 2=1,...,L and £ ¢ 5, the function
Ao b(x,Exu”) : R) >R
is monotone increasing, and

1) Fan 5 Han &)
Then

(7.8) vl o= J D06 ER ()P (dw) < ¥(x)

and
U U
(7.9) Yx) =¥ () := f v(x,& (w))P(dw)
To apply Proposition 7.2, we need to show that the monotonicity of Ar>w(x,£+xu2)
for ¢=1,...,L implies that £by(x,£) is order preserving. Suppose gl :B(W) gz,

then gz-gle D(W) which means that

for some scalars anzO. Relying on the monotonicity of ¢ in each coordinate,

we obtain:

POGED < bOGE+aul) < b0 v utrau’) 5 vee 5wk E?)

Note that h and q stochastic can be handled simultaneously provided natur-
ally that the conditions laid out in Applications 7.4 and 7.7 be satisfied; this
suggests some of the advantages of this approach. The real utility of this ap-

proach is, however, in the separable case.
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7.8 APPLICATION. Consider a stochastic program with simple recourse with random
right-hand sides h, i.e. of the form (1.15) with Y (X,&) separable as defined by
(3.21) and (3.22). Suppose that for i=1,...,m2, q;;zO and ql:zO, and define

E;(‘) and Eg(-) as follows:

N 2, () on {w] g £y}
E%(') < Ei(') otherwise
and
s on {w]g W sx)
52(') > & (%) otherwise .
Then
m;
TR CONEE) J b; (B3 @)P(Aw) < ¥0O
i=1
and
ma
w00 = ¥00 = 1 [ 404 8 @)P@w)

To see this, observe that the functions

are monotone decreasing on (—w,xi], and monotone increasing on [Xi,+w) since

Wi(xi,ii) = q;(xi'ii) if

Y gy
. [
IA
>
1=

v

qZ(Ei-xi) if

Therefore, -wi(xi,-) is order preserving with respect to :h when gi sxi and
+

wi(xi,-) is order preserving with respect to :h when Ei 2 X, - We apply Propo-
+
sition 7.2 to obtain

X, X,
1 1
- J b; (x> &5 (@)P(dw) < - J 0 O »£5 (@) )P (dw)

[eo] x

and
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J b; (g E5 ())P (dw) < J b: (X 65 () )P (dw)
X

Xi i
Adding up these two inequalities and then summing with respect to i yields the
assertion involving EL(-). The symmetric inequality with EU(-) is obtained

similarly.

7.9 IMPLEMENTATION. The search for random variables Ei(-) and Eg(-) that yield
the desired inequalities, can be carried out in terms of the distribution func-
tions F% and Fg induced by these random variables. Let Fi be the distribution

function of Ei(-) with support [ai,Bi]. The conditions become

v
gv!
v
gv]

on (=51 s

<F, <F
i

M R
o
He QR C

on [Xi,m)
Figure 7.10 gives an example of a discrete distribution Fi that could be used

to approximate Fi'

7.10. Figure: Majorizing distribution function F%

As usual, we are only interested in discrete approximations. Our goal is thus

to find best discrete approximates that are below or above F. Since F§T=Fi_=Fg

at X; we can find the best approximating distribution function that is below
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{or above) Fi on each segment (—w,xi] and [xi,+w) separately. And since below or
above is just a question of reversing signs, we may as well consider the problem

at hand in the following framework:

(7.11) find a distribution function F :R~>[0,1]
such that §5I2,

F is piece-wise constant with at most L jumps ,

+00
and J |F(s)-F(s)|ds is minimized .

-0
We have defined best approximation in terms of the ll—norm. Recalling that

EsF, we have

J |F(s)-§(s)|ds = J F(s)ds - J F(s)ds

and thus we may as well simply maximize [ ?(s)ds subject to F<F. If 2EERENE2
are the points of discontinuity of ﬁ, it is easy to verify that ﬁ cannot be op-
timal unless at those points ﬁ(zg) =F(zz), 2=1,...,L. Taking these observations

into account, Problem (7.11) becomes

(7.12) find o=z <z, £z, < «°° <2 such that

0% %% LS 241~ B

L
o(z) = } (zg,172¢) (F(zp)-F(z, ;)) is maximized ,
2=1

where [o,B] is the support of the distribution function F. Note that p is not

convex. Even with L=1, when (7.12) reads

(7.13) find ze [a,R] such that

p(z) = (B-z)(F(z)-F(a)) is maximized ,

the solution is not necessarily unique, in fact the solution set may be

a disconnected set of points. Assuming that F is twice differentiable with F°
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denoting the corresponding density, we have that z* is optimal if

F(z*)-F(a) _
F'(z*)

F'(z*)

R-2z* = 2

which in general has a multiplicity of solutions. To solve (7.12) we propose a

heuristic that sequentially adjusts the jump points z e Z

120 oL
STEP-0. Pick L points (for example with equal quantiles)

in (a,8). Set £=0.

STEP 1. Set 2= 42+1. Readjust z, using the formula:

2

n n
zg € argmaxZ [Zn ] ](ZQ+1'Z)(F(Z)'F(ZQ-1))
Slfp-17%041

Solve using (7.14) exploring the local optima.

Restart Step 1 if 2 <L; otherwise, go to Step 2.
n—
L

Otherwise, return to Step 1 with 2, i= 22 for

STEP 2. Stop if for all #=1,...,L, |z zzl <e.

2=1,...,L and 2=0.

This algorithm converges (a monotone increasing sequence bounded above by
/[ F(s)ds) but not necessarily to the optimal solution, this depends on the ini-

tial choice of z.,...,z

1’ L’

An alternative approach to finding the best approximating discrete distri-

bution function is to enter the points z .,Z. with associated weights. These

1’ L

may correspond to the values of the recourse function, for example. With v(-)

as the weighting function, Problem (7.12) becomes
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(7.15) find o = 2o S 27 S vttt Sz <20 00= R such that

p(z) = ) [v(zg,1)-v(z)1[F(z,)-F(z;,;)] is maximized .
2=1

In the case L=1, we have a formula for the optimal z* that corresponds to (7.14),
and for the general case the same algorithm, with the obvious modifications, can
be used as a heuristic. We could also use generalized programming, as in Section 6,

to solve Problem (7.12) or (7.15). The problem corresponding to (7.25) is then

(7.16) find pj >0 , j=1,...,v such that

]
) p. < F(z.), j=l,...,V
i=1 1t J

v
and z

v(z.)p. 1s maximized
j 177

1
where pj =§(zj)-ﬁ(zj_l). For v(zj) >0, which is usually the case, the optimal
solution is pj =F(zj)—F(zj_1). The optimal dual variables associated to (7.16)

are defined by

OV = V(Zv) ,
)
o5 = V(zj) - 2=JZ+1 o,
To add a new point A that generates a new column of (7.16), we need to solve:
v
(7.17) 12?2v maxze[zj_l’zj] v(z) - 2=§+102

This approach however does not lend itself easily to a fixed upper bound on the
number of discontinuities of ﬁ. It could be used to initialize the procedure

suggested earlier.

7.18 IMPLEMENTATION. When Y is not separable, we can still proceed as in Imple-
mentation 7.9, if we first replace the recourse function by its simple recourse ap-

proximate, cf. Application 3.18, at least when seeking an upper bound for ¥(y).
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8. FURTHER BOUNDS INVOLVING Ef OR Q

In this concluding section, we just want to record a number of bounds that
require the evaluation of the objective functional Ef at some points. The use
of these results is thus limited by our capability of evaluating Ef (or its gra-

dient) with sufficient accuracy.

To begin, let us simply observe that for all xe¢ RN

(8.1) inf Ef < Ef(x) ,
which gives us a readily available upper bound. Using the subgradient inequality

for convex functions we have:

8.2 PROPOSITION. Suppose x+f(x,£) : RM >Ry {+=} is a convex funetion. Then for

. —_ . n
any pair x,x in R,
(8.3) Ep(x) - Ef(I) > Ve (x-Xx)
with Ve:aEf(§j, provided the set aEf(§) of subgradients of E at X 18 nonempty.

PROOF. Simply observe that f(+,£) convex implies that Ef is convex which then

implies (8.3). O
8.4 APPLICATION. Consider the stochastic program with recourse (1.6) with only
h(+) stochastic. Then from [1, Corollary 7.16], we know that with h=2¢&:
-E{m(x,&)}Te 30(x) ,
where m(x,*) : Q>R™ is a measurable function such that
mT(x, &) e argmax{m(&-Tx) | "W <q} .
Thus, with f as defined by (1.9), we obtain

(8.5) QX) = Q(x) + E{T(x,E(w)) }IT(x-X)
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8.5 IMPLEMENTATION. Except for some special cases such as stochastic programs
with simple recourse, evaluating Q(x) or E{m(x,£)} is not feasible, but suppose

that QLs;Q where QL has been obtained by relying on an approximating measure PL.

Then for any X we have that
A L ~ L e
Qx) 2 27(x) 2 27(x) + J m(x, & (w))T(x-x)P (dw) ,
with QL(x) = f Q(x,&)PL(dg). The term on the right can now be calculated and

gives us a lower bound.

8.6 APPLICATION. Consider the stochastic program with recourse (1.15) with q(*)

and h(+) stochastic. As usual
Y(x) = E{w(GEW)) ),
but let us now also define p as follows:
p(x) = inf[cx |Ax=b, Tx=Y, x20]
The stochastic program can then be formulated:
(8.7) find x<sRm2 such that p(y) + ¥(x) 1s minimized .

Suppose i is a point at which both p and ¥ are finite, and suppose Ve Bp(i); the
convexity of p follows from standard results in parametric linear programming.
Let % be such that

Ve ()

Assume such a point exists. For any xe Rmz, it follows from the subgradient

inequality for convex functions, in particular (8.3), that

\%

p(x) - p(X) 2 V(x-X)

Y(x) - ¥(X)

and
A A\
-v(x-x)

\

Adding up these two inequalities, we obtain that for all ¥,

A A

o) +¥(X) 2 p(R) + V() - V(X=X
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and hence
~ v AN \%
(8.8) inf(p+¥) 2 p(J +¥(xJ - v(x - x)
We have thus a lower bound for the infimum of the stochastic program.

We note that inequality (8.8) also follows from a duality argument. Assum-

ing that all operations are well-defined:

inf(p +Y¥)

-(p+¥)*(0) = -(p* B ¥*)(0)

~inf (0*(v) + ¥*(-v))

v

-p*(v) - ¥*(-v) for all v ,

where * denotes conjugacy and O inf-convolution. Inequality (8.8) now follows

from the preceding one with v=v and observing that:

p* (1) = ¥% - (V)

v (-9) = =I% - ¥ ()

This also shows that inequality (8.8) is sharp since

inf(p+V¥) = supv[-p*(v)-w*(-v)]

8.9 IMPLEMENTATION. Let us illustrate the use of this inequality in the case of
a stochastic program with simple recourse with stochastic right-hand sides h(*).
Suppose Xe is, for possibly heuristic reasons, believed to be a good guess at

the optimal tender (certainty equivalent). Let us now solve the linear program

(8.10) find x¢ RT, u e RTZ, u ¢ RTZ such that
Ax =b ,
Tx + u - u =%, and

+ + -
cXx +qu +qu =z is minimized



-62-

-+ - ~A At A= .
where q ,q are as usual the recourse costs. Let (x,u ,u ) be the optimal solu-

tion, and (G,7) the associated simplex multipliers. Then
e 3p(X)

with §==T§ and p as defined in Application 8.6. Moreover, Te [-q_,q+] as follows

from the optimability conditions, and thus there exists { such that
“Te 8‘1”()\()

as follows from the formula for subgradients of the recourse function in the
simple recourse case [33, Chap.III, Sect.4]. If for i=1,...,m2, Fi denotes the
distribution function of the random variable hi(o),

+

A
m. =
ql

\
i a3 F; (x5)

where qi_=q;-+q;. with z° the optimal value of the stochastic program (1.15)

we have
2° > c§+‘¥()\é) -?T(Q-)\é)
Let z =cX +¥(%) which with the above yields
~ 0 A v A A v
(8.11) 0 <z-z" < ¥(X) -Y0O +7(Xx-X)
In the case at hand, this becomes [33, Chap.III, Sect.4]

. My i
0 <2-2° < Z q.
i=1

MK x>

i
which is known as Williams' inequality. Let us point out that the path followed

to obtain this last inequality, using (8.8) is quite different from the original

proof of Williams [34] and should clarify the underpinnings of this result.
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