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PREFACE 

The development of optimization techniques for solving complex decision 
problems under uncertainty is currently a major topic of research in the Sys- 
tem and Decision Sciences Area a t  IIASA, and in the Adaptation and Optimiza- 
tion group in particular.This paper deals with methods for the solution of prob- 
lems in which the objective function depends on probability distributions. 
Such problems are common in reliability theory and various other branches of 
operations research, but methods for dealing with them have only recently 
begun to emerge. 

ANDRZEJ WIERZBICKl 
Cha i rman  
S y s t e m  and  Decision Sc iences  



ABSTRACT 

The main purpose of this paper is to discuss numerical optimization pro- 
cedures for problems in which both the objective function and the constraints 
depend on dstribution functions. The objective function is assumed to be 
nonlinear and to have directional derivatives, while the constraints are taken 
as linear. The proposed algorithm involves linearization of the objective func- 
tion a t  the current point and solution of an auxiliary linear subproblem. This 
last problem is solved using duality relations and cutting-plane techniques. 



OPTIMIZATION OF FUNCTIONALS P33ICH DEPEND 04.;' C?TSI?EIBUTZON 
FLTNCTIONS: 1. NONLINEAR FUNCTIONAL AND LINEAR CQNSTmdTS 

A. Gaivoronski 

1. INTRODUCTION 

The purpose of this paper is to present numerical methods for solving 

optimization problems in which both the objective function and the con- 

straints depend on distribution functions. Such problems occur in stochastic 

programming [1,2], reliability theory and various branches of operations 

research ( surveyed in [3] ), and robust statistics [4] , among others . 

If both the objective function and the constraints are linear with respect 

to the distribution functions then the problem can be stated as follows: 

min f (x ) d ~ ( x  ) 
X 

where X is a set in Euclidean space Rn . Some specific cases of problem (1)- 

(3) arise in the theory of Markovian moments and can be solved analytically 



[5]. However, the success of analytical methods is very limited even in the 

linear case (1)-(3) and therefore numerical algorithms are  needed. Such 

methods began to appear in the middle of the last decade. 

One idea is to approximate set X by a sequence of finite subsets 

X1.X2, . . . ,& ,... , where 

This sequence of sets has the property that 

as s tends to infinity, i.e., the greatest distance between points in set  X and 

set  X, tends to zero. Let G, be the set of all distribution functions which 

correspond to probabilistic measures concentrated in points from 4 

1 n ns 
G,=[(x,. p l )  . . . . , . C p i  = 1 . P i  2 01 . 

i =l 

If we include one more constraint. 

problem (1)-(4) becomes a finite-dimensional linear programming problem; 

this raises the possibility of approximating the original problem (1)-(3) by a 

sequence of finite-dimensional problems (1)-(4). This idea was explored in 

[3,6], where i t  was also used to solve nonlinear and minimax problems involv- 

ing distribution functions. However, this approach can be used only for sets X 

of small dimension ( in fact not exceeding three ) due to  the high dimensional- 

ity of the  associated linear programming problems. 

Another possible way of solving (1)-(3) is based on the duality relations 

between problem (1)-(3) and some finite-dimensional minimax problem. First 



proposed in [ I ] ,  this idea was taken further in [ 2 , 7 ] ,  where methods of the 

cutting-plane type are given. 

The purpose of this paper is to use this last approach to develop solution 

techniques for nonlinear problems of the kind : 

min +(H) 

subject to 

where G is defined in the following way: 

We propose an analogue of the linearization ( Frank - Wolfe ) method in which 

we are required to solve subproblems of type (1)-(3). It appears that  it is not 

necessary to solve these subproblems precisely: duality relations make i t  pos- 

sible to  utilize rough solutions of (1)-(3) so that only a limited number of cal- 

culations are needed at each iteration. 

2. CHARAC-TION OF OPTIMAL DISllUBUTIONS 

We shall use the same letter, say H , to denote both the distribution func- 

tion and the underlying probabilistic measure, where this will not cause con- 

fusion. For a given probabilistic measure H we shall denote by B+ the collec- 

tion of all subsets of X with positive measure H , and by dom H the support set 

of H , i.e., 

Let us first introduce the class of functionals considered, +(H).  What we 

actually need is some analogue of directional differentiability. Suppose that 



Q(H*+~(H-H* ) )  =+(H*)+a f f '(z ,,Li")d(hr(z)-hr*(s)) +.r(a.H*,hr) ( 8 )  
X 

where 

r(a,H*,H)=o (a)  

In what follows we assume that  functions f O(X,H)  , f i ( x )  are such tha t  

expressions (7) and (8) are  meaningful. 

The following simple conditions are necessary, and in the  convex case 

also sufficient, for distribution H to  be a solution of problem (5)-(7) : 

Lemma 1 

If +(He) r +(H) for some H*EG and all HEG then 

Proof 

The proof is of the traditional type for necessary conditions. Note tha t  

z*g  f f O ( z . ~ * ) d ~ * ( z )  
X 

is always true. Suppose, on the  contrary, tha t  there exists a y>O such that  

z *- f f O ( z , ~ * ) d ~ * ( z )  G -27 
X 

Then there exists an H E G such tha t  

f f  O ( ~ . H * ) H ( Z )  - f f O ( ~ . ~ * ) d ~ * ( ~ )  < 7 
X X 

Consider now distributions Ha : 

H a = a H + ( l - a ) H *  . 
According to  ( 8 ) ,  

*(Ha) = .I.(H*)+~ f f O(z . ~ * ) d ( H ( z ) - ~ ' ( z ) )  +T (~ ,H* .H)  
X 

and for small a we obtain 



which contradicts the optimelity of H *  . This completes the prcof. 

Remark. I f  , additionally, .k(H) is convex, i.e., 

then this lemma also gives sufficient conditions for a global minimum. 

Lemma 1 implies that to check the necessary conditions for problem 

(5) - (7)  requires solution of a linear problem of the form (1 ) - (3 ) .  where 

q ( 2 )  = f ' ( 2 , ~ ) .  The solution of problem (1 ) - (3 )  can be characterized through 

the duality relations summarized in the following theorem, which was proved 

in [7 ] .  

Theorem 1 

Suppose that the following assumptions are satisfied: 

1. Set X is compact and functions f i ( z )  , i = O,m are continuous on X . 

2. c o Z # $  where 

Then 

1. A solution of problem (1) - (3)  exists and the optimal value of f  ' ( z )  is equal 

t o  the optimal value of the following minimax problem: 

where I/+ = t u : u E Rm , q 1 Oj . 

2. For any solution H* of problem (1)-(3) there exists a u* E I/+ such that 

V ( u  *) = max p ( u )  , dom H* r X*(U *) 
U E V +  

where 



3. There exists a finite set 4 = [ z l ,  . . . , st 1 , t I m + l  , and a solution H* 

of problem (1)-(3) such tha t  dom H *  = Xt , i.e., t he  probabilistic measure 

H *  can be expressed as a collection of t < m + l  pairs 

t ( z l # p l )  , . . . , ( z t , p f ) j  - 

The probabilities jil , . . . , pf are solutions of the following linear program- 

ming problem: 

Combining Theorem 1 and Lemma 1 we obtain the following result: 

Theorem 2 

Suppose that  + ( H e )  s + ( H )  for all H  E G and the following assumptions 

are satisfied : 

1. Set X i s  compact and functions f O ( z , H C )  , f i(z) , i = l,m are continuous 

o n X .  

2. c o Z #  $I where 

Then 

1. W e  have 

where 

f O ( z . H e ) d H * ( z )  = max p ( u )  
X U E V +  

m 
p ( u )  = min (f O(Z,H* )  + C u i f  i ( z ) )  

z EX i = l  



2. There exists a u, , p ( ~  *) = ma>: p(u)  , u E CJ' such that 
U E V +  

dom H c X*(U *) 

where 

3. NUMERICAL METHOD FOR SOL?TNG PROELEES WTH L IhW CON-15 

I t  is now possible to construct a method which finds points satisfying the 

necessary conditions of Lemma 1 or, in the convex case, global minima . This 

method is of the linearization type. 

Algor i thm 1 

1. Begin with an initial distribution HI. 

2. Suppose we have an approximate solution HS before starting iteration 

number s . Then at  the s-th iteration we do the following : 

(i) Find a distribution ps E G such that 

J f O ( ~ . ~ s ) d R S ( ~ )  L Z, + 5 
X 

where 

z,= inf J f O ( x . ~ s ) ~ ( x )  
HEG 

and E ,  > 0 is the accuracy with which problem (9) is solved. I t  is not 

necessary to know the value of E, , only that E ,  -, 0 

(ii) Check whether functional +(H) decreases in the direction HS - HS . If 

not, return to s tep (i) and solve problem (9) with higher accuracy. Other- 

wise go to step (iii). 

(iii) Choose a stepsize p, : O<p, r 1 and calculate a new approximation to the 

optimal solution: 



HS+1 = (1-p,)HS + psHS 
Then go to step (i). 

Remark. The stepsize can be chosen according to a number of different rules: 

- OD 

(a)  p, . CFs = m  

s =O 

(b) p, = arg min \k(HS + a ( p  - HS)) 
a20 

(c)  Take a sequence a, ,where 

and 

p, = minlarg min \ k ( ~ ~  + a(HS - H')), a, j . 
a20 

(13) 

We now introduce topology on se t  G.  We shall use weak (star) convergence 

topology, which by definition is the weakest topology in the space of all proba- 

bility measures such that  the map 

H -. j g ( 4  W z )  

is continuous wherever g(z) is bounded and continuous. Note tha t  in th is 

topology the set  of all measures with compact support X is compact. In t he  

discussions tha t  follow we shall use this topology when speaking about the con- 

tinuity of certain functionals with respect t o  probabilistic measures. 

Let v(H'.H~) denote some distance between distributions HI and H2 

which will induce weak (star)  topology on the se t  of all distributions - for 

example, the Levy-Prokhorov distance would do. 



We shall now prove the convergence of the algor i t l~m given a b o v ~ .  

Theorem 3 

Suppose that the following statements are true : 

1. X cRn is compact set. 

2. Functional +(H) satisfies (8) where 

r(a,H*.H) + 

a 
uniformly over H* E G , H E G . 

3. Function f ' ( x , ~ )  is continuous with respect to XEX and satisfies the 

Lipschitz condition with respect to HEG : 

for HI  E G , H2 E G , x E X . Functions f i ( z )  , i = % are continuous 

with respect to z EX. 

4. E s + O .  

5. Stepsize p, is chosen according to one of (11)-(13) . 

Then 

lim inf ff o ( z , ~ s ) d ( ~ ( z ) - ~ ( ~ ) )  = 0 
s+- HEG 

and for all limit distributions H* of sequence HS 

inf f f O ( z , ~ ) d ( ~ ( x ) - ~ s ( z ) )  = 0 . 
HEG x 

Proof 

1. Note that under assumption 2 of the theorem set G is compact in weak 

(star) topology and therefore function f O(z,H) is bounded on X x G  . This 

together with (8) implies the  continuity of functional \k(H) on G. Therefore 

\k(H) has a minimum on G. 



2. The argument given in the proof of Lemma 1 lezds to the follo~ving inequal- 

ity: 

where ~ ~ ( p , )  -' 0 asp, -, 0 ; E, -, 0 due to assumption 1 of the theorem and 

y, = inf J ~ O ( I . H ~ ) ~ ( H ( ~ )  - H,(Z)) . 
HEG x 

The remaining part of the proof depends on the way in which the stepsize p, is 

chosen. 

2(a) Suppose that p, is chosen according to (12). Define 

~ ( 8 )  = SUP IP : 0 (P) 4 BPI , 

6 1  

From assumption 1 of the theorem we know that U(P) > 0 if 8 > 0 . Taking 

Ys - -s . 
8 =  2 

~f 7, > E, and p, = a(8) we now get from (14): 

Inequality (15) immediately gives max 17, - E, , 01 -, 0, which implies tha t  

y, -, 0 because E,  -, 0 

2(b) Now let p, be chosen according to (11) . Suppose that  there exists an 

E such that  for s > F 

where a > 0. Now from (14) we get : 

\k(HS+l) I  mint+(^') - ap, , \k(HS ) I  = +(HS ) - ps , (1 6) 



Summing ( 1 6 )  from s > s to k we obtain : 

i  =s 
m 

which contradicts + ( H )  > -= because C p i  = =. Therefore there is a subse- 
i  = I  

quence nk such that  

maxt0 9 ynk - znk - T ~ ( P ~ ~ ) I  + 0 . 

Now suppose that there is a subsequence mk such that  

We may assume without loss of generality that 

Let us take a sequence Lk such that 

7 - - 7  a for mk < i  < l k  , 

71k+l -'lk+l - r I ( ~ ~ k + l )  < a  

We shall now estimate the value of functional + ( H )  on elements of 

sequence HLk . From ( 1 4 )  we can show that 

1, -1 
To proceed with this estimate further i t  is necessary to estimate C pj , 

j =n, 

which can be done as follows : 



where & l k  -, 0 as k -, m . 

Now let us estimate the term being summed. From the definitio of the 

algorithm we have 

, H i )  I c p i  (19)  

where C is some positive constant. Assumption 2 of the theorem together with 

(19) yields the  following estimate : 

1 f O(z,IP+') - f O(z ,H i )  h ( H i , H l f 1 )  I Clp,  

leading to  

Here we also used the  fact tha t  the function f O(z,H)  is bounded on se t  X x G . 

Combining (18 )  and ( 2 0 )  we get  : 

which implies 

lk -I a - E~~ 

C P i >  
i =mk K I 

Substituting ( 2 1 )  into ( 1 7 )  yields 

which contradicts 

inf +(H)  > -- 
H E C  

since E~~ + 0 . This again gives r, -r 0. 



2(c) Proof for the case when the stepsize is chosen according tc  (13) is 

similar to 2(a) and 2(b). 

This completes the proof. 

Remark. Assumption 2 of the theorem can be easily stated without introducing 

the notions of weak (star) topology and Levy-Prokhorov distance. One possible 

way is to assume the following: 

If O ( z . ~ r )  - f  O(z,HZ) 1 1 J A ( X . H ~ . H ~ )  d(H1(x) - Hz(.)) 1 
X 

where I h(x.H1. Hz) 1 < K < = for some positive K and H I  E G . HZ E G . z E X  

and1 f  O(X,H)\ < C < m for some positive C and H E G , x E X  . 

In order to obtain a practical method from the  general framework 

described in th is  section, we have to specify ways of performing step 2(i). This 

is the purpose of the next section. 

4. SOLVING THE LWEAR SUBPROBUCM USING CUTTINGPLANE TECHNIQUES 

We shall now consider a method for solving l inear subproblem (9) which 

reduces step 2(i) of algorithm 1 to the solution of one finite-dimensional l inear 

programming problem. This method uses some of the same ideas as  general- 

ized l inear programming [a], cutting-plane algorithms [9], and has much in 

common with the  method proposed in [?I for solution of l inear problem (1)-(3). 

The method is based on the duality relations for problem (1)-(3), which were 

studied in [?I. 

Let us assume tha t  the assumptions of-Theorems 1 and 3 are  fulfilled. 

Then, according to Theorem 1, 

where 



Suppose that dstribution F is fixed. Then it is possible to solve the problem 

max p S ( u )  
U E V +  

with the help of the following cutting-plane method. 

Algorithm 2 

1. First select m + l  points x l ,  x 2 ,  . . . , xm+ l  and set u = m + l .  These points are 

used to approximate function pS (u)  by the function 

m 
p S ( u , O )  = min (f O ( X ~ , H ~ )  + C u i f i ( ~ j ) )  

l s j s v  i = l  

The initial approximation u0 to the solution of problem ( 2 2 )  maximizes the 

function pS (u , 0 )  : 

u0 = arg max pS ( u . 0 )  
U E V +  

so that we have to solve a linear programming problem. 

2. Suppose that before beginning iteration number k we have v  points 

z 1  , z 2 ,  . . . , zv and the current estimate of the minimum uk-' . Then itera- 

tion number k involves the following stages: 

(i) Take v  = v + l  

( i i )  Find 

rn 
zv = arg min ( f  O ( Z , H S ) +  C u i k - 1 f i ( Z ) )  

t € X  i =l  

( i i i )  Calculate the next approximation to the optimal solution uk+l : 

uk = arg rnax p S ( u , k )  
U E V +  

where p S ( u , k )  is the current approximation of function p S ( u )  : 



I t  should be realized tha t  this is only a general framev~~ork for so!uiion - much 

has already been done to avoid increasing the number of points x i  stored and 

to implement approximate solutions of problem (23) (for details see [7], [ lo]). 

The advantage of this method is tha t  it becomes possible to obtain approxi- 

mate solutions of the initial problem (9) during the solution of problem (22). 

These approximations are discrete distributions containing no more than m + l  

points with positive probabilities: 

where the Fi are nonzero solutions of the following linear programming prob- 

lem : 

v 
min C pi f *(xi, HS ) , 

?' i = ]  

and the  x i  are the  corresponding points. Note that  the  above problem is actu- 

ally dual to  the linear program equivalent to  (24), and therefore both prob- 

lems can  be solved simultaneously. 

What we actually need while implementing algorithm 1 is not a precise 

solution of problem (9) at each step, but ra ther  to track i ts changing 

extremum value. The approximate solutions of (9) may be very rough for t he  

first few iterations, gradually increasing in accuracy. I t  appears tha t  algo- 

r i thm 2 can be used to follow the  extremum value by tracking the changing 

optimal solution of dual problem (22). It is only necessary to make one itera- 

tion of algorithm 2 for each iteration of algorithm 1. 



In what follows we shall simplify the notation, writing 

f ' ( 2 , ~ ~ )  = f:(z) . 

We now want an algorithm which allows us to follo~-; the optimal solution of 

problem ( 2 2 )  as the current distribution H S  changes. 

Algori thm 2a 

1. First select m+l points z l ,  z2,  . . . , zm+l and set v=m+l. The initial approx- 

imation u0 to the solution of problem ( 2 2 )  maximizes the function pO(u,O) : 

u0 = arg max cpO(u,~) 
U E  U+ 

m 
po(u,O) = min ( f  : ( z j )  + C u i f i ( z j ) )  

lsjsv i = l  

2. Suppose that before beginning iteration number s we have v points 

z 1  . z 2 ,  . . . , zY and the current estimate of the minimum us-' . Then itera- 

tion number s involves the following stages: 

( i )  Take v = v+l 

( i i )  Find 

n 
zY = arg min ( f : (z)+C uis-If i ( z ) )  

z EX i =l 

( i i i )  Calculate the next approximation to the optimal solution us+' : 

us = arg max pS(u,s) 
U E V +  

The following theorem proves the convergence of this method. 

Theorem 4 

Assume that: 

1. Set X is compact and functions f i(z) , i = T r n  are continuous. 



2. Functions f :(x) are conkinuous for x  E X uniformly on s and 

a s s  + m .  

3. There exists a y  > 0 such that  for any u E u+, IIu 1 1  = 1 there exists an 

i E 1, ..., m + l  j for which 

Then 

max pS ( u )  - pS(uS)  + 0 
U E V +  

Proof 

1. We shall first prove that  sequence us is bounded. Take any point ZLE U+ and 

estimate the value of pS ( u , s )  a t  this point. Select i Ir rn +1 such that 

which from assumption 3 of the theorem will always be possible. Then 

P" ( " ,~ )  " f:(xi)-yI l " I  I . (25) 

The uniform continuity of functions f:(x) implies the existence of a constant 

C  such that 1 f:(x) 15 C . Combining this with (25) yields 

p S ( ' l l * s ) ~  C  -y I I  G O  
and 

These two inequalities lead to 

pS(0,s )  - p ~ ( i i , s )  > y I  1'111 I - 2 C  



which implies that  the norm of any point u *  which maximizes ~ + ~ ( u . , s )  is 

bounded, i.e., 

where constants C and y do not depend on s . This proves that  sequence us is 

bounded, because us maximizes rpS ( u , s )  . 

2. Now suppose, arguing by contradiction, that  t he  theorem is not t rue and 

that  there  exists an a > 0 and a sequence sk such that  

max  p S k ( u )  - p S k ( u S k )  > a . 
U E  V+ 

From the  boundedness of sequence us and assumptions 1 and 2 we may 

assume without loss of general i ty that  

where vk = sk + 1 + m + 1 . 

We shall now estimate the  difference 

We have 

for some K > 0 from assumption 1. We also know tha t  pSk(u *) + p* ,  which 

together with assumptions 1 and 2 implies tha t  

pSk* l ( uSk )  + p* and p S k ( u S k )  - p* . 
Hence 

pSk+ l (uSk)  2 pSk (uSk )  - c l ( k )  

where c l ( k )  + 0 as k  + m. We have assumed that  

r n a ~ I f : + ~ ( z )  - f P ( z ) I  + o 
zEX 



as s -+ and this gives 

sk + I  
(pSk(usk) 2 $0 (uSk) - c2(k)  

where cZ(k )  + 0 as k -+ m. But from the algorithm we have 

where vk = sk + 1 + m + 1 . From estimate (29)  , we obtain: 

m m 
f ; + , ( z v k )  + C u i S k f i ( x v k )  2 min [ f &  (2') + C uiSk f i ( x j ) ]  2 

i= l  l S j l ~ ~ + ~ - l  a = I  

min [ f;+l ( z j )  + 9 uiSk+ ' f  ( z j ) ]  - 
l s j s ~ ~ + ~ - l  i= l  

max min [ f;+, ( x j )  + 2 y f i ( x j ) ]  - 
u E U+ Is jsvk+l - l  i =l 

K]  I I uSk - uSk+l I I 2 max ipSk+'(u) - K] I I u S k  - uSk+l I I . 
U E U +  

(30) 

Combining (26)-(30) gives 

max pSk+ ' (u )  - pSk+ l (uSk+ l )  I K I I uSk - uSk+l I I + 
U E  V+ 

e l ( k )  + eZ(k )  + cq(k ) + K1 1 1 uSk - usk+l I 1 I e5(k ) 

where c5(k) + 0 as k + m . 

This contradicts the initial assumption 

and thus  completes the proof. 



We shall now give an algorithm based on the results obtained in Sections 3 

and 4. I t  is assumed tha t  t he  conditions of Theorem 3 are met.  

Algorithm 1 a 

1. We begin by choosing an initial distribution H0 which satisfies assumption 3 

of Theorem 4 . Let x l ,  x 2 ,  . . . , xm+l  be the  m t l  points which form the  ini- 

tial distribution HO. Consider the following linear programming problem: 

Assumption 3 of Theorem 1 is satisfied if and only if problem (31)-(33) has a 

- 
solution .ELI , iiz , . . . , such tha t  urn+] < 0 . If th is is t he  case, the  solu- 

tion is the  same as that  of t he  dual problem 

where the  optimal value of p m + ~  is less then 0 . The distribution I?, where 

R = t ( z l , p l ) ,  ( x 2 , p z ) ,  . . . , ( z m + l  Frn+l)j 

and& is  the  optimal solution of (34)-(36), has the property 

J f i  (z)dH(x) < o 
X 

(37) 

and therefore condition 2 of Theorem 1 is satisfied. The converse is also t rue 

(see [ 7 ] ) .  Thus if condition 2 of Theorem 1 is fulfilled, i t  is possible t o  find m t l  

points z l , . . . , z m + l  such tha t  problem (34)-(36) has a solution 

- 
jil , . . . , pm+z with h+z < 0 . This guarantees that  condition 3 of Theorem 4 



is fulfilled. These points, together with the probabilities pi, now form the 

desired initial distribution H O ,  which is a solution of the following problem : 

min p 
H 

Jf ~ ( z )  dH(z) r p , j = i;;;; 
X 

This problem is of the form (1)-(3) and may be solved using algorithm 2 (see 

[7]). We do not need to solve (38)-(40) exactly - we can stop when the current 

solution satisfies (37). This will occur after a finite number of iterations of 

algorithm 2 if condition 2 of Theorem 1 is satisfied. The initial step of algo- 

r i thm l a  therefore involves the following stages: 

(i) Take vo = m +l , where us is the number of points in distribution HS. 

(ii) Obtain the initial distribution H1, where 

by applying algorithm 2 to problem (38)-(40). This algorithm will produce 

a sequence of distributions ES which after substitution in problem (38)- 

(40) gives corresponding pS . Take as H1 the first Bs with p, < 0. 

(iii) Take the initial point u 1  E U+ for solution of the dual problem. 

2. Suppose that  before beginning iteration number s we have the current  

approximation to optimal solution HS : 

and point us . Iteration number s then involves the following operations, 

where steps (i)-(iii) correspond to steps (i)-(iii) of algorithm 2a and step (i) of 

algorithm 1, and steps (iv)-(v) correspond to steps (ii)-(iii) of algorithm 1 : 



(i) Take J = $ + 1 

(ii) Find a new point xVst1 , where 

m 
z v s t ~  = arg min [f '(x ,HS) + C uf f (x)] 

z EX i=l 

(iii) Solve the following linear programming problem : 

a=l 

together with its dual: 

This will give us the next approximation to the solution of the dual prob- 

lem, us+], and also vector pS+' : 

g+l= (p;+l , . , . , pv*+i -s+l ) 

which will have no more than m+1 nonzero elements, say 

( , . . . I 

-s +I  ). 
Pkmtl 

(iv) Take the  family of distributions 

H"+l(a) = I (  zl,p;+' (a)) . . . . , ( ~ " + ~ . p ~ ~ + ~ ( a ) ) j  

where 

, i f (  # kj for j = l , m + l  

( l  - a) + 
. otherwise . 

Then find 

a, = arg rnin \II(HS+l(a)) 
(ka4 1 



and take p, = minl a, ,fl, j , where 

(v) Take 

HS+1 = Hs +YP, ) 
and go to step 2(i). 

Remark. It is not necessary to solve nonlinear programming problem (41) 

with great accuracy. All we need is a point zVs+' such that 

m 
lim i[ f O ( z V s + 1 , ~ )  + C ut f i(Zvs+l)] - 
s +- i =I 

m 
min [f O(Z,H~) + C uf f i (z)] ]  = 0 , 
z EX i= l  

I t  is also possible to avoid increases in the dimension of linear programming 

problem (42)-(44) by considering only points zi which satisfy some additional 

inequality (see [7]). 

Remark. Algorithm 2a adds one additional point to the current approximation 

of optimal solution HS at  each iteration, which may not be convenient if we 

have restrictions on the amount of memory available for storing the distribu- 

tion. In this case measures should be taken to avoid this expansion, perhaps 

a t  the expense of accuracy. Some possible ways of achieving this are discussed 

below. 

1. Suppose we want to find the best possible approximation, in no more than N 

points, to the optimal solution of (5)-(7). (It is assumed that some additional 

memory is  available for storing N further points.) We then proceed as follows: 

(i) Run algorithm 2a until the current distribution HS contains 2N points. 

Arrange these points in order of decreasing probabilities : 



(ii) S ta r t  algorithm 2a again from the distribution 

(iii) Continue this process as long as the new ZN-point distribution has a 

bet ter  value of +(H)  than  the previous one. 

2. Suppose that  we want to  find an approximation to  the optimal solution using 

a t  most N points. 

(i) Run algorithm 2a until the current  distribution contains N points. Let 

- 
max p t .  Divide the set  1 , . . . , ZN into two subsets: 

= lsisN 

where x > 0 should be chosen previously. 

(ii) S ta r t  algorithm 2a again from distribution HI : 

(iii) Continue this process as long as the value of *(H) in consecutive 2N-  

point distributions improves and set  I2 is not empty. 

3. Another possibility is to  use approximation techniques to  fit discrete distri- 

butions by continuous ones. For example, splines can be used when the  dimen- 

sions a re  small or when the  distributions HS have independent components. 

This approach needs fu r ther  study. 

The convergence of algorithm 2 follows directly from Theorems 3 and 4. 

The next result may be derived using the  remark following Theorem 3. 



Theorem 5 

Let the following conditions be satisfied: 

1. X is a compact set. 

2. Functions f  i ( z )  are continuous for z E A' , i = r m .  

3. 9 ( H )  is convex and satisfies (8) and 

If O ( z . ~ l )  - f  O ( ~ , ~ Z ) I ~ I ~ X ( ~ . H I . H Z )  d ( H 1  - H Z ) \  
X 

for some summable ~ ( z  ,-Y1,H2) such that 

I A(z,H,,H,) 1 < K < m 

for any H I  , H Z  E G . 

4. There exists an H ( x )  such that 

Then 

lim [+(PI - min + ( H ) ]  = 0 
s + =  H E C  

It is interesting to compare this algorithm with the methods for solving sto- 

chastic problems with recourse recently proposed by Wets [ll]. Although 

applied to quite different problems, they both use generalized linear program- 

ming techniques and on each iteration require solution of one linear program- 

ming problem and one nonlinear optimization problem. 

More complex problems with nonlinear constraints can be treated in the 

same way. If the definition of set G of constraints is changed to the following: 

and functions \ k i (H)  have directional derivatives of form ( 8 )  then analogues of 

Lemma 1 and Theorem 2 will hold . In this case we can construct a feasible- 

direction type algorithm, which inherits all of the important characteristics of 

algorithm 1. The same ideas can be used to solve minimax problems which 



depend on distr ibut ion functions. This, together x i t h  the resul ts of some 

numer ica l  exper iments,  will provide the  subject of a subsequent paper. 
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