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PREFACE 

For some years, IIASA has placed considerable emphasis on both population studies 
and methods of analysis and estimation . These two strands of research are combined in 
this paper , which develops an analytical method for the derivation of errors in estimations 
based on indirect data, and illustrates this method by applying it to Brass's child survivor
ship estimation technique . 

The method described here makes it possible to study the sensitivities of estimates 
to the underlying assumptions, and provides algebraic expressions that are both more 
general and easier to interpret than computer results. These expressions give some insight 
into the rationale of the indirect methods, the conditions under which they are appro
priate, and the possibilities of correcting the effects of inappropriate assumptions. 
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An Analysis of Indirect Mortality Estimation* 

W. B. ARTHURt AND M.A. STOTOt 

I. INTRODUCTION 

Since the seminal work of Brass and Coale, 1 demographers have become highly skilled 
in the estimation of demographic parameters from indirect data. In many developing 
countries, the classical sources of demographic data - registration of vital events or 
periodic censuses - are far from adequate. Brass, Coale and their co-workers have 
developed a set of powerful and less demanding techniques based on simple survey or 
census questions to replace the classical methods. 

All the new methods are based on the substantial regularity of the age pattern of 
demographic events across regions and time. They use the minimum amount of 
information required to match a standard schedule to a specific situation. By careful 
choice, the indirect methods rely on data which are easy to obtain and are least subject 
to known sources of bias. 

Simulation studies, checks on internal consistency, and comparisons with independent 
results have shown the new methods to be accurate and reasonably robust. Yet it is 
natural to examine their sensitivity to the many assumptions on which they are based. 
Just how robust are the methods? To which assumptions are they most sensitive? What 
would their error be in certain cases? How might they be corrected? 

Questions like these have been examined before, largely through the medium of 
numerical studies and regression analyses. Some results are well known and the methods 
clearly understood. This paper adds to this literature by providing and employing an 
analytic technique for studying the sensitivities of the estimates to the assumptions that 
underlie them. This new technique provides algebraic expressions which are both more 
general and easier to interpret than computer results. 

One purpose of this exploratory paper is to develop an analytical method for the 
derivation of errors in estimations in which indirect data are used . A second is to use 
the method to derive both general and specific results. The resulting expressions give an 
insight into the rationale of the indirect methods, the conditions under which they are 
appropriate, and the possibilities for correcting the effects of inappropriate assumptions. 

We illustrate the use of the analytical method in the simplest and most widely used 
technique - Brass's childhood survivorship method. As we shall indicate more concretely 
later, we expect the approach to be fruitful for other techniques as well. Our plan is as 
follows . In the next section we briefly set out the notation and assumptions of Brass's 

• We wish to thank Griffith Feeney. who suggested that demographic sensi tivity analysis methods developed 
in W. B. Arthur,' The Analysis of Causal Linkages in Demographic Theory', II ASA Resea rch Report RR-81-27 
(1981), be applied to incomplete-data estimation techniques. Helpful comments were provided by Douglas 
Ewbank, Kenneth Hill, and Joseph Potter. The research was carried out at the International Institute tor 
Applied Systems Analysis, Laxenburg, Austria. 

t Visiting Professor, Food Research Insti tute , Stanford University, Stanford. California, 94305, USA. 
i Assistant Professor of Public Policy, J. F. Kennedy School of Government, Harvard University, 

Cambridge, Massachusetts, 02138, USA. 
1 W. Brass and A. J. Coale,' Methods of analysis and estimation'. In W. Brass (ed.), Demography of Tropical 

Africa (Princeton University Press, Princeton, 1968), pp. 88- 150. 
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childhood mortality method. In Section 3 we develop a general theory of errors for this 
estimator. We follow this, in Section 4, with four specific analyses of practical interest. 
In a concluding section we sum up the specific and general results for Brass's childhood 
mortality estimator. 

2. BRASS' S CHILD-SURVIVORSHIP TECHNIQUE 

Brass's child-survivorship technique2 is designed to estimate q(M), the probability 
of dying before birthday M.3 Ideally, to estimate q(M), we should like to identify a large 
group of children at birth, follow them for M years, and see how many do not survive. 
But in countries were census data are unreliable, this direct method cannot be used : 
certain social groups may be undercounted in death and birth records which may be badly 
incomplete. 

Brass's technique circumvents census-record problems by identifying the group 
indirectly, as children ever born to a representative collection of mothers who are directly 
questioned. The ratio of children born to mothers of the same age x who have died to 
all children ever born to them, Dx, is a mortality statistic which is both easy to obtain 
and relatively reliable . The only trouble is that the children ' indirectly surveyed' are not 
all conveniently of the same age M - they are spread over a range of ages. Dx, the 
proportion dead, is thus a composite of child-mortality levels. Brass's technique must 
provide a map from the statistic Dx to the required mortality level q(M). 

Brass accomplished this in an ingenious way. In the absence of knowledge of the true 
ratio q(M)/Dx> he simulates this ratio by calculating it in a 'model' or artificially 
constructed population, chosen under particular assumptions to be similar to the 
population surveyed. With the simulated' translation ratio' k at hand , the observed value 
of Dx need only be multiplied by k to estimate the unknown q(M) . In its simplest form, 
Brass's estimate for q(M) may thus be written as4 

q(M) = k . Dx. (2.1) 

To examine this procedure in greater detail , we need to distinguish between three 
different populations : the actual population, which is the target population whose vital 
rates we want to estimate ; the survey population - children of the mothers selected for 
interview; and the artificial or model population, chosen in the simulation of the 
translation ratio k . 

We summarize in Table I, for each of these populations, the functions that play a key 
role in the technique. ' Age' denotes, throughout this paper, years since birth whether 
children are living or deceased . An asterisk denotes model or guessed functions ; and an 
s-subscript survey population functions . 'True' demographic functions, those for the 

2 W. Brass and A. J. Coale, toe. cit. in footnote 1, and W. Brass, Methods for Estimating Fertility and 
Mor tality from Limited and Defective Data (Chapel Hill , 1975). 

' For related methods of mortality estimation see G. Feeney, 'Estimation of mortality trends from child 
survivorship data ', Population Studies, 31 (1977), pp. 109- 128. 

4 In practice, x, the age group of mothers questioned, is chosen so that their children are clustered around 
M, the estimation age, Each M therefore ' corresponds' to a mothers' age group, x, and for each of these 
age groups a translation ratio k must be calculated. Often k is keyed to ancillary information. Brass, op. cit. 
in footnote 2, provides a table indexed by the parity ratio, P1/ P,. the number of children ever born to women 
aged 15 to 19 divided by the similar number for women aged 20 to 24. J. M. Sullivan, ' Models for the estimation 
of the probability of dying between birth and exact ages of early childhood', Population Studies, 26 ( 1972), 
pp. 79- 97, provides an equation relating k to P, /P,. T. J. Trussell, ' A re-estimation of the multipyling factors 
of the Brass technique for determining childhood survivorship rates', Population Studies, 29 (1975), pp. 97- 107, 
improves this equation by including P,/ P,. 
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Table I. Definition of terms 

q(a) =probability of dying 
between birth and 
age a in the actual 
population 

q,(a) = probability of dying 
before age a for 
children in the 
survey population 

q*(a) =probability of dying 
before age a in the 
model population 

c(a) = density or relative 
frequency of children at 
age a (whether 
alive or dead) of 
mothers aged x in the 
actual population 

c.(a) = density of children at 
age a (whether alive 
or dead) in the survey 
population at the time 
of survey (where mothers 
selected have age x) 

c*(a) =density of children at 
age a (whether alive or 
dead) of mothers aged x 
in the model population 
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target population in question, are without a subscript. The circumflex accent denotes an 
estimate. 

With the help of Table I, we may write the proportion of deceased children measured 
by the survey as 

Dx = J c,(a) q,(a) da, (2 .2) 

where integration here and throughout the analysis is understood to be taken over the 
appropriate age range of children. We may also write the translation ratio k, the ratio 
of the model probability of death by age M to the model proportions deceased, as 

k = q* (M)/Jc*(a) q*(a) da. (2.3) 

Brass's estimate of q(M) is the survey proportion deceased multiplied by the translation 
ratio . Written in terms of the survey and the model functions, it becomes 

• q* (M) _\" 
q(M) = J c*(a) q*(a) da'c,(a) q,(a) da. (2.4) 

Note a key virtue of this estimator. If there are no errors - if the survey population 
perfectly represents the actual population, so that q, = q and c, = c, and if the model 
functions have been chosen perfectly so that q* = q and c* = c - the estimate is exact: 
q(M) = q(M). Furthermore, if q* = a.q, a. cancels in (2.4) and the estimate is still exact. 
Thus, only the shape, and not the level, of the true mortality curve needs to be guessed. 

It is clear that in general the usefulness of (2.4) as an estimator of mortality at age 
M depends crucially on whether the survey can be carried out with accuracy and on 
whether the model functions can be chosen judiciously. If the women surveyed are 
representative of their age group in the actual population, if women's ages and numbers 
and deaths of children are correctly reported, and if there is no sampling error, then the 
survey functions c, and q, correctly represent the true population functions c and q, and 
Dx measures the true proportion of children deceased, to all women in the population 
aged x. If vital rates have not changed in the years preceding the survey, if the actual 
mortality function is close to some member of a selected model family of mortality 
functions, if the ~rue age density of children with mothers aged x can be simulated by 
a model density function calculated from a standard family of model fertility functions, 
then c* and q* can be accurately chosen to simulate the true population functions c and 
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q. 5 If all these conditions hold, q(M) will be an accurate estimate. If, on the other hand, 
women interviewed are a biased sample of the actual population, or if the true mortality 
experience in no way resembles that of the model mortality family, the estimate q(M) 
will be in error. 

In the analysis that follows, we aim to sharpen our knowledge of the robustness of 
the child-survivorship technique to errors in the collection of the survey statistic Dx, to 
imperfect choice of model schedules, and to certain specific demographic assumptions 
underlying the technique that are likely to be violated in practice. We adapt methods 
of demographic sensitivity analysis6 to this purpose. 

3. ERROR ANALYSIS 

We may write (2.4), Brass's estimator of q(M), more conveniently in terms of the survey 
statistic Dx and the model functions q* and c* as 

- q*(M) 
q(M) = Jc*(a) q*(a) da Dx· (3.1) 

This will serve as our standard form of the estimate. 
We have already established that if the survey statistic is correct, and the model 

schedules are chosen perfectly, the estimator will be correct. This provides the starting 
point for our analysis. Observe that errors can arise from only three sources: the statistic 
Dx may be in error; the model schedule c*, which must be guessed, may be in error; 
or the model schedules q* , which also must be guessed, may be in error. Our strategy 
will be to analyse errors from each source separately, using the correct estimate as a bench 
mark. In each case we view the source of error as a differential or small perturbation 
from the true observation or true vital schedule, and assume the other inputs to be 
correct. We then derive analytical expressions for the differential - the first-order 
approximation to the actual change caused in the estimate q(M) . The differential 
measures the error in q(M) due to errors in Dx or to incorrect selection of q* and c* . 
Stated in another way, we view the estimate q(M) as a number that depends on three 
inputs, the datum Dx and the guessed functions q* and c*. We seek general analytical 
expressions for the differential in q(M) by assuming in turn that each of these inputs is 
in error. (Exactly how a particular error arises is not considered in this section; we 
consider this problem in Section 4.) Since the total differential in the estimate is the sum 
of the differentials from each source of error, we may treat each source of error separately. 

3.1. Errors in the survey statistic, Dx 

Sampling errors, or systematic bias such as is caused by the omission of children who 
have died, in general mean that the poulation surveyed misrepresents the actual 
population. Both c8 and q8 , the age-density of children in the survey population and their 
mortality experience, may differ from c and q, the 'true' density of children of mothers 

5 It is usual not to choose c• directly from a model family but to calculate it from an assumed model fertility 
schedules m• as m*(x-a) 

c*(a) = . 

[ m*(y)dy 

Thus the model age density of children aged a of mothers aged x is simply the proportional fertility rate a 
years ago, when mothers were aged x- a. 

6 See W. B. Arthur, ' The Analysis of Causal Linkages in Demographic Theory ', RR-81-27 (1981), Inter
national Institute for Applied Systems Analyis, Laxenburg, Austria. 



INDIRECT MORTALITY 305 

aged x, and 'true' mortality experience in the population as a whole. This will in turn 
cause Dx to deviate from the 'true' proportion dead in the actual population. (To show 
exactly how Dx deviates would require additional assumptions about the nature of the 
omissions or the sampling process.) We seek an expression that links the general error 
or deviation oDx in Dx with the error caused in the estimate. 

We start by assuming all parts of the estimate are correct, so that 

-(M) q(M) D 
q = Jc(a) q(a) da x· 

(3.2) 

The differential oq(M) caused by the deviation of oDx is simply 

oq(M) = Jc(a~~~) da. oDx 

(In this case the differential oq(M) exactly equals the error q(M)-q(M).) In proportional 
form, we can write 

oq(M) oDx oDx 
q(M) =Jc( a) q(a) da = Dx · 

(3 .3) 

We have, in this case, the simple general result that the proportional error in the estimate 
equals the proportional error in Dx· 

3.2. Error in choice of c* 

Now assume that only c*, the model age-density function, is in error, and that it deviates 
from the true function c by the function oc = c*-c. Using standard methods from the 
differential calculus we can obtain the associated differential in q(M). At the starting 
reference point, where all parts of the estimate are correct, we can write (3.1) in quotient 
form as 

q(M) = q(M) = U/ V, (3.4) 

where U = q(M) Dx and V = Jc( a) q(a) da. We may view the substitution of the guessed 
density c* in V for the true density c as causing a perturbation oc in the function c; this 
changes V (exactly) by the differential 

oV = Joc(a) q(a) da. 

It causes no change in U, so that oU = 0. From the quotient rule we can write the 
differential oq(M) as' 

o·(M) = VOU- UoV = _!!_ oV (3 .5) 
q v2 v v · 

Therefore, dividing through by q(M) = U/ V, the relative change or relative differential 
in q(M) due to the error in choosing c* instead of c is 

or 

oq(M) -ov 

q(M) v 
Joc(a) q(a) da 

Jc( a) q(a) da · 

We shall use this general result in our subsequent analyses. 

(3.6) 

7 The reader will recall from elementary calculus that the differential is the linear part of the change in_/(x) 
caused by the change ox in x. In our case, the change oc is itself a function. and oq is therefore technically 
called a functional (or Frechet) differential. For details. see W. B. Arthur. op. cit. in footnote 6. 
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3.3. Error in choice of q* 

Now assume that c* and Dx are correct, but that q* , the model mortality function, 
deviates from the true mortality function q by an amount oq. In this case the differential 
in the estimate, as before, can be computed from (3.4). Here 

so that 

ou = oq(M) Dv 

oV = Jc(a) oq(a) da, 

oq(M) = ou -~ov 
v vv 

= oq(M)Dx -q(M)Jc(a)oq(a)da. 
Jc(a)q(a)da Jc(a)q(a)da 

Therefore, the proportional error is 

oq(M) _Jc(a)oq(a)da 

q(M) Jc( a) q(a) da · 

Again, we shall use this general result in subsequent analyses. 

(3.7) 

Note that (3.7) confirms our earlier remark that the user need only guess the shape 
of the mortality curve, and not its level. If the guessed mortality schedule is in error by 
a multiplicative constant, so that q* = aq, than oq =(a- 1) q, and the relative error is 
zero. In this special case the error cancels out. This is one key advantage of Brass's 
technique. The user need not worry about the precise choice of the correct level of 
mortality function in the model family. Providing all functions in the family are of the 
same more or less 'correct' shape, no appreciable error will be introduced. 

3.4. Practical implications 

These results provide some guidance for the practical use of Brass's technique. Little can 
be said about protection against errors in the datum Dx beyond the simple observation 
that 'representativeness ' in the survey population is crucial. 

Choice of the model schedule c* (or equivalently, of the model fertility function m* 
on which c* is based) merits some comment. We see from (3.6) that the effect of an error 
in the choice of c* - in the simulation of the actual population's age density of children 
to mothers aged x - is, in general, neither self-cancelling nor avoidable. There is no 
recourse beyond fitting c* as correctly as possible. This is reflected in the usual practical 
procedure of basing the selection of c* (or of m*) on ancillary information that improves 
its accuracy greatly : the parity ratios P1/ P2 and P2/ P3 are often used for this purpose. 

Choice of the model mortality schedule q* is somewhat easier. We have already seen 
that what matters for the model mortality schedule is that it be of the right shape. 
Guessing the 'shape' of the unknown life table may not be easy; but an extra measure 
of protection can be afforded by a wise choice of the estimation age M. We see from 
Equation (3.7) that, for some M = y, theerror would be minimized or zero. Unfortunately, 
however, the 'unbiased estimation age' y varies with the specific character of the error 
function oq. As a very rough guideline, we can say that if Mis taken as not very different 
from A, the average age of children of mothers aged x, the technique will be reasonably 
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robust against errors in choice of q* .8 The reason is that Dx estimates the probability 
of death, very approximately, at the average survey age A. If the technique is used to 
map this observation into a q(M) at an age M far from A, it is forced to extrapolate 
along a guessed mortality function that may be of the wrong shape. Error will result. 

On this last point, we note in passing that the indirect mortality technique is poorly 
suited to the estimation of infant mortality. To estimate q at M = 1, we should include 
only very young children (with an average age of about one year) in the survey, which 
means we should interview only very young mothers, aged 15- 20, say. But for women 
in this age group sample sizes are small and responses are subject to a number of reporting 
biases. Furthermore, the denominators of both (3.6) and (3 . 7) are small for young women, 
so the estimates would be especially sensitive to any errors in the model fertility and 
mortality schedules. The alternative, to interview older women, would raise the average 
age of children surveyed far above one year. Estimation of q(l) would then be an 
' extrapolation' from a particularly poorly known part of the guessed mortality 
function - the infant years. In general, indirect mortality estimation performs best for 
ages from five upwards . 

4. SPECIFIC ANALYSES 

In this section we present four specific analyses based on the general theory of the 
previous section. Our object in these analyses is to understand better the structure of 
the estimation technique and to explore its robustness in the face of various assumptions 
that are often violated or only partially fulfilled in practice. 

In the first and second analysis we look at the effect on the estimate of fertility and 
mortality rates that are not stationary over time. In the third example we study the effect 
of specific errors in the shape of the model mortality schedules. In the final example 
sensitivity results are used to explore the trade-offs between census and survey data . 

Two particular age densities and two average values often appear in these analyses. 
As noted above, c(a) is the 'age' distribution of all children (whether living or dead) of 
mothers aged x. We denote the expected value of a over the distribution of c as A; it 
is the average age of all such children, had they survived. A second distribution, 

c(a) q(a) 
cd(a) = Jc(a)q(a)da' (4.1) 

is the 'age' distribution of deceased children of mothers aged x in the population. The 
expected value of a with respect to this distribution is Ad; it is the mean present 'age' 
of the non-surviving children. Mathematically, we may write 

and 
A= Jac(a)da 

Jac(a)q(a)da 
Ad= Jacd(a)da = Jc(a)q(a)da. 

Note that the mean age of non-survivors, Ad, will be greater than the mean age of all 
children, A, since chances of non-survival increase with age. 

' To first order, Jc(a) q(a) da = q(A)+q'(A) J<a-A) c(a) da+ JO' da;:: q(A) where A is Jae( a) da, the average 
age of children, alive or deceased, of mothers aged x. In turn, from (3. 7), 

"!<:;;;:: 8q(M)/q(M)-8q(A)/q(A), 

which is zero when Mis set at A. 
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4.1. Changing fertility rates 

A key assumption of the standard version of the childhood survivorship technique is that 
the fertility and mortality schedules of the target population have not changed in the 
recent past. But this assumption is frequently not valid , especially in developing countries 
where the technique is most commonly applied . 

It is easy to see qualitatively how falling fertility rates would bias the estimate. If we 
assume mistakenly that present low fertility rates obtained in the past as well , and 
calculate c*, the simulated age density of children of mothers aged x, using a model 
fertility schedule that underestimates past fertility, we shall underestimate the frequency 
of children at higher ages (when fertility was high) and overestimate it at younger 

0 IO 
Age 

I 5 

q 

20 

Figure I. Actual (c) and assumed (c*) age distributions when fertility is falling. 

ages. Since q increases with age, as in Figure I , the guessed model proportion dead 
Jc*(a) q(a) da (the denominator of the estimate) will be smaller than it should be, and 
q(M) will overestimate. 

To make a more precise analysis of this type of error, we must assume some specific 
dynamics of fertility change. Let m(y, T) be the fertility rate for women aged y in the 
popula tion T years before the survey. And suppose the fall in fertility is linear over time, 
so that 

m(y, 0) = (I -/37) m(y, T) . (4.2) 

(Since m(y, 0) must be positive, we assume /lT < I.) Suppose also the surveyed popu
lation is properly representative of the actual population, and that there are no 
measurement errors in Dx· And finally, suppose we know the present true fertility rates 
in the actual population exactly : we err only by assuming in our calculation of the model 
c* that these rates have applied in the past. Under this mistaken assumption we calculate 
c* as 

c*(a)= m(x-a, O) . r m(x-a,O)d~ (4.3) 

Now, the true fertility schedule a years ago will be m(y, a), so that the actual age-density 
of children (of mothers aged x) in the population is 

c(a) = m(x-a,a) . r m(x -a, a) da 

(4.4) 
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Using (4.2) we substitute (l -/Ja) m(x-a, a) for m(x-a, 0) in (4.3) and obtain 

c*(a) = (1-fla)m(x-a,a) r (1-(Ja)m(x-a,a)da 

1-/Ja 
= 1-fJAc(a), 
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where A is the average age of children of women aged x , in the actual population . The 
differential oc is then 

oc(a) = c*(a)-c(a) 

From the error expression (3.6), 

oq(M) 

q(M) 

( 
1-/Ja ) = ---1 c(a) 
1-/JA 

_/J(A-a) () 
- 1-/JA ca . 

fl j(A-a)c(a)q(a)da 

-1-fJA Jc(a)q(a)da 

Noting that Jac(a) q(a) da/Jc(a) q(a) da = Ad, the average age of deceased children of 
mothers aged x in the population, this becomes 

oq(M) /J(Ad - A) 
q(M) 1-/JA . 

(4.5) 

This is the result we seek. Since Ad > A, the erroneous assumption that fertility is 
constant at present level does indeed cause q(M) to overestimate. The overestimation, 
moreover, is more than proportional to the rate of fertility decline. At younger ages, the 
error is usually not too serious. Jn a typical case9 for women aged 22.5, A = 2.22 and 
Ad-A= 0.83 years, thus the relative error is 1.73 per cent with fl= 0.02 and 4.64 per 
cent with fJ = 0.05. But, as we would expect, the error is more serious for older women, 
whose children were born when fertility differed considerably from present rates. With 
the same fertility and mortality schedules as before, for women aged 42.5 A = 14.0 and 
Ad -A = 0.79, and now fJ = 0.02 yields a relative error of 2.21 per cent. To check the 
accuracy of (4.5), which is a first-order approximation, we can calculate the exact error 
in q(M) in the three situations we have just considered. The exact relative errors are, 
respectively, 1.76 per cent, 4.87 per cent and 2.30 per cent. Since the differences between 
these actual errors and our theoretical ones are small, we conclude that (4.5) is a good 
approximation. 

4.2. Changing mortality rates 

The bias introduced by mortality rates that fall during the period before the sample has 
been investigated by using numerical methods. 10 Here we seek analytical expressions. 

' Assumptions: (l) q(a) from Brass's European life table derivatives evaluated numerically; (2) present 
fertility from Brass's fertility polynomial with s = 14.5, from W. Brass, op. cit. in footnote 2 ; (3) fertility 
declining linearly with time at rate p = 0.02 or 0.05. 

10 See E. P. Kraley and D. A. Norris, ·An evaluation of Brass mortality estimates under conditions of 
declining mortality ', Demography, 15 (1978), pp. 549- 557 ; J.M. Sullivan and G. A. Udofia, 'On the 
interpretation of survivorship statistics: the case of non-stationary mortality', Population Studies, 33 (1979), 
pp. 365- 374 ; A. Palloni , ·A new technique to estimate infant mortality with an application for El Salvador 
and Colombia ', Demography, I6 (l 979), pp. 455--473 ; and A. Palloni, · Estimating infant and childhood 
mortality under conditions of changing mortality', Population Studies, 34 (1980), pp. 129- 142. 
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Changing mortality is more difficult to analyse than changing fertility because the 
mortality rate we see, q(M), itself depends on time. We must first specify the time at which 
we measure q(M), and then analyse the error. 

Let q(a, T) be the probability that a child born T years before the survey date dies 
before reaching age a. Our target estimate is q(M, M) , the probability that a child 
born M years ago is alive to-day. As in the previous example, we assume a simple model 

0·5 

0·4 

0·3 

02 

O· I 

IO 15 
Age 

/ 

.( q(a. ~0) 
7 

20 

q(a. 15) 

q(a. 10) 
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Figure 2. Actual (- ) and composite (---) mortality curves when mortality is falling. 

for the falling rates: q(a, T) is a multiple of q(a, 0) and the level falls linearly with time 
so that 

q(a, 0) = (I -/JT) q(a, T). (4.6) 

We further assume that the survey population is representative and correctly measured 
and that we guess the shape of the 'current' mortality q(a, 0) correctly. Error enters 
because we believe mistakenly that this mortality schedule has obtained in the past, so 
that we select q*(a) = q(a, 0). 

The situation is illustrated in Figure 2, where mortality schedules of past cohorts are 
shown as proportionally higher than the present curve, q(a, 0). To each age group of 
children surveyed will correspond a mortality schedule, with higher schedules' belonging' 
to children born further in the past - children who are older. That for children aged one 
at the time of survey will be q( I, I) ; that for children aged five q(5 , 5) ; and so on. Thus 
the mortality schedule of children in the actual population is the composite schedule 
q(a, a). For the sake of brevity we shall write this simply as q(a). 

Now, from (4.6) we can write q*(a) , the chosen mortality schedule, as (1-fla) q(a) , so 
that the relative error in q* due to believing present mortality rates have obtained in the 
past is 

oq(a) =(I -/Ja)q(a)-q(a) = -fJaq(a). 

Substituting this into (3 . 7) yields the relative error expression: 

oq(M,M) 
q(M, M) = - /J(M - Ad). (4.7) 
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The sign may be positive or negative, reflecting the fact that the erroneous q* appears 
in both numerator and denominator of the estimator, and the numerator depends on 
the choice of M . It is not uncommon for M -Ad to be three or four years, thus yielding 
large relative errors. For instance, with Brass's European standard life table and fertility 
polynomial with s = 14.5, for women aged 32.5 the Ad = 7.8, and Mis usually taken 
to be 5 years. With (J = 0.02, this leads to a relative error of 5.6 per cent. With (J = 0.05, 
the relative error is 14.1 per cent. 

We would expect this error in mortality estimation to be larger still if we were to make 
the further mistake of believing that q(M, M) - the mortality estimate of children born 
M years ago - were an estimate for the mortality, q(M, 0), of children born today . We 
have 

We may write (4.7) as 

Combining these yields 

q(M, 0) = q(M, M) (I -(JM). 

q(M, M)-q(M, M) = (J(A _ M) . 
q(M, M) d 

q(M, M)-q(M, 0) 
q(M, O) 

As expected, q overestimates the mortality of those born to-day, and by an amount 
somewhat greater than the rate of fall of mortality multiplied by the average period of 
time elapsed since the death of the non-surviving children in the population . To return 
to the example just given, (J = 0.02 now leads to a relative error of 17.4 per cent, and 
(J = 0.05 now yields an error of 52.2 per cent. 

4.3. Errors in the assumed mortality pattern 

Here we analyse a case where the assumed or model pattern of mortality q* differs from 
the true pattern in a specific way. Brass11 has found that a simple two-parameter equation 
adequately represents most life tables. In particular, for any two life tables /1 and /2 

observed in practice, parameters a and (J may be found that relate them according to 

logit (1- /1 (a)) = a+ (J lo git ( 1 -/2 (a)). (4.9) 

Let the true life table for the population be/, with the mortality function q given by 1 - /. 
Suppose now we guess a mortality function q*. By (4.9), we can represent it as 

logit (q*(a)) = a+(J logit (q(a)). (4.10) 

a = 0 and (J = 1 imply that the guessed function is correct. We can, therefore, represent 
errors in the choice of life table as departures of a from zero and (J from unity. 

In the range under consideration q(a) is generally small, so that 

logit (q(a)) ~ ! loge(q(a)); 

thus from this approximation and (4.10) 

q*(a) = e2a . qfl(a). 

(4.11) 

(4.12) 

First, we see that non-zero values of a correspond to errors in the level of the mortality 
function, which ,we showed in Section 3 to have no effect on the relative error in the 
estimate. The choice of a , therefore, makes no direct difference. Secondly, values of (J '*' 1 

11 Op. cit. in footnote 2. 
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correspond to an error in the assumed pattern of mortality. We may write 

oq = e2"-qP-q. 

The relative error, from (3. 7), thus becomes 

oq(M) = (eZet.qP - i (M)- l)-J(e2et.qP- 1(a)- l)c(a)q(a)da 
q(M) Jc(a) q(a) da 

= e2a{qP- l(M)- JqP- 1(a) cd (a) da} 

= ezaqP-1(M)-qP-1, 

where qP- 1 denotes a weighted average, with weights cd (a). 

(4 .13) 

(4.14) 

Now, whereas q increases with age, qP- 1 has the useful property that it remains 
relatively constant for values of fJ close to unity, in the age range over which deceased 
children are spread. Thus, in general qP-1(M) differs little from qP-1 as the example in 
Table 2 shows. 

Table 2. Relative error due to the incorrect choice of fJ 

fJ 0.8 0.9 1.0 1.1 1.2 
qfi- 1(M)-qfi- l 0.0042 0.0018 0.0 - 0.0015 - 0.0021 

Note: assumes M = 5 and c and q as given in the example in 4.1. 

These errors are in all cases smaller than 0.5 per cent. In general we can conclude that 
provided the model mortality schedule is chosen from the correct Brass logit family, the 
mortality estimate will be robust to choice within the family (choice of a and /J). It is 
this property that lends the logit model family its power in indirect estimation of 
mortality. 

4.4. Census versus survey statistics 

When Brass's procedure is applied to complete census data, there is no sampling error 
in the observed Dx (although there may, of course, be errors due to bias corresponding 
to the exclusion of certain mothers or deceased children). Errors arise because the model 
schedules c* and q* are incorrectly guessed. With survey data, on the other hand, the 
Dx are observed with random variation and are, therefore, subject to sampling error, 
but there is an advantage in that specific questions which help in guessing c* can be 
included in the survey. A technique due to Preston and Palloni, 12 for instance, allows 
us to estimate c* with some accuracy from additional survey data . In comparing census 
with survey statistics, there is, therefore, often a trade-off between the accuracy of the 
model schedules c* and q* and that of the statistic Dx· The theory developed earlier and 
assumptions about the variance of Dx in a random sample allow us to compare the size 
of error involved. 

We illustrate this trade-off with a rather simple, stylized example. For census data, 
we assume that Dx is correct, but that in the absence of reliable information on c, the 
model age density c* has been calculated under a 'typical', not large, error in the choice 
of model fertility m*, corresponding to a difference of one to two years in Brass's 

12 S. H. Preston and A. Palloni, 'Fine-tuning Brass-type morta lity estimates with data on ages of surviving 
children', Population Bulletin of the United Nations, no. I 0 ( 1977). 
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polynomial family. 13 (In the model fertility schedules = 14.5 or 13.5, nots = 15.5 as 
we assume for the actual population.) These assumptions correspond to parity ratios 
(P2/P3) of 0.49 or 0.54 rather than 0.44 and so are not very large errors. 

For survey data, we assume that c* is correctly selected , but that D x is subject to 
sampling error. Since D x is a proportion and is approximately equal to q(A) , we can take 
the standard deviation of a sample of N births, as the 'typical' error in D x: 

(4.15) 

Note that both estimates are equally sensitive to errors in q* , so we ignore these in the 
illustration. 

Table 3. Relative errors in q(M) due to ' typical' errors in census or survey 
applications (per cent) 

M 2 3 10 15 

Census S= 14.5 6.4 2.8 1.9 1. 8 1.9 
s = 13.5 10.5 5.0 3.5 3.3 3. 5 

Survey N= 500 9.5 8.7 8.2 7.9 7.5 
N = 2000 4.7 4.3 4.1 4.0 3.8 
N= 5000 3.0 2.8 2.6 2.5 2.4 

Note : for census application we assume a shift of one or two years in the assumed fertility schedule. For 
survey applications we assume a shift of one standard deviation with sample sizes of 500, 2000 and 5000. 

Table 3 lists the absolute values of the relative error in the estimate in this illustrative 
case for the census estimate (c* in error) and the survey estimate at different sample sizes 
N. 

We do not wish to conclude from this example that a survey is better or worse than 
a census. Users of the technique should be aware, however, that where surveys include 
specific information not reliably obtained from census data, the value of the additional 
information can often compensate for the main disadvantage of survey data, namely 
sampling error. This is especially true when young women are surveyed, and when the 
mortality estimates are most sensitive to fertility assumptions. 

5. CONCLUSIONS 

In this paper we have attempted to study the robustness of Brass's childhood survivorship 
mortality estimate to the assumptions that underlie it. To do so, we introduce a method 
that yields algebraic expressions for the error or bias caused by poor data, badly chosen 
model functions, and specific demographic assumptions that are often violated in 
practice. As a general conclusion, the technique is relatively robust with regard to poor 
choice of the mortality schedule q* , as long as the estimation age Mis not very different 
from the average age, A, of the target children - children of mothers aged x. Errors caused 
by poor choice of c* are more difficult to guard against; additional information that 
improves the accuracy of c* is the only safe recourse. And good estimates of the infant 
mortality rate are difficult to obtain from Brass's method . If we are willing to model 
exactly how certain specific demographic assumptions are violated, we can deri ve 
algebraic expressions for the bias in the estimate. 

13 See W. Brass, op. cit. in footnote 2. 
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The theory we have developed rests on an application of differential calculus. As such, 
our general error expressions (3.3), (3.6) and (3 .7) are differentials - first-order 
approximations to the true error. We would expect these approximations to be 
reasonably close, however, because the estimate, as in (3 .1 ), is fairly linear in both c* 
and q* . For the specific analyses in Section 4, we made further assumptions and 
approximations. Although not exact, our results here should be regarded as indicative 
of the type of bias introduced, its magnitude, and the factors on which it depends. Note 
that since first-order differentials are always additive, in practical terms, it is sufficient 
to study each source of error independently. 

Although we have not calculated numerical values for all the error expressions, they 
are well suited to computation. In specific situations, such calculation could help provide 
error bounds or sensitivity analysis. 

Throughout we have been concerned with robustness of the technique and the 
structure of biases introduced. We have had little to say about the calculation of 
correction factors based on additinal information. 

The child-survivorship technique considered in this paper is but one of a growing 
number of indirect estimation techniques. Hill and Trussell14 have described similar 
techniques based on data on surviving parents, spouses and siblings. Preston and 
Palloni15 have introduced a method that replaces the model fertility schedule with the 
age distribution of surviving children. Similar analyses of these different techniques could 
be performed. They would provide useful information about the techniques themselves 
and the conditions under which one might be considered better than another. 

14 K. Hill and T. J. Trussell, 'Further developments in indirect mortality estimatio n ', Population Studies, 
31 (1977), pp. 313- 334. 

15 Loe. cit. in footnote 11. 
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