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PREFACE

Since the International Institute for Applied Systems Analysis began its study of
water quality modeling and management in 1977, it has been interested in the relations
between uncertainty and the problems of model calibration and prediction. The work has
focused on the theme of modeling poorly defined environmental systems, a principal topic
of the effort devoted to environmental quality control and management.

Accounting for the effects of uncertainty was also of central concern to our two case
studies of lake eutrophication management, one dealing with Lake Balaton in Hungary
and the other with several Austrian lake systems.

Thus, in November 1979 we held a meeting at Laxenburg to discuss recent method
ological developments in addressing problems associated with uncertainty and forecasting
of water quality. This book is based on the proceedings of that meeting.

The last few years have seen an increase in awareness of the issue of uncertainty in
water quality and ecological modeling. This book is relevant not only to contemporary
issues but also to those of the future. A lack of field data will not always be the dominant
problem for water quality modeling and management; more sophisticated measuring
techniques and more comprehensive monitoring networks will come to be more widely
applied. Rather, the important problems of the future are much more likely to emerge
from the enhanced facility of data processing and to concern the meaningful interpretation,
assimilation, and use of the information thus obtained.

JANUSZ KINDLER
Chairman

Resources and Environment Area
IIASA
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FOREWORD

From the point of view of analysis and prediction, environmental systems can be
said to lie midway between the two extremes of electrical circuit systems and social sys
tems. This situation presents special problems in the analysis of environmental and, more
specifically, water-quality and ecological systems. On the one hand, a priori theory, with
its basis in the physical and biological sciences, would seem to be capable of predicting
observed behavior relatively accurately. On the other hand, however, it is especially diffi
cult to conduct planned experiments against which a priori theory can be tested. Under
these somewhat ambivalent conditions there has arisen a growing incompatibility between
what can be simulated in principle with a model and what can be observed in practice. To
a great extent this accounts for the gap that has developed between the "larger" simulation
models, with which there is little hope of conducting rigorous calibration exercises given
currently available field data, and the much "smaller" models that have been so calibrated.
There is, in short, a pressing need to reconcile such incompatibility in the current develop
ments in water quality modeling.

The purpose of these proceedings, as with the meeting on which they are based, is
therefore to present and discuss applicable methods both for identifying (calibrating)
water quality models from uncertain experimental data and for analyzing prediction-error
propagation. There are three themes on which the book places special emphasis:

• Identification. This has special emphasis because many previous publications
that have dealt with the subject have not addressed some of the more challenging
methodological questions and because many methods that might appear attrac
tive in theory are neither easy nor useful to apply in practice.

• Relation Between Identification and Prediction. Few publications consider this
relation in any detail, although it is clear that the uncertainties in a model and
its predictions are a function of how the model has been identified and calibrated.

• Interaction Between Case Studies and Methodological Development. There are
many problems generated in the course of a case study, so much so that it be
comes almost redundant to demonstrate the applicability of a technique by
means of an abstract example. It is the accumulation of experience from case
studies that is the genesis of new methodological advances.

The book is divided into four parts: an introduction (consisting of two papers); a
part on uncertainty and model identification or calibration (consisting of eight papers); a
part on uncertainty, forecasting, and control (consisting of seven papers); and a final com
mentary. Throughout the book there is an emphasis on the interaction between developing
approaches and methods and applying them to cases.

In Part One, two papers (by Beck and by Young) provide an historical perspective
and the synthesis of a methodological framework for the book. Both papers draw upon



viii Foreword

the use ofrecursive estimation algorithms in the context of time-series analysis as the basis
for much of their discussion. Quantitative, theoretical aspects of these algorithms, how
ever, are not introduced in detail; rather, it is the conceptual representation of the prob
lems, their solution, and the interpretation of case-study results that are of primary im
portance. Broadly speaking, therefore, Parts Two and Three of the book include the case
studies, and the problems of analysis thereby generated, which Part One uses here as the
raw material for methodological developments and the synthesis of a frahlework for
modeling and forecasting environmental systems behavior.

Part Two contains eight papers. Although there is an intimate relationship between
identification (calibration) and prediction, as argued in Part One, these papers have been
collected together in one section because they all focus principally on the problem of cal
ibration. Three of the papers (by Hornberger and Spear, by Halfon and Maguire, and by
Chahuneau et a1.) discuss the application of techniques of Monte Carlo simulation for the
purposes of model calibration. There are also two papers in Part Three that deal with
Monte Carlo simulation methods and they are closely related to these three papers.
Hornberger and Spear present further results for a case study of eutrophication in Peel
Harvey Inlet (Australia) using a novel approach to the generation of hypotheses under
conditions of sparse field data. Their work plays an important role in the discussion given
by Young in Part One. The paper by Chahuneau et al. is likewise closely related to Spear
and Hornberger's work, exploring questions of uncertainty in the fluid mixing and trans
port properties of a lake. Somly6dy's paper considers the hitherto little-discussed prob
lem of uncertainty in the input (forcing function) observations and compares the impor
tance to parameter variability of such uncertainty with the uncertainty of model calibra
tion results. He uses a hydrodynamical model for Lake Balaton (Hungary) as an illustrative
case study. The papers by van Straten and by Mejer and J¢rgensen are concerned with
specific problems generated in applying off-line (as opposed to recursive) parameter
estimation algorithms in lake water quality modeling. van Straten, for example, reports
results for maximum likelihood estimation of the parameters in a fairly complex phyto
plankton model for Lake Ontario. The last two papers in this part of the book, by Ikeda
and Itakura and by Tamura and Kondo, both discuss the identification of statistical rela
tionships in a set of field data using as few a pn'on' assumptions as possible about the
structure of these relations. Ikeda and Itakura's paper deals with a study of Lake Biwa
(Japan), whereas Tamura and Kondo concentrate more on the theoretical development of
their algorithm, with some illustrative results for the Bormida River in Italy.

There are seven papers in Part Three. The first two, as already mentioned, discuss
the application of Monte Carlo simulation methods in analyzing the effects of uncertainty
on the confidence attached to model predictions. Gardner and O'Neill's paper reviews
results for the effects of parameter uncertainty and covers part of the substantial contri
bution that they and their colleagues have made to this field. Fedra adds an important
extension of the earlier work by Spear and Hornberger by emphasizing the significant
relationship between calibration and prediction (see also Beck's paper in Part One); his
work, focusing mainly on the ecological aspects of lake behavior, is applied to a case
study of Attersee (Austria).

The next two papers, by Reckhow and Chapra and by McLaughlin, are complemen
tary to each other. Both apply a first-order analysis of prediction errors, but, whereas
Reckhow and Chapra treat the specific cases of simple nutrient loading models, McLaughlin
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presents an analysis of error propagation for a general class of distributed-parameter
models. Mclaughlin's results are in fact stated in a form equivalent to that of recursive
estimation and ftltering algorithms, which has important parallels with the discussion of
Beck's paper.

The contributions by Whitehead and by Koivo and Tanttu also draw upon methods
of recursive parameter estimation and prediction, but broaden the discussion of the book
toward management issues. Both papers are concerned with case studies of UK river sys
tems, the Cam and the Bedford·Ouse (both of which are central to the discussion of Beck's
paper), although Whitehead introduces a wider, and more practice-oriented perspective on
planning and operational management probiems, including the application of Monte Carlo
simulation. Koivo and Tanttu restrict their paper to more theoretical aspects of operational
(real-time) forecasting of water quality.

Fisher's paper, the last in Part Three, continues with and expands the theme of un
certainty in control and management studies. As opposed to Whitehead's interest in point
source discharges of waste material, Fisher deals with the problem of managing non-point
source nutrient inputs for the control of eutrophication in lakes, a problem background
common to nearly all the other papers in the book.

The short Part Four contains a contribution stimulated by the discussion at the
meeting. Sharefkin was prompted to prepare a paper giving a Bayesian interpretation to
certain problems of identification. In particular, he is concerned with how "a priori infor
mation" and "data information" are combined and mapped into "a posteriori information",
after the identification exercise; he constructs his arguments around the papers presented
by Hornberger and Spear and by Chahuneau et al.

In closing this introduction, a brief comment can be made on the lively discussion
of the meeting. It is typical of IIASA meetings that a large part of the available time is
allocated to the informal exchange of views, experiences, and opinions; in our case it was
generally felt that these deliberations were truly instrumental in the success of the meeting.
It is not an easy task to convey an impression of the discussion to the reader who did not
participate himself. However, many of the themes touched upon then return in a digested
form in the chapter immediately following this introduction. Thus, here we wish to attempt
merely to draw a few conclusions and to evaluate briefly "where we are" and "where we
go" in water quality modeling and prediction.

Not surprisingly a substantial amount of time was devoted to the technical details
of both the models and the methods and there is little purpose in repeating such details
here. Of greater interest is the observation that the debate about which models to build
and which methods of analysis to apply was sometimes obscured by unspoken differences
in the objectives of modeling and analysis. There is no doubt that the objective of using
modeling as a tool for structuring information, with the ultimate aim of gaining an im
proved understanding of the complexity of a system, demands an attitude different from
that required when the goal is to apply models for control, or, even more ambitious, for
design and management. Whereas for operational-control purposes it may be completely
satisfactory to have a purely data-based, simple model, even a black-box model that is
well-calibrated within the range of presently observed states, an application for design and
management requires a different approach because in these cases answers are expected for
situations often deviating very significantly from the presently observed conditions. This,
then, can be our first conclusion: that prior to any technical analysis it is important to
ask "why is it all being done?", and "what do we wish to do with it?".
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Following the organization of this book, the next issue for consideration is model
structure identification, which was discussed largely in relation to model calibration and
parameter estimation. Especially when management applications are the ultimate aim, a
preference can be observed among modelers to construct their models on the basis of
some assumed a priori physical, chemical, and biological theories. However, this perhaps
necessary step may lead to problems of over-parameterization and surplus content when
the model is calibrated against field data, although such a condition is by no means easy to
recognize. While techniques have been developed for determining the order of a model for
certain classes of linear models, any general theory seems to be lacking for the type of
commonly-met nonlinear models derived from a priori theory. And although analysis of
the parameter variance-covariance structure and, in association, a sensitivity analysis may
provide some insight, there are numerous pitfalls in such analyses. Thus, we may perhaps
conclude that a definite need exists for developing techniques to detect which components
of the models can be considered to be "hard" and which "soft", when confronting the
model response with the field data.

The problems encountered in model structure identification are closely related to
the problems of prediction and forecasting. Propagation of uncertainty is an important
issue for study, and there was quick agreement among the participants that any model
based prediction should be accompanied by error-budget calculations. The controversy
between models based largely on empirical observations and models based on a priori
theory leads to the dilemma pointed out by Beck in the first paper: that with the former
we may predict the "wrong" future with great confidence, and with the latter the "correct"
future might be predicted but without any confidence whatsoever. Or, as one of the
participating biologists tersely put it: "model predictions are either false or trivial". Al
though certainly excessive, this statement may serve as a warning that one should be aware
of the limitations of modeling in the field of water quality systems. It should not be over
looked, however, that this awareness can only arise from the development and application
of methods for quantifying the extent of these limitations, examples of which are amply
supplied in the remainder of this book. Indeed, the issue of model credibility is perhaps
the most important challenge for future work on water quality modeling. Therefore, the
final conclusion to be drawn from the stimulating discussion of the meeting is that im
provement of predictive power is to be expected only if we succeed in finding proper
methods to bring together the rigor of data-based analysis with adequately designed experi
mentation and the achievements of a priori theory derived from past experience.

BRUCE BECK
GERRIT VAN STRATEN
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UNCERTAINTY, SYSTEM IDENTIFICATION, AND THE
PREDICTION OF WATER QUALITY

M.B. Beck

Intemationallnstitute for Applied Systems Analysis, Laxenburg (Austria)

INTRODUCTION

There would be little disagreement among water quality modelers with the opinion
of Orlob (1983a) that virtually all the significant developments since the (now) classical
work of Streeter and Phelps (1925) have occurred within the past two decades. During
the 1960s and early 1970s there was a very substantial investment in model-building
associated with water quality management projects, particularly in the United States. The
main legacy of this initial investment is a well-established interest in the development of
progressively larger and more complex simulation models. "Large" is admittedly a rather
imprecise description of a model, although a glance at some of the recent literature on
water quality modeling will give some impression of the intended meaning (for example,
Russell, 1975; Patten, 1975, 1976; 1~rgensen and Harleman, 1978; Scavia and Robertson,
1979). There is no doubt that the immense scope for complex system simulation created
by the advent of electronic computers has fostered the rapid growth of "large" water
quality models.

Relatively little attention, however, has been given to the problems of uncertainty
and errors in the field data, of inadequate num bers of data, of uncertainty in the relation
ships between the important system variables, and of uncertainty in the model parameter
estimates. It is only during the last seven or eight years, for example, that an increasing
but still comparatively small number of detailed studies in system identification (model
calibration and verification) have been reported. These later developments might be
summarized by the statement that only "small" models have so far been calibrated
rigorously against in situ field data (see Beck, 1980, for a survey of the literature). The
reasons for this are naturally of concern in this study, as are the intimated distinctions
between "large" and "small" models and the emerging recognition of "uncertainty";
these topics will be discussed in more detail later in this paper.

The history of water quality modeling has been shaped by a number of quite
separate and almost independent contributions from various different scientific and
engineering disciplines. It is instructive, therefore, to review some of the major individual



4 MB. Beck

trends of the past, since this will help us to define the gaps remaining in the subject
today.

Hydrological sciences. The hydrological sciences have only recently become more
involved with problems of water quality. It is significant that the Intemational Associ
ation of Hydrological Sciences convened its first meeting on water quality in 1978
(IAHS, 1978) and that a subsequent meeting on hydrological forecasting (IAHS, 1980)
attracted only six papers on water quality from a total of more than 70 contributed.
There is, nevertheless, a strong tradition of research in stochastic hydrology. Calibration,
parameter estimation, and uncertainty in rainfall-runoff and streamflow-routing models
have all been studied extensively. However, as will become apparent later, system identi
fication in quantitative hydrological modeling is substantially different from system
identification in water quality modeling.

Systems ecology. Developments in systems ecology display a strong concern with
the stability and structural properties of a model once it has been developed (see, for
example, Adachi and Ikeda, 1978; Goh, 1979; Siljak, 1979). The problems of "uncertain
ty" are now also widely recognized (Argentesi and Olivi, 1976; O'Neill and Gardner,
1979; Reckhow, 1979; Scavia et al., 1981), although research is generally concentrated on
prediction error analyses of models which are once again assumed to have been developed
and calibrated previously. There appears to be a distinct separation of the problems of
calibration and prediction, and a lack of detailed studies in data analysis and the identi
fication of models by reference to in situ field observations. This point of view seems to
be held by others: in 1975 Eberhardt responded to the question "whither systems ecology?"
with the remark that "we should be very careful to avoid letting our computers run too
far ahead of what statistical methods and data tell us about the real world" (Eberhardt,
1977). Ulanowicz (1979) would also appear to be in agreement when he speaks favorably
of "... modeling in an a posteriori fashion, allowing the data to define interactions
[between variables] ".

Sanitary engineering. Unlike both the ecological and the hydrological sciences, sani
tary engineering has until recently been reluctant to adopt the techniques of mathematical
modeling (Andrews, 1977; Andrews and Stenstrom, 1978; Olsson, 1980). This is partly a
function of different objectives - the interest is in new process designs and process con
trol rather than "scientific understanding" - and partly a function of different traditions 
sanitary engineers do not generally present their knowledge and hypotheses in a mathe
matical format. Consequently, while routine operating data from wastewater treatment are
readily available, the majority of studies in time-series analysis have been confined to
"black box" modeling approaches (see also Beck, 1980). This is quite the opposite of the
situation in systems ecology, where models have flourished despite a relative dearth of field
observations.

System identification. This topic is usually associated with control theory, statistics,
and econometrics, and may perhaps be considered an intruder in water quality modeling
(Astrom and Eykhoff, 1971; Eykhoff, 1974). An impressive array of techniques has been
developed for the analysis of relatively conventional, well-posed problems, such as those
encountered in identifying models for aircraft dynamics, chemical unit processes, and
physiological systems (see Isermann, 1980), but water quality model identification
involves problems that are not at all well-posed so that these techniques may not· be
applied in any straightforward way.

This survey suggests that one of the major areas which needs investigation is the
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problem of uncertainty. There are two key issues: first, the problem of uncertainty in
the structure of the mathematical relationships hypothesized for a particular model; and
second, the uncertainty associated with the predictions obtained from models. These two
issues are discussed briefly and qualitatively in a companion paper (Beck, 1981); a more
detailed and quantitative statement of the same arguments is given here.

The questions posed by the issue of uncertainty are clearly questions about the
reliability of models and their forecasts. In particular, this paper is concerned with the
intimate relationship between the two aspects of uncertainty introduced above. In other
words, it emphasizes the importance of the relationship between calibration and predic
tion, a relationship that is largely ignored in systems ecology. It is therefore assumed that,
in addition to providing a concise representation of existing knowledge about a system's
behaVior, mathematical models are intended for forecasting, which in turn implies a
concern with management. If decisions are to be made on the basis of the model's fore
cast, how confident can one be that this forecast is correct, and what is the risk of making
a wrong decision? These have become familiar questions in water quality modeling and
management.

Two subsidiary topics underpin the central theme of uncertainty in calibration and
prediction; they are both related predominantly to problems of calibration (system
identification). First (in Section 3.1), we characterize some limiting properties of the field
data available for calibration of water quality models, compare our results with quantita
tive hydrological system identification, and examine why there has been little progress in
the identification of wastewater treatment process dynamics. This leads, second (in
Sections 3.2 and 3.3), to an extensive discussion of the identification of model structures
using experimental field data. It is then possible to identify the desirable properties and
some probable limitations of algorithms for ill-posed problems in system identification.
It will also become apparent why time-series analysis, calibration, and "curve-fitting" 
perhaps contrary to popular opinion - are concerned with the derivation of models that
are more than simple black-box descriptions.

Overlying the main theme of uncertainty, however, is the question of "large" and
"small" models mentioned briefly above. We shall interpret this as the larger question
of "dominant" and "not-so-dominant" approaches to the subject of modeling in general,
and the whole of Section 3 is therefore a statement of the "not-so-dominant" approach.
However, since we are trying to make a fair assessment of the advantages and limitations
of different approaches to modeling, we should consider both calibration and prediction,
and not calibration alone; Section 4 therefore concentrates on the predictive aspects of
modeling.

First, however, it is necessary to explain what is meant by the "dominant" approach
to water quality modeling, and why there is a need to question it.

2 A DOMINANT APPROACH AND SOME CONCERNS

An obvious barrier in the identification of water quality models has been the lack
of field data suitable for analysis. We suggest that it is partly the vacuum created by this
absence of adequate field data that has led to the predominance of the large simulation
model (broadly speaking, one which contains numerous state variables at many spatial
locations in the system). Large models of this type grew out of the double assumption
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that there are few constraints on numerical complexity and that more detail necessarily
means a better model. The checks and balances provided by readily available data have
not generally seemed to restrain the growth of model complexity. There are, nevertheless,
those who would argue against large models, believing that "small is beautiful" on a
number of grounds: because it is not possible to verify larger models against the available
in situ field data; because the responses generated by large models are not readily intelligi
ble; and because techniques for optimal management and policy design cannot accommo
date large models. Indeed, the discussions at recent workshops would have been much less
lively had it not been for these differences in opinion (see, for example, Russell, 1975;
Vansteenkiste, 1975, 1978).

However, it is unwise to rely entirely on the labels "large" and "small" in the
discussion that follows; the use of the terms "dominant" (conventional) and "not-so
dominant" (unconventional) to describe the two approaches to modeling is to be pre
ferred, although this again is not altogether satisfactory. In the present case, the more
established conventional approach* involves the (conceptual) subdivision of the field
system into smaller, individual components, whose (conceptual) behavior can usually be
approximated by laboratory-scale replicas (for example, chemostat and open-channel
flow experiments). It is assumed that the submodels describing these components can be
verified against the experimentally observed behavior of the replica; and that the model
for the field system can be assembled by linking together the submodels. Such models
tend to be large. But largeness and the inclusion of great detail do not necessarily imply
accuracy and reliability. It seems obvious that accuracy and reliability can only be assessed
by rigorous tests of the model's hypotheses against in situ field observations. It is at this
point that the problems of calibrating large models arise, although they are rarely ade
quately recognized (see also Thomann et aI., 1979) and almost never adequately resolved.
The systematic recognition and resolution of these problems presents major, and possibly
insurmountable, difficulties given current methods of analysis. These difficulties are
fundamental to the discussion of this paper.

The above description merely depicts the archetypal form ofthe dominant approach
to modeling. However, those who follow this approach also subscribe, in effect, to a
school of thought that works principally from what may be called a priori theory. Thus
the model is supported by arguments that allow extrapolations from laboratory systems and
equivalent or similar field systems. At the calibration stage it is assumed that a priori theory
is correct unless demonstrably inadequate, and the difficulty clearly lies in demonstrating
inadequacy. For as long as there is a lack of in situ field data, the need to question the
original extrapolations will remain in doubt. Here, then, lies the chief distinction between
the dominant and unconventional (not-so-dominant) approaches to water quality model
ing. With the unconventional approach the analyst works much more from the in situ
field data. It is assumed that the underlying mechanisms of system behavior can be
identified directly from these data. The model is supported by what is identifiable from
the in situ observations and, if these observations are few, the resulting models would
tend to be small. (It would be a mistake, however, to assume that the field data will
always be few, as we shall see later.) Thus, in the unconventional approach, a priori

* Referred to as "reductionist" by Young (1978,1983).
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theory is considered, at best, as a fertile source of more or less speculative hypotheses.
Moreover, the legitimacy of the extrapolations inherent in the dominant approach would
appear to remain unproven without the directly evaluative properties of this unconven
tional approach.

2.1 Some Concerns about the Dominant Approach

The items below reflect a number of major concerns about the dominant approach
to modeling. They are quoted as points with which to open a discussion, in which inevita
bly there will be differences of opinion, not because of any intention to detract from past
achievements.

Item 1. In the proceedings of a recent seminar on water quality management
Fleming (1979) discusses the topic of assessing water resources problems that link sedi
ment, hydrological, and water quality processes. It is accordingly proposed that each of
these three components should be treated as a deterministic system for which mass and
energy balances in time and space can be calculated. Superficially there is nothing par
ticularly disconcerting about this recommendation, although a nlOre careful examination
of the proposed mathematical model reveals features that are indeed somewhat more
disturbing. The hydrological catchment model is divided among three phases: in each
phase there are three interacting submodels that deal individually with the movement of
sediment, the quantity of flow, and the changes in water quality. Together with a ground
water model, these submodels are used to assess the quantity and quality of water
resources; this assessment interacts with an optimization model, which in turn is linked to
regional, national, and international models. These are then apparently to be subordinated
to sociopolitical-economic models. Notwithstanding that this is presumably intended to
be a linked set of models (and not one single, enormous, economic model that embraces
all the other models), the catchment model has impressive dimensions, for it is not to be
restricted to a small stretch of river. On the contrary, the proposal was made specifically
for a major international river system.

Concern 1. In the discussion referred to above, Fleming states that the computer
era has produced (through modeling techniques) an "acceleration in our understanding
of natural processes". This may be so; but alternatively it may be that the computer era
has merely fostered the growth and popularity of large simulation models with little
accompanying increase in understanding. In addition the only constraint on mathematical
modeling is identified as the "ability of the planner to grasp the potential of the method".
One could argue conversely that such over-enthusiastic attitudes toward modeling, with
their emphasis on determinism, tend to mask the undoubted difficulties of accounting for
uncertainty. Complexity and completeness cannot necessarily be equated with accuracy;
given the limitations of the data available, a "complete" model containing a large number
of parameters is more likely to produce predictions with serious hidden ambiguities than
anything else.

item 2. Figure I appears in a book on ecological modeling from the mid-1970s
(park et a1., 1975). The authors, referring to the diagram, state that their results for
modeling and calibration are "relatively good". There are other "equally good" results
provided.
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FIGURE 1 An example comparison of the model response with the field observations.

Concern 2. The more sceptical reader looking at Figure I might well protest that
this diagram shows nothing more than a rather whimsical fluctuation peppered with a few
dots. Our concern here is that there ought to be a less subjective method of assessing the
performance of models. However, as Lewandowski (I981) points out, while there are
several definitions of model validity, there are very few applicable methods for model
validation. Thus, while such an analytical "vacuum" exists, there can be little more than
a somewhat fruitless exchange of opinions about the "goodness" (or otherwise) of models.

Item 3. In a case study of lake eutrophication management, a relatively complex
microbiological model was developed to describe nutrient transformation processes in the
lake (Leonov, 1980). The model responses were fitted to the data by adjusting the values
of the parameters by trial and error; some of the parameters were assumed to vary with
time in order to improve the calibration results. In particular, the values obtained for one
of the parameters imply that a more or less "regular" behavior pattern prevails for eleven
months of the year but that behavior during the remaining month is highly "irregular".

Concern 3. There are two main causes for concern in this item. First, suppose that a
model contains ten parameters for which values are to be estimated by a trial and error
comparison of the deterministic model responses with the field data. Most modelers
would admit to having preconceived notions about how a system should behave, and
during the fitting of the model to the data will probably have a preference for adjusting
the values of perhaps three or four of the ten parameters. Thus preconceived notions may
dictate the outcome of the calibration - clearly excluding any serious questioning of
prior assumptions and extrapolations - and preconceived notions are not always correct.
The second cause for concern is that the results obtained from the calibration might be
accepted without, in this case, any rigorous argument or evidence to support a hypothesis
of highly irregular behavior. In fact, far from being dismissed out of hand, the peculi·
arities of the calibration results might suggest how the structure of the model can be
improved.

Our main concerns about the dominant approach to water quality modeling may
therefore be summarized as follows:
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1. Attitudes toward water quality modeling have been largely characterized by a
strong sense that the behavior of the systems being studied is deterministic. This has
obscured the fact that the values of model parameters are rarely known accurately,
and that the larger the model, the less likely it is that a unique set of parameter
values can be estimated using a limited number of field data. Such (unjustified)
confidence in a priori theory engenders both a reluctance to put aside "classical"
assumptions and a readiness to reject the unconventional without due consideration.

2. There is no universal model for solving all manner of water pollution problems.
However, once a water quality model has been constructed the costs of develop
ment (if large) may make it necessary to present the model as "universal" in order
to justify these costs. If a government agency confers its "seal of approval" on a
model, this lends a sense of authority to the use of that model and at the same
time may undermine confidence in an alternative model. "Complexity" and "com
pleteness" can be misrepresented (and misunderstood) as "truth" and "accuracy".
There is a temptation to believe that a large, comprehensive model must be correct,
for how can it possibly fail to be so if every detail of conceivable relevance has
been included?

3. Confidence in a model is perhaps unavoidably subjective. Yet surely one should
doubt any model that requires the use of an absurd hypothesis to make the model
responses fit the data. This would merely be a sterile calibration exercise in which
curve-fitting is an end in itself. It would ignore th~ obvious inadequacy of the
model, excluding the closer examination that could actually be a source of new
ideas, and would suggest that calibration is something of a backwater compared
with the mainstream of model development.

These, then, are the concerns that have provoked this discussion. It would be naive to
imagine, however, that these issues can be resolved as easily as they have been raised - a
precise resolution of the issues requires first a precise definition of the issues, and our
concerns are themselves borne of a vague sense that "all is not well with water quality
modeling".

3 FIELD DATA, UNCERTAINTY, AND SYSTEM IDENTIFICATION

Most analysts and decision-makers would wish to be reassured that the patterns
of behavior simulated by a model do in fact resemble observed patterns of behavior.
There is thus a need for system identification, or more specifically, for model calibration,
an exercise typically associated with curve-fitting and parameter estimation. However, the
word "calibration" is misleading. It suggests an instrument (here, the model) whose
design has been completed and whose structure is fixed; it is only necessary to make a
few minor adjustments to the parameter values. This is not what is meant by "calibration"
in the discussion of water quality-ecological modeling that follows. There are two main
reasons for this: the nature of water quality field data and the nature of contemporary
a priori theory. This section, therefore, begins with a discussion of these two factors,
which form the basis for a thorough exploration of the key problem of model structure
identification. An important objective of this exploration is to map the "topography" of
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the problem by examining it from several different perspectives; we then consider briefly
the philosophical foundations upon which we hope to construct a solution. We must also
dispel any expectation that some "universal" approach to modeling will be presented here.
To do this, it is necessary to realize that model development may take place under various
conditions: with few or no data; with some adequate data; or with too many data (a
situation which could become increasingly common in the future). This discussion will
consider only the second of these categories; however, a universal approach to modeling
should of course be able to deal with all three.

3.1 Field Data and A Priori Theory

At present, field data from water quality systems are generally scarce. However,
when data are available they are subject to high levels of error and uncertainty. Halfon
(1979a), for instance, shows just how many sources of error can affect the data obtained
from large lakes. These errors, however, are not the only problems encountered in the
calibration of water quality models. It is not simply a matter of large errors, too Iowa
sampling frequency, or too short a record of time-series data.

Young (I978) suggests that the inability to perform planned experiments (see
below) is a distinctive feature of the modeling of badly defined systems: a category which
clearly includes water quality-ecological systems. Successful calibration is hindered by
the conditions under which field observations are obtained. Planned experiments may be
defined as experiments in which the responses of some of the system variables (outputs or
effects) are recorded and are assumed to be unambiguously related to changes in other
(input, causative) variables. In such planned experiments all variables (except the input
deliberately manipulated and any response variables thereby disturbed) are maintained at
constant values. In other words, the "environment" of the system is held constant, the
causative variables can be manipulated to conform with a desired pattern of change, and
the experiment is planned such that unambiguous relationships between the variables can
be determined. Planned experiments of this kind are virtually impossible for water
quality-ecological systems; there are merely successively less good approaches to this ideal.

3.1.1 Active, Natural, and Passive Experiments
A considerable amount of work in system identification has been devoted to the

problem of experimental design (Astrom and Eykhoff, 1971; Soderstrom et a!., 1974;
Gustavsson, 1975). Two interpretations of this problem are particularly relevant to our
discussion since they demonstrate a number of desirable features of experimental design
that are rarely possible in the collection of water quality data. The frequency-response
interpretation has immediate relevance to this discussion; the sensitivity-analysis inter
pretation is of more general interest, but is significant here in that it links together some
of the arguments of Sections 3 and 4.

Let us begin with the simplest possib!~ situation, ilJustrated in Figure 2. In this case
the purpose of the model is to characterize the dynamic relationship between two measured
variables: u(t), the input, and yet), the output. The objective is therefore to design an
experiment which has an appropriate set of variations of u(t) with time t. Assuming a
frequency-response interpretation of system behavior, this objective can be made more
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FIGURE 2 Definition of a simple system for the interpretation of data from field experiments.

specific: for example, it is desirable to design u(t) such that its frequency spectrum is
"matched" with the expected frequency-response characteristics of the system. (This
"matching" does not, of course, take place with knowledge of the actual frequency
response characteristics of the system, since this is what we are trying to determine.)
At the same time it is desirable to design u(t) such that in the subsequent analysis it
will be possible to discriminate against the effects of high-frequency random measure
ment errors, i.e., some of the effects of the "environment" shown in Figure 2.

Given these limited, qualitative notions of experimental design, we shall now
examine the problem of identifying the dispersion mechanisms affecting the distribution
of a dissolved material in a body of water. This is the classical problem of water quality
modeling, and continues to attract much attention (for example, Somly6dy, 1977;
The, 1978; Kahlig, 1979; White et aI., 1980; Jakeman and Young, 1980; Young, 1983;
van Straten and Golbach, 1982). The tracer experiments employed for subsequent model
calibration, which we shall define as active experiments, are the closest field approxi
mations to the planned experiments of laboratory science. They possess three of the most
desirable properties of experiments: (i) significant, in this case impulse-like, input pertur
bation of the system - this is intuitively desirable because the observed effects of dis
persion are most pronounced for a high-frequency input variation; (ii) relative lack of
ambiguity in the assumed relationship between input and output; (iii) restriction of the
experimental measurements to the quantities assumed to vary.

The problem of model calibration is thus as well-posed as it can be. However, it will
swiftly degenerate should any of these three properties not hold, for example, if: (i) the
frequency components of the input are not significant (except for the effects of measure
ment error) at the higher frequencies where the response of the system is theoretically
most sensitive to the dispersion coefficient; (ii) the tracer or dissolved material is not
completely conserved, i.e., there is some interaction with the environment of the experi
ment; (iii) other quantities, such as stream discharge, also vary with time, i.e., the
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environment of the experiment is not constant. Ample evidence of the limitations intro
duced by these compromises. especially (i) and (iii), can be found in recent analyses of
dispersion mechanisms in the River Cam (Lewandowska, 198 I) and the lower reaches of
the River Rhine (van Straten and Golbach, 1982).

It is instructive to consider the Rhine study (van Straten and Golbach, 1982) in
somewhat greater detail, partly because the problems encountered are typical of system
identification in this field, and also because it provides a natural extension of the dis
cussion to the topic of sensitivity analysis. Under the assumption that the classical
advection-dispersion model would adequately describe the observed variations in the
field data. van Straten and Golbach found that the loss function for calibration was much
more sensitive to the value of the stream velocity than to the value of the dispersion
coefficient. At the "best" value for the estimated stream velocity, both a ten-fold decrease
and a two-fold increase in the value of the dispersion coefficient produced only a marginal
increase (12% and 24%, respectively) in the value of the loss function. A 7% change in the
estimate of the stream velocity, however, gave a 47% increase in the value of the loss
function. We can therefore conclude that the gradient of the loss function surface with
respect to the dispersion coefficient is relatively small close to the minimum of the loss
function. In other words. for these particular experimental conditions, the output response
of the model is not sensitive to the value of the dispersion coefficient, which is therefore
probably not uniquely identifiable. A common consequence of this lack of sensitivity
(or identifiability) is that the estimation error covariances of the associated parameters
will be large, which in tum has important implications for the model predictions (see
Section 4). In more general tenns, however, and for more complex multiple-input/
multiple-output systems, it is possible to minimize subsequent difficulties of this kind.
A prior analysis of the assumed model structure may indicate a combination of input and
output measurements that will allow the unique estimation of all the model parameters
(see, for example, Cobelli et al., 1979). However, this merely confinns once again that a
well-designed experiment must be based upon a good a priori model of system behavior.

Not only is the availability of a good a priori model unlikely, as we suggested ir,
Section 2, but the scope for implementing active experiments is virtually confined to the
classical problem of identifying dispersion mechanisms. However, this does not imply
that we cannot observe natural experiments in complex natural systems. For example,
the hydrological sciences place considerable emphasis on the identification of catchment
characteristics through analysis of the response of the stream discharge to a storm (IAHS,
1980). In the light of the preceding discussion the importance of the stonn is obvious:
it represents a significant input disturbance of the system, and the output response can
be relatively unambiguously related to the input disturbance. There are, however, signifi
cant differences between active experiments and natural (hydrological) experiments.
The environment of the hydrological system is not entirely constant (the temperature will
vary, for instance, thus affecting the evapotranspiration rate) and it is not possible to
manipulate the input disturbance at will. This may lead to problems similar to those
encountered in the Rhine dispersion study. Nevertheless, the subsequent calibration
problem is likely to be as well-posed as could be expected in water quality modeling.
If the assumption of a simple two-variable (input/output) relationship is not sufficient
to characterize the observed behavior of the system, the comparative wealth of a priori
theory may be used to restructure the model such that a more accurate representation is
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obtained (as in Whitehead et aI., 1979). Thus, the field data available from natural experi
ments can be summarized by the stylization "significant input perturbation: significant
output perturbation" (Figure 3).

Input Time-Series

Time

Output Time-Series

Time

FIGURE 3 Stylized representation of the input/output data available for, e.g., rainfall/runoff model
identification (natural experiments).

Natural experiments of the kind cescribed above are quite rare in water quality
ecological systems. Consider, as a CO'1trast to the natural hydrological experiment out
lined earlier, the "extreme" output response which appears as a phytoplankton bloom
in a lake. The bloom occurs because a specific but apparently commonplace sequence of
environmental (input) conditions forces the system into a region of the state space in
which a nonlinear mode of behavior becomes dominant. Unlike the example of the
hydrological system, the response of the lake is probably not unambiguously related to
an extreme input disturbance. Instead, it may be a consequence both of subtle changes
in the system's environment and of a very specific combination of circumstances within
the lake at the given point in time (or space). Such a situation has useful parallels with
the conditions that have prompted the application of catastrophe theory to problems
of water quality modeling (see, for example, Kempf and van Straten, 1980). Two points
have special relevance. First, the applicability of elementary catastrophe theory depends
upon the assumption that variations in the inputs are relatively slow (lower frequency)
with respect to the output response variations (higher frequency). Second, the matching
of this theory to observed behavior implies a quite specific, critically important non
linear structure for the dynamic model of the system.

For a number of reasons, therefore, field data obtained from the predominantly
passive experiments with water quality-ecological systems do not possess the properties
required for system identification. Pictorially the data for such situations can be repre
sented as in Figure 4 and hence stylized as "apparently insignificant input perturbation:
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FIGURE 4 Stylized representation of the input/output data available for, e.g., lake water quality
model identification (passive experiments).

significant output perturbation". If a specific model structure is needed in order to
describe observed behavior, which the parallel with catastrophe theory would suggest,
the probability that a priori hypotheses clearly embody this structure is not great, as we
shall discuss in Section 3.1. 2.

Finally we consider an important variation on the above theme which is in some
sense the converse of the conditions depicted in Figure 4. This last class of condi tions is
encountered in the identification of models for microbiological wastewater treatment
processes, such as, for example, an activated sludge unit (Beck et aI., 1978). Figure 5
summarizes the stylized form of this category of field data, which we might define as
"apparently significant input perturbation: insignificant output perturbation". The
system, observed in this way, appears to possess remarkable stability. Typically the
mean levels of the input disturbances are much higher than corresponding mean output
levels (for biochemical oxygen demand (BOD), and suspended solids, for example), and

Input Time·Series

Time

Output Time-Series

Time

FIGURE 5 Stylized representation of the input/output data available for, e.g., wastewater treatment
plant model identification (passive experiments).
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some of the large-amplitude, higher-frequency variations of the inputs are attributable to
random measurement error. It is not surprising, therefore, that it is difficult to relate
output to input, even in a statistical sense, which in turn accounts for the tendency for
strongly autoregressive models to be identified from such data, Yet in these systems
conditions equivalent to those of Figure 4 do occur, and they occur for very much the
same reasons as discussed above, Longer-term variations in the input disturbances can,
in combination with a specific set of operating conditions, induce subtle but important
changes in the microbiological state of the activated sludge, While these complex changes
themselves occur slowly, they may eventually lead to what are observed as relatively
rapid changes in the system's output responses (Tong et aI., 1980),

3.1.2 A Priori Theory and Ambiguity
The problems of error-corrupted data and the lack of planned, active, or natural

experiments (in the sense that we have used these terms) are technical, rather than
fundamental problems of model calibration, Admittedly, they lead to severe difficulties
in the application of methods for system identification, but they are purely technical in
the sense that if the analyst knew, a priori, how the system behaved, then it would still
be comparatively easy to distinguish the estimated patterns of behavior in the observed
field data, The basic problem of calibrating water quality-ecological models is the limited
degree of a priori knowledge about expected system behavior. In spite of very many
laboratory-scale experiments and a number of major field studies, our knowledge of the
relationship between the mineral, organic, and microbiological components of water
quality-ecological systems is actually quite incomplete, This means that model calibration
should concentrate on resolving the problem of model structure identification, Indeed,
the question of accurate parameter estimation will only be touched on briefly in the
following discussion,

A somewhat sophisticated, but particularly apt example of uncertainty in the
structure of model relationships is given in Biennan's study of Saginaw Bay, Lake Huron
(Bierman et aI., 1980), Bierman noted that the output response of his model was especially
sensitive to the choice of hypothesis for the growth-rate of phytoplankton, The model
had originally been calibrated against field data from Saginaw Bay with phytoplankton
growth expressed according to the threshold hypothesis - namely, that growth-rate is
governed only by that single factor which is determined to be rate-limiting - and there
was additional evidence from laboratory experiments to support the chosen hypothesis.
But Bierman subsequently admits that an alternative hypothesis - the multiplicative
growth hypothesis, where all factors contribute to an overall rate of growth - could
probably also have been calibrated against the Saginaw Bay data. Calibration of this
differently structured model with the alternative growth-rate expression would almost
certainly have resulted in different estimates for all the other parameter values in the
model. The significance of this example is, of course, that it demonstrates how sufficient
uncertainty exists in our a priori theories of system behavior to allow considerable
speculation about the precise structure of an appropriate mathematical model. In short.
there are am biguities in the a priori theory of behavior patterns in water quality-ecological
systems.

There is fairly widespread recognition of the effects of such ambiguities on the
process of model calibration. For instance, Halfon (l979b) presents results for a model of
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Lake Ontario where an order-of-magnitude change in many of the estimated parameter
values gives rise to an increase of merely 6% over the minimum of the loss function. There
are many combinations of the parameter values that fit the data "equally well". It might
be that the occurrence of this flat loss-function surface is dominated by errors in the field
observations. If this is not the case, however, one should clearly question the appropriate
ness of the model structure, as does Halfon. Yet Halfon's questioning, although correctly
aimed (according to the concerns outlined in Section 2) leads to answers that err on the
side of accepting convention. He concludes, in effect, that all the parameters are more or
less equally significant (or equally insignifican t) in determining the correspondence
between model and observations. There is thus no radical rethinking of the model struc
ture; it is considered to be sufficiently aggregated and to have no redundant parameters,
i.e., no surplus content.

The tendency, as stated in Section 1, is to accept the legitimacy of extrapolations
from laboratory or similar field situations. The analyst who justifies surplus model
content on the basis of these extrapolations must support one of two possible arguments:
either the surplus content of the model has originally been unambiguously identified by
a prior calibration for another field system, which is unlikely in the present circumstances,
or his justification is founded upon a chain of similar justifications starting from an
extrapolation from laboratory to field conditions. An argument such as the latter covers
the possibility of a further implicit, but important extrapolation. Suppose that, in order
to overcome the ambiguities of unconstrained estimation of many parameters, bounds
are introduced to define "acceptable" ranges of values for the estimates. (A logical
extension of this is to restrict some of the a priori "better known" parameters to point
estimates, which are then assumed to be known without error.) But from what source of
absolute authority are these bounds themselves derived? For example, if the bounds on
the growth-rate constant of a species are drawn from laboratory-determined values, it
should not be forgotten that such values are only defined relative to the model (kinetic
expression) that was assumed and calibrated for the observed nutrient and phytoplankton
concentrations in the laboratory experiment.

This is not, however, to dismiss entirely the accumulation of experience but rather
to emphasize that too much confidence is frequently attached to the validity and relevance
of a priori theory.

3.2 Model Structure Identification

Given the preceding discussion we see that calibration of models for water quality
ecological systems is unlikely to be a simple and straightforward matter of making minor
adjustments to a well-designed "instrument". Instead, even before asking the question
"Can I estimate the model parameters accurately?", the analyst must first ask himself
whether he knows how the variables of the system are related to each other. In particular.
one must ask whether information about these relationships can be identified from the
in situ field data. Most exercises in model calibration have focused solely on the matter of
parameter estimation; hence little attention has been paid to the arguably more important
prior problem of model structure identification (Beck, 1979a). As a simple example, it
may be a fine idea to estimate the slope and intercept ofa straight line drawn through a set
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of data points (i.e., parameter estimation), if it has already been established that a straight
line, and not a curve. will give the best fit to those data (i.e., model structure identifi
cation). Hence, model structure identification logically precedes parameter estimation.
Undoubtedly it is a complex problem whose complete description is a function of many
elements, requiring examination of the problem from several different perspectives.

Perspective 1. In order to describe the problem of model structure identification
more precisely, let us begin by introducing the following general model of the system's
dynamics

x(t) = C{X(t), u(t),a(t)} + E; (t)

y(tk) = h {X(tk),a(tk)} + TJ(tk)

where

x n-dimensional vector of state variables,
u - m-dimensional vector of measured input disturbances,
y p-dimensional vector of (discretely sampled) measured output variables,
a l-dimensional vector of model parameters,
E; n-dimensional vector of unmeasured (unknown) input disturbances,
TJ p-dimensional vector of output measurement errors,

(I a)

(Ib)

and Cand h are nonlinear, vector-valued functions; t is the independent variable of time,
t k is the kth discrete sampling instant in time, and x denotes the derivative of x with
respect to t. From Section 3.1.1 it is apparent that system identification is generally
concerned with the analysis of that which is measurable - the inputs u and the outputs
Y. i.e., the "external" description of the system (see also Figure 2) - in order to infer the
characteristics of C, h, x, anda, i.e., the "internal" description of system behavior. This
process of inference may require assumptions about the "environment" of the system,
E; and TJ, or it may conversely be directed to drawing conclusions about the properties of
E; and TJ themselves.

Perspective 2. In addition to the fonnalities of eqn. (1), let us introduce a com
plementary conceptual representation of the system, as shown in Figure 6. First note the
distinction between the microscopic (block 1 in Figure 6) and macroscopic features
(block 2) of the system's dynamics and between the easily and not easily measured
state variables, X m and xu, respectively. Xu is intuitively associated With the (literally)
microscopic dynamic features of the system's behavior patterns because these detailed
microbiological characteristics are not directly observable. It is particularly difficult,
for example, to monitor mechanisms of nutrient uptake and release by micro-organisms
(a microscopic feature), but it may be supposed that such mechanisms have considerable
significance for the observed variations in chlorophyll-a concentrations (a macroscopic
feature). The process of inference mentioned in Perspective 1 is thus especially difficult.
If the microscopic features of block 1 in Figure 6 are of central interest in determining
and understanding system behavior, they must be inferred from identification of their
interaction with macroscopic state variables observed in the presence of a highly uncertain
"environment" (block 3) characterized by high levels of measurement error and random
input disturbances.
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FIGURE 6 Conceptual representation of the system for perspective 2 on the problem of model
structure identification.

Second, the conceptual distinctions between blocks I, 2, and 3 can be loosely
associated with three types of inadequacy in a given model structure. This requires
further careful consideration. Suppose that the analyst attempts to identify a model
of the system that is consistent with the "observable state" of the system; this implies
a natural choice of state variables (xm ) directly related to the output observations,
which in turn implies a strong correspondence between block 2 and "that part of the
system being modeled". Thus, in the event of a demonstrable discrepancy between
"that part of the system being modeled" and the observed behavior of the "system",
one or more of the following underlying causes may be responsible:

(a) Interaction between Xu and X m has not been accounted for (i.e., relationships
between block 1 and block 2);

(b) The relationships among the variables of block 2 are incorrectly specified (i.e.,
relationships within block 2);

(c) There is significantly nonrandom interaction between X m and the assumed "envi
ronment" of the system (i.e., relationships between block 2 and block 3).
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These are important classes of causes and they will be especially useful in constructing
arguments for resolving the problem of model structure identification.

Perspective 3. At this point it is appropriate to offer a working definition of model
structure identification:

Model structure identification is concerned with establishing unambiguously and by
reference to the in situ field data how the measured system input disturbances, u, are
related to the state variables, x, and how the state variables are in turn related both to
each other and to the measured outputs,y.

It is thus an oversimplification to suggest that this problem is analogous to the problem
of choosing the order of a polynomial that "best" fits the set of data. Solving the latter
problem can be more specifically described as model order estimation, which, while it is
an important component of the overall solution, nevertheless leaves some of the most
challenging aspects of model structure identification unresolved. Since this may appear
to be a subtle difference of definitions, it is important to make a further clarifying
comment. Let us suppose, for instance, that an analysis of the input/output time-series
leads to a model in which input and output are related according to the form shown in

. . . .. . . . . . . .............
............................. .

Input

ult) i_
.. :-:-:-:-:.;-:.;.;.;-:.:< .-: .

...•........ ···..If

Output

•y(t)

Input u(t)

Time t

Output y (t)

FIGURE 7 Identified input/output relationship for the observed system behavior; from the point of
view of the model the system is considered to be a black box, i.e., nothing is assumed to be known
about the internal mechanisms that govern the relationship between input and output.
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Figure 7. Model order estimation (and parameter estimation) would constitute such an
analysis; but only if the analysis were directed toward answering questions about why
and by what internal mechanisms the input and outpu t are so related would this consti
tute model structure identification as defined here. There is a large body of literature on
methods of model order estimation (for example, Box and Jenkins, 1970; Astrom and
Eykhoff, 1971; Akaike, 1974; Unbehauen and Gohring, 1974; van den Boom and van den
Enden, 1974; Chan et aI., 1974; Soderstrom, 1977; Wellstead, 1976, 1978; Young et aI.,
1980), although it is not certain how many of these methods would be applicable under the
conditions discussed in Section 3.1 (see also Maciejowski, 1979). Most of this literature is
concerned with the analysis of problems in which model structure identification is either
not relevant (because a priori theory is not fraught with ambiguities and contradictions)
or not important (because just the abstract mathematical properties of the model are
sufficient for the solution of the problem).

Perspective 4. Our working definition of model structure identification can be rep
resented as in Figure 8 and hence specified in more detail. It can now be seen that:

Given the input/output data as the fixed basis for analysis, it is necessary to detennine
an appropriate number of state variables for the model (the "nodes" of the system
description in Figure 8) and appropriate expressions for the relationships between
U, x, a, and y, that is, f and h in eqn. (I).

A simple example will serve to illustrate this point. Suppose we are investigating the
removal of a substrate in a closed system, and our first hypothesis is a linear model

(2)

in which x I, the concentration of the substrate, is the state variable, and Q 1 is a parameter
representing a first-order kinetic decay-rate constant. For a second hypothesis about the

SYSTEM

Outputs (y)

Fixed for
analysisi

Parameters (01)

Fixed for
analysis

Inputs (u)

Plausible hypotheses
(variable)

FlGURE 8 Pictorial defmition of the problem of model structure identification.
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observed system behavior we might propose a Monod-type kinetic expression and the
presence of a mediating micro-organism in the reaction

Model II: Xl (t)
(3)

where the additional state variable Xz is the micro-organism concentration anc we have a
vector [O'~, 0';, 0';, O'~ I of associated model parameters. Now recall that there are pre
sumably some noise-corrupted measurements available from this experiment, but that we
do not know which, if either, of Models I and II best describes the observed behavior.
Model structure identification is thus concerned with determining whether [XI] or
[x I, xz] is the most suitable choice of state vector and with identifying an appropriate
form for the expression contained in the square brackets [.] of eqns. (2) or (3). If both
models are thought a priori to be good approximations of observed behavior, this might
also be called a problem of model discrimination (Shastry et aI., 1973; Maciejowski,
1979). But if neither hypothesis is adequate and a more complex pattern of behavior is
suggested by the analysis of the data, then the generation of alternative, more appropriate
hypotheses is a very difficult problem. This kind of problem will be of central concern
in the following.

Perspective 5. The simple example discussed with respect to eqns. (2) and (3) can
be generalized by rearranging eqn. (Ia) as follows (Beck, 1979a):

X(t) ='1' {x(t), u(t), a l (t)} + ~ {x(t), u(t),a z (t)} + ~ (t) (4)

Here .'T {-} includes expressions representing relationships from a priori theory that are
considered to be relatively well known, for example, transport and dispersion properties;
~ {.} accounts for all other phenomena whose significance in the observed patterns of
behavior is a matter of speculation and for which no well-established mathematical
relationships are available a priori. a I and a z are, respectively, the vectors of model
parameters associated with .'1' and 7/ . The distinction drawn between .'1' and ~ is, of
course, rather arbitrary, since there tends to be a complete spectrum of degrees of con
fidence in the theories incorporated in a model. Nevertheless, the ideal objective during
the process of model structure identification would be to eliminate W from eqn. (4) by
modification and/or expansion of the structure of.'T.

How precisely one could approach or attain this ideal objective, by a process of
both generating and assessing plausible hypotheses, is again a basic concern of this study.

Perspective 6. At this point we introduce one further conceptual representation of
the problem of model structure identification. Suppose the patterns of system behavior
exhibited in the (historical) field data can be represented by the set A in the set P of all
possible patterns of behavior - see Figure 9. This pictorial representation has its origins
in the work of Mankin et al. (1977); qualitatively, it is a powerful medium in which to
express the following arguments. For reasons that will become apparent later, care must
be taken to qualify P as being the set of all behavior patterns that one would expect to
observe in "reality". Our first hypothesis for a model (say Md might be rather modest
in size, allowing only a somewhat restricted type of behavior, although a reasonable
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FIGURE 9 Perspective 6 on model structure identification: P is the set of all possible behavior
patterns; A is the set of historically observed patterns of behavior; M, is the set of behavior patterns
simulated by the first model hypothesis; M2 and M, are alternative models hypothesized after assess
ing the suitability of M"

proportion of the set of behavior patterns simulated by the model (M 1 in Figure 1)
is contained in the set A. Again. one must be careful about misinterpretation. Tenns
such as "small" model or "limited variety" of behavior patterns should not be equated
too literally with a small number of variables, equations, or relationships. Moreover,
note that, strictly speaking, A and M1 represent observation and simulation under exactly
equivalent conditions; such equivalence may not apply if M1 contains relationships
based, in effect, upon extrapolations from laboratory conditions. An example of a
model typifying M1 might be the Streeter-Phelps model of stream dissolved oxygen
(DO)-biochemical oxygen demand (BOD) interaction. This model is a good starting
point for analysis, although we are aware that its ability to describe system behavior
is limited. Thus, given Figure 9 as a pictorial representation of the problem, what does
the analyst do? His first model may not be bad, for it has captured part of the essence
of reality (A and M1 have an intersection), but it is far from being good - it does not
simulate half of what was obselVed in practice. The crucial issue of model structure
identification is this: we require a method that provides a useful feedback of diagnostic
infonnation from analysis of the first hypothesis (M 1) so that a second hypothesis (M2 )

can be cast more fully within the set of obselVed patterns (A). It would be undesirable
at an early stage of the analysis to suggest a revised model (M 3 , say), probably both
greater in size and with relationships different from those of M1 , that merely simulates
more apparently spurious behavior.
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3.2.1 An Approach Based on Recursive Estimation
At this point let us pause to assimilate the salient points of the foregoing discussion.

The "problem" is model structure identification. Equation (I), the working definition,
Figure 6, Figure 8, eqn. (4), and Figure 9, are different, complementary perspectives
which, when assembled together, provide a broad description of this problem; some,
especially eqn. (4), will subsequently become important in the development of solutions.
Indeed, what is really required as a means of solution is an "intelligent" method of model
structure identification - intelligent because it should indicate which parts of the struc
ture are inadequate and how they might be corrected. Using the representation in Figure
9, such a method should maximize the probability of moving from M[ to M2 and mini
mize the probability of moving from M[ to M3 .

One promising approach is to restate the problem of model structure identification in
terms of the problem of parameter estimation (Young, 1974, 1978; Beck and Young,
1976; Beck, 1979a; Whitehead, 1979); this is assessed as "promising" simply because it
generates a relative wealth of the kind of diagnostic information mentioned above,
although we would not claim that this yields more than partial solutions to the problem.
In fact, the very wealth of diagnostic information itself leads to other difficulties that will
be discussed below. In order to develop the approach, however, it is first necessary to
introduce some basic concepts underlying recursive estimation algorithms. We shall then
present an illustrative case study (in Section 3.2.2), where it is reasonably straightforward
to solve the problem of model structure identification, and proceed finally (in Section
3.3) to assess the prospects for further progress in this field.

For our purposes an important distinction can be made between parameter estimation
algorithms that are off-line (or block data processing schemes) and algorithms that are
on-line, or recursive. Figure 10 shows the essential differences between the two types of
algorithm. With an off-line procedure (as in Figure lOa) the parameter estimates are
assumed to be constant and equal to their a priori values, aO

, while the complete block of
time-series field data - from time toto tN of the experimental period - is processed by
the algorithm. Frequently all the data are processed together in one computation. A loss
function, generally based on the errors between observed and model reponses, is calculated
at the end of each iteration; the algorithm then attempts to minimize the loss function
over the parameter space and computes an updated set of parameter values, ai, for
substitution into the next iteration through the data (from to to tN)' A recursive algorithm,
in contrast, computes revised parameter estimates, a°(tk), at each sampling instant tk of
the field data (see Figure lOb); the minimization of the error loss function is implicitly,
rather than explicitly, included in the algorithm. At the end of the block of data the
estimates aO(tN) are substituted for the a priori parameter values a[ (to) of the next
iteration through the data. Subsequent iterations through the set of field data are
required since any initially incorrect estimates, aO(to), contribute larger errors to the
calibration loss function than the errors contributed by initially correct estimates. (By
implication, therefore, the minimum of the loss function is unlikely to have been located
after the first iteration.) The ability of a recursive algorithm to estimate time-varying
parameter values, upon which certain very useful interpretations will be placed shortly.
is its greatest asset here.

In the case of a recursive estimator. therefore, the estimate eX of a at time t k is given
by an algorithm of the general form
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FIGURE 10 Methods of parameter estimation: (a) off-line; (b) recursive. The notation tk denotes
the kth discrete sampling instant in a time-series with N samples; the superscript i in af denotes the
estimate at the beginning of the (i + l)th iteration through the data.

(5)

where the second term on the right-hand side is a correction term based on the error
between observationsy(tk) and an estimate of those output reponses,y(tk Itk-l), obtained
from the model using estimated values for the parameters from the previous sampling
instant t k - 1 . G(tk ) is a weighting matrix whose elements may be thought of as being
dependent upon the levels of uncertainty (or error) specified for the model (as an approxi
mation of "reality"), in the unmeasured input disturbances (~), and in the output response
observations (TJ). For the time being our arguments will center upon the effects of the
errors (e) in eqn. (5) on the performance of a recursive estimator, where

(6)

Later, in Section 3.3.2, the discussion will return to a more serious consideration of the
role of the matrix G(tk ) in solving the problem of model structure identification.

Perspective 7. Armed with a basic understanding of recursive parameter estimation
algorithms let us now resume our discussion of the original problem. Imagine that the
state variables x in a model may be represented conceptually by the nodes of Figure 11 b
(this is similar to the concept of Figure 8) and that the parameters a are visualized as the
"elastic" connections between the state variables. If we have assumed that all the parame
ters have values that are constant with time and yet a recursive algorithm yields an
estimate of one or more of the parameters that is significantly time-varying, we may
question the correctness of the model structure chosen. We can argue this point as follows.



Uncertainty, system identification, and water quality prediction 25

Period 1 Period 2 Period 3

(a)

• •

•
• •

• •
• •

• •
• •

(b) x, 0, x
2 x, ~O,~ -r x2 x, 0, X

2

°4 °2 °4 °2 °2

x4 °3 x3 x4 °3
x3 x4 x3

(c)

Recursive parameter 0,
estimates

Time (t)

FIGURE 11 An illustrative example showing the concept of using a recursive parameter estimator in
the context of model structure identification: (a) hypothetical model response and observations
(dots); (b) conceptual picture of model structure; (c) recursive parameter estimates.

The general tendency of an estimation procedure is to provide estimates x of the state
vector, or some function thereof, i.e., y, that track the observations y. Hence, if any
persistent structural discrepancy is detected between the model and "reality" (in other
words, the errors E exhibit a significantly nonrandom pattern), this will be revealed in
terms of significant adaptation ofthe estimated parameter values. Clearly, direct adaptation
of the model structure cannot occur, because the relationships between u, x, and y must
be specified in a fixed manner for the purposes of implementation. Such variability of the
parameter estimates with time can, of course, occur for several reasons; for instance, the
parameter may be truly time-varying in accordance with a seasonal fluctuation. However,
while this latter possibility is important, let us assume that it is not relevant to the illus
trative example of Figure 11, which we shall now describe in more detail.
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We start with Period I of Figure Ila. The model responses (Y) and output obser
vations (y) are essentially in agreement over this period and there is no significant
adaptation of the parameter estimates (according to Figure lIe). At the beginning of
Period 2, however, there is a persistent discrepancy between'y andy. It might be supposed,
for example, that the underlying cause of the discrepancy is an inadequacy in the behavior
simulated for XI and X2, that 0:1 is sensitive to this discrepancy (Figure II b), and that
(persistent) adaptation of the estimate 0: 1 (Figure lIe) partly compensates for the error
between y and y. In Period 3 there is again disagreement between the observations and
model responses. which leads to adaptation of the estimate 0:2 ,

Perspective 8: A View of the Philosophical Foundations. The example of Figure II
is clearly an idealized view of how a recursive estimation algorithm should be employed
for model structure identification. Nevertheless, cast in this particular fashion such an
approach has intuitively appealing interpretations. First, and by analogy with the analysis
of physical structures, our aim is to expose inadequacy in terms of the "plastic defor
mation" (Figure lIe) of the model structure. Second, and of deeper significance, testing
the model structure to the point of failure (the failure of one or more hypotheses) can
be said to be consistent with Popper's view of the scientific method (Popper, 1959).
An introductory text on Popper's work begins (in 1973) with the assertion that " ...
Popper is not, as yet anyway. a household name among the educated ..." (Magee. 1973).
Judging by some of the recent literature (Holling, 1978; Young, 1978; Maciejowski,
1979, 1980), this assertion may no longer be true, at least in the present field of interest.

Especially pertinent is Holling's remark that (in discussing "model invalidation and
belief') " ... the model is [to be] subjected to a range oftests and comparisons designed
to reveal where it fails." This remark, with emphasis on the words "range" and "designed
to reveal", wil1 be our guiding principle for solving the problem of model structure
identification. But to have revealed that the model structure is inadequate is merely a
part of the solution, and actually a relatively easy part. Extending the example of Figure
II by one further step, let us suppose that the first (model) hypothesis has been identified
as failing, as shown in Figure 12a. Now assume that a second hypothesis can be generated
(in some way) and that it has the structure of Figure 12b with an additional state variable
(xs) and two new parameters (0:5, 0:6). It may well be that calibration of the second
model against the field data yields effectively invariant parameter estimates and hence
that the analyst can accept the adequacy of this model structure as a conditionally good
working hypothesis. These two steps of Figure 12 are consistent with the procedure of
model structure identification outlined in Figure 9. The problem of how to proceed from
one hypothesis to a subsequent hypothesis, however, has by no means been solved; nor
can it be solved, as will become apparent later, as a matter of mere technique.

3.2.2 An Illustrative Case Study
A good example of how some of the foregoing ideas apply in practice is a study of

the River Cam in eastern England (Beck. I 978a). In fact the development of a conceptual
framework for model structure identification has been heavily dependent upon this case
study and can be traced through three papers (Beck and Young, 1976; Beck, 1978b.
1979a). The Cam case study has therefore been an immensely fruitful prototype for the
testing of ideas and methods. A "successful" case study, on the other hand, is not with
out disadvantages, for it creates the illusion that other case studies will be equally
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FIGURE 12 The process of model structure identification: revIsion of the model structure and
re-estimation of the associated parameters (b) on the basis of diagnosing how the prior model structure
fails (a).

successful (whereas mostly they are problematic) and it traps the analyst in dominant
modes of problem-solving. However, for this discussion the interpretations of model
structure identification embodied in Perspectives 2, 5, 7, and 8 will be of principal
relevance.

An a priori model for the dynamics of DO-BOD interaction can be derived from
the classical studies of Streeter and Phelps (1925). Since we wish to concentrate on model
structure identification, we will state the model in the following form:

(7a)

(7b)

where [XI,X2] =x is the state vector compnsmg downstream DO and BOD concen
trations, respectively, (}:I, I is the first-order BOD decay-rate constant (assumed to be
time-invariant), and u contains upstream DO and BOD concentrations as measured input
disturbances. In terms of eqn. (4), it has been assumed for eqn. (7a) that
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(8a)

(8b)

so that. 'j'- I [.j contains terms accounting for the process of re-aeration and the fluid
transport and mixing properties of the reach of the river. If the discussion of eqn. (4)
is recalled, it can be seen that the assumption of eqn. (8b) implies considerable con
fidence in the proposed model structure. This is a very deliberate use of the tactic of
stressing a relatively rigid structure so that the probability of detecting a significant
failure is maximized. At this early stage of the analysis it is not particularly useful to
express little confidence a priori in the model and then to try and identify unambig
uously where failure occurs. In such a case the postulated model structure would be,
as it were, too flexible. Adaptation mayor may not be significant, because one has
little confidence in the model, and clear-cut answers cannot be obtained because clear
cut questions are not being asked. We may note in passing that these arguments have
quantitative statistical counterparts for the use of certain recursive estimation algorithms,
for example, the extended Kalman filter (Jazwinski, 1970; Beck, 1979a, b).

With the benefit of hindsight, however, it seems that a more appropriate a posteriori
hypothesis for the model structure (in this specific instance) would be based upon the
scheme of Figure 13a. An examination of the simple model structure will thus lead to a
failure of the hypothesis that the observed behavior of DO-BOD interaction is represented
by eqn. (7). Following Figures II and 12 it can be expected that there will be a defor
mation of the model structure as given by Figure 13b, and in fact Figure 14 shows this to
be the case. Significant adaptation of the recursive estimate al,l(tk Itk) occurs where
there is a marked and persistent discrepancy between the model and observed output
responses. At the same time, although this is not shown, the recursive estimate of the
re-aeration rate coefficient becomes negative.

If we were now to imagine this same situation in the absence of hindsight, it would
be apparent that the model structure is inadequate, but not necessarily why. The analyst
would be confronted with the need to generate a second, hopefully more plausible,
hypothesis. He might begin by examining the relative likelihood of four possible, generic
causes of failure, for which purpose the conceptual distinctions of Perspective 2 and
Figure 6 can at this point be exploited and expanded. Since the model structure of eqn.
(7) is stated in terms of the macroscopic features of system behavior (DO and BOD),
and since both state variables are directly measurable (Le., x =xm ), these four causes of
failure can be classified as follows:

(i) The only reason for failure lies in an incorrect specification of the relationships
among u, x, andy, which has a counterpart in a, f, and h being incorrectly speci
fied (see eqn. 1). If this is improbable, then failure is a function of interaction
between "that part of the system being modeled" and its "environment", because:

(ii) ~ disturbs x in a nonrandom fashion, which has a counterpart in u being incorrectly
specified;
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FIGURE 13 Model structure identification in the Cam case study: (a) the a posteriori model struc
ture; (b) expected failure of the a priori model structure.

(iii) Xu interacts with X m in a significant manner, which has a counterpart in X being
incorrectly specified, Le., x =f X m ;

(iv) TJ corrupts the relationship betweenxm andy in a persistently biased fashion.

These, however, are only guidelines for the organization of one's thoughts, the beginnings
of the process of diagnosis and synthesis where the analysis enters a phase in which
creative speculation is necessary. It is helpful to introduce a somewhat broader organizing
principle for the procedure of model structure identification. Let us simply suggest that
the analyst is concerned with conducting experiments on and with the model structure.
The use of ."F and ~ in eqn. (4) allows two different orientations (or objectives) for
these experiments:

(i) The former (Y) in the process of falsification;
(ii) The latter (V) in the process of speculation about alternative hypotheses.
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FIGURE 14 Model structure identification (a priori model) in the Cam case study: (a) recursive state
estimates x. (tk Itk) and observations y, (tk) for dissolved oxygen concentration; (b) recursive state
estimates x2 (tk Itk) and observations y2 (tk) for BOD concentration; (c) recursive parameter estimates
a", (tk Itk) for the BOD decay-rate constant.
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Therefore the analysis of the a priori model structure, as in eqns. (7) and (8) was an
exercise in falsification. It merely remains to illustrate now the process of speculation.

We postulate some of the assumptions of Dobbins (1964) as suitable candidate
hypotheses to be included in Wsuch that

[

£:1:2 1 (t)]
~ [x(t), U(t),Q2 (t)] =

£:1:2,2 (t)

(9)

in which £:1: 2,1 (t) and £:1:2,2 (t) are, respectively, lumped variables representing all sources
and sinks of DO and BOD other than those (the assumptions of Streeter and Phelps)
accounted for in ,r of eqn. (8a). Relatively little confidence would be attached to the
expected behavior of £:1:2,1 and £:1:2,2, although they would be expected to vary with time.
Calibration of this revised model gives the recursive estimates 0:2,2 (th Ith ) of Figure l5a.
We now require a logical explanation of why 0:2,2 varies in such a fashion, which in turn
is related to the question of why the a priori model structure fails. From Figure 13a, it is
apparent that a subsequent hypothesis is that:

(i) An additional input disturbance, the variation in sunlight, has an important indirect
effect on the DO(x 1) and BOD(x2)' i.e., the a priori specification of u is inadequate;

(ii) This disturbance acts on X 2 through its effects on the additional states of the
system, neither of which are measured, i.e., the a priori specification of x =xm is
not adequate.

When generated as a purely deterministic function of the day-to-day sequence of observed
sunlight conditions, the estimated variations of X4 (the concentration of "dead algae")
are as shown in Figure 15b. It is but a short step from there to propose that the apparent
rate of addition of BOD in this reach of river is proportional to the concentration of dead
algal material.

It is tempting to close the issue of whether an acceptable model structure has been
identified, yet at least one competing hypothesis is worthy of attention. This concerns
the possibility of algal "interference" with the measurement of BOD, that is to say, the
possibility of an incorrect specification of h (from eqn. 1) in eqn. (7b). This is quite a
plausible hypothesis and it will be of relevance in a later section of the paper. It also
illustrates the potential difficulty of distinguishing between system behavior and the
process of observing that behavior.

3.3 Problems and Prospects

On occasion, therefore, one is fortunate and the case study described in the pre
ceding section is just such an occasion. When calibration of a Streeter-Phelps model
yields a negative-valued re-aeration rate constant, the analyst can be reasonably confi
dent about rejection of the associated model structure. In such a situation he is forced
to support an absurd hypothesis if he wishes to obtain correspondence between the given
model and the data. But when eventually the diagnostic evidence favors rejection of the
model, can one really hope to formalize the procedure for generating the next hypothesis?
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FIGURE 15 Model structure identification in the Cam case study: (a) recursive parameter estimates
"'2,2 Uk Itk) for the net rate of addition of BOD to the reach; (b) deterministically estimated variations
of the concentration of dead algae (x., a posteriori model).

Isn't this in fact a procedure that demands that spark of creative thought characteristic of
scientific discovery? Perhaps, therefore, we should be rather modest in searching for an
"intelligent" algorithm of model structure identification. While we do not believe that
hypothesis generation can be reduced to a formal algorithm, it is still legitimate to ask
whether there are methods that suggest feasible directions in which to cast new hypotheses,
as was the intent of Figure 9.

Let us summarize the discussion so far. Because of the lack of planned experiments,
because field data are highly uncertain, and because a priori definition of the mathemati
cal forms of relationships among the important system variables cannot be made categorical,
the calibration of water quality-ecological models is not a straightforward exercise of
parameter estimation. The problem of model structure identification has to be solved
before accurate estimation of the parameter values is attempted. The basic aim of model
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structure identification is to seek plausible hypotheses for "unexplained" relationships
in a set of field data. The approach that we have outlined exploits the idea of curve·
fitting as a "means-to·an-end" and not as an "end" in itself. Experience shows that
approaching the problem from a variety of angles - for example, using different types
of models and different estimation algorithms - can yield different clues about why a
given hypothesis is incorrect and how it might subsequently be modified (Beck, 1978b).
The illustrative case study of Section 3.2.2 has focused on merely a part of an overall
approach from one or two angles. Falsification of the model, or components thereof,
rests partly upon judgments about absurd parameter values, or about implausible vari·
ations in parameter values. Unless these variations and values can be defended by logical
argument, then it must be conceded that the structure of the model does not match the
structure of the observed patterns of behavior. Even in a relatively simple context,
however, these kinds of solution to the problem are not easily derived. In the more
complex situation to be discussed below the basic process of absorbing and interpreting
all the diagnostic information generated by the analysis itself becomes very much more
difficult. The evidence cannot be sharply focused in order to reveal the absurd hypothesis.
But even to believe that such a sharp focus might be possible is arguably a delusion,
since the field data are subject to high levels of uncertainty. Individual elements of
a priori theory may not themselves be ambiguous. It is when many of these elements
are assembled in a complex model, which is then calibrated against the in situ field
data, that ambiguity arises. As with the examples of Bierman et al. (1980) and Halfon
(1 979b) quoted earlier, there is usually not a unique set of parameter values - nor is
there necessarily a unique model structure ~ that will give a significantly superior fit
between the data and the simulated responses of a complex model. The purpose of
model structure identification is nevertheless to allow a posteriori evidence (a posteriori
in the sense of having calibrated the model) to be brought to bear on distinguishing one
or another of the possible a priori explanations as (conditionally) the most plausible.
The difficulty lies in focusing and interpreting the a posten'ori evidence.

3.3.1 Some Problems ofComplexity
The case of the Bedford·Ouse river in central-eastern England is a natural extension

of the Cam study. From 1972 to 1975 the UK Department of the Environment and the
Anglian Water Authority jointly funded a major study of the Bedford-Ouse river system
in order to evaluate the effects of developing a new city (Milton Keynes) in the upper
part of the catchment area (Bedford·Ouse Study, Final Report, 1979). Daily data on
some 16 water quality variables were collected at five locations on a 55-km stretch of
the river for 14 months from late 1973 to early 1975. The character and behavior of
the Bedford-Ouse system is very similar to that of the Cam (see, for example, Whitehead,
1983), but the scope of the available data base is incomparably greater.

Superficially the Bedford-Ouse study appears to offer an opportunity for straight
forward application of those techniques that have proved so successful in the Cam study,
but simply on a "larger" scale. In particular, during the spring of 1974 a substan tial
algal bloom occurred in the river with measured concentrations of chlorophyll·a, DO,
and BOD reaching maximum levels of 300J,Lgl-l, 20 gm-3, and 13 gm-3, respectively.
The modeling problem can be formulated in terms of four state variables (DO, BOD,
cWorophyll-a, and suspended solids) for each reach of a three-reach system. Not only
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do the observed relationships among these variables appear to be significant, and there
fore identifiable, but also the character of the interactions appears to vary both in time
and space. In retrospect, it was probably naive to expect success, but what is important
is an analysis of the problems revealed in the process of model structure identification.

Let us look first at the notion of testing the model structure to the point of failure,
that is, the process of falsification in which 1/ {.} = 0, as in the general statement of
eqn. (4) and the specific example of eqns. (7) and (8). ,r thus contains various (confi
dent) assumptions about the transport and dispersive properties of the river, re-aeration,
BOD decay, and the growth, death, and photosynthetic properties of a population of
algae. Six parameters are to be estimated in identical model structures for the behavior
of each reach of the system (a total, therefore, of 12 state variables and 18 parameters).
Figure 16 shows the recursive estimates of these six parameters for the third (downstream)
reach of the river. Comparing Figure 16 with the enviable simplicity of Figure 14c, one
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FIGURE 16 Model structure identification (the process of falsification) in the Bedford-ouse case
study (third reach): (a) re-aeration rate constant (day-'); (b) maximum specific growth-rate constant
for algae (day·'); (c) BOD decay-rate coefficient (day"I); (d) rate constant for addition of BOD to
reach from suspended solid matter (day"' (gm-' BOD)(gm"3 SS)"I); (e) death-rate constant for algae
(day"'); (D rate constant for "loss" of suspended solids from the reach (day"I).
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would have great difficulty in answering the question "at what point does the model
structure fail?" without even asking the question why it might have failed. There are
clearly some apparently absurd hypotheses. For instance, the recursive estimates of
both the maximum specific growth-rate (Monod-type kinetics) and death-rate constants
for the algal population (Figures 16b and 16e, respectively) become negative-valued. One
could argue, as a result, that the former is barely significantly different from zero and
that the latter - a linear, negative, death rate - is evidence of a preferred linear growth
rate function for the algae (at least for all but the initial period of the data), but the
analyst would be hard-pressed to attach great confidence to such conclusions.

There is also evidence in Figure 16 of preconceived notions dictating the outcome
of this test of the model structure. For example, the remarkable stationarity of the
recursive estimate for the re-aeration rate constant (Figure 16a) is a function of assuming
relatively more a priori confidence in this particular parameter. In other words, the
analyst has assumed that, if the model is to fail, its failure is unlikely to be a function of
an inadequate description of the re-aeration process. Solely on the basis of these data,
however, there are good reasons for arguing that the classical assumptions both of Streeter
and Phelps and of dispersion in flowing media are not identifiable from the observed
patterns of behavior. Figure 17 shows that with respect to the first reach of the system,
which is typical of all three reaches, a classical advection-dispersion model with Streeter
Phelps assumptions produces responses such that the error between the observations and
these responses is likely to be highly insensitive to the estimated values of the associated
model parameters. Such a common problem of identifiability does not arise because of
complexity, which we would suggest is the case in the results reported by Bierman et al.
(I980) and Halfon (I979b), but because other dominant modes of behavior (in this
instance, algal growth) almost entirely obscure these less significant modes of behavior.
This is again slightly different from the situation described by van Straten and Golbach
(1982), in which the character of the input disturbances is such that the system is not
stimulated to respond in a manner sensitive to the dispersive properties of the river.

Since concern has been expressed in Section 2 about preconceived notions, it is
important not to pass over this point without further reflection. We do not claim that
our approach is without any element of subjectivity. The judgment of the analyst is not
only required in specifying a priori confidence levels for the parameter estimates but
also, of course, in deciding which hypotheses to include in the a priori model structure.
Soderstrom (I 977) is here in agreement, for he states that:

" ... Naturally, an objective method will produce a model structure without inter
ference [by the analyst]. However, it is a chimera to regard this as an essential advan
tage. On the contrary, it may be a misleading property, since for all methods, objective
as well as subjective, there is always a potential risk that a false model structure is
selected."

We do claim, however, that the test procedures we have outlined are more rigorous than
the approaches generally employed previously. If one adopts that view of the scientific
method in which falsification of hypotheses is of fundamental importance, one might
conclude that in the present example the assumptions of Streeter and Phelps cannot be
expressed in a form that permits falsification. In a sense, therefore, they are not testable
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FIGURE 17 Evaluation of a classical advection-dispersion model with the assumptions of Streeter
and Phelps for the first reach of the Bedford-0use case study. Values for the longitudinal dispersion
coefficient (J3" in km' day-I), the reaeration rate constant (J3., in day-I), and BOD decay rate con
stant (J33' in day-I) for each curve are given respectively as: (1) [11" 11.,113] = [0.0, 0.0, 0.0]; (2)
[11" 11., 113 1= [2.0, 0.0, 0.0]; (3) [11" 11., 113 ] = [0.0, 0.3, 0.0]; (4) [11" 11 2 , 113 ] = [2.0, 0.3,0.4];
(5) [11" 11., 113 1= [0.0,0.15,0.2]; (6) [11" 11 2 , 11, J = [2.0, 0.3, 0.4].
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propositions and their inclusion in any a posterion' model structure is tantamount to an
act of faith. Such a problem may not be critically important in the context of model
calibration, but could have significant consequences when the model is used for pre
diction, which will be of concern in Section 4.

It seems important, therefore, to question the motives for maintaining hypotheses
that are not, strictly speaking, falsifiable. The reluctance to set aside convention is strong
indeed, and Figure 16 illustrates well the conflict that can occur. Given prior experience
that the hypothesis of BOD decay is probably not identifiable, a BOD decay-rate constant
is still maintained in the model structure, but with an a priori estimate of zero (day-I).
Moreover, it would be difficult to argue that the subsequent pattern of the recursive
estimates prompts the assumption of a significantly nonzero value for this parameter.
This is not surprising in view of the "peculiarity" of observed conditions of simultaneously
high DO and BOD concentrations and given the possibility of algal interference with the
BOD test. Nevertheless, in this case there is no evidence that better hypotheses than those
of Streeter and Phelps are available. In marked contrast is the discussion by Young (1983)
of the classical representations of pollutant dispersion in rivers. Young clearly produces
evidence that challenges conventional assumptions, a situation not without a certain
irony. Originally unconventional assumptions about fluid-mixing properties, which
allowed a transformation from a partial- to an ordinary-differential equation representa
tion* (Beck and Young, 1975), were largely responsible for the developments leading to
the present paper. Such developments can of course be challenged because they are
unconventional, yet it is the results of precisely these assumptions that now forcefully
challenge convention (Young, 1983). Moreover, subsequent reassessment of the original
assumptions shows them to be fairly reasonable for that particular study (see Lewandowska,
1981 ).

Our reflections may then be briefly summarized as follows. The results of Figure 16
are founded upon the premise that:

(a) We have confidence in the hypotheses of Streeter and Phelps, but consider current
hypotheses about mechanisms of algal growth as higWy speculative.

Such a premise could be reoriented in either of two ways:

(b) We are confident about our hypotheses for algal growth, but consider the assump
tions of Streeter and Phelps to be higWy speculative.

(c) All hypotheses are equally speculative.

Although there is a temptation to cling to the first premise and not reject convention
until it is demonstrably inadequate, this course of action may very well preclude the
important possibility of revealing inadequacy.

Let us now tum from the process of falsification and look instead at the process of
speculation (see also Section 3.2.2). If it is assumed, once again, that the Streeter-Phelps

* To avoid the problem of parameter estimation in partial-differential equation representations, a
difIicult problem to solve then as now.
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FIGURE 18 Model structure identification (the process of speculation) in the Bedford-Ouse case
study: recursive estimates for the net rates of addition of chlorophyll-a to each reach of the system.

and fluid-mixing hypotheses can be included in ..cT, we may speculate that t1, as in eqn.
(9) for the Cam study, comprises a vector of lumped parameters for all other sources an d
sinks of DO, BOD, and chlorophyll-a. Part of the diagnostic evidence from analysis of
this speculation for the three reaches of the Bedford-Ouse system is gathered together in
Figures 18, 19 and 20. One might tentatively conclude from these recursive estimates that:

(i) The rate of addition of cWorophyll-a to the system reaches a maximum first in the
third (downstream) reach, then in the second, and lastly in the first (upstream)
reach (see Figure 18).

(ii) The rate of addition of dissolved oxygen to the first reach is roughly proportional
to the observed concentration of chlorophyll-a at the downstream boundary of that
reach (see Figure 19a); the rate of addition of dissolved oxygen to the second reach
is roughly proportional to the observed concentration of chlorophyll-a, except over
the middle of the period recorded (see Figure 19b); the rate of addition of dissolved
oxygen to the third reach is not obviously proportional to the observed chlorophyll-a
concentration for most of the time (see Figure 19c).

(iii) The rate of addition of BOD in all three reaches is essentially identical over the
later part of the period recorded (see Figure 20); the rate of addition of BOD to
each reach roughly follows the same relative pattern as the rate of addition of
chlorophyll-a to each reach over the initial part of the period recorded (compare
Figures 18 and 20).

[t would certainly require bold and imaginative thinking to synthesize a hypothesis from
such evidence that would facilitate the step from M1 to M2 in the terms of Figure 9.
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FIGURE 19 Model structure identification (the process of speculation) in the Bedford-Ouse case
study: comparison of recursive estimates for the net rates of addition of DO to each reach of the
system with the observed chlorophyll-a concentrations at the downstream boundary of each respective
reach.
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FIGURE 20 Model structure identification (the process of speculation) in the Bedford-Duse case
study: recursive estimates for the net rates of addition of BOD to each reach of the system.

How, in fact, would the analyst absorb and interpret this relative wealth of diagnostic
in formation?

Further conjecture about model structures based on evaluation of these observations
will not be presented here; we merely offer one brief speculation, principally because it
introduces a problem of considerable general significance. Let us suppose that there are
two distinct states of the algal population, one of which gives rise to a net addition of
both chlorophyll-a and DO, while the other gives rise only to a net addition of DO. This
hypothesis might be consistent with some of the diagnostic evidence and, if it were, any
subsequent model structure would probably have to account for the behavior ofunobserved
state variables, Le., Xu in Figure 6. There is, however, no really satisfactory procedure for
accommodating unobserved state variables in our scheme for model structure identifi
cation. Undoubtedly, the inclusion of such variables gives additional flexibility to the
model structure, in fact, so much so that the test designed to reveal structural inadequacy
in terms of significant parameter adaptation would be nullified. The estimates of the
unobserved state variables would be adapted rather than the parameter estimates and
there would be little basis on which to judge the plausibility of such variations. The
procedure adopted for the Cam study, where the dynamics of the unobserved state
variables were defined as completely deterministic functions of the inputs and other
state variables, seems to be more compatible with the idea of making bold, easily falsifiable
hypotheses than procedures used elsewhere (Beck, 1979c). The identification of a time
varying parameter - or unobserved state variables, for the two concepts are barely
distinguishable - is the archetypal fraud of which curve-fitting is often accused. The
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conclusion that the model fits the data subject to arbitrary variations in one or more of
the parameters is itself of no consequence. Rather, it is the process of speculating why
such variations occur that should be highly valued.

3.3.2 Design for Failure and Speculation
There are obviously lessons to be learned from the prototype case study of Section

3.2.2 and its more ambitious successor. The most important are that:

(i) The process of model structure identification proceeds as a sequence of "experi·
ments" in which the analyst has either the objective of falsifying confident hypothe
ses or the objective of speculating about relatively uncertain hypotheses; in a purely
technical (and perhaps more fundamental) sense these two objectives are best
considered as mutually exclusive.

(ii) If speculation is the objective, then a primary concern is rearrangement of the
model (utilizing the results of speculation) in such a way that its structure is likely
to contain only parameters with essentially time-invariant recursive estimates when
re-estimated. For complex systems and patterns of behavior it is extremely difficult
to diagnose the results of speculation.

(iii) If falsification is the objective, there may be ambiguities in determining where the
model fails and in distinguishing between reasonable and absurd hypotheses.

Given these limitations and inadequacies in the technical aspects of model structure
identification, is it still possible to identify avenues of further progress? For it is not
particularly encouraging to conclude that the analysis of an apparently simple problem
leads merely to more complex unresolved problems. One might reflect, with resignation,
that such is progress! Our answer to this question is nevertheless positive, although
cautious: for the reasons given in the introductory paragraph of Section 3.3 it is clear
that one should not expect the impossible.

Let us begin by examining point (iii) and its concern with "determining where the
model fails". In the case of Figure 16, for example, it is not at all apparent which parame
ter is associated with the least adequate component of the model structure. It might be
possible to clarify the situation by testing each hypothesis individually, assuming all but
one of the parameters to be constant and known with certainty. To do this we would
need to appreciate the underlying causes of variability in the recursively estimated value
of a parameter. Recalling therefore the general form of eqns. (5) and (6), we have

(10)

which for parameter eli (when all other parameters are assumed to be known) reduces to

p

O:i(tk) = O:i(tk-d + L gij(tk)f.j(tk Itk-I)
j= 1

(I I)

It is perhaps easier to state, on the basis of eqn. (11), the following conditions required
for O:i(tk) not to vary with time:
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(a) Ej(tk Itk-I) is small and random for allj,k: this is clearly the case when one has
an appropriate model structure and good parameter estimates.

(b) gij (tk) is small for all j, k: this implies that the estimation algorithm computes
gij(tk) such that all errors Ej are effectively ignored, which would be correct ifany
hypothesis associated with (Xi were truly unrelated to any persistent error Ej •

(c) The effects of summing the products gij Ej may be self-cancelling even though both
gij and Ej may not be small; however, the implications of this condition are not
immediately evident and will thus not be considered further in the present discussion.

Conditions (a) and (b) are stated as mutually exclusive extremes. A combination of the
two is clearly feasible, since one simply has the condition that Ej(tk Itk-I) is small when
gij(tk) is not, and vice versa.

Condition (b) is the most interesting of the three because it calls into question both
the role of the matrix G(tk ) and the way in which this matrix is computed. Conceptually,
G is a mechanism for distributing the stress applied to the model structure (when it is to be
tested for failure) among the component parameters and hypotheses. In eqn. (11), for
example, this process of stress distribution has therefore been constrained to act upon a
single parameter. One disadvantage with certain methods of recursive estimation - the
extended Kalman fJ.1ter, for example - is that G is largely, but not entirely, determined
by the a prion' assumptions about the model structure, parameter uncertainties, and
statistical properties of the system's "environment", i.e., '1 and ~. In other words, and
perhaps not surprisingly, the degree of attention paid to the a posteriori evidence, as
represented by E(tk Itk -I), is prejudiced by the a pn'ori assumptions. With slight modi
fication, however, this intuitively appealing "directional" property of G, namely that it
indicates the relative degree of significance of any E j with respect to a given Qi' might
be turned to a distinct advantage. More specifically, Ljung (1979) has shown recently
that it is G that has all the algorithmic importance for the extended Kalman filter and
that, if G is parametrized and its elements estimated recursively, some of the a priori
assumptions previously required become redundant. From our point of view, which is
rather different from Ljung's perspective, not only does this lessen the dependence of
the analysis upon a priori assumptions, but it also shifts the balance of the correcting
mechanism G(tk)E(tk Itk-I) in eqn. (10) toward greater exploitation of a posteriori
evidence. Furthermore, this has a strong equivalence with recent developments proposed
by Young (1979) for other forms of recursive estimation algorithms.

In these various suggestions for circumventing the problems of point (iii), and
also the problem of point (ii) to which we now turn, there is nevertheless a disquieting
element concerning complexity and computational effort. Recursive estimation of
the elements of G, in addition to estimating the model parameters, would seem an added
burden in the process of diagnosing the results of model structure identification. It is
therefore sensible to seek some informative, yet easily computable scalar quantity that
aggregates the multivariate character of the analysis. An obvious choice would be the
determinant of a matrix (or submatrix) - or a function of this and determinants of
other matrices - that appears naturally within the estimation algorithm. This too could
be a promising direction for further progress, as is clearly evident from parallel develop
ments in model order estimation (for example, Woodside, 1971; Wellstead, 1978; Young
et al., 1980).
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Yet there is something more fundamental, and perhaps more disturbing about this
problem of complexity and computational effort. Consider, for instance, the context of
the whole of this section of the paper. It deals with only one or two kinds of diagnosis,
within one particular approach to the problem of model structure identification, for one
of three categories of data (the intermediate category of "some adequate data", as
explained in the introduction to Section 3), and applied to modestly sized, even humble
models. Nevertheless, the approach is sufficiently complex that it loses the attractive
simplicity of the Monte Carlo approaches adopted elsewhere for the analysis of "scarce
data" situations (Hornberger and Spear, 1980, 1981; Spear and Hornberger, 1980;
van Straten, 1980; Fedra et a!., 1981). And it is a sobering thought indeed, if one reflects
upon the vast potential of telemetered, on-line water quality monitoring networks
(Marsili-Libelli, 1980), that a lack of field data will not always be the critical constraint
on water quality modeling. There is every possibility, therefore, that future critical
constraints will involve precisely this area of absorbing and interpreting the results of
data analysis.

Could one thus argue a case in favor of other equally profitable but simpler
approaches? At least two alternatives come to mind: the ubiquitous "trial and error"
comparisons of deterministic simulation responses with the field data (although serious
concern about such an approach has already been expressed in Section 2); and approaches
based on off-line methods of parameter estimation, which, while they are relatively
effective (see for example, Di Toro and van Straten, 1979; van Straten, 1983), do not
have the same potential for insight as the approach described here. For both of these
alternative approaches there is little evidence of associated work on the problem of model
structure identification and one could argue that simplicity, when dealing with complex
models and large numbers of data, is a chimera. In the absence of comparable approaches,
the question of the advisability of following the principles outlined here must be examined
with some deeper appreciation of how consistent these principles are with the scientific
method. For this reason we contend that certain aspects of Sections 3.2.1 and 3.3.1 are
neither fanciful nor esoteric excursions into the realm of philosophy.

Our last consideration deals with point (i) of the lessons to be learned and also
relates back to the discussion of convention, confidence, and speculation in Section 3.3.1.
Let us suppose that in a given study the ultimate objective is to reconstruct in situ
"experiments" from the observed data by analytical methods. In other words, as scientific
endeavor moves outside the laboratory it carries with it the notion of recreating the
"controlled" conditions of a laboratory experiment in the field system itself (see, for
instance, Lack and Lund, 1974). The objective of recovering experiments may be worthy
and it would appear to relate to the central issue of extrapolation from laboratory systems
which was raised in Section 1. It seems reasonable to attempt to design the analysis of
model structure identification so that it compensates for the variable environmental
conditions of the "experiment" (recall here the discussion of Section 3.1.1). An apt
example would be the reconstruction of an "in situ chemostat experiment", where the
objective is to identify the structure of the relationship between substrate and phyto
plankton growth. In this particular example the skill of the analyst would lie in arranging
the analysis such that extraneous interference with the "experiment" - for simplicity,
extraneous hydrodynamical disturbances - could be filtered out. At first sight, this is
a rather attractive view of the true purpose of system identification and time-series
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analysis, but it presupposes, of course, that the part of the model required to compensate
for the "experimental environment" is known a priori with sufficient confidence to
permit the full power of the analysis to be concentrated on the problem of substrate/
phytoplankton interaction. Such assumptions themselves have to be evaluated. The
distinction between what is "known well" and what is "speculation" (as in eqn. 4) thus
becomes vanishingly small. In a holistic sense it is difficult to claim, however tempting
it may be, that there is one "experiment" and its complementary "environment". Instead,
it is only possible to state that a number of more or less significant "experiments" are
proceeding in parallel.

Clearly, complexity, and not only uncertainty, is a universal and inescapable
feature of the modeling of water quality-ecological systems. From the discussion of
Figure 9 in Section 3.2 it is apparent that the best way of taking complexity into account
is to start from a simple model and progressively increase model complexity when the
diagnostic evidence of analysis precludes acceptance of any simpler model structure.
Of course, we are well aware that uncertainty and complexity would soon impose con
straints on the depth of such an analysis; however, the alternative of starting with a
complex model and identifying those components of the structure that are essentially
redundant (i.e., surplus content) is an approach seemingly fraught with many more
difficulties, the kind of difficulties raised, for instance, in Halfon's (l979b) analysis of
a model for Lake Ontario (see Section 3.1.2). One of the key problems is that ambiguities
arise in determining whether the a posteriori evidence supports rejection of an inadequate
model structure. In the face of these ambiguities, and acknowledging the additional
difficulties of interpreting large amounts of evidence, the analyst should respond by
making particularly prudent choices for the postulated model structures. If the model
is a vehicle for asking questions about the nature of "reality", then it is advisable to make
those questions as few - at least initially - and as unambiguous as possible.

3.4 A Concluding Comment

Many recent exercises in water quality-ecological modeling have been conducted
without serious consideration of the deeper significance of calibration. This should not be
considered a mere backwater to the mainstream developments in water quality modeling.
It only becomes so if one chooses to attach great confidence to a priori theory, thereby
renouncing, in effect, much of the questioning that should accompany calibration. This
choice, albeit often made subconsciously, is inherent in the present dominant approach
to modeling where heavy reliance is placed upon extrapolations from laboratory or
"equivalent" field systems. One might choose, in complete contrast, to put aside a priori
theory altogether, and in view of the manifest difficulties in determining the governing
mechanisms of behavior for even a well-documented case study (see for example, van
Straten et al., 1979; van Straten and Somly6dy, 1980), perhaps this could be justified.
Any resulting model, which in this extreme case of exclusive dependence on the a posteriori
evidence of the sample field observations would be a true black-box model, would cer
tainly attract a common criticism: namely, that the model should not be used for making
extrapolations outside the range of conditions for which it was developed. Unfortunately,
such extrapolation is precisely what is required of most models. Equally unfortunately,
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exactly the same criticism can be leveled at the use of models based upon extrapolations
from laboratory or "equivalent" field systems. But this does not imply a stalemate in a
conflict between the dominant approach and the not-so-dominant approach discussed
in this section. Rather the tW(\ approaches are complementary and one way out of the
seeming impasse is suggested by the ability of the not-so-dominant approach to evaluate
those extrapolations characteristic of the dominant approach. The existence of genuinely
complementary approaches, in the context of calibration, will be confirmed in the next
section in the context of prediction. There is, however, one fundamental asymmetry in
the relationship between the two approaches: namely, that any attempt at simplifying
the problem of model structure identification by (conceptually) subdividing the system
into smaller components (the analysis of single "experiments") is an exercise of dubious
value.

4 PREDICTION AFTER IDENTIFICATION

The preceding section has wrestled at length with the extremely difficult problem
of acquiring understanding of a complex system's behavior, irrespective of any intended
application for the associated model. The stimulus for presenting what we have called
a "not-so-dominant" approach originates with the concerns expressed in Section 2 about
other more conventional approaches to model development and calibration. Yet in spite
of such concerns it is the complementary character of the approaches, rather than their
points of conflict, that is the emerging theme of Section 3. Undoubteilly, we should
expect much more debate about the advantages and disadvantages of one approach
or another. To a large extent, however, debates about how to acquire understanding of
complex systems are best conducted at a general philosophical level (see for example,
Battista, 1977). Of more immediate and specific relevance is the debate about how a
model is likely to perform when applied to the problem of prediction of future behavior
patterns under substantially changed conditions. This section, therefore, addresses that
issue. We shall first discuss qualitatively the question of accounting for uncertainty in
the relationship between the identification (calibration) of a model and its application
to prediction of the future (in Section 4.1). This is clearly an important logical connection
in the underlying argument of the paper as a whole. Section 4.2 gives a brief review of the
methods available for analyzing the propagation of forecasting errors. We have already
noted that this is a particularly active field of current research, although our interest in
the methods themselves is here somewhat secondary. Rather, as in Section 4.2.1, the
object is to illustrate certain important aspects of the relationship between identification
and prediction. Hence, in Section 4.3, we shall conclude with a dilemma that captures
some limiting features of both the dominant and the not-so-dominant approaches to
water quality-ecological modeling.

4.1 Accounting for Uncertainty

Let us suppose that in an ideal study the problem of model structure identification
has been solved and that it merely remains for calibration to be completed by estimation
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of the model parameter values. After a successful calibration exercise it would be expected
that the degree of uncertainty in any given parameter estimate would be less than the
uncertainty associated with the prior estimate of that parameter value before calibration.
The amount by which the uncertainty in the parameter estimate is reduced should be
roughly consistent with the degree of relevance that the parameter - and its associated
sector of the model's behavior patterns - has to the observed system behavior. The
reduction in the uncertainty of the parameter estimates will also be approximately
inversely related both to the number of field observations and to the levels of uncer
tainty and error associated with those observations. But the a posteriori estimates of
the parameters will still be subject to uncertainty: their estimation errors are, as it were,
a kind of "fingerprint" of the calibration procedure; and the effects of these errors
will propagate forward with predictions about the future.

To be more specific, let us examine the possible changes in the parameter estimation
error variance-covariance matrix (as a measure of the uncertainty in the parameter
estimates) that might occur during the process of recursively estimating the parameter
values. The covariance matrix of the a priori estimation errors will be denoted by

(12)

where E {-} is the expectation operation and to is the time at the beginning of the period
for which experimental data are available. Under the assumption that the calibration
exercise is successful in yielding improved estimates of the parameters with a lower
error variance, we could expect that

(13)

where the subscript ii indicates the ith diagonal element of the matrix pP and tN is the
time at the end of the period covered by the experimental data. In other words PYi(tN I
tN ) is the a posteriori error variance for parameter Cii' But just how "successful" the
calibration exercise is requires an important qualification, for which purpose two nominal
illustrative trajectories for pYi are given in Figure 21. For the trajectory of P~I a significant
reduction in the uncertainty of the parameter estimate &1 is achieved, and the rate at
which this uncertainty is reduced is especially rapid during the period 1::.t. We might
suggest that over this period 1::.t such an accelerated rate of decrease in error variance is
due to the existence of a substantial amount of information in the data that refers to the
system behavior associated with parameter Cil' The trajectory of P~2' however, displays
a negligible decrease in the uncertainty of the related parameter estimate, &2' Assuming
the opposite of the argument used for the P~I trajectory, it might be concluded that
there is virtually no information in the data that confirms the type of behavior simulated
by Ci2 and its associated sector of the model.

At this point it is appropriate to revive the concepts associated with the set diagram
of Figure 9. In Figure 22, therefore, the set A again denotes the sample behavior observed
in the historical field data and M characterizes the set of behavior patterns simulated by
the model. It is not difficult to imagine that actual (A) and simulated (M) behavior do not
correspond exactly so that there is only a partial overlap between A and M (although
strictly speaking this suggests that the problem of model structure identification has not
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FIGURE 21 Two examples of changes in parameter estimation error variances during calibration
(calibration is assumed to refer to the period of observations from to to tN)'

P

FIG URE 22 Calibration: A is the historically observed pattern of behavior; M is the set of behavior
patterns simulated by the model.

been satisfactorily resolved). Transferring the argument from Figure 21 to Figure 22, let
us say that parameter al is associated with a part of the behavior covered by the shaded
area of Figure 22, while a2 is related to that part of M that does not intersect with A.
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When the model is calibrated against the field data one would expect the uncertainty of
parameter estimates associated with the intersection of A and M to decrease significantly.
But for parameters associated with the nonintersecting remainder of M estimation error
variances should not decrease because there is no information in the historically observed
data with which to evaluate such behavior. That is to say, parameters such as Q2 are not
identifiable for the given model structure from the given data; this is simply a reiteration
of the same point that appeared earlier in the discussions of Section 3.1.1 (sensitivity
analysis and a dispersion model for the Rhine River) and Section 3.3.1 (identification of
a Streeter-Phelps-type model for the Bedford-Ouse River).

The variances of the a posteriori parameter estimation errors indicate, among other
things, the relative degrees of uncertainty in the various sectors of the model relation
ships. From the summarizing picture of Figure 23 it is clear that they are a key factor
connecting identification with prediction, at least in terms of accounting for uncertainty.
What is the most likely influence of the a posteriori parameter estimation errors on the
error bounds of forecasts about the future? Yet again, a Venn diagram is a useful starting
point. Figure 24 shows a possible situation in which, for example, the future behavior of the
system lies within the set of patterns represented by F. The sets P, A, and M have the
same interpretations as previously, although the definition of M may be further qualified
by stating that it represents simulated behavior in both the past and the future. Let us

Identification

Uncertainty. errors in
observed field data

Prediction

Uncertainty in future
input disturbances

A priori
parameter
estimation
errors

A posteriori
parameter
estimation
errors

Uncertainty in initial
state of water quality

Forecasts and
forecasting
errors

FIGURE 23 Sources of uncertainty and the connection between identification and prediction.



Uncertainty, system identification, and water quality prediction

p

49

FIGURE 24 Prediction with the calibrated model: A and M are as defined for Figure 22; F represents
the set of possible future behavior patterns of the actual system; iJ represents behavior patterns
associated with a well-identified part of the model; 'Y represents behavior patterns associated with a
poorly-identified part of the model (i.e., surplus content).

consider, in particular, what happens when at initial time tf (with respect to the fore
casting period) the model simulates behavior that is characteristic of the set ~ (M ()
A () F) and then at time tf + T it simulates behavior characteristic of the set marked
"Y (M () F) in Figure 24. In other words, a well-calibrated sector of the model (Le., a
pattern of behavior observed in the past) is initially dominant in the simulated behavior,
although subsequently a poorly identified sector of the model becomes dominant in the
simulated behavior. With a nonlinear model such a transition could be easily brought
about, for example, by a slightly modified combination of commonplace input dis
turbances that force the state of the model into a quite different region of the state
space (as already noted in the discussion of Section 3.1.1). Figure 25 illustrates the
associated, hypothetical trajectory of one of the state variable forecasts, X, and its error
bounds, which here are simply denoted by x ± a, where a is the standard deviation
of the forecasting error. As the state variable trajectory crosses the "boundary" between
"past" and "future" behavior patterns the error bounds on the forecast expand rapidly
because the response of the model is becoming especially sensitive to relatively uncertain
parameter estimates and their respective sectors of the model. Of course, it might also
be that the future forcing functions are unlikely events, in which case the sudden loss of
confidence in the model forecasts arises both from the uncertainty of these functions
and from the parameter estimation errors.

To summarize, let us note that a most important feature, from the forecaster's
point of view, is that when forecast-error bounds are computed it is possible to deduce
where the model is making predictions for which there is very little historical empirical
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FIGURE 25 Hypothetical state variable trajectory x(tlt f) and prediction error propagation (a is the
standard deviation of the prediction errors) for the "scenario" of Figure 24.

justification. Likewise, when calibrating large models against (probably inadequate)
field data it will not be at all obvious which sectors of the model are properly calibrated,
if the a posteriori parameter estimation errors are not calculated.

4.2 The Propagation of Forecasting Errors

Only two quantitative methods have been used for computing the propagation
of forecasting errors, namely Monte Carlo simulation and first-order (possibly higher
order) error analysis, although at first sight the number of recent publications on this
topic would perhaps suggest otherwise. However, a point of convergence is discernible,
both in terms of the desire to compare the performance of the two methods (Scavia
et al., 1981; Gardner et al., 1980a) and in the equivalent ways of stating the equations
of a first-order error analysis. The application of Monte Carlo simulation in various
studies is well represented, for example, by the papers of O'Neill and Gardner (1979),
Gardner et al. (I 980b), Whitehead and Young (1979), Hornberger (1980), and Fedra
et al. (198 I), and we shall not comment further on it here.

A first-order error analysis, or statistical sensitivity analysis, appears to have been
first applied to models of water quality-ecological systems by Argentesi and Olivi (1976),
following similar applications in other fields (see for example, Burns, 1975; Atherton
et al., 1975). Reckhow (1979) and van Straten (1983) state their equations for error
covariance propagation in the same form as Argentesi and Olivi (1976), in the sense that
the matrix of sensitivity coefficients [axi/aail appears explicitly. McLaughlin (1983)
derives the error covariance propagation equations for a fairly general class of distri
buted-parameter models and states them in a partitioned or disaggregated form (i.e.,
distinguishing between various sources of error). Inspection of McLaughlin's equations
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(14a)

provides an obvious correspondence with the algorithms of Beck et al. (1979), which
are derived from recursive filtering theory and also stated in partitioned form. Canale et
al. (1980), in their study of sampling strategies and error propagation with respect to
modeling water quality variations in the Great Lakes, make use of the same filtering
algorithms as Beck et al. (1979). To a less obvious extent, the work of Scavia et al.
(1981) also draws upon a background of filtering theory.

A detailed discussion of the conditions under which the statistical analysis of
Argentesi and Olivi (1976), for example, is equivalent to the covariance equations of the
extended Kalman filter quoted by Beck et al. (1979) is given elsewhere (Beck, 1982). For
our present purposes, it suffices to state these recursive partitioned equations (in the form
used by Beck et al., 1979) as:

{Uncertainty in {Uncertainty propagated from the current state of water quality}
the state variable

predictions}

{Uncertainty derived from correlated state-parameter errors}

{Uncertainty propagated from the a posteriori parameter estimation
errors}

{Uncertainty contributed by future input disturbance estimation
errors}

{Uncertainty arising from other factors e.g., residual errors of model
calibration}

where

(l4b)

(l4c)

In eqn. (14) ps, pc, pP, and S are, respectively, the covariance matrices for the state
prediction errors, correlated state-parameter prediction errors, parameter errors (which
in this case are assumed to be propagated with constant covariance according to eqn.
14c), and the errors in the estimated future input disturbances (u). The matrices (Jlll,
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<1>12, and r s are dependent upon the state predictions, x(tjltr), the parameters·ci(tjltr),
and the estimated inputs u(t), and must therefore be evaluated at each time step t j • The
elements of these matrices are related to the partial derivatives [a/daXj], [afdaQj], and
[afdauj] of the function f {-} in eqn. (I a), which are notably 110t the same derivatives as
those of the sensitivity coefficients. The solution for X(tjltf) can be obtained from eqn.
(la) with the initial conditions x(tfltr) for the period of prediction and with~(t) = 0
for all t ;;;. tr.

Before proceeding to an application of these covariance propagation equations
to illustrate the qualitative discussion of Section 4.1, it is helpful to draw together
some of the threads of the foregoing arguments. First, at the very beginning of the
discussion of calibration problems in Section 3.1.1, the notion of a sensitivity analysis
was introduced informally. To this original idea a statistical component has now been
added, in the sense that contributions to the uncertainty of a state variable pre
diction (x;) are the products of a sensitivity coefficient (axdaQj, for example) and an
error covariance (pE) associated with a particular source of uncertainty (see also
Argentesi and Olivi, 1976). Once again, there is a close connection between sensitivity
analysis and the design of experimental and monitoring programs (see also Canale et aI.,
1980).

Second, in Section 3.2.1 eqn. (5) represents the essential element of a recursive
parameter estimation algorithm. Equation (14) can be derived from the same type of
algorithm (see Beck et aI., 1979), indeed from the same algorithm as that used to provide
the results for the Cam and Bedford-Ouse case studies of model structure identification
in Sections 3.2.2 and 3.3.1. Such a natural, quantitative link between the problems of
calibration and prediction permits in principle a more formal exploration of the questions
raised in a qualitative manner in Section 4.1 and this undoubtedly has significant impli
cations for the dilemma to follow in Section 4.3. The connection crystallizes around the
obvious choice of setting the a priori error covariances for the prediction period equal to
the a posteriori error covariances of the calibration period, for example,

(15)

which is clearly suggested by Figure 23. Fedra et a1. (1981) provide a corresponding
interpretation of the calibration-prediction connection under the somewhat different
conditions of sparse data situations (recall the categorization given in the introduction
of Section 3).

Lastly, given our bias toward examining the relationship between calibration and
prediction, rather than examining the accuracy of algorithms for prediction error propa
gation, it is reasonable tG ask whether the approach behind the statement of eqn. (14)
yields any additional insight. In three directions the answer appears to be yes. First, let
us recall that the model of the system's dynamics also includes a representation, eqn.
(I b), of the output observation y whose significance for prediction error propagation
has thus far been overlooked. There is at least one example in which it is sensible to
assume a value for all future observations y(t). Suppose we have a closed system with
three interacting state variables (nutrient XI, phytoplankton X2' and zooplankton X3);
then if the initial total concentration of an element (phosphorus, for instance, or nitrogen)
distributed among these three states is measured as
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(16)

it is reasonable to assume a value for YI (tjltf) for all future tj . Since eqn. (14) is part of
a recursive state-parameter estimation algorithm, the computation of prediction error
propagation may be conducted as if it were actually a calibration exercise. Second, and
as a more general complement of this argument, assumptions about the covariance of
fu ture measurement errors TJ (tJ can be made independently of making any similar assump
tions about future values of y. Prediction error propagation can then be studied as a
function of possible future monitoring programs as discussed by Canale et a!. (1980).
Third, once a covariance matrix for TJ (tj) is assumed, it is also possible to compute the
gain matrix G(tj Itf) appearing in eqns. (5) and (10), a matrix whose role in the estimation
of parameters has been discussed briefly in Section 3.3.2. One might accordingly speculate
that the behavior of G(tj It f ) will be associated with measures of the effectiveness of
future measurement strategies with respect to parameter estimation, although this can
also be considered more explicitly in other ways (Canale et a!., 1980). We may note in
passing, however, that the original idea of a sensitivity analysis, subsequently expanded
to accommodate a statistical component, can thus be generalized further to include not
only analysis based solely upon assumptions about the model and its uncertainties but
also analysis incorporating assumptions about measurement strategies.

4.2.1 An Illustrative Example
When discussing problems of uncertainty in complex models, the choice of a simple

example, however desirable for reasons of clarity, is nevertheless restrictive. Moreover,
a great deal of time could be spent in constructing the perfect example ("perfect" in the
sense that it illustrates all the points to be made). However, since the essence of this
paper is the analysis of real, and not hypothetical systems, we shall avoid the possible
sterility and unreality of the "perfect" case and content ourselves with the following
modest example.

Suppose we have a three state-variable model (again, nutrient XI, phytoplankton
x 2, and zooplankton X3) representing a lake system with inflow and outflow (see Figure
26). Let us assume, without going into detail, that over the period of calibration there
was no significant observed zooplankton activity and that consequently, as indicated by
the line of demarcation in Figure 26, the part of the model associated with zooplankton
activity is relatively uncertain. In quantitative terms, this assumption might imply for
the prediction period the following error covariance assignments:

(a) For the initial state estimation errors, pS(tf It f ), variances equivalent to coefficients
of variation of, say, 5% for the nutrient and phytoplankton states and 100% for
the zooplankton state.

(b) For all the model parameter estimates associated with zooplankton activity
(phytoplankton grazing, excretion, and zooplankton mortality), error variances,
pP, equivalent to coefficients of variation of 100% and for the remaining parame
ters coefficients of variation of 10%.

(c) For the three input disturbances (influent discharge, influent nutrient, and
phytoplankton concentrations), constant error variances, S, equivalent to
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FIGURE 26 Illustrative example system for the analysis of prediction error propagation; the zoo
plankton dynamics are assumed to be (relatively) highly uncertain (Le., surplus content).

coefficients of variation of 4%, 16%, and 10%, respectively, for the initial input
values U(tf).

This last assignment is tantamount to the assumption that the disturbances expected for
the future will be essentially similar to those observed in the past. The input variations
actually used for this example are shown in Figure 27; they are intended to reflect the
nature of the "smooth", unexceptional changes characteristic of the earlier discussion of
Figure 4 in Section 3.1.1. There is a slow fall in the influent nutrient concentration, a
temporary rise in the "seed" phytoplankton population of the inflow, and the influent
discharge exhibits a response to a precipitation event. Prediction under substantially
changed conditions will thus amount to assessing the effects of significant zooplankton
activity in the future.

There are, in fact, a host of items emerging from the discussion of Section 3 to
which the present example could be addressed. We shall, however, concentrate on
illustrating essentially two groups of problems:
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FIGURE 27 Input variable variations (u) for the illustrative example.
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Problem 1. If the activities of zooplankton have not been significantly observable
in the past, then their inclusion in the model is equivalent to an "act offaith". In other
words, as with the discussion of the Streeter-Phelps assumptions for the example of
the Bedford-Ouse study in Section 3.1.1, there was no information in the historical
data with which to estimate the parameters associated with zooplankton activity
and such behavior, if it occurred, was dominated by other modes of behavior. The
model thus contains highly uncertain surplus content (a term introduced in Section
3.1.2).

Problem 2. As a minor variation on the theme of Problem I, we may point out
that the model, since it contains surplus content, is probably over-parametrized and will
have suffered from problems of identifiability. In order to illustrate this point it is neces
sary to be somewhat more specific. Let us introduce the following expression from the
representation of the zooplankton dynamics in the model

(17)

where a4 is the growth-rate constant for zooplankton [in day-l (10-3 gm -3 phyto
planktonfl], as is the zooplankton death-rate constant (day-l), and a6 is the fraction
of the phytoplankton component absorbed into the zooplankton cells. The term 'Y is
therefore a lumped (growth-death)-rate parameter and typically, while reasonably
accurate estimates for 'Y might be obtainable during calibration (given suitable data),
it is highly unlikely that a uniquely "best" combination of estimates for a4, as, a6 is
identifiable. (This is really the same as the problem in the examples of Bierman et a1.
(1980) and Halfon (1979b), which were discussed in Section 3.1.2.) Many combinations
of values for a4, as, and a6 give the same value of'Y and, from the point of view of the
observed zooplankton dynamics, the model reponse is probably more sensitive to the
value of 'Y, and not a4, as, or a6. A characteristic result of such problems of identifiability
is that covariances among the estimation errors of different parameters are very significant
(see for example, Di Toro and van Straten, 1979; van Straten, 1983; and Young et aI.,
1980).

It is the implications of these two problems, which are intrinsic to the process of
model calibration, that are important for the illustrative example of prediction error
propagation.

Figure 28 shows the state variable trajectories and the propagation of prediction
errors when the pattern of future input disturbances from Figure 27 is assumed. Two
cases are considered: a base case (scenario I) defined by the covariance assignments
introduced above; and a case (scenario 2), which is otherwise identical with the base case,
except for the complete removal of zooplankton activity from the model. It is clear that
uncertainty deriving from the estimates of parameters associated with zooplankton
activity (in scenario 1) dominates the propagation of errors, providing a rather dramatic
illustration of the previous discussion of Figure 25. Confidence in the phytoplankton
prediction is entirely eroded as soon as zooplankton grazing becomes significant although
some measure of reasonable "predictability" for the base case is restored toward the end
of the prediction period when zooplankton activity subsides. The second set of pre
dictions in Figure 28 is a strikingly confident statement about the future and one could
tentatively conclude that toward the end of the prediction period the two scenarios for
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FIGURE 28 Scenarios 1 and 2 for the illustrative analysis of prediction error propagation: nominal
reference trajectories are given together with the bounds representing (±) the standard deviations of
the prediction errors. The shaded areas represent these bounds for scenario 2; all units for the three
state variables are expressed in terms of the nutrient element contained in each compartment.
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FIGURE 29 Scenarios 3 and 4 for the illustrative analysis of prediction error propagation: nominal
reference trajectories are given together with the bounds representing (±) the standard deviations of
the prediction errors. The shaded areas represent these bounds for scenario 4; all units for the three
state variables are expressed in terms of the nutrient element contained in each compartment.
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TABLE 1 Parameter estimates and parameter estimation error covariance assumptions for Problem
2 (see also Figure 29).

Parameter Estimate

Scenario 3 Scenario 4

Correlation coefficient of estimation errors

"'.
"'s
"'.
X,(tf1tf)

'Y

0.05
0.03
0.1
5.0

-0.005

0.02
0.025
0.2
5.0

-0.005

p(a. , 6. s) = 0.4
p(6.., 6..) = - 0.5
p(6. s' 6..) = 0.33

prediction are distinctly different, an important point to which we shall return in the
following section.

Figure 29 deals with Problem 2 as defined above. For these two sets of predictions
(scenarios 3 and 4) the parameter estimates assumed for eqn. (17) and their associated
error covariances are given in Table 1. Scenario 3 is identical with scenario 1, the base
case, except for the assumption of nonzero covariances among the parameter estimation
errors. Scenario 4 has the same estimation error structure as scenario 3 but different
parameter estimates for 0:4, 0:5 , and 0:6 (which, nevertheless, give the same value for
r) and estimation error variances adjusted to maintain coefficients of variation of 100%
for these parameter estimates. Note that a comparison of scenarios 1 and 3 in Figures
28 and 29 demonstrates the reduction in prediction error magnitudes due to the assump
tion of correlated parameter estimation errors. As expected, in this illustration the
nominal trajectories (means) of the predicted state variables are distinctly different.
Had these been confident, or even deterministic predictions, it might have been con
cluded that the ambiguities of model calibration result in unavoidably ambiguous state
ments about the future. As it is, however, the uncertainty in both scenarios is sufficient
that such a conclusion is not justified, a point which otherwise may not have been
apparent if the prediction errors had not been computed.

4.3 A Dilemma

This simple example attempts to show two things: that the results of a calibration
exercise, which depend partly upon the nature of the model and partly upon the nature
of the data, can have a decisive influence on the propagation of prediction errors; and that
the association of prediction errors with a prediction can influence one's judgment about
the significance of differences among alternative statements about future behavior patterns.

Referring to Figure 30, let us assume that the set of behavior patterns M1 belongs
to a model characteristic of the class of large simulation models - the type of model that
simulates a much greater variety of behavior patterns than has actually been observed in
the historical field data, A (i.e., a large part of M1 does not intersect with the set A). For
such a model the many parameters not associated with those modes of behavior in the set
A (Le., that part of M1 lying outside A) would have, as we have already discussed, rela
tively large a posteriori estimation errors. The complement, or opposite, of the large
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FIGURE 30 Uncertainty and prediction after identification: A is the set of historically observed
patterns of behavior; M, is the set of behavior patterns simulated by the typical "large simulation
model"; M2 is the set of behavior patterns simulated by the small fully-identified model; F is a set
of possible fu ture behavior patterns of the actual system.

simulation model is the more compact kind of model that would typically result from
the "not-so-dominant" approach to model building discussed in Section 3. Optimistically,
this latter fully identified model might be represented by the set M2 in Figure 30. Its
a posten'on' parameter estimates ought to be much less uncertain than many of those of
M1; and since this model contains no surplus content, the set M2 is contained completely
in the set A.

How might these two models perform when applied to the problem of prediction?
The most interesting and challenging case to consider is that in which future input dis
turbances of the lake or river, such as different meteorological conditions and modified
effluent discharges, force the variations of water quality into patterns of behavior (say F
in Figure 30) quite different from the historically observed patterns. If our arguments
from Sections 4.1 and 4.2 are sound, then for model M1 it would be expected that
predictions of behavior characteristic of F would be strongly dependent upon highly
uncertain sectors of that model (since M1 () A is disjoint from M1 () F). These pre
dictions would accordingly be highly uncertain. In contrast, would a small model that
captures only the dominant modes of past behavior (as does the model M2 in Figure
30) tend not to predict different future conditions? After all, its parameter values have
been well identified and would thus be associated with relatively small estimation errors.
Hence, given the kind of argument presented earlier, we might be mistakenly confident
about its predictions. There is, for example, no intersection between M2 and F in Figure
30, which suggests that F is outside the scope of behavior patterns simulated by M2 •

We have in fact a dilemma; indeed, it was already foreshadowed in the illustrative
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predictions of Figure 28. With a large model (M!) it may well be possible to predict the
"correct" future, but one would have little or no confidence in that prediction. In contrast,
with a small model (M2 ) it may be that a quite "incorrect" future is predicted, and,
worse still, one might place considerable confidence in that prediction.

Admittedly this dilemma has perhaps been stated in an exaggerated and overly
simplistic fashion. And once again our argument has fallen into the trap of using the
words "large" and "small" to qualify the models developed by their respective approaches.
However, since this discussion relates back to calibration and the problems of surplus
content in a model, such words are not as misleading as they might have been earlier.
The intention of simplification was to sharply define the problem, not to obscure the
inevitable grey areas between the black-and-white statements about the problem. For
example, one might consider the rather provocative extension of Figure 30 represented
by Figure 31. In this case the large simulation model (M!) has a set of behavior patterns
that stretches outside the frame of all possible (true) behavior patterns, P, of the system.
That it to say, M! contains spurious content that has no parallel with reality.

p
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FIGURE 31 Uncertainty, prediction after identification, and spurious content: all sets are as pre
viously defined for Figure 30.

The analysis of prediction error propagation can be viewed as an a posteriori
sensitivity analysis. It provides a check on the relative levels of confidence associated
with the assumptions made in developing, calibrating, and applying a model; and it
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should reveal when, and to what extent, the model's predictions rely upon these assump
tions and upon each component of uncertainty. It ought to be possible to distinguish
among the effects of uncertainty propagated from surplus content in the model, the
effects of unresolved ambiguities of calibration, and the effects of uncertainty associated
with the extrapolation of knowledge about the behavior of laboratory systems to know
ledge about the behavior of the field system.

The major point of the dilemma is that it captures some limiting features of both
the approaches to modeling discussed in this paper.

5 CONCLUSIONS

There has always been uncertainty. Our present concern with it is partly because
it has come to be recognized (or "perceived") as one of the problems in water quality
ecological modeling. Again, as in the opening paragraphs of this paper, reference can be
made to Orlob's review of water quality modeling, where "model reliability" is listed
first among the "areas for improvement" (Orlob, 1983b). Two aspects of the problem
of uncertainty have been dealt with here: uncertainty in the structure of the mathe
matical relationships hypothesized for a particular model; and uncertainty associated
with the predictions obtained from models. These are considered to be closely related
aspects that link together the subjects of model calibration (or system identification)
and prediction. We have also classified approaches to water quality-ecological modeling
into two types, a "dominant" and a "not-so-dominant" approach. To address the con
cerns expressed about the dominant approach in Section 2, we have discussed at length
a complementary alternative, which we call the not-so-dominant approach (Section 3).
Our arguments for linking identification and prediction have then been used to conclude
with a dilemma, which in turn allows us to reiterate some the complementary features
of these two approaches (Section 4).

Our main concern with the dominant approach to water quality modeling is that
it tends to ignore the deeper significance of model calibration. Calibration should not
be an unimportant afterthought to a model development exercise. It may only be con
sidered in this way if one chooses, as is the tendency with the dominant approach, to
attach great confidence to a priori theory, thereby renouncing much of the questioning
that should accompany calibration. Somly6dy (l981) provides insight into why certain
disciplinary conventions may encourage the view that calibration is not really important.
Model complexity and (apparent) completeness cannot be equated with accuracy. Given
the current limitations of the data available for calibration, larger models, with many
parameter values to be estimated, are likely to lead to hidden ambiguities in the model
predictions. Indeed, it is only in the context of applying a model for prediction that one
can begin to challenge the belief that a large model must be correct - for how (so runs
the rhetorical question) can it be incorrect if every detail of conceivable relevance has
been included? This concern is not restricted to water quality-ecological modeling, but
is encountered in other adjacent fields (see, for example, Kossen, 1979).

The "questioning" process of model calibration, to which such importance is
attached, is what we have called model structure identification. The model is a vehicle
for asking questions about the nature of "reality" and the process of model structure
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identification is ultimately concerned with acquiring understanding about a system's
behavior. For this reason we have examined the equivalence between procedures for
solving the problem of model structure identification and current theories of the scientif
ic method (for example, Popper, 1959). The procedure of Section 3 has two basic features:
(a) the use of recursive estimation algorithms; and (b) "experimentation" with the model
structure to satisfy alternately the two objectives of falsifying confident hypotheses
and creatively speculating about uncertain hypotheses. The notion of "experimentation",
and the idea that the controlled conditions of an experiment can be reconstructed during
the analysis of field data, have considerable appeal, particularly because of the suggested
association with laboratory science (from which, incidentally, many of the extrapolations
inherent in the dominant approach are ultimately drawn). But in a holistic sense it is
difficult to claim, however tempting it may be, that there is one "experiment" and its
complementary "environment". Rather, it is only possible to state that a number of more
or less significant "experiments" are proceeding in parallel. The primary value of the
approach discussed in Section 3 is its ability to provide a means for direct evaluation of
those extrapolations, from laboratory or "equivalent" field systems, characteristic of the
dominant approach. The not-so-dominant approach is certainly not, however, without
its own difficulties. Indeed, there are serious difficulties in absorbing and interpreting
the results from the analysis associated with model structure identification. However,
these difficulties are somewhat independent of the particular approach taken; they
arise fundamentally from the combination of complexity with uncertainty.

The real debate about approaches to modeling is, at least for the purposes of this
paper, more appropriately considered in terms of the question of predicting future
behavior patterns under substantially changed conditions. The arguments employed in
Section 4, however, cannot be divorced from the preceding discussion of calibration
and model structure identification. One of the most important issues in examining the
propagation of prediction errors is the effect of highly uncertain surplus content in a
model. In other words, this is an effect resulting from problems of identifiability where
prior estimation of unique values for the model parameters has not been possible; the
model contains too many parameters in terms of the data available for calibration. The
results of a calibration exercise can have a decisive influence over the propagation of
prediction errors. Equally the association of prediction errors with a prediction can
determine one's judgment about the significance of differences among alternative state
ments about future behavior patterns.

We have closed this paper with a dilemma, the same dilemma as presented in the
much shorter companion paper (Beck, 1981). Its usefulness, for the time being, is the
sharp focus into which it brings the problems from which both the approaches to modeling
suffer. No doubt, it also expresses some of the limits to modeling.
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THE VALIDITY AND CREDIBILITY OF MODELS FOR BADLY
DEFINED SYSTEMS

Peter Young*
Centre for Resource and Environmental Studies, Australian National
University, Canberra (Australia)

INTRODUCTION

If the dictionary definition were the sole criterion, a model would be considered
valid if it was found to be well grounded, sound, cogent, logical, and incontestable.
Similarly, a model would be deemed credible if it was deserving of or entitled to belief,
or if it was plausible, tenable, or reasonable. All of these characteristics are, of course,
desirable in a mathematical model of a physical system; but when used as the basis for
the definition of model adequacy, they are clearly too subjective to provide useful and
rigorous criteria for model evaluation.

In this paper, we will consider validity and credibility as desirable properties of a
model which should follow from close adherence to a systematic and comprehensive
model-building procedure. This systematic procedure is evolved naturally when the
model-building problem is considered within the hypothetico-deductive interpretation of
the scientific method (see, for example, Popper, 1959), and it forms the basis of a
"method theory" for modeling dynamic systems which would appear to have wide appli
cability (Young, 1977). This method theory is concerned not only with mathematical
analysis techniques but also with the successful integration of mathematical analysis and
data collection in whatever form may be most appropriate, whether it be active field and
laboratory experimentation or passive monitoring exercises.

Within this setting, model validity - or, more correctly, conditional validity 
follows the satisfactory outcome of a validation phase of the analysis in which attempts
to falsify the model as a theory of system behavior are found to be unsuccessful. In
contrast, model credibility is a property which depends upon success in all phases of the
model-building procedure from model formulation through model structure identification
to parameter estimation and validation. In this sense credibility remains a somewhat
subjective concept: I believe, however, that whether a model is credible or not will always

* Present address: Department of Environmental Science, University of Lancaster, Lancaster LAI 4YQ,
UK.



70 P. Young

depend, to some extent, on the background of the adjudicator. For example, if the
scientific establishment is firmly committed to a particular type of model for a physi
cal system, then it may at first be difficult for the systems analyst to gain acceptance
and credibility for a less conventional representation, even if the model-building
procedure has been rigorous and is seen to conform with the basic tenets of the scientific
method.

The modeling procedure described in this paper can be applied to any dynamic
system, whether man-made or naturally occurring, but it is designed specifically for sys
tems which can, in some sense, be considered badly defined. This poor definition usually
arises for two major reasons. First, the size and complexity of many natural systems, such
as those encountered in environmental and economic research, are such that the mecha
nisms governing the change in the observed system variables and their interrelationships
are rarely fully understood a priori. There can, in other words, be a basic ambiguity;
a situation in which a number of possible explanations for the observed behavior seem
feasible but where little a priori evidence exists as to which of these explanations is the
most plausible. The monodisciplinary expert may well be able to list the various mecha
nisms that could be operative in that part of the system with which he is acquainted,
but he will be unlikely to proffer advice on which of these mechanisms are likely to
dominate the behavior of the entire system under study.

Such limitations in a priori knowledge are not, of course, restricted to complex
natural systems: research into many physical and biological processes often starts from
a position in which little prior knowledge is available. But in the case of complex natural
systems the position is exacerbated by a second problem - the difficulty, if not impossi
bility, of performing planned experiments. This difficulty, which is perhaps the major
difference between research in the environmental and social sciences and research in the
more conventional physical and biological sciences, is compounded by the associated
problems entailed in even collecting adequate quantities of in situ data during the
"normal operation" of such systems. In addition, normal operational data, even when
available, are likely to be scarce and subject to some degree of uncertainty. Thus, the
analyst with prior experience in the physical sciences might expect to improve this
scant a priori knowledge of the system by careful analysis of reasonable-quality, planned
experimental data to yield a much improved a posteriori situation. In practice, however,
he is forced into the position of attempting to explain the troublesome ambiguities by
reference to very restricted observational sets using conventional, and not necessarily
appropriate, analytical techniques.

Faced with the dilemma of the badly defined process, systems analysts have
attempted various different approaches to the problem. These approaches are often
dictated almost completely by the specific background experience of the research worker,
and, for this reason, there seems to be no unified approach, merely a collection of ad hoc
procedures with various degrees of sophistication and complexity. To the outside
observer at least, the only thing the procedures seem to have in common is their use of
highly esoteric mathematics and an inevitable dependence upon the electronic computer.
Certainly it is the complicated, although sometimes rather naive, computer-aided
exercises in model-building and systems analysis that have attracted most attention
in recent years and that seem most to typify the "systems approach". Furthermore it
is these same exercises that have contributed most to the recent, widespread criticism
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of applied systems analysis and environmental model-building (see, for example, Hoos,
1972; Brewer, 1973; Ackerman et al., 1974; Philip, 1975; Berlinski, 1976).

There seem to be two main reasons for the present rather unsatisfactory state of
affairs. First, the applied mathematicians who have taken a major part in the development
of systems methodology appear sometimes to be attracted more by the elegance of the
mathematical tools rather than the need to solve adequately the real problems at hand.
Second, it is all too easy to use a computer, particularly for the "simulation modeling"
of complex dynamic system behavior, and to forget the true nature of the problem in
such exercises: the complex simulation model and the subsequent analysis are defined
within the confines of the available mathematical methods and computer programs,
while the many statistical problems of model-building often receive only cursory attention.
It is almost as if the model has become more important than the problem at hand, even
that the model in some sense is the system.

This problem is exacerbated by a tendency for most simulation-modeling method
ology to be based on a rather restricted "reductionist" philosophy. Here the system is
repetitively subdivided into elemental components that are assumed to have physical
significance to the modeler and can be analyzed as relatively separate entities. Having
evaluated the "physical" parameters associated with each of the elemental models,
usually by experimentation either in situ or in a laboratory, the modeler then reassembles
the model components in a manner which he and his advisers perceive to be appropriate,
with the numerical values for the parameters inserted in accordance with this pre
conceived, but usually untested, perception of the system and its behavioral mechanisms.

Such a reductionist approach is rarely, however, accompanied by sufficient evalu
ation of the resulting model as a complete entity. "Holistic" validation (see, for example,
Rigler, 1976) is normally restricted to exercises in deterministic "model fitting" in which
overall "calibration" of the model is achieved using manual or automatic methods of
parameter "tuning" or "optimization"; an approach that is sometimes enhanced by
deterministic sensitivity analysis* in which the sensitivity of the model outputs to vari
ations in the parameters is examined using various analytic procedures (see, for example,
Miller et al., 1976).

Although such analysis is perfectly respectable, it must be used very carefully;
the dangers inherent in its application are manifOld, but they are not, unfortunately,
always acknowledged by its proponents. It is well known that a large and complex
simulation model, of the kind that abounds in current ecological and environmental
system analysis, has enormous explanatory potential and can usually be fitted easily to
the meager time-series data often used as the basis for such analysis. Yet even determin
istic sensitivity analysis will reveal the limitation of the resulting model; many of the
"estimated" parameters are found to be ill defined and only a comparatively small subset
is important in explaining the observed system behavior.

Of course, over-parameterization is quite often acknowledged, albeit implicitly, by
the reductionist simulation model-builder. Realizing the excessive degrees of freedom

* Stochastic sensitivity analysis, in which sensitivities are calculated in relation to stochastic variations
in the parameter, usually by resort to Monte Carlo analysis, is preferable (see Section 2.1) but is not
currently very popular, probably because it demands more comprehensive data analysis.
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available for fitting the model to the data, he will often fIx the values of certain "better
known" parameters and then seek to fit the model by optimizing the chosen cost function
(usually the sum of the squares of the difference between the model outputs and the
observations) in relation to the remaining parameters only, and these are normally few.
In this manner, the analyst ensures that the cost function-parameter hypersurface is
dominated by a clearly defined optimum (a minimum in the least-squares case), so that
estimation of the parameters which defIne the optimum becomes more straightforward.

But what is the value of this optimization exercise in relation to the specification
of the overall model? Clearly a lower-dimensional parameter space has been located which
allows for the estimation of a unique set of parameter values. However, this has been
obtained only at the cost of constraining the other model parameters to fixed values that
are assumed to be known perfectly and are defined in relation to the analyst's prior
knowledge of the system. As a result, the model has a degree of "surplus content" not
estimated from the available data, but based on a somewhat ad hoc evaluation of all
available prior knowledge of the system and colored by the analyst's preconceived notions
of its behavioral mechanisms.

On the surface, this conventional simulation-modeling approach seems quite
sensible; for example, the statistician with a Bayesian turn of mind might welcome its
tendency to ·make use of all a priori information available about the system in order to
derive the a posteriori model structure and parameters. On the other hand, he would
probably be concerned that the chosen procedures could so easily be misused: whereas
the constrained parameter optimization represents a quantitative and relatively objective
approach, it is submerged rather arbitrarily within a more qualitative and subjective
framework based on a mixture of academic judgment and intuition. Such a statistician
would enquire, therefore, whether it is not possible to modify this framework so that the
analyst cannot, unwittingly, put too much confidence in a priori perceptions of the
system and so generate overconfidence in the resulting model.

Consideration of the modeling problem from this kind of Bayesian statistical stand
point is the stimulus behind the present paper. The need to choose a model that is
efficiently parameterized and compatible with the identifiability of the system (in relation
to the available data) is a major requirement of the model-building procedure discussed
here: it is clearly foolhardy to attempt the statistical estimation of parameters in a model
if the model has excess content (in the form of surplus structure and/or parameters)
which cannot be validated against the observed data. However, it is possible to blend the
a priori information on the system and the subsequent analysis of the time-series data
into an objective model-building exercise aimed specifically at either obviating these
difficulties or, at least, identifying where the limitations of the resulting model may
reside. In this manner, the main impediments to the use of the model, either as a pre
dictive device or for control and management system design, will often become more
apparent and the possibility of its misuse in such applications will be minimized.

Given the Bayesian stimulus behind the proposed model-building procedure, it
is appropriate that the main statistical tool used in the analysis suggested here can be
considered as the physical embodiment of Bayesian estimation, namely the "recursive"
or "probabilistic iterative" estimation algorithm (see for example, Young, 1976b, 1981).

Recursive estimation in its simplest recursive, least-squares form was first developed
at the beginning of the nineteenth century by the famous mathematician K.F. Gauss and
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described in his collected works (1821-1826), which appeared under the title Theoria
Combinationis Erroribus Minimum Obnoxiae (Bertrand, 1855; also see, for example,
Sprott, 1977; Young, 1981). In the Theoria Combinationis, Gauss shows how it is
possible "to find the changes which the most likely values of the unknowns [the parame
ter estimates] undergo when a new equation [observation] is adjoined and to determine
the weights [standard errors] of these new determinations" (with our comments in square
brackets). In other words, and to utilize more contemporary terminology, he developed
a statistical algorithm for sequentially or recursively updating the least-squares estimates
on receipt of additional data.

The recursive methods of time-series analysis used in the present model-building
procedure are logical successors to the algorithms of Gauss and also owe much to later
work on recursive estimation by Plackett (1950) and Kalman (1960). In their latest
form (Young, 1976a; lakeman and Young, 1979; Young and lakeman, 1979, 1980) they
represent a general recursive method of time-series analysis for time-series models of the
"errors-in-variables" type (see for example, Kendall and Stuart, 1961). As such they
provide a robust and generally applicable procedure for identifying and estimating
parametric change in stochastic models of dynamic systems.

In subsequent sections we will see how these recursive methods of time-series
analysis can be of major importance in both the identification of an efficiently parame
terized model structure and the estimation of the parameters which characterize this
structure. In this sense, they provide the methodological cornerstone of the proposed
systematic approach for modeling badly defined systems.

2 THE PHASES OF MODEL-BUILDING

If it is to be formulated in accordance with the scientific method, a model-building
procedure must start with an analytical phase aimed at generating working hypotheses
about the nature of the system under study. Normally, as indicated in Figure 1, such
hypotheses will themselves be in the form of mathematical models which (a) attempt to
embody all prior information and knowledge about the system, (b) make use of all
appropriate historical data, and (c) are related closely to the objectives of the model
building exercise.

2.1 Model Formulation and the Generation of Working Hypotheses

In the early stages of an investigation into a badly defined system, time-series
data are likely to be scarce. In this situation, the only way to progress is to utilize some
form of simulation model in the hypothesis-generating role. "Simulation model" here
implies one whose structure and parameters are explicitly related to the physical, chemi
cal, biological, or socioeconomic processes that are assumed, a priori, to characterize the
system.

If the selected simulation model is relatively simple and parsimonious in its
parameterization, then its use as a hypothesis-generating device is fairly straightforward,
as will be seen in later sections. Indeed, such a simulation model could form a basis for
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the subsequent exercises in model-structure identification and parameter estimation
shown in Figure 1. But if the model is based on normal reductionist principles then it
may, as pointed out in the previous section, be rather complex, with many parameters,
state variables, and nonlinear relationships.

I maintain that such complex models can only be useful in the initial analysis of
badly defined systems if they are considered within a probabilistic context. That is, given
the model and the inherent uncertainties in structure and parameter values, the only
meaningful and safe analyses must focus on the probabilities of various behavioral
patterns. Most importantly, they must focus on the probable structures and parametric
relationships that appear consistent with the dominant modes of behavior associated
with the "problem" under consideration (Young, 1977).

If this notion is formalized, it implies that the simulation model should not be
evaluated as a single entity; in other words, not as a fixed structure characterized by a
set of constant parameters defined in terms of point-estimates. Rather the parameters
should be considered as inherently uncertain and, therefore, definable only in terms of
statistical probability distributions. This Bayesian interpretation leads naturally to the
study of a whole ensemble of models defined by the various selected structures and their
associated parametric probability distributions.

In order to pursue this idea, consider a general class of systems which can be
represented by the following, nonlinear, state-space differential-equation representation
of the system in continuous time:

(1)

Here,

t = time;
x = [XI, X2, ... , Xn]T is an n-vector of state variables which describe the system

behavior in the "state space";
a = [aI, a2, ... , aq ] is a vector of (possibly time-variable) parameters or coef

ficients which characterize the system in the state space;
U C = [u I, U2, ... , um]T is an m-dimensional "control input" vector whose elements

are capable of manipulation in some manner;
ud = [d I, d 2 , •.• , ddT is an {-vector of deterministic* but uncontrollable dis

turbances which affect the system; and
~ = [~I, ~2, ... , ~n]T is an n-vector of stochastic disturbances whose statistical

properties mayor may not be known, depending on the level of a priori
information available about the system.

It will be noted that eqn. (I) is an ordinary differential equation or "lumped-parameter"
representation, which can be contrasted with the partial differential equation or

* In the present context "deterministic" is used loosely to mean measurable in some manner; such
disturbances are equivalent to the "exogenous" variables of socioeconomic systems (see, for example,
Johnston, 1963).
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"distributed-parameter" alternative which is more popular in some areas of environmental
systems analysis. This reflects my view that the lumped-parameter description is of
greater practical utility in systems analysis aimed at solving control or management
problems; it also serves to emphasize that it is the modeling of badly defined systems
for such control applications that is the principal concern of this paper.

The vector function Ii in eqn. (1) is nominally nonlinear and nonstationary 
assumptions which reflect the idea that badly defined systems will, in general, exhibit
nonlinear and possibly changing behavioral patterns. The continuous-time formulation
is chosen because many physical relationships, such as mass or energy conservation laws,
are stated more naturally in continuous time; thus it is likely that a priori assumptions
about the nature of physical environment problems, for example, will fit more easily
within the continuous-time framework. This is not a limiting assumption, however,
since it is straightforward to consider the representation of system (1) in discrete time
(see Young, 1977).

In relation to eqn. (1), the probabilistic approach requires the evaluation of model
behavior for different vector functions Ii with the associated parameter vector &

represented in terms of the probability distribution which is chosen to encompass the
complete range of "possible" values for the coefficients that compose the vector. In
addition, because the disturbance vector ~ allows for random disturbances to the system,
it is clearly necessary to allow for this input uncertainty in the evaluation of the model.
It might also be desirable, depending upon the circumstances, to consider the model
behavior for different deterministic inputs U C and ud , which are representative of the
kind of inputs met in practice. For example, if ud represented a vector of rainfall inputs
to a river water-quality model, then "wet", "dry", and "average" conditions could be
accommodated with different representative deterministic sequences (see, for example,
Whitehead and Young, 1979).

This conceptual base of an uncertain or stochastically defined simulation model
can be exploited in methodological terms by recourse to Monte Carlo simulation analysis.
Put simply, such analysis consists of repeated solution of the model equations with the
uncertain parameters and inputs specified by sampling at random from their assumed
parent probability distributions. This analysis results in a large number of random simu
lations (or realizations), each providing a unique state trajectory x(t). The set of tra
jectories is then examined statistically to investigate the properties of the whole
ensemble of simulation models; that is, statistical procedures are utilized to infer certain
properties of the ensemble from the finite sample of trajectories obtained from the
random simulation experiments. It is, in other words, a method of bypassing the diffi
culties associated with the analytic solution of nonlinear, stochastic differential equations,
albeit at some cost in computational terms.

The general aspects of the use of Monte Carlo methods to investigate the properties
of an ensemble of simulation models are discussed by Spear (1970). Monte Carlo
methods have been used previously in environmental and socioeconomic systems analysis
(see, for example, Barrett et al., 1973; Young et aI., 1973; Whitehead and Young, 1979)
but, in these earlier approaches, the ensemble properties were considered mainly in terms
of the propagation through time of the probability distribution associated with the state
trajectory x(t) itself. Here, an alternative procedure is proposed in which the state tra
jectory x(t) obtained from each randomly selected solution of the model equations is
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examined to see if it is characterized by a behavioral pattern relevant to the problem
under consideration. For example, in a socioeconomic simulation, the occurrence of high
inflation simultaneously with a stagnant economy and high unemployment would define
the existence, for that run, of the "stagflation" problem. If the state trajectory does
appear to exhibit a problem behavioral pattern, then it is considered that the model
parameter vector Q: does give rise to "the behavior B"; alternatively, if x(t) does not
exhibit such characteristics, then 0: is associated with "not the behavior E". The end
result is N simulation runs in which M parameter vectors led to the behavior and N - M
did not.

This kind of Monte Carlo analysis is described in detail by Spear and Hornberger
(1978). For present purposes, it suffices to say that the aim is to ascertain which elements
of vector 0: are important in giving rise to the problem behavior. This is achieved by
evaluating the sample cumulative probability distributions associated with these elements
(the model parameters) in both the "behavior set B" and the "not the behavior set E".
A parameter is then deemed important if there is a statistically significant difference
between the two distributions and not important if this difference is statistically insig
nificant. The two procedures for assessing the significance of differences in this sense are,
first, the application of conventional nonparametric tests such as the Kolmogorov
Smirnov two-sample test and the Mann-Whitney test (see, for example, Spear, 1970),
and second, the use of principal-component methods based on eigenvalue-eigenvector
analysis of the covariance matrices associated with the parameter vectors (see, for
example, Kittler and Young, 1973).

Evaluation of the results of the Monte Carlo analysis in the above manner should
yield a better understanding of the system in terms of those mechanisms and parameters
that appear important to the problem at hand. Such additional insight can be useful in
a number of ways. Most importantly, it can lead to the specification of hypotheses
about the system behavior that can be tested by further planned experiments or moni
to~ing exercises; in other words, it can help in the planning of further data collection in
the study of the system. As will be seen, it can also indicate to the analyst the possible
dominant modes of behavior of the system, information that is of crucial importance in
subsequent stages of model-building.

Of course, since the analysis is not limited to a single a priori model structure, it
may result in a number of different hypotheses, each of which will need to be tested,
and a number of possible "dominant mode" descriptions, each of which will need to
be evaluated during subsequent time-series analysis. It is seen, therefore, that the Monte
Carlo me thodology is indeed a very effective hypothesis-generating device which is
based on a relatively objective analysis of all a priori information available about the
system. This latter point helps to emphasize that the simulation models developed in this
initial stage of model-building should not be considered in the same light as more con
ventional deterministic simulation models. Also, for the reasons outlined in the previous
section they will rarely, in themselves, form the basis for subsequent exercises in time
series analysis. In the case of badly defined systems, I strongly advocate that mechanistic
simulation models should be viewed principally (although not entirely) within the
ensemble context. As such, their use in time-series terms is mainly as a vehicle for indi
cating dominant-mode mechanisms and descriptions - descriptions which will, in
general, be much simpler than the original simulation-model description and can,
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therefore, provide a starting point in the identification of appropriate time-series model
structures.

2.2 Time-Series Model Identification and Estimation

Time-series analysis is a systematic, statistically based approach to the problem of
model development which provides an objective method of constructing both black-box
(input-output) and mechanistic (internally descriptive) models from time-series data.
Despite assertions to the contrary, time-series analysis is much more than just model
"fitting", as currently practised in many areas of systems analysis and simulation
modeling. This is emphasized by the fact that, in time-series analysis, the degree to which
the model fits the data is not, in itself, used as an indication of model adequacy: other
factors, such as the estimated uncertainty on the model parameters, are equally impor
tant and are, as we shall see, an indispensable part of the analysis (see Young et aI.,
1980).

The use of time-series methods as the basis for modeling badly defined dynamic
systems has been described at length by Young (1977). As in the previous subsection,
therefore, the procedures will not be discussed in depth. Rather, an attempt will be made
to explain their role in the overall modeling process and to show how they follow quite
naturally from the initial Monte Carlo based model-formulation and identification
exercises.

It has been shown how the stochastic simulation-model experiments can reveal
in the assumed model those parameters which appear important in relation to the
"problem" behavior under consideration. In this way, these experiments can also help
the analyst to appreciate better the relative importance of the various dynamic mecha
nisms in the model, to a point where he is able to identify those dynamic modes of
behavior that seem dominant in characterizing the problem. Young (1977) suggested
that it is these dominant modes of behavior that are important in the subsequent time
series analysis for, if the model is indeed representative of the system, then it is these
modes that will be most "identifiable" from the observed data.

There is no proof at present tha t such a dominant-mode theory of dynamic behavior
is generally applicable but experience with practical dynamic systems suggests that it is a
reasonable conjecture; indeed it could be argued that the definition of a "problem"
behavior is, in itself, an acceptance of some form of modal dominance. But whether or
not the analyst subscribes to such a theory he will, in any specific case, be able to examine
the model for evidence of such behavior. As will be shown in a subsequent example,
evidence of this type can be obtained by quite straightforward exercises in systems
analysis applied to one of the model realizations that exhibit the problem behavior.
This may entail both evaluation of the model structure (for example, by linearization)
and analysis of the model response x(t) (for example, using time-series methods).

In effect, this analysis of the model in systems terms is aimed at testing the
hypothesis of modal dominance. If the hypothesis is confirmed (as I feel it will be most
of the time) then the analyst will have obtained some ideas about possible simple forms
of the model which can be used as the basis for further time-series analysis on data from
the system itself. If there appears to be no evidence to support the hypothesis (which
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I feel is unlikely in general) then the analyst will be no worse off and he should at least
have a better appreciation of the dynamics of the simulation model*.

The coordinated systems-analysis-modeling-data-collection strategy whose virtues
are extolled here should mean that, concurrent with the simulation modeling and systems
analysis, exercises in relevant data collection will have been planned and initiated. When
these data on the system become available they will allow the analyst to progress one
step further in his model-building: namely to the identification of a suitably identifiable,
time-series representation of the system.

A simple dominant-mode characterization of the simulation model provides an
ideal starting point for time-series analysis, the first stage of which is aimed at identifying
a dynamic model of the dominant modes associated with the system itself. In other
words, having tested the hypothesis that the simulation model can be represented simply
in dominant-mode terms, I suggest that the analyst should now proceed to test the
hypothesis that such representations are appropriate to the real system. The result of
this analysis is the identification of a time-series model structure which may be linear
or nonlinear in dynamic terms, depending upon the nature of the system. It will, how
ever, normally be characterized by a small set of unknown parameters which need to be
estima ted during the subsequent parameter-estimation phase of the analysis.

The methodology of time-series model structure identification suggested by Young
(1977) is based on the use of recursive estimation procedures. The model structure is
then considered "well identified" if it simultaneously satisfies the following require
ments:

(1) The recursive estimates of assumed time-invariant parameters are themselves
indicative of time-invariance and the estimates of assumed variable parameters
have direct physical interpretation.

(2) The covariance matrix of estimation errors associated with the estimated
parameters indicates that there are no problems of over-parameterization.

(3) The model structure satisfies certain statistical identification criteria based on
test statistics associated with its ability both to explain the time-series data and,
at the same time, to possess well-defined parameter estimates - these identifi
cation criteria and their application are discussed fully by Young et al. (1980).

(4) The estimated stochastic disturbances ~ are purely stochastic in form and have
no systematic components attributable to some physical aspects of the system
behavior.

(5) The residual-error sequence or "innovations" process associated with the model
possesses "white noise" properties and is statistically independent of the deter
ministic inputs U C and ud .

* I would go further and suggest that this kind of systems analysis applied to the simulation model
is a sine qua non for success in any simulation-modeling exercise applied to a badly defined system:
it would certainly help to avoid some of the more naive exercises in simulation modeling that currently
abound in the literature. An excellent example of its value is the analysis of the Forrester world model
by the "Globale Dynamica" Group at the University of Eindhoven (see, for example, Rademaker,
1973; Thissen, 1978).
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Put simply, this identification analysis is aimed at producing a model structure which
has a satisfactory physical interpretation, and is identifiable from the available time
series data in the sense that it can be characterized by a unique set of well-defined
parameter estimates. Implicit in these specifications is the requirement for a parametrically
efficient model representation and the avoidance, therefore, of over-parameterization.

The evaluation of the recursive estimates is a most important aspect of the above
identification analysis. Significant variation in the estimated parameters can arise for
three main reasons:

(a) The dynamic behavior of the system is changing over the observation interval
(Le., the system is nonstationary).

(b) There are nonlinearities associated with the system behavior but not present
in the mathematical model.

(c) The model is over-parameterized so that the parameters are poorly defined 
as a result, the recursive estimates tend to "wander" along the indeterminate
valley-like surfaces which characterize the criterion function-parameter hyper
surface in this over-parameterized situation (in this situation the model always
fits the data well, with high coefficients of determination, but its parameters
are characterized by high levels of uncertainty).

The identification procedure in stages (1)-(3) above is designed to eliminate the
occurrence of (c) by removing the possibility of over-parameterization. Any remaining
recursively estimated parameter variations are then examined to discover whether they
are statistically significant and, if so, whether they arise because of (a) or (b), or a
mixture of both. The model structure is then modified accordingly until the existence
of a set of well-defined and, if possible, constant-parameter estimates is established.

Estimation of the parameters that characterize the model structure finally identi
fied is a fairly straightforward exercise and numerous estimation procedures can be
utilized (see, for example, Young, 1981). As pointed out in Section I, however, the
recursive instrumental variable (IV) techniques provide what appears to be currently the
most flexible approach (see, for example, Young, 1974, 1976a; Jakeman and Young,
1979; Young and Jakeman, 1979, 1980) since they are statistically sophisticated yet
robust and simple in application terms. In addition, as we have seen, their recursive for
mulation makes them useful in the previous identification phase of the analysis (Young,
1977). Also, recursive smoothing versions of the IV algorithms are now available (Kaldor,
1978; Young and Kaldor, 1978) which can enhance still further the time·varying esti
mation potential of the IV method.

Whatever estimation procedure is used, however, the result will be a set of estimates
of the parameters characterizing the identified dominant-mode model structure, together
with some indication of the uncertainty associated with these estimates (usually in terms
of an estinlation error covariance matrix). If the identification and estimation analysis
has been successful then this set of estimates should represent either a low-dimensional
or, in the best circumstances, a minimum-dimensional representation of the tinle-series
data. In other words, the analysis will represent a data-reduction exercise in which the
useful information in the data has been compressed into a few important and well
defmed constant-parameter estimates. Moreover, these estimates will normally have
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direct physical significance because of their interpretation within the physically meaning
ful dynamic model structure. This could help substantially in establishing the overall
credibility of the model and should aid in its use as a tool in control and management
system design.

2.3 Times-Series Model Validation

The final and continuing stage in model-building is validation; here the model's
forecasting ability is evaluated on data other than those used in the identification and
estimation studies. If the model continues to forecast well over this test data interval,
it is assumed that it is conditionally acceptable in the sense that, as far as it is possible
to test it, the model see'ms satisfactory.

Validation is a continuing procedure since the model will need to be reassessed in
the light of future developments and additional data. If major changes in the system
take place, for instance, it is likely that the model will need to be modified because it
will not necessarily mirror the changed dynamic behavior in the new situation. Never
theless, the continuing process of model assessment based upon a supply of new data
should indicate whether the model has become questionable in any sense and will, in
these circumstances, indicate the need for further model identification, estimation,
and validation. In such a situation, the recursive nature of the estimation algorithms
will greatly facilitate the process of model reassessment, a process which could entail
simply updating the model parameters, but which might require changes in the basic
model structure.

The inherently stochastic nature of the model discussed in the previous section also
helps considerably in the continuing process of model assessment because it allows for
the application of statistical tests regarding the model's suitability. Such tests can help
to remove some of the more subjective judgments which are often encountered with
conventional model-building procedures.

Of course, the only real validation of a model is that it satisfies the purposes for which
it was intended, in other words, that it "works" in practice. It is hoped that by going
through the systematic procedures suggested here the analyst will maximize the proba
bility that the model will be acceptable in this sense. But this can never be guaranteed
in the case of badly defined systems; the analyst must, unfortunately, "wait and see".

2.4 Model-Building and the Scientific Method

Before discussing practical examples, it is worthwhile stressing the relationship
between the model-building procedure discussed in previous sections and the scientific
method (see, for example, Popper, 1959). Model formulation is simply the formulation
of hypotheses about the nature of the system; model structure identification and parame
ter estimation represent initial steps in the deductive procedure that is used to test these
hypotheses against data; model validation is the final step in that deductive procedure in
which the analyst attempts to "falsify" the model (or theory) of behavior and accepts the
conditional validity of the model if such attempts fail.
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It may seem trite and obvious to draw this analogy but it seems necessary. Often
simulation modeling of badly defined systems, as at present practised, does not neces
sarily conform to the principles of the scientific method; indeed I regard this limitation
of many simulation-modeling exercises as the main reason for their failure to be fully
successful in practical terms.

Too often, reductionist philosophy is misused in simulation modeling: the model
structure is assumed to be known a priori and all subsequent analysis accepts this
assumption, usually without serious question. Thus, the hypothesis that the model
structure is correct is not tested adequately, the checks and balances of the scientific
method tend to be bypassed, and surplus content within the assumed model structure
is clearly a possibility. By pursuing the approach discussed here, however, serious con
sideration of the model structure in statistical terms becomes an important aspect of
the analysis and the likelihood that the model structure is incorrect is minimized. At
the very least, it should be possible for the analyst using this line of approach to identify
and be aware of any surplus content and make allowance for this in any subsequent
use of the model.

Note that I am not advocating here the elimination of speculative simulation
modeling. On the contrary, there is no doubt that such modeling can be an extremely
useful tool in applied systems analysis. Rather I am warning of the dangers inherent in
the blind use and acceptance of such models, and emphasizing the need for greater care
both in the development of simulation models for badly defined systems and the inter
pretation of the results obtained from these results.

3 APPLICAnON OF THE MODELING PROCEDURE

The efficacy of a particular analytical approach to a complex problem can only
be properly evaluated by applying it to problems that are meaningful in practice. In this
section, a number of practical examples are discussed which illustrate how the model
building procedure described in previous sections has worked in practice. In these
examples, all phases of the procedure have been tested individually but a complete
exercise involving all phases applied to a single problem has not yet been undertaken.
This emphasizes the point that not all problems will demand application of the entire
procedure: depending on the level of a priori knowledge, information, and data, it may
well prove possible to achieve the stated study objectives by more limited modeling
activities involving only certain phases of the overall procedure. For example, if the
system is relatively well defined in relation to the study objectives, it should be possible
to dispense with the probabilistic simulation-modeling phase and put greater emphasis
on data collection and time-series analysis.

3.1 The Use of Probabilistic Simulation Modeling for the Generation of Working
Hypotheses on Macroalgal Growth in an Estuarine System

In this example, the system in question is the Peel-Harvey Estuary in Western
Australia and the "problem" behavior is the excessive growth of the green alga Cladophora
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that has occurred in recent years, creating certain objectionable conditions in the Peel
Inlet. Between 1976 and 1980, a study team composed of a number of experts from
disciplines ranging from hydrology through soil science and biology to applied systems
analysis conducted scientific investigations under the sponsorship of the Western
Australian Environmental Protection Authority's Estuarine and Marine Advisory
Committee. The initial stages of systems analysis discussed here are, of course, only a
small aspect of this larger study (Humphries et aI., 1980).

The initial exercises in simulation modeling for this problem were aimed at charac
terizing the system under a "phosphorus scenario"; in other words, the simulation model
was formulated on the basis of a phosphorus budget, under the hypothesis that phos
phorus is the major nutrient of importance to the algal problem. It is these initial exercises
in simulation modeling that will be considered here. It should be made clear, however,
that the phosphorus scenario is not the only one that has been considered in the study:
other research has been concerned with the evaluation of an alternative "nitrogen
scenario". As has been emphasized, the simulation-modeling studies are "hypothesis
generating" exercises and should not, therefore, be overly restrictive in any sense.

The phosphorus budget model consists of four compartments: Cladophora Xl,

phytoplankton X2, soluble phosphorus in the water column X3, and sediment phosphorus
X4. Two other equations describe the water and sediment volume balances. A schematic
diagram of the whole system is shown in Figure 2. The equations for each compartment
are described in detail by Spear and Hornberger (1978) and only the Cladophora
equation, which exemplifies the model, will be considered here. The equation is nomi
nally nonlinear and takes the form
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where

(2)

XI = Cladophora biomass in terms of phosphorus content (J.1g);
11 = temperature-light-growth coefficient (cm2 °C-I cal-I day-I);
T = water temperature caC);

I b = total light at the bottom for the day (cal cm -2),
= Ie -KTZ, where I is actual surface-light intensity, KT is the extinction coef

ficient, and Z is depth;
available phosphorus concentration (J.1g I-I),
aX3 + (1 - a)X4 , where a is a number between zero and one and X3 and
X4 are phosphorus concentrations in water and sediment, respectively;
half-saturation (Michaelis) constant for phosphorus-uptake (J.1g I-I);
biomass (phosphorus) available for active photosynthesis (J.1g) - this term
is equal to XI for low values of biomass but asymptotically approaches a
constant value xm ; and
~ate constant for biomass decrease from all causes, i.e., death, respiration,
grazing, and export to beaches.

The various coefficients in eqn. (2) and the other model equations were either
derived from the literature, inferred from measurements on the Peel Inlet system, or
estimated by experts familiar with the system. The probability distributions associated
with the parameters were chosen in accordance with the uncertainty in their specifi
cation: in general, they were chosen as rectangular distributions with limits selected to
reflect reasonable upper and lower bounds on the parameter values. Environmental
functions required to solve the equations from the specified initial conditions (e.g.,
temperature, irradiance, river discharge, tidal exchange) were mostly specified from
existing data on the system collected during 1976, but sometimes were estimated by
time-series analysis (e.g., in the case of tidal exchange).

The "problem" behavior was defined from prior knowledge of the system and was
specified in terms of the state variables: in simple terms, it involved the simultaneous
occurrence of high Cladophora biomass, low water-column nutrients, and low phyto
plankton biomass. Figure 3 shows two of the variables, Qadophora biomass and total
sediment phosphorus, as generated in three typical realizations from the Monte Carlo
analysis. Also shown are plots of the irradiance I and the hydrograph of river inflow over
the same period.

The Monte Carlo analysis entailed 626 random simulations of the model and out
of these 281 exhibited the problem behavior. Statistical analysis of these results suggested
not only that the important parameters were those connected with Qadophora growth
(as might be expected) but also that those specifically connected with the Cladophora
sediment-phosphorus interaction and self-limitation (due to self-shading) were par
ticularly important. In addition, the analysis pointed to the special part played by
the river input in maintaining the sediment phosphorus supply. In other words, the
analysis generates the hypothesis that it is this pathway for phosphorus in the system that
is dominant in causing the problem behavior. It also indicates that it is this hypothesis
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FIGURE 4 Comparison of simple two-parameter linearized time-series model output with 19
parameter nonlinear model output.

amongst all others connected with the phosphorus budget that seems to demand most
attention and should be tested in subsequent field studies on the system.

An analysis of the model in systems terms also yields some interesting and useful
results. For example, as might be expected from visual appraisal of graphs (a) and (c)
of Figure 3, linearization of eqn. (2) shows that, for much of the time, the system behaves
approxima tely as a first-order, linear system with irradiance I as the inpu t and Cladophora
biomass Xl as the output. This is confirmed further by simple constant-parameter, time
series analysis of the model data. Figure 4, for example, illustrates the results obtained
from such an analysis over the period shown in Figure 3; it is worth noting that the
steady-state gain and time constant of this model are consistent with the linearization
analysis. It is interesting to note also that recursive estimation of a time-variable parame
ter model yielded a perfect fit to this model data with the estimated coefficients exactly
equal to the values obtained by the linearization analysis.

These dominant-mode results suggest that Cladophora growth in the model is
controlled for much of the time by light limitation. Thus, while the sediment phosphorus
is indicated as the important pathway through which the Cladophora receives its phos
phorus nutrient inputs, phosphorus itself is unimportant in its effect on the modeled
problem behavior, because it is almost always in plentiful supply.

The implications of these conclusions on time-series analysis are fairly serious. They
mean that if the "phosphorus scenario" simulation model is represen tative of the real world,
then observation of the system during "normal operation" will not necessarily supply
much useful information on the dynamic relationship between phosphorus inputs and
Cladophora growth. This in turn means that it would be difficult to identify and estimate
time-series models for such interactions, which are of potential importance from the man
agement standpoint. This has been confirmed by later analysis (Humphries et a!., 1980).
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3.2 The Flushing Dynamics of an Estuarine System

87

This example also derives from the Peel-Harvey study and is concerned with the
evaluation of the flushing characteristics on the basis of monitored salinity variations at
various sampling sites in the estuary.

There have been numerous attempts at modeling estuarine dynamics ranging from
the very simple (e.g., Ellis et aI., 1977) to the highly esoteric (e.g., Smith, 1980). In the
Peel-Harvey study, an attempt was made to take an intermediate route and develop
a model that was able to describe the behavior of the system in a manner appropriate
to the requirements of the study, but without the fine detail normally demanded in
more classical hydrodynamic analysis.

The system was decomposed into seven zones or compartments associated with
the seven sampling sites (Figure 5) and each site was considered to be well mixed, in
the sense that the sampled salinity was representative of the salinity in the compartment
as a whole. By simple conservation-of-mass arguments, it can be shown that the equations
controlling salinity in such a system will be of the form:

where

dSjdt = -S[(Q/V) + (l/V)(dVjdt)] + (QiSdV)

S salinity;
Q flow out of the compartment;
V = volume of the compartment;

Qi flow into the compartment; and
Si = input salinity or forcing function to the compartment.

(3)

Since an adequate quantity of data (104 weeks) was available for analysis, as shown in
Figure 6, time-series analysis was initiated directly in this case, with eqn. (3) providing a
major motivation for the analysis. Equation (3) can be written in the form

dSjdt = -a(t)S + b(t)Si (4)

where aCt) and bet) are nominally time-variable coefficients. Considering initially the
relationship between salinity at Sites 2 and I, a time-series model of the form (4) but
with constant coefficients was first estimated* and Figure 7 compares the deterministic
output of this model with the measured salinity at Site 1.

The higWy periodic nature of the residuals is indicative that either additional
inputs are affecting the system linearly or, as might be expected from eqn. (3), the system
is nonlinear, with aCt) and bet) time-variable functions of other environmental variables
such as evaporation, river flow, and rainfall (Figure 6). This is confirmed by recursive
estimation, which indicates that aCt) is indeed a time-variable coefficient but that bean

* In fact, the discrete-time equivalent of this model was used for convenience of analysis but we will
consider here only the continuous-time interpretation of this model.
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FIGURE 5 The Peel-Harvey estuarine system showing estimated circulation and flushing charac
teristics. The numbered points represent sampling sites; the boxed values are (top) summer maximum
flushing residence time (weeks), and (bottom) winter minimum flushing residence time (weeks).

be considered constant for the purposes of the present analysis. Figure 8 compares the
output of this model with the observed salinity and it can be seen that the data are
explained rather well, with the residual series conforming to the requirements of the
identification analysis (Section 2).

Figure 9 shows the recursive estimate aCt) of aCt) and the dotted sinusoidal curve
shows that the estimated variation is dominated by a periodic component with a period
of one year. Considerable fluctuations about this sinusoid occur, however, particularly
during weeks 0-12, 48-72, and 96-104. These periods correspond to the winter periods
in Western Australia when fluvial inputs to the system are dominant (see Figure 6).

Bearing in mind eqn. (3), these results make sense: changes in volume will occur
because of periodic evaporation changes, seasonal rainfall effects, and the differences in
tidal height between the compartments. Put mathematically, the small perturbation
equations can be written:
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or

dV/dt = d(Ah)/dt ((hi - h)/R) + QR - Ae

(5)

where

dh/dt - h((1/AR) + (l/A)(dA/dt)) + (hdAR) + (QR/A) - e

h depth of wa ter in compartment;
A = surface area of compartment;
hi depth of water associated with the input location and measured with respect

to the same height datum as h;
QR river flow; and

e - effective evaporation (evaporation minus rainfall).

This identification analysis suggests that eqns. (4) and (5) provide a reasonable
a priori model structure in this case and it would be interesting to pursue the analysis
on this basis. However, in relation to the study objectives (and given the usual time
restrictions on any practical study), this did not prove necessary. The estimated variation
of aCt), in itself, provides sufficient information both to assess the overall nature of the
flushing dynamics and to help in the evaluation of nutrient budgets, as required by the
study objectives. Figure 5, for example, shows the estimated maximum and minimum
flushing times (obtained in performing the above analysis at each site in turn) together
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with inferred circulation patterns: the details of this analysis are given in Humphries et a!.
(1980). Figure lOis a plot of the innovations series (i.e., observed - predicted nitrogen (N)
load) obtained in a subsequent nutrient budget analysis which made use of the flushing
information to estimate oceanic exchange of nutrients. The fact that this series has zero
mean, serially uncorrelated characteristics is a further, independent check on the efficacy
of the analysis. The two large transient deviations in the innovations series in July (nega
tive) and November (positive) can be accounted for in terms of biological activity in the
estuary. The large negative deviation is due to apparent gross sedimentation of inorganic
nitrogen from the water column by a phytoplankton bloom during winter riverine enrich
ment of the estuarine water column; the large positive deviation occurred during a massive
Nodularia bloom which fixed about 270 tonnes of nitrogen in the estuary.

3.3 The Transportation and Dispersion of Pollutants and Tracer Materials in Flowing
Media

As a final example, we will consider a subject which is closely related to that dis
cussed in the previous subsection but has wider implications in a scientific sense because
it has relevance to various areas of research. Much has been written on dispersion in
flowing media, and applications where characterization of dispersive behavior are impor
tant range from water-quality modeling to the analysis of data obtained from tracer
studies in plants, animals, and man (Jakeman and Young, 1980).
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Classical hydrodynamic analysis associated with this kind of problem is often
related to the seminal work of Taylor (1954) on flow in pipes and involves the use of the
following one-dimensional, partial-differential diffusion equation (Taylor, 1954; Fischer,
1966):

(6)

where (lJ) is the mean flow velocity and D the longitudinal dispersion coefficient.
Taylor's original work was based on turbulent flow in pipes and, although most

textbooks subscribe to its use in the river context, reasonable arguments can be put
forward to suggest that it is not strictly applicable to flow in natural streams, particularly
close to the point source (see, for example, Fischer, 1966). Moreover, while it is often
the accepted model in the literature, this does not mean that other mathematical
representations may not provide an equally good, if not superior, description of the
observed natural phenomena. For eqn. (6) is not the real world, although it may some
times be interpreted as such; it is an approximate model of the real world and there is
no guarantee that, for certain applications, it is either the best or the most useful model.

Recent work carried out at the Centre for Resource and Environmental Studies
has been concerned with both an alternative approach to dispersion modeling (Beer
and Young, 1980; Young, 1980) and the planning of tracer experiments to evaluate
dispersion characteristics and models (Jakeman and Young, 1980). This approach, like
that used in the last subsection, uses a lumped-parameter, ordinary-differential equation
(ODE) compartmental model based on a combination of the plug flow and continuous
stirred tank reactor (CSTR) mechanisms used so often in chemical engineering research
(see also Beck and Young, 1975). However, the model is capable of a more conventional
hydrodynamic interpretation (Beer and Young, 1980): in particular, it can be interpreted
as the solution, at specified spatial locations down the river, of a partial differential
equation (PDE) of the form:

(ae/at) + U(ae/ax) = (ej -e)/T (7)

Here ej is the input concentration into the reach considered and the first velocity term
U(ae /ax) accounts for the plug-flow characteristics*. The CSTR mechanism resides in
the term on the right-hand side of eqn. (7), which can be interpreted as an "aggregated
dead zone" (ADZ) effect: this arises from the aggregated effects of all those physical
processes in the stream (e .g., bottom holes, turbulence, rocks, side irregularities, meanders,
and pool-riffle effects) that contribute to retaining dissolved material temporarily
and then releasing it, on a time-scale defined by the ADZ residence time (or time
constant) T.

Note that in eqn. (7) the dispersive effect arises completely from the ADZ terms
on the right-hand side and is characterized by the residence-time parameter T; the con
ventional dispersion mechanism characterized by the dispersion coefficient D (eqn. (6))

* Here we use the symbol U rather than (U) to emphasize that the velocity coefficient does not have
the same interpretation here as in eqn. (6).
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does not appear in the equation at all! Clearly, the argument here is not that turbulent
diffusion is not taking place but rather that its effect is completely overshadowed by the
much more significant dispersive effects of the aggregated dead zones.

The parameters of these ADZ models can be estimated quite easily from experi
mental or monitored data using the techniques of time-series analysis discussed in this
paper. The resulting models consistently provide a much better explanation of the
observed data than the more classical PDE representation (6) and are considerably easier
to estimate and use. A typical example is shown in curve (b) of Figure 11, which com
pares the observed and modeled concentration of tracer material in a river system. The
data in this case are those used by Fischer (I968) to test his alternative modeling pro
cedure which is based on the more conventional PDE description (6): Fischer's results
are shown as curve (a) of Figure 11 for comparison.

Despite the ability of the ADZ model to provide a better explanation of experi
mental data, it has not yet attracted a very favorable response from the fluid dynamics
establishment, which tends to regard it as a black-box representation obtained by curve
fitting. In particular, the establishment seems to consider the ADZ approach entirely
devoid of the "nice" physical interpretation it associates with the classical PDE descrip
tion. This criticism seems a little unfair since the ADZ description clearly does have a
physical interpretation (see, for example, Buffham and Gibilaro, 1970; Beer and Young,
1980) albeit an unconventional one which does not directly involve the dispersion
coefficient, D. This physical interpretation appears to allow for the model to be used in

\
!

Ii\
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an "extrapolative" mode, so allowing for the prediction of dispersive characteristics
at different river flows and conditions. In addition, it is possible to estimate an "equiva
lent" dispersion coefficient on the basis of the model parameters if this is required
(Beeretal., 1980; Beer and Young, 1980).

I have chosen this latter example deliberately to illustrate one problem with the
concept of credibility, a problem already alluded to in Section 1. By following a quite
rigorous model-building procedure and satisfying all of the requirements specified in this
paper, it is possible to produce dispersion models which seem highly satisfactory practical
tools and can be considered valid in the strictest meaning of that word. But they still
do not appear wholly credible to a large and important body in the scientific community
whose different outlook on the problem makes them somewhat skeptical of the uncon
ventional physical interpretation of the model and the methodological approach used to
obtain it. Nevertheless, it might be hoped that, given time, these unconventional models
will find general acceptance, not necessarily as replacements for the more classical
representations but as alternatives which have merit in certain applications.

3.4 Other Examples

The model-building procedures described in this paper have been applied to
numerous other examples, ranging from the analysis of fluorescence data in chemical
experiments (Jakeman and Young, 1979b), through the modeling of rainfall flow charac
teristics in hydrology (Whitehead et aI., 1979), water quality behavior in river systems
(Young and Beck, 1974; Beck and Young, 1975; Whitehead and Young, 1979), and air
quality (Jakeman et aI., 1980; Steele, 1981), to the evaluation of economic models and
data (young et aI., 1973; Young, 1977; Salmon and Young, 1978). While it has not, of
course, solved all problems in these applications, it has provided a systematic approach
which has helped a great deal in the overall systems analysis.

4 CONCLUSIONS

This paper has presented a comprehensive methodological approach to model
building based on a general theory of modeling for badly defined systems. Whilst it is
unlikely that this approach will solve all modeling problems associated with such systems,
it is felt that it will provide a satisfactory system of "checks and balances" which should
at least help the model-builder and systems analyst in this most difficult of problem
areas. The most important features of the proposed approach are as follows:

(1) It is consistent with the hypothetico-deductive procedures of the scientific
method and can be considered within the framework of Bayesian estimation
theory.

(2) It presents a fully integrated approach involving the systematic application of
mathematical analysis, planned multidisciplinary monitoring, experimentation,
and fieldwork, and allows for a continuous form of adaptive assessment along
the lines suggested, for example, by Holling (1978).



96 P. Young

(3) In the model-formulation phase, it makes use of a novel type of probabilistic
or "speculative" simulation modeling based on Monte Carlo analysis in order to
generate working hypotheses about the nature of the system; these hypotheses
can then be thoroughly tested by planned monitoring or experimentation.

(4) In the later identification and estimation phases of model-building, it exploits
sophisticated methods of recursive time-series analysis to detect the presence
of significant model-parameter variations and hence: define any important non
linear or nonstationary aspects of the observed system behavior which are not
present in the model; define any over-parameterization or surplus content in the
model; and, in this manner, derive a model which will normally be efficiently
parameterized and characterized by a low-dimensional set of well-defined and,
hopefully, constant-parameter estimates.

(5) It emphasizes the need for thorough validation of both model structure and
parameter estimates, and stresses the need to ensure that the consequences of
any surplus, unvalidated content are fully acknowledged in any subsequent
application of the model.

By discussing a number of practical examples, it is hoped that the reader will better
understand the procedures involved and will be encouraged to use them in practice. For
it is only by practical application that the true value of any method of applied systems
analysis can be assessed. Whether the application of this method will eventually lead to
models that are more "valid" or "credible" is, however, another matter. Only time will
tell.
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1 INTRODUCTION

The use of simulation models for analyzing complex natural systems can be
criticized in terms of the mathematical techniques normally employed (see, for example,
Berlinski, 1976) and in terms of the sophistication of representations of the "realities
of the natural world" (Hedgepeth, 1977). Regardless of one's philosophy concerning
construction of "ecosystem" models, we argue that certain elements of such criticism
must be addressed. In dealing with complex environmental problems in particular, the
benefits of traditional systems analysis, if such exist, appear to be severely limited. Not
only do the forcing inputs and parametric values of our models change with time and
circumstance, but often so do their internal structures that yesterday appeared to best
summarize the important causal relations in the system. Because it is virtually impossible
to completely distinguish, let alone decouple, the system from its environment, model
verification is itself a dynamic process which cannot be assumed to approach an equi
librium state. Thus, it seems unlikely that any moderately complex environmental system
can be well defmed in the traditional physical-chemical sense. This conclusion does not,
in our view, destroy the appeal of applying systems analysis methods to environmental
forecasting problems. It does, however, set a fairly short timescale over which models
can be used to develop management strategies with any confidence. It seems, therefore,
that the important issues pertaining to the forecasting problem relate to methods of
making the best use of the diverse data available at any time to develop these short-term
management strategies. This is not to say that long·term environmental planning is not
necessary or profitable. We do contend, however, that long-term planning based on
environmental models is of dubious value except insofar as such exercises may provoke
analytical thought in a broader context.
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If one accepts that the only model-based systems analysis worth doing is short
term, a practical dilemma arises immediately. The modeling of environmental systems of
any complexity is usually not a short-term proposition. It will usually take several years
of data collection and background work even to get a start. When a model finally emerges
its authors are then loathe to regard it as anything but the revealed gospel and the notion
that processes and causal relations may have changed or may be changing is resisted with
vigor. Often the model becomes the system.

Over the last several years we have developed an approach to the modeling of
environmental systems that has some promise as a means of circumventing this long lead
time. The approach is based on two premises: that the literature contains much infor
mation of relevance to an understanding of the problem at hand, and that it is possible
to describe, at least in qualitative terms, the principal features of the behavior of the
environmental system that define the problem to be managed.

Our ideas were developed while working on the analysis of a cultural eutrophication
problem in the Peel-Harvey Estuary of Western Australia. The specific problem we
addressed was one of research direction, that is, what were the critical uncertainties
in the knowledge of the behavior of this system which required resolution before a
strategy could be formulated for the management of the "nuisance" alga. The system
behavior of concern was the excessive growth of the benthic alga Cladophora, which
led to its transport, accumulation, and decay on the beaches of Peel Inlet. Research on
this problem was being carried out by several groups under the overall direction of the
Estuarine and Marine Advisory Committee (EMAC) of the Western Australian Environ
mental Protection Authority. At the time we became involved there were available some
what over a year's data on nutrient levels, algal biomass, phytoplankton populations, etc.,
usually on a monthly basis. There were somewhat more extensive hydrological data and
a variety of other fragmentary data as well as speculations from the various research
teams. The issue was to make an assessment of these results and speculations, however
preliminary, in order to guide future research.

We chose to approach this task via simulation modeling because the logic and
order inherent in the model-building process so often expose causal as well as quantitative
uncertainties in the system under study. Indeed, the nature and extent of the data from
Peel Inlet were such that the quantitative aspects of a conventional modeling exercise
would be of little benefit. However, given that we were willing to hypothesize that the
factor or factors controlling Cladophora growth in Peel Inlet were among those common
to other estuarine systems, a great deal of relevant information was available in the
literature. The extent of this information, coupled with the data from the field, led us
to speculate on the possibility of estimating the parameters of a model in some approxi
mate fashion and investigating the degree to which the resulting model might mimic
the qualitative behavior of the Peel system with respect to the Cladophora problem.
More to the point in view of our overall objective, we asked if the study of such a model
could lead to the generation of hypotheses or could point to critical gaps in knowledge
that might not otherwise emerge until later in the life of the project.

Because the factor or factors controlling the growth of Cladophora in Peel Inlet
remain uncertain, various models of the phenomena are possible depending on which
of the competing hypotheses is chosen. The assumption of a controlling factor, and
the model resulting therefrom, we term a scenario in order to emphasize its speculative
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nature. A comprehensive analysis must consider various scenarios. During 1978 we
considered a phosphorus scenario and found it to lead to several intriguing hypotheses
and to exemplify a methodology we feel has wide applicability.

Because the Peel Inlet data available for this original study did not include com
prehensive time-series information on the principal variables of interest, only the
qualitative behavior of the system could be defined over an annual cycle. Therefore,
only qualitative contrasts were possible between model performance and that of the
system. We maintain, however, that the salient qualitative aspects of the behavior could
be specified and that the result of any simulation using a model consequently classified
as exhibiting either "the behavior" or "not the behavior". In this study the behavior was
defined by a Cladophora "bloom" qualitatively similar to observed conditions in Peel
Inlet in the period 1976-1977.

In any simulation model of an environmental system there is substantial uncer
tainty surrounding the "best" values of the parameter set. At the stage of understanding
of the system discussed here, the level of parametric uncertainty precludes the use of
any analytical procedure which relies on point or "best" estimates. In most cases, how
ever, it is possible to make some defensible assessment of the probable or, at least, the
allowable values of the parameters. We adopted this approach in the Peel Inlet work
and associated with each model parameter a statistical distribution function to represent
the uncertainty in knowledge of its "best" value given the assumed model structure.
The distribution function assumed for any given parameter represents our best a priori
knowledge of its likely or allowable values based on the current literature or on the
limited field data.

Taken together, the scenario and its associated parameter distributions define an
ensemble of models. Using a Monte Carlo approach one can explore the degree to which
the parameter space underlying this ensemble partitions under the behavioral classifi
cation. This separation under the behavioral classification forms the basis for a type of
sensitivity analysis. It is intended that the results of this analysis, when interpreted in
the light of the totality of current knowledge of the system, will indicate gaps in present
research efforts or suggest new hypotheses and profitable avenues for the next phase of
the research program.

2 SYSTEM BEHAVIOR AND THE PHOSPHORUS SCENARIO

The problem-defining behavior was principally based on Cladophora biomass
measurements taken by Professor AJ. McComb and his associates in the Botany Depart
ment of the University of Western Australia during the period from April 1976 to April
1977 (Atkins et aI., 1977). These data indicated a relatively slowly reacting system in
which bloom conditions are characterized by biomass increases on the order of two
to five times the minimum biomass. Further, high biomass levels exist for a relatively
prolonged period. Also, during the period in which Cladophora biomass is high or
increasing rapidly the average concentrations of phosphorus in the water column are
low. Nitrate nitrogen was always less than IOpgl-l but ammonia nitrogen rose to
140pgl-l in April 1976 and declined steadily to 25pgl-l by August of that year.
There were only very sparse data on phytoplankton levels in the Inlet but those that
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were available suggested a curious absence of phytoplankton. Few values in excess of
5pgl-1 of chlorophyll-a had been reported.

At the time we began our work there were, among the researchers, proponents of
both phosphorus and nitrogen as the principal limiting nutrient in the system. Given our
modeling approach it was necessary to assume some growth factor to be limiting and we
chose to pursue the phosphorus scenario. The behavior was then defined on the basis
of six conditions placed on Cladophora biomass, phytoplankton biomass, and phosphorus
concentrations in a section of Peel Inlet termed the Cladophora growth area. Behavior
condition 5, for example, was that during the period in which Cladophora biomass
exceeds 1.5 times its initial value the average s01uble phosphorus concentration in the
water column must be less than lOpg I-I.

The choice of a model to use in the preliminary analysis of the problem of nuisance
algal growth in the Peel Inlet is dictated by a number of constraints. First, the model
must of necessity be mechanistic, to as great an extent as possible, because if our approach
is to succeed, data available in the literature must be relied upon as a surrogate to data
on the system itself. This requirement of "transferability" of information from diverse
sources is the primary reason for selecting conventional model components; it is only
by using such mechanistic components that information derived from vastly different
problems can be utilized to construct our candidate models and to select reasonable a

priori probability density functions for the parameters. (For example, as described below,
we chose to use the Monod kinetics description of nutrient uptake because values of the
half-saturation constant are routinely reported in the literature.) A second constraint
is in some ways antithetical to the first: the model should be as simple as possible in
recognition of the fact that available data are sparse or nonexistent. Thus, the model
must be structured to provide enough detail to be capable of reproducing (in the broad
sense discussed above) the behavior of the system that defines the problem but not be so
excessively complex as to prohibit its use in a preliminary study. The lumped-parameter
model described below was chosen in recognition of these practical considerations.

Our simplified phosphorus model consists of four compartments: Cladophora,
phytoplankton, soluble phosphorus in the water column, and sediment. The term "sedi
ment" as used here includes the layer of decomposed organic material that underlies
much of the actively photosynthesizing Cladophora mat. A phytoplankton compartment
is included because, as discussed above, we suspected the general absence of large popu
lations of phytoplankton to be an important aspect of the behavior of the system. For
each of the compartments a mass-balance equation for phosphorus can be developed.

The equation for dissolved phosphorus in the water column is a good example of
the structure and level of detail of the entire model. It is

advection terms

Cladophora uptake
from water column

-'Y2T(e!IKT Z)(e-CY.' -e-CY.o)(X3 /(K2 + X 3))X2Vw

phytoplankton uptake

Vw(dX3/dt) = QTPT-QTo X 3 + QRUR - (1- (3)QG UG

- (XYtTIb (X3 /(K I + Xc))g(X I )

transfer from sediment
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where the state variables are:

Xl Cladophora biomass,
Xz phytoplankton biomass concentration,
X3 phosphorus concentration in the water column, and
X4 phosphorus concentration in the sediment.
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The tidal parameters QTi and QTo were estimated from tide gauge data as was water
volume Vw ' The river flow, QR, was known and some idea of the magnitude of ground
water flow, QG, was available, as was information on the phosphorus concentrations
UT , UR , and UG in these inputs. The Gadophora and phytoplankton terms are in standard
form except for the function g(XI ) in the Gadophora growth term. This was inserted to
account for the fact that only the upper layers of the Gadophora mat are exposed to
light and, as a result, only a fraction of the mat can be actively photosynthesizing at any
moment. Hence, g(Xd is a saturation-type function that contains a parameter Xm , which
is an estimate of the maximum photosynthesizing biomass.

Another type of parameter used to account for uncertainty is exemplified by {3.
The parameter {3 was introduced to allow a fraction of the groundwater flow to go
directly into the water column with the remaining fraction being routed through the
sediment compartment. This mechanism was included in the formulation because it
represented one theory of nutrient source current at the time of model development.

The primary parameters of this equation that were assigned distribution functions
were then: 'Yi> Ki> Xm , Q, 'Yz, Kz , and a43' The values for a variety of the light-related
parameters f, Ql, Qo, and I b were calculated from the distributions of more basic parame
ters, e.g., k, the phytoplankton-shading coefficient.

There is, of course, almost endless detail involved in explaining why certain
features of this model were chosen and how estimates of the various inputs and parameter
distributions were developed. This documentation is available (Spear and Hornberger,
1978) but the present point is that, at the conclusion of the development process, we
felt there to be surprisingly few real "holes" in our knowledge. That is, we felt it to be
possible to explain, if not defend, the model and each of the various estimates to a greater
or lesser extent.

3 SIMULATION RESULTS

A total of 626 simulation runs were carried out for the phosphorus scenario with
the parameter distributions as given in Table 1. These required approximately 75 minutes
of CPU time on a Univac 1110. The 626 runs comprised 281 in the behavior category
and 345 in the nonbehavior. Figure 1 shows the time course of Gadophora biomass,
phytoplankton biomass, soluble phosphorus in the water column, and phosphorus in
the sediment for a typical behavior-producing run. Figure 2 shows the same variables
for a run in which Gadophora biomass was insufficient and phytoplankton biomass too
high to constitute a behavior. In virtually all of the runs in which the behavior did not
occur, this was due to a deficiency of Gadophora, an excess of phytoplankton, or both
occurring simultaneously. Also characteristic of the behavior-producing simulations was
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FIGURE 3 Cumulative distribution functions under the behavioral mapping for (a) 1'" which shows
a distinct separation, and (b) k, which shows no separation.

a brief phytoplankton bloom and a marked increase in the growth rate of Qadophora
at the time of peak river flow about day 140.

Figure 3 shows values of the sample distribution functions under B and Ii for
various values of the Qadophora growth coefficient 'Yl and for the phytoplankton light
shading coefficient k. Both the Kolmogorov-Smirnov statistic, dm n, and the Mann
Whitney statistic, U, indicated that F('YIIB) '* F('YIIB) at well abov~ the 99% level of
significance. The distributions of the light-shading coefficient k, on the other hand, differ
by a maximum of 0.05, a value which corresponds to a level of significance of below
90%. We interpreted these results to indicate that, over the stipulated ranges of uncer
tainty, 'Yl is an important determinant of the behavior and k is not, at least in terms
of the univariate tests. It must be emphasized that these results pertain only to the
multidimensional region of parameter space defmed by the limits of the a priori distri·
butions given in Table I.

Table 2 contains the class means and variance of each of the nineteen normalized
parameters together with the values of dm,n and U. Also included is a classification for
each parameter into one of three groups, critical, important, or unimportant. This classi
fication corresponds to the significance levels of the Kolmogorov-Smirnov statistic of
greater than 0.99, 0.90-0.99, and less than 0.90, with class I being of critical importance.
These intervals are somewhat arbitrary since the significance level of any given value of
dm,n is a function of sample size. On the other hand as the sample size increases, dm,n
will converge to a constant value which is the maximum difference between the cumu
lative distribution functions F(h IB) and F(~k Iii), so that although the significance levels
associated with the values of dm,n given in Table 2 will continually increase with sample
size, the actual values of the statistic will be relatively stable. This is the reason that
dm,n was used as the basis of the sensitivity classification.

As shown in Table 2, seven of the nineteen parameters are classified as unimpor
tant. Significantly, these include the parameters related to nutrient inputs from the river
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TABLE 2 Univariate results: class means, class variances, d m •n • and the corresponding sensitivity
classification.

Parameter L €, s' s' dm •n Sensitivity, ,
class

'Y, 0.181 --0.173 0.804 0.936 0.198 1
K, -0.205 0.143 0.967 0.906 0.175 1
Xm 0.223 -0.397 0.804 0.958 0.315 1

a" -0.189 0.250 1.057 0.957 0.220 1
01 -0.160 0.148 0.891 1.151 0.167 1
'Y, -0.153 0.150 1.050 1.019 0.151 2
Is -0.194 -0.024 1.087 1.029 0.107 2
K, 0.212 -0.258 0.987 1.030 0.206 1

a" 0.191 -0.196 0.980 1.108 0.181 1
Kw -0.154 0.078 1.080 1.063 0.124 2
k -0.001 0.010 0.908 1.027 0.050 3
iJ 0.064 -0.002 0.938 0.894 0.062 3
a43 -0.249 0.218 0.881 1.040 0.236 1
X· -0.095 1.361 0.995 0.951 0.142 24

A, 0.168 0.036 0.963 1.023 0.076 3
A, -0.079 0.018 0.889 1.064 0.094 3
UG 0.019 0.047 0.976 0.965 0.052 3
p 0.049 0.085 1.027 1.016 0.076 3
Sp -0.026 -0.050 0.988 0.980 0.054 3

and from groundwater, Sp, uG, and {3, as well as the nutrient recycling parameters A.I' A.2'
and p. These results suggest that, under the modeling assumptions, the system behavior
or lack of it is not due to nutrient limitation. Indeed, the results of our analysis suggested
that light-limitation may be the critical growth-limiting factor. Elsewhere, we have shown
that a linear first-order dominant-mode model with light as input and Qadophora biomass
as output can reproduce the behavior with remarkable fidelity (Young et a1., 1978).

4 EVALUATION OF RESULTS IN LIGHT OF RECENT DATA

Our work on the preliminary analysis of the Peel Inlet Qadophora problem was
completed in June, 1978 (Spear and Hornberger, 1978). The field research program
under the sponsorship of EMAC has continued from that time through the present, and
some of the more recent data from the study can be used to "test" a number of the
assumptions that were necessary in our original study and to evaluate the results of the
work. Many of the data used in this evaluation are taken from McComb et a1. (1979)
and the remainder were graciously provided by the Systems Analysis Group at the Centre
for Resource and Environmental Studies, Australian National University. The latter
group, under the direction of Peter Young, is responsible for data collation and analysis
for the EMAC study.

The first stage in our a posteriori evaluation is to examine data that provide rough
estimates for parameters about which we originally had little or no information, at least
in terms of observed behavior of the Peel Inlet system itself. We undertake these
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comparisons not to "verify" our simulation model but rather to determine whether
any new data suggest that our original phosphorus scenario is totally inappropriate. That
is, if new data suggest that one of our original parameter values was underestimated or
overestimated by an order of magnitude or more, the sensitivity rankings deriving from
the Monte Carlo results would be suspect. On the other hand, agreement between a
newly calculated value and a previously assumed value would not imply the validity of
the simulation model itself, but could be interpreted as a failure to alter the speculation
on priorities for further research made in the preliminary analysis. In fact agreement
between a parameter derived from measurement and one found necessary to simulate
the behavior would suggest, at least in terms of our analysis, that the importance of
collection of further detailed data on that particular phenomenon would be diminished;
we would argue that research efforts in that event should be focused on other processes
singled out in the sensitivity analysis.

From the data presented by McComb et al. (1979) a value can be estimated for the
following parameters that were identified in the Monte Carlo studies as important for
simulating the behavior but for which little or no a priori information was available:
Xm , the parameter that describes the maximum photosynthesizing biomass of Gadophora
in the Peel system; 71> the temperature-light growth coefficient for Gadophora; and a
combined estimate for two parameters (a and Xn that describe the phosphate (P04)
concentration in "interalgal" water.

In our preliminary analysis we hypothesized that self-shading in the Gadophora
beds would be important and introduced the parameter X m . The data of Pfeifer and
McDiffett (1975) for a riverine species indicated that a density of 30 g dry weight m-2 is
appropriate in that situation. We speculated that higher productivity in the estuarine
environment might result in a considerably larger value for Xm for Peel Inlet than that
for the riverine environment and arbitrarily set the upper limit on the probability density
for that parameter at 150 g dry weight m-2. The distribution of Xm separated very clearly
under the behavioral classification. The mean value of Xm in the behavior class was
about 98 g dry weight m-2. Recently McComb et al. (1979) have estimated from labo
ratory and field data that the compensation point for the Gadophora sp. in Peel Inlet
is 15-20.uE m-2s-\ and that, due to light-attenuation, this level would be reached at
about 1cm depth in the algal bed. We are not aware of data for Peel Inlet that relates
the depth of the algal bed to density but Bach and Josselyn (1978) have reported that
a 3-cm depth of a ball-forming Cladophora sp. in Bermuda corresponded to a density
of 300 g dry weight m-2. The data of McComb et al. are obviously consistent with our
preliminary work in this instance.

The Gadophora growth coefficient, 71> is another parameter for which no prior
informa tion was available from the Peel system but which ranked high in our sensitivity
classification. McComb et al. (1979) produced a series of curves relating oxygen produc
tivity per gram fresh weight of Gadophora to the flux density of photosynthetically
active radiation at four temperatures. Using irradiance values below the observed
saturation values of McComb et al. and making a number of assumptions about algal
composition and functioning (e.g., a photosynthetic quotient of unity, a C : N : P ratio
of 18.8 : 2.7 : 1, and a fresh weight to dry weight ratio of 8 : 1) one can derive estimates
of 71 at the four temperatures reported by McComb et al. (1979) of 2.9 x 10-4,
4.3 X 10-4,4.0 X 10-4, and 3.6 x 1O-4cm2DC-Ical-I day-I. Two conclusions can be drawn
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from these results. First, the fact that the values for the four different temperatures
are reasonably close to one another argues that our simple multiplicative function for
light and temperature is probably adequate. Second, the limits chosen for the rectangular
distribution for 11 in the original study are 1 x 10-4 to 3 X 10-4 cm2 0r-I cal-I day-I and
the mean under the behavior was shifted toward the higher end of the distribution. We
consider the new data to be consistent with the preliminary guesses.

Finally, McComb et a1. (1979) report phosphate (P04) concentrations in "inter
algal" water of 93 ~g 1-1 with a standard deviation of 25 ~g I-I. In our simulations of the
behavior the mean concentration available to Qadophora, which we interpret as equiva
lent to that in interalgal water, was defmed primarily by two parameters, one defining
maximum sediment concentration (Xn and the other the proportion of sediment
phosphorus "available" for growth (a). For the behavior simulations the mean values of
these parameters yield a value of interalgal concentration of 53~gl-l. The "discrepancy"
between measured and assumed is again not very large, certainly not large enough to
lead us to reject our original sensitivity rankings at this point.

Apart from a comparison of newly calculated parameter values with previously
assumed values, a second stage in the a posteriori evaluation is to examine new data on
the overall system and its behavior and to view this in the context of the processes that
were isolated in the sensitivity analysis as deserving of further study. Figure 4(a) shows
the assumed Cladophora growth area from our 1978 study and Figure 4(b) is a represen
tation of data on measured percent cover of Cladophora in the Inlet reported by McComb
et a1. (1979). Our assumed area of major growth does appear to be an area of dense
algal coverage. On the basis of the data used to construct Figure 4(b), McComb et a1.
(1979) estimated a total biomass of Cladophora in the system as "very approximately
20,000 tonnes dry weight" whereas the biomass for our simulated behaviors was about
7000 tonnes on a dry-weight basis.

Perhaps the most striking aspect of the system behavior in terms of Cladophora
over the time since completion of our Monte Carlo work is the marked decline in biomass
in the winter of 1978. Figure 5, after McComb et a1. (1979), shows that while the bio
mass remained relatively constant between late 1976 and the autumn of 1978, a drastic
decrease occurred in the winter of 1978. McComb et a1. (1979) noted that during the
period of this dramatic decline in Qadophora biomass "the water of the estuary became
very turbid". This increase in turbidity coincides with a phytoplankton bloom that may
be the result of increased river input of nutrients. As we pointed out previously, our
simulation results for Cladophora behavior are very strongly conditioned by available
light and the importance of phytoplankton in the model is that relatively small concen
trations are sufficient to prevent development of massive Qadophora beds through the
light-shading effect. It is obvious that this particular aspect of the qualitative behavior
predicted by the model does seem to be an observable mode of system functioning under
conditions that occur in the Inlet.

The phytoplankton blooms that were observed in Peel Inlet in the winter of 1978
also reinforce a deficiency in the model that we noted in our original report: "the model
predicts that phytoplankton should be able to grow in Peel Inlet and that in doing so
they should lower phosphorus concentrations below those observed". Even in the
behavior-producing runs of the model, maximum phytoplankton concentrations reached
40-50~gl-l. Such high concentrations were never observed in the Inlet during the
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FIGURE 4 (a) Map of Peel Inlet and Harvey Estuary showing the assumed Cladophora growth area
used in Spear and Hornberger (1978); (b) the observed distribution of Cladophora as reported by
McComb et al. (1979).

period 1976-1977 and, even during the first bloom observed during the winter of
1978, mean levels of cWorophyll in the Inlet rose to only about 60J.Lgl- l . Why the model
is "wrong" is still unclear but McComb et al. (1979) argued that during the summer/
autumn period inorganic nitrogen and not phosphorus limits phytoplankton growth.
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FIGURE 5 Measured Cladophora biomass in g dry weight m- 2 at one site in Peel Inlet from 1976 to
1979 (after McComb et al.. 1979).

Considering all aspects of the data available at present, the speculations that we
derived from our Monte Carlo work are in remarkably good agreement with conclusions
and/or speculations that McComb et al. (1979) derived from their recent laboratory
and field measurements. Table 3 compares a number of statements from Spear and
Hornberger (1978) with some from McComb et al. (1979). Two possible explanations
for this agreement come immediately to mind. The first is that the phosphorus scenario
that we constructed is partially correct and that the generalized sensitivity analysis did
serve to isolate a number of areas of critical uncertainty. A second explanation might
be that everything was very clear from the outset and that our analysis merely served
as a framework for exposing obvious relationships. Regardless of the explanation
accepted, it appears that the research priorities that we outlined in June, 1978 are to
some extent being recognized in the ongoing work and consequently our work may have
had some limited value in a practical as well as in an academic sense.

5 DISCUSSION

Although we do not think of our work on the Peel Inlet problem as a form of
forecasting, it is possible to interpret it in that sense or at least to envision forecasting
like extensions to it. In principle we see no objection to the use of our approach in the
forecasting context. However, because of our conviction that environmental models are,
by the nature of the environment, always likely to be ill-defined, we feel it essential that
the scenario concept take a prominent role in forecasting applications. In this paper,
for example, we have argued that there is presently little evidence to suggest that the
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TABLE 3 Statements from the original report (Spear and Hornberger, 1978) on the sensitivity
analysis compared with "similar" statements from the paper by McComb et aL (1979) based on
recent data.

From Spear and Hornberger (1978)

"In terms of the phosphorus model even moderate
concentrations of phytoplankton are sufficient to
suppress the growth of Cladophora by limiting the
light available at the bottom of the Inlet."

"However, once a large quantity of phosphorus
has been located in the sediment, the Cladophora
are primarily light limited."

" ... explanation of the behavior depends primarily
on one feature of the model structure: the presump
tion that Cladophora have access to phosphorus in
the sediment."

"In the model, the second condition [a source of
sediment phosphorusI requires that there be a sig
nificant input of nutrient to the sediment by the
river. "

From McComb et aL (1979)

"Broadly speaking, the absence of Clado
phora from the Harvey appears to be related
to the higher water turbidity there, due to
phytoplankton and other suspended
materiaL"

"There is little doubt that light must be the
primary limiting factor in the estuary, even
in shallow water."

"This suggests that the alga obtains most of
its nutrients not from the water column
above, but from the decomposing material
below."

"What is the long-term explanation of the
accumulation of nutrients within the algal
bank? ... One possibility is that during river
flow there is a deposition of particulate
nitrogen and phosphorus."

phosphorus scenario is not a good explanation for the situation in Peel Inlet. However,
our confidence in this result would certainly not extend to basing management decisions
on phosphorus-model predictions without a thorough study of the nitrogen scenario at
the very least.

A final point concerns the basic concept of water-quality forecasting. If it is
assumed that the most common conception of forecasting of this sort is aimed toward
managing an existing or potential problem and involves a bounded input-bounded out
put notion, then it is useful to keep in mind that such an approach may simply not be
relevant to the short-term situation in the Peel Inlet where the single most important
input appears to be light. That is, we can envision no practical way to control this input.
On the other hand, other forms of managing the situation, by dredging for example,
would most likely perturb the system sufficiently to destroy any confidence we may
have had in the predictive abilities of our models. The moral is, perhaps, that the utility
of modeling in environmental management is probably very much the same as in
traditional engineering analysis: it is great when it works but a solution is much more
important than the methodology used to achieve it.
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DISTRIBUTION AND TRANSFORMATION OF
FENITROTHION SPRAYED ON A POND:
MODELING UNDER UNCERTAINTY

Efraim Halfon and R. James Maguire
National Water Research Institute, Canada Centre for Inland Waters,
Burlington, Ontario L 7R 4A 6 (Canada)

1 INTRODUCTION

Fenitrothion* was used during the period 1969-1977 in New Brunswick, Canada,
to control the spruce budworm (Choristoneura fumiferana [Clemens]) in the province's
forests. Millions of hectares were sprayed annually with 150-300 g active ingredient
per hectare. The routes and rates of its environmental transformation and disappearance
are subjects of much interest (National Research Council of Canada, 1975, 1977).
Maguire and Hale (1980) recently reported on the aquatic fate of fenitrothion. Surface
water microlayer, subsurface water, suspended solids, and sediment samples were col
lected from a small pond in a spruce-fir forest in New Brunswick before and after the
aerial spraying of a fenitrothion formulation for spruce budworm control; the samples
were then analyzed for fenitrothion and its degradation and transformation products.
Fenitrothion concentrations in the surface microlayer, subsurface water, suspended
solids, and sediment fell below detectable levels two days after the spray; the only identi
fied products were p-nitro-m-cresol in water, which persisted less than two days, and
aminofenitrothion (O,O-dimethyl-O-(p-amino-m-tolyl) phosphorothionate) in sediment,
which persisted less than four days. Laboratory experiments showed that chemical
hydrolysis of fenitrothion and volatilization of fenitrothion from true solution were
both slow processes; however, volatilization of fenitrothion from surface slicks was very
fast (t 1/2 = 18 min at 20°C). Thus, a large fraction of the fenitrothion that reached the
pond surface appeared to volatilize rapidly, while the fraction that remained in the water
disappeared or degraded within a few days, largely through photolysis and microbial
reduction. The kinetics of appearance and disappearance of fenitrothion and its metab
olites are the subjects of this paper.

* Systematic name O,O-<!imethyl.{)-{p-nitro-m-tolyl)phosphorothionate.
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FIGURE I Model structures of the three models of fenitrothion in a New Brunswick pond. The
relative sizes of the compartments are 28 I (A), 136,000 I (B), and 4460 I (C).

2 MODEL STRUCTURES

A three-compartment model (Figure 1) describes the behavior of fenitrothion in
the surface microlayer (compartment A); subsurface water, i.e., the bulk of water in the
pond, (B); and sediment (C). Although the surface microlayer contains an insignificant
amount of fenitrothion compared with the other two compartments (Maguire and Hale,
1980), it is included in the model since volatilization is only important from the surface
microlayer. The rate constants k l -k4 are first-order rate constants of transfer processes
between compartments, and k s-k7 are first-order rate constants of removal processes
(assumed irreversible), physical or chemical, from each compartment. A removal rate
constant may represent the sum of rate constants for a number of processes; in this
model, for example, k s may represent volatilization and photolysis (producing p-nitro-m
cresol), k 6 may represent photolysis, and k 7 may represent reduction (producing amino
fenitrothion). The behavior of fenitrothion is computed with the following ordinary
linear differential equations, where the V symbols are the effective compartment sizes
(all with units of volume - Maguire and Hale, 1980) and square brackets represent con
centration in I1gl-l:

(1)

(2)

(3)

The effective sizes of the surface microlayer (VA = 281) and subsurface water (VB =

136,000 I) are defined as their volumes, with reference to the dimensions of the pond
(Maguire and Hale, 1980). The effective size of the sediment is defined for convenience
(since a large amount of interstitial water is present in the sediments) in volume units,
i.e., as the volume of a l-cm thick section of sediment over the area of the pond
(Ve = 4460 I). Initial estimates of the rate constants k Ck7 were obtained with data from
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FIGURE 2 Simulation of fenitrothion in surface microlayer. Data points are from three sites in the
pond. The solid line is the deterministic simulation with the "best fit" parameter values. Dotted lines
define the behavior set.

laboratory and field-sampling experiments, and are shown in Table 1. Concentration
time data for fenitrothion in each compartment are presented in Figures 2-4.

Two-compartment and one-compartment models homomorphic to the three
compartment model are also presented in Figure 1. Table I presents relevant information
on the three models. The homomorphic relation between any two models SI and S2 is
a triple (g, h, k) of maps g: VI --+V2 , h: X I --+X2 , k: YI --+Y2 such that h8 1(x,u)==
82(h(x),g(u)) and kAI(X) == A2(h(x)) for each x EXI and u E VI. A model is here defined
as a quintuple (V, Y, X, 8, A) where V is a set of admissible inputs, Y is a set of outputs,
X is a set of states, 8: X x V --+ X is the state transition function, and A: X --+ Y is the out
put function. Therefore, S2 is a valid model of SI since S2 is at least a homomorphic
image of SI. Note that in this particular example, the input is an impulse function which
is incorporated in the model through the initial conditions. Some of the stated rules
therefore do not apply. Note also that there is a homomorphic relation between the real
system, Le., the pond, and the three-compartment model: it is assumed that the model
is a valid representation of the behavior of fenitrothion. The practical dynamics of the
aggregation process were made in accordance with the principles stated by O'Neill and
Rust (1979).

3 PARAMETER ESTIMATION

Simulations for the three-compartment model were obtained by solving eqns. (1)
(3) numerically on a computer using Hamming's modified predictor-corrector method
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FIGURE 3 Simulation of fenitrothion in subsurface water. Other details are given in Figure 2.

(Ralston and Wilf, 1960) with IBM Scientific Subroutine HPCG. The "best fit" values
of the rate constants were obtained by using a random search algorithm (Price, 1977),
which minimized a weighted difference between observed and predicted concentrations.
Theil's inequality function (Theil, 1970) was chosen as the objective function since it
put equal weight on the goodness of fit of each compartment, regardless of size. By
contrast, a linear least-squares function was unsatisfactory since it put too much weight
on concentrations in the surface microlayer relative to concentrations in the other com
partments. Data used in the computations are shown in Figures 2, 3, and 4. These
figures show the fit of the simulations for compartment A, B, and C, respectively.
Simulations for the two-compartment model were done in the same way and the results
are practically identical to the relevant parts of the three-compartment model (Figures 2
and 3 are also for the two-compartment model; computed rate constants are given in
Table 1). The one-compartment model produces simulations only for the water com
partment (Figure 3). This simulation is slightly lower than those of the larger models
(see Table 1 for coefficients).

4 AGGREGAnON ERROR

The effects of the aggregation were computed by the total error, T£ = fgohours

£2(t) dt. Fifty hours is the time span over which data are available. The error was
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FIGURE 4 Simulation of fenitrothion in sediment. See Figure 2 for details.

123

computed only for the subsurface water compartment (B) since this is the only com
partment common to all three models. The error E is the amount of fenitrothion in
water for model j minus the amount of fenitrothion in water for model i (where j = 2, 3;
i = I, 2; i =1= j). The digits indica te the number of compartments in the model. The errors,
expressed as percentages (Le., 100 x TEj(initial amount of fenitrothion in water» are
aggregation from: three to two compartments 0.35%, two to one compartment 3.76%,
and three to one compartment 5.76%. From these results we conclude that the two
compartment model is almost a perfect representation of the three-compartment model.
The one-compartment model is also a valid model for the water compartment.

5 SENSITIVITY ANALYSIS THROUGH MONTE CARLO SIMULATIONS

We performed a sensitivity analysis similar to that described by Hornberger and
Spear (preceding paper in this volume, pp. 101-116) to which readers are referred for
the technical details. Two sets, "behavior" and "nonbehavior", were identified. The
"behavior" set was defined as ranges of concentrations for the three compartments. These
ranges were identified by data collected in the pond. However, since some data were
too noisy (Figures 2-4), the "behavior" range was arbitrarily reduced or enlarged at
points. A simulation was accepted in the behavior set if conditions for all three com
partments were satisfied. Note that this approach allowed some freedom in the deter
mination of the maximum concentration of fenitrothion in the sediments (Figure 4) since
sampling may not have occurred at the time of maximum fenitrothion concentration. In
Table 1 the ranges of the parameter values are presented with the "best estimate" for the
three-compartment model. A uniform frequency distribution was chosen for the parame
ters. The initial conditions were considered to be known. The ranges of the parameters
were chosen after examination of the results of the random search: minimum and maxi
mum values of the parameters which produced a good fit through the behavior were used.
Large limits would not have affected the sensitivity analysis much since values outside
these limits would have belonged to the nonbehavior set anyway.
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FIGURE 5 Line defining range of possible parameter values. For linear models, when only one
parameter is modified at a time, the simulations remain in the behavior zone for a determined set
of parameter values only (univariate case). For nonlinear models, when only one parameter is modified
at a time (univariate case), the simulations may move in and out of the behavior zone.

In contrast to the procedure of Hornberger and Spear (preceding paper), we per
formed a multivariate sensitivity analysis. From preliminary runs we found that, for a
linear model, a univariate search would be useless since simulations in the "behavior"
set are obtained for a continuous but limited range for each parameter (Figure 5). The
multivariate analysis (Table 2) showed that the model was most sensitive to estimates
of the sediment volume. This result was expected since no direct measure of the amount
of actively adsorbing sediment was possible. The model was also relatively sensitive to
the volume estimate of the surface microlayer and relatively insensitive to aU other rate
constants. Among the "true" parameters k t -k7 , the parameters k 1 , ks, and k 6 showed
a somewhat larger influence than the others. These results were obtained from 1000 runs
of the model with 121 runs falling in the "behavior" set and 879 in the "nonbehavior"
set. Note that in these runs the volumes were also considered model "parameters" and
that these results should be considered for values within the ranges indicated in Table I.

6 PREDICTION UNDER UNCERTAINTY

The most important goal of the field-research program was the identification of
the behavior of fenitrothion and its degradation products. The chemistry of fenitrothion
and its metabolites in the pond has been described by Maguire and Hale (1980). From
field data and laboratory investigations, they noted that these chemical reactions had a
degree of natural variability which made predictions through a deterministic model some
what unreliable. Following Halfon (1979) and O'Neill and Gardner (1979) we decided
to use Monte Carlo simulations to assess the frequency distribution of the time needed
for 99% of fenitrothion to disappear from the pond. Two sets of 1000 Monte Carlo
runs were performed, one with the parameters having a triangular frequency distribution,
as suggested by Tiwari and Hobbie (1976), and the other with a uniform frequency
distribution, signifying our uncertain knowledge of the rates of the chemical reactions.
The initial conditions had a uniform distribution, with the limits derived from the data

I

Ii'IIr
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PARAMETERS WITH TRIANGULAR
FREQUENCY DISTRIBUTION

PARAMETERS WITH UNIFORM
FREQUENCY DISTRIBUTION
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FIGURE 6 Histograms describing the frequency distribution of times when 99% of fenitrothion
has disappeared. The left figure describes the case when the parameters have a triangular frequency
distribution; the right, when parameters have uniform distribution. Time is in hours.

(Table 1), since we did not know exactly how much fenitrothion actually fell on the
pond, and the volumes had a nonnal distribution (Table 1).

Results (Figure 6) showed that the two sets of runs produced equal ranges with
99% degradation occurring at not earlier than 54 and not later than 68 hours. When
parameters belong to a triangular frequency distribution, we can confidently state that
most fenitrothion will be eliminated by the 59th hour; in the second case (uniform
distribution), by hour 64. The deterministic simulation predicts removal of 99% of feni
trothion in 56.9 hours, which is about a 20% underestimate of the worst case (68 hours).

7 DISCUSSION

Pesticides volatilize and degrade according to their chemical properties and those
of the environment (e.g., pH) where they are sprayed. Transformations by biota are
relatively unimportant to a mass balance of many pesticides. For this reason, most models
of toxic substances are linear, as in this instance. Also, modelers commonly follow the
degradation of the pesticide only in water, where it is most easily detected, and then com
pute the steady states in the other compartments analytically. This approach was taken
by, among others, Lassiter et al. (1979) who developed an effective computer program
(EXAMS) for predicting the fate of a chemical compound in natural waters. With the
aggregation analysis we found that, at least for fenitrothion, a detailed three-compartment
model is necessary when a clear understanding of all chemical processes involved is
required, as in this case. In fact, a three-compartment model requires more data to be
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developed and validated. The aggregation analysis showed that for prediction purposes
in water, a one-compartment model is quite adequate and that the total relative error
was quite small. A two-compartment model is also quite adequate to represent most
processes if the surface microlayer can be neglected. In this paper more emphasis has
been given to the complete model since we are interested in understanding as well as
predicting the behavior of the fenitrothion.

Laboratory experiments were performed to m2asure rates of hydrolysis and
volatilization (Maguire and Hale, 1980; see also Table I, footnote b). When the search
for the "best fit" parameter values was performed, it was found that some estimates
were too low (k l , k 4 , k s , k 7 ), or too high (k 3 , k 6 ) and that a model run with these
estimates would not fit the data: the global decay rate would be too slow. Care must
be taken when applying laboratory data to the modeling of field conditions, especially
when not all environmental conditions are taken into account. The sensitivity analysis
also showed that a careful determination of field conditions, in particular sediment
volume, was very important to the understanding of the behavior of fenitrothion in the
pond. Since the volume of actively absorbing sediment is difficult to measure, some
uncertainty remains, which presently cannot be eliminated. However, we have found
that if we are willing to ignore the relative importance of fenitrothion in the sediments,
we can still obtain relatively good estimates of the time needed for the chemical to
disappear completely. Prediction capability is less influenced by noisy data and lack of
knowledge than is the understanding of the chemistry. Therefore we conclude that, for
fenitrothion in a given pond in New BrunswiCk, the problems of understanding and
prediction under uncertainty are weakly coupled and each can be approached separately.
Future work will seek confirmation of this hypothesis with other toxic substances in
other environments.
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INPUT DATA UNCERTAINTY AND PARAMETER
SENSITIVITY IN A LAKE HYDRODYNAMIC MODEL

L. Somlyody*
International Institute for Applied Systems Analysis, Laxenburg (Austria)

INTRODUCTION

Hydrodynamic models are often used to calculate the magnitude and direction of
the wind-induced motion of water in lakes, in both engineering and water quality prob
lems. The one- and two-dimensional model versions most frequently employed have two
major parameters, the wind drag coefficient and the bottom friction coefficient. Although
a number of important experiments have been performed in relation to the drag coeffi
cient (for example Wu, 1969; Graf and Prost, 1980) and some information is also avail
able to define a feasible range of values for the bottom friction, both parameters should
be the subjects of model calibration as they are lumped in character.

The reliability of a well-established hydrodynamic model depends primarily on two
factors:

(i) parameter sensitivity, which indicates how the model simulation is distorted by a
given error in the parameter vector; and

(ii) the influence of input data (in this case the wind velocity vector) uncertainty, in
other words, input data sensitivity.

If the parameters have any meaningful physical interpretation (as is the case here), factor
(i) is more related to research on the general subject concerned, while factor (ii) pertains
to data collection for the specific system studied. Since no general rules are available to
decide which issue is the more important but the consequences - whether to concentrate
on research or on data collection - are quite different, both factors should be analyzed
separately and their influence compared and contrasted.

There are numerous papers in the literature on parameter sensitivity (for example
Halfon, 1977; Rinaldi and Soncini-Sessa, 1978; Kohberger et aI., 1978; van Straten and
de Boer, 1979; Gardner et aI., 1981; Beck, 1983) but far fewer on input data uncertainty

*On leave from the Research Centre of Water Resources Development, VITUKI, Budapest, Hungary.
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(Somly6dy, 1981; Scavia et aI., 1981; Fedra, 1983; among others); joint studies of both
factors are very rare. This is especially true for hydrodynamic models where even param
eter sensitivity is seldom incorporated in the analysis and very little interest is shown in
input data uncertainty.

Our objective here is as follows: for the example of a one-dimensional lake hydro
dynamic model we wish to study both parameter and input data sensitivity, and compare
and contrast the two. A trial and error method is used for model calibration and deter
ministic parameter sensitivity analysis is performed numerically. An order of magnitude
analysis and a Monte Carlo simulation are performed to investigate input data uncertainty.
The 1-D hydrodynamic model, and also more comprehensive model versions, accounting
for more than just longitudinal movement (Shanahan and Harleman, 1981; Shanahan
et al., 1981), were developed in the wider framework of a eutrophication study of Lake
Balaton. For more details of the Lake Balaton study the reader is referred to van Straten
and Somly6dy (1980) and Somly6dy (1981).

The structure of the paper is as follows. The model is presented in Section 2, while
Section 3 gives some background information and a description of the wind data for Lake
Balaton. Section 4 deals with calibration and parameter sensitivity and Section 5 discusses
validation. The influence of input data uncertainty is considered in Section 6, while
Section 7 gives an extension for multidimensional models and other lakes. Finally, the
main conclusions are summarized in Section 8.

2 MODEL FORMULAnON

2.1 Governing Equations

The motion of water along the lake's axis x (see Figure 1) is described by the one
dimensional equations of motion and continuity often adapted to river flow situations
(Mahmood and Yevjevich, 1975; Kozak, 1977)

au
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(2)

where the latter can be rewritten as

B ~: = - a: [UB(H1 + z)]

Here

U = Q/A = longitudinal flow velocity averaged over the cross-section,
A =B(H1 + z),
Q = stream flow rate,

(2a)
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z = water level elevation (e.g., due to wind),
B = width of lake,

HI =nondisturbed water depth,
H = HI + z = real depth,
Ts = wind shear stress at the water surface,

Tb = frictional shear stress at the lake bottom,
P = density of water, and
g = acceleration due to gravity.

L. Somly6dy

The shear stresses are described by introducing the drag coefficient CD and bottom
friction coefficient A(see for example Lick, 1976; Virtanen, 1978)

where

- PAQ I Q In fA l+n

(3)

(4)

Pa = density of air,
W = wind speed,

Wx = longitudinal component of wind speed, and
n = bottom friction exponent (0 .,;; n .,;; 1).

Here the quadratic law will be used, so that n = 1. As can be seen from eqn. (4), Tb is
related to the cross-sectional average velocity rather than to the local velocity in the
vicinity of the bed; consequently Ais a lumped parameter.

In subsequent stages the equations listed above are rearranged for z and Q as un
known variables and dimensionless quantities are introduced; for details see Somly6dy
and Virtanen (1982). Boundary conditions for one of the variables should be defined at
the two ends of the lake, where x = 0 and x = L, respectively. For typical lake problems
Q(t, 0) and QU. L) are generally given. If Q(t, 0) := QU. L) = 0, no inflow or outflow
takes place, a situation which will be considered here.

2.2 Numerical Solution

An implicit finite difference scheme (Mahmood and Yevjevich, 1975) is selected
and coupled to a matrix sweep technique. Time derivatives are approximated by differ
ences centered in both space and time, while for space derivatives the differences are
centered in space but weighted in time. Space-centered, forward-time approximations are
employed for all coefficients and nonderivative terms except the bottom shear term (eqn.
4) where a more detailed approach, centered in space but weighted in time, is used; for
details see Somly6dy and Virtanen (1982).

The resulting scheme is unconditionally stable in time. For z and Q, (2N - 2)
linear algebraic equations are generated which are then closed by the boundary conditions
to the 2N unknown variables (N is the number ofgrid points). In order to make computation
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more economical a matrix sweep method was developed for the solution of the system of
equations; using this method the number of elementary operations (and thus the execu
tion time) is proportional to N rather than N 3 (which is the case for conventional matrix
inversion methods). The price of this computational advantage is that spatial stability
should be assured. As was shown by Somlyody and Virtanen (1982), "weak" stability
can be maintained either for relatively small or for relatively large time steps (e.g., Llt <
100-200 s or M> 900 s), with Llx = 2000 m and H = 3-4 m which are typical values
for the Lake Balaton problem.

3 CHARACTERISTICS OF LAKE BALATON: THE WIND FIELD AND ITS
ASSOCIATED UNCERTAINTIES

Lake Balaton is long and narrow (78 km X roughly 8 km, see Figure 1) and extremely
shallow. The average depth is 3.14 m, and the lake is less than 5 m deep everywhere
except in one small area near the Tihany peninsula which divides the lake into two. In
this latter region a river-type water motion is observed which changes direction depending
on wind conditions and the associated water level oscillation. The velocity in this region
sometimes exceeds 1 m S-1 (corresponding to a flow rate of around 4000 m3

S-I) - a
very high value (Muszkalay, 1973) - while in other areas of the lake it is generally less
than 0.1-0.15 m S-I. The shallowness of the lake permits a water motion response to
even mild winds and because of the fluctuations in the wind field a steady state never
exists. This is well illustrated by the velocity measurements of Shanahan et al. (1981).

The prevailing wind direction lies between northwest and north. This is particularly
apparent if strong wind (>8 m S-I) events and summer periods are considered (Bell and
Takacs, 1974). The monthly average wind velocity ranges from 2 to 5 m S-I; however
the maximum may reach 30 m S-1 . The hourly average wind velocity exceeds 8 m S-1

at SiMok (see Figure 1) during approximately 15% of the year (Bell and Takacs, 1974).
The number of seiche-type events (strictly speaking seiche is the lake's response to a
single wind impulse) is about 1000 per year (Muszkalay, 1979).

The temporal and spatial variations in wind are strongly influenced by the surround
ing hills of the northern shoreline. The sequence of hills results not only in a nonuniform
wind distribution along the northern shoreline itself but also in a highly variable velocity
field above the lake due to sheltering, channelling, deviating, and separating effects. The
average wind characteristics at various points clearly demonstrate these phenomena. For
instance, at the eastern end of the lake the prevailing wind direction is northwesterly, at
the other end northerly, while at the middle of the lake on the southern shoreline it is
northeasterly (Bell and Takacs, 1974). The magnitude of the spatial changes in direction
is well illustrated by comparison of the records for Keszthely and SiMok (see Figure I)
during 1977: for W > 3 m s-1 , the mean value of the difference in wind direction is 39° ,
while its standard deviation is 36°, suggesting a relatively wide range within which the
wind direction can fluctuate above the lake.

Due to sheltering effects the yearly average wind speed is 40-60% higher at SiMok
than at Keszthely. This marked spatial variation in behavior is observed for nearly all
individual storms. Transverse inhomogeneity in wind speed (Le., at sites on opposite
sides of the lake rather than opposite ends), due to the presence of mountains and the
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relative "smoothness" of the water surface compared to the surrounding terrain, has also
been indicated by some observations (Bell and Takacs, 1974). The number of wind record
ing stations (at SiOfok, Szemes, and Keszthely, together with some temporary gauges
(see Somly6dy, 1979)) is insufficient for accurate specification of the wind field described
above (although an acceptable estimate can be made for the longitudinal distribution of
W; see previous sections and Somly6dy and Virtanen (I982)). Consequently, uncertainty
plays an important role and should be explicitly accounted for in the course of any model
ing effort.

Out of the two variables defining the velocity vector, the absolute value of wind
speed and the wind direction, the latter is far more important (see Section 6). Therefore
further discussion of the uncertainties associated with wind direction is now necessary.

The most important sources of error are as follows:

(i) Incorrect registration and time averaging of the direction as a stochastic variable. As
a result of turbulent fluctuations, the continuous records often define a domain
40-60° wide rather than a single line.

(ii) The discrete resolution of many of the measuring instruments, involving steps of
22.5° or sometimes even 45°, rather than continuous measurement.

(iii) The nonuniformity (randomness in space) of the wind field. Based on the example
given previously (the comparison of records for Keszthely and SiOfok) this may
exceed 90°.

Each of these factors must be dealt with in a different way. Concerning item (i), for
example, a Gaussian distribution can be hypothesized. For item (ii), the angle 0: defining
wind direction can randomly take three discrete values (the mean, ±22.5°, or ±45°).
No information is available concerning the character of spatial randomness and therefore
the assumption of a uniform distribution is the most feasible. The corresponding strategies
used in the course of the Monte Carlo simulation are given in Section 6.

The most detailed study to date on the motion of water in the lake was performed
by Muszkalay (1973) who collected a set of water surface-elevation observations for ten
years at up to ten stations around the lake (see Figure 1). Simultaneous measurements of
wind speed at one or two of the stations and occasional measurements of water current
in the Strait of Tihany completed his data set, which will serve as the basis for our analysis.

From his observations Muszkalay selected typical stormy events and looked for
empirical relationships between wind parameters and I (which is the difference of the ex
treme water levels at the two ends of the lake observed during a storm, divided by the
length of the lake), and between wind parameters and the maximum water velocity in the
Strait. Some of the results based on the regression equations he developed (Muszkalay,
1973) are illustrated in Figures 2 and 3, for storm durations of 2 and 12 h and for 10:*1<
22.5° (0:* is the angle defined by the wind velocity vector and the longitudinal axis of the
lake). Muszkalay gave I as a function of the instantaneous peak wind speed, W' ,which ismax
essentially higher than the maximum for a reasonable averaging period (e.g., an hour),
Wmax; the ratio W :nax: Wmax varies in the range 1.2-1.3. Since W~ax will not be used in the
calibration stage and a rectangular wind input will be employed, the range given in Figure 2
corresponds to the factor 1.2-1.3. It should be stressed that this range does not incorporate
the complete scatter of the original data. As is apparent from the figure, I depcnds linearly



Influence of input data uncertainty and parameter sensitivity on a lake model

1.5

1.0

0.5

135

computed

computed

T= 2h

Co = 0.0013

A = 0.003

5 10 15

FIGURE 2 Maximum water level differences along the lake for wind events of (1) l2-h and (2) 2-h
duration. The shaded areas are based on the results of Muszkalay (1973).

Q

[m3 /s]

Domain of computed IQ. I) values, T = 2 - 12h

5000

4000

3000

2000

1000

0.5 1.0 1.5

CD = 0.0013

A = 0.003

2.0 '.10-5

FIGURE 3 Stream flow rate at Tihany. The shaded area (1) is based on the results of Muszkalay

(1973).



136 L. Somly6dy

on Wx although theory suggests a quadratic relation. It is noted, however, that most of the
data utilized lay in the 5-12 m s-1 domain and a quadratic fitting could also have been
performed. As can be seen from Figure 2, the maximum value of I (in absolute terms) can
exceed 1 m, a very high value compared to the average depth of the lake.

A domain is also given for the stream flow in Figure 3. Originally Muszkalay derived
an empirical equation for the velocity 1 m below the free surface in a typical vertical
cross-section. From this the stream flow rate can be calculated as a function of I but only
approximately, as suggested in the figure.

One more essential fmding of Muszkalay (1973) is mentioned here. He concluded
from the observations that I > 0 even if 10:* I = 90° (Wx = 0). This is due to some deter
ministic effects (e.g., the deviating role of the hills) and to the stochastic nature of vari
ous other spatial nonuniformities (see item (iii) above). The deterministic effects were
accounted for by a slight transformation of the wind speed vector; for details see Sornly6dy
and Virtanen (1982).

The results for I and Q (Figures 2 and 3) will be used next for model calibration,
while the uncertainties in the wind field description and in the wind data will be discussed
later in Section 6.

4 PARAMETER SENSITIVITY AND CALIBRATION

Realistic ranges for the two essential parameters CD and A (see eqns. 3 and 4,
respectively) can be defmed on the basis of literature values. The drag coefficient*, CD'
moves approximately between 0.001 and 0.0015 (Wu, 1969; Bengtsson, 1978; Graf and
Prost, 1980). For A, the bottom friction coefficient, no direct observations are available
for lakes. For channel flows (in the turbulent domain for small roughness coefficients) it
varies between 0.007 and 0.03; this range can serve as a guideline for lake situations (values
near to or below the lower end of the range are generally expected).

During the calibration no effort was made to define loss functions or to use recently
developed versions of Monte Carlo procedures (see elsewhere in this volume for several
examples of the use of these techniques). Instead, a straightforward trial and error fitting
was performed. The empirical findings shown in Figures 2 and 3 incorporate the major
features of the system's behavior so these plots were employed as a basis, rather than the
more complex approach of using historical data. For the computations a time step t:.t of
1800 s and a space step t:.x of 2000 m (giving 40 grid points) were used, with geometric
data from VITUKI (1976). The wind input profile was rectangular and characterized by
the duration and one speed value; a sensitivity analysis on the shape of the profile (see
Somly6dy and Virtanen, 1982) showed that the application of this simple distribution
is fully acceptable for the present purpose.

As an example, Figure 4 shows the oscillation of the water level at the western end
of the lake. As can be seen the dynamics of the system are very fast, characterized by a

*Note that the assumption Co(W) = constant was used as the slight wind dependence sometimes intro
duced is overruled by the uncertainty in wind data.
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FIGURE 4 Sensitivity of the lake system to bottom friction, as illustrated by the oscillation of the
water level at Keszthely (Wx = 8 m S-I. T= 2 h).

seiche period of around 10 h. The bottom shear coefficient influences the peak amplitude
but has an even stronger effect on the damping - an important feature which will be
utilized lateL

With increasing duration of wind input the duration of any negative (or positive)
elongation also increases and in the case of a step-like wind input the water level approaches
a steady state via several small oscillations. The stream flow through any given cross
section shows a similar pattern to that given in Figure 4 but the dynamics are even more
rapid and the oscillation obviously decays for small and long durations, as well.

Next, the sensitivity of the system to X and Cn is shown in terms of effects on 1
and Q (the latter measured at Tihany). Figure 5 illustrates the influence of the bottom
shear coefficient as compared to the calibrated situation (X o = 0.003, Cno = 0.0013,
10 "" 0.3 X 10-5

, and Qo "" 2100 m3
S-I; these values are discussed later). The figure

shows that the maximum water level difference is quite insensitive to X and over the
entire domain (Xmax/Xmin "" 30) its influence moves in the range +15% to -27%. For
values larger than X/Xo = 8, ~I is practically constant. Similar conclusions can be drawn
for the stream flow although the sensitivity is slightly higher, especially if A/Ao is small.
The most sensitive behavior - in accordance with Figure 4 - is shown by ~ 3 (Figure 5),
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FIGURE 5 Parameter sensitivity: the influence of the bottom friction coefficient (Wx = 8 m S-l,

T= 2 h).

the ratio of the peak water level differences during the first and second elongation periods.
Similar conclusions were also drawn for wind inputs other than those given in Figure 5.

Figure 6 illustrates the influence of the drag coefficient. As expected, both {31 and
{32 depend approximately linearly on CD' The model output is more sensitive to this
parameter than to X because the drag coefficient directly influences the energy in put to
the system.

From the mutually opposing influences of X and CD on both I and Q, it follows
that no unique, "best" parameter combination can be found for the model without
having further knowledge of the system. In the ranges CD = 0.0011-0.0014 and X =

0.002-0.008, fittings of approximately the same quality can be arrived at for I and Q. At
this stage the damping properties of the system can be utilized for further information.
From study of the historical data it is apparent that the damping is quite fast due to the
shallowness of the lake; the amplitude of the second oscillation is around 30% of the first
one, while the amplitude of the fourth oscillation is negligible. Based on this observation
X was fixed at 0.003 (see Figures 4 and 5), corresponding to CD = 0.0013. Both values
are realistic for lake situations (X corresponds to a Chezy coefficient C = (g/X)1/2 ~ 60).
Comparisons with empirical results for I and Q are given in Figures 2 and 3. In the light
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FIGURE 6 Parameter sensitivity: the influence of the wind drag coefficient (Wx = 8 m S-I , T= 2 h).

of the explanation in Section 3, any closer agreement cannot be expected. Note that the
calibration of a vertically integrated two-dimensional model for Lake Balaton resulted
in the same parameter set (Shanahan and Harleman, 1981).

5 VALIDATION

In contrast to the calibration procedure, in which aggregate knowledge on the lake's
behavior was utilized, historical data on typical stormy events (selected from among Muszk
alay's (I 973) observations) were employed for validation. Altogether more than ten events
of different nature were simulated (Somly6dy and Virtanen, 1982) without changing the
parameter values found. Hourly wind data measured at Szemes (see Figure 1) were used
as input. The time step of the computation was 3600 s. For comparison water levels
observed at the two ends of the lake (Keszthely and Kenese) and discharge values derived
from velocity measurements at the Tihany peninsula (where available) were used. Three
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examples will now be discussed. The first is characterized by wind directions coinciding
approximately with the long axis of the lake and the second by wind directions perpen
dicular to the long axis, while the third example concerns a set of consecutive but different
events.

Example 1. (Date and starting time of storm: 16/11/1966,08:00.) The period
studied involved a relatively long-lasting storm with the wind blowing from the East,
followed by three smaller storms of various natures (Figure 7a). The corresponding wind
shear stress pattern is illustrated as a plot of F = Wx IW I in Figure 7b. The shape of the
water level curve (Figure 7c) is quite similar to that of the wind force and from this single
example a linear relationship between the two could be hypothesized. The maximum
water level difference is 0.7 m, approximately one fourth of the average depth and one of
the highest values historically observed. No second peak can be observed, mainly due to
the gradual decay in the wind shear. The agreement between simulated and observed
water levels is excellent. The discharge, ranging from -2000 to +3000 m3

S-I, shows a
highly fluctuating character. The mean value of the time series is negligible compared to
the absolute values simulated.

Figure 8 shows the entire solution z(t, x) in three-dimensional space, making the
fluctuation of the free surface much more visible. The drastic change near to the Tihany
Strait is particularly apparent; this is an obvious consequence of the Venturi-type struc
ture encountered here. D

Example 2. (Date and starting time of storm: 8/7/1963,08:00.) This example
represents a fairly typical situation for the lake, with a strong wind perpendicular to the
long axis (Figure 9a) resulting in a relatively small longitudinal shear stress component.
The behavior of the water level is very complex (the changes are small and random) and
the observed flow rate exhibits much larger fluctuations than the simulated value. This is
a case where the model fails as a consequence of the uncertainties in the wind direction
(see Section 6). One could argue that the inaccurate simulation is partly due to the
one-dimensional treatment, but the 2-D model gave equally unsatisfactory results (Shana
han, 1981). D

Example 3. (Date and starting time of storm: 18/4/1967, 14:00.) This is the most
comprehensive example studied: within the eight-day observation period more than five
different situations covering the wind speed range 0-25 m S-1 and the complete direc
tional domain of Ci can be distinguished, resulting in the irregular F(t) pattern shown in
Figures lOa and lOb. On comparing the observed and simulated water levels the "noisy"
character of the latter becomes apparent. When moving averages are used for the compu
tations reasonable agreement is achieved for the eastern end of the lake, but this is not
true for Keszthely at the western end. The model gives an over-prediction around t = 100 h
when the wind blows from the North. This is probably due to spatial nonuniformities in
the wind field causing a strongly curved water surface not adequately characterized in.
the model. The discharge reflects the noisy character of the water level and shows the
largest oscillations among the three examples discussed here. D

In summary we can state that the model has been satisfactorily calibrated. The
validation is acceptable for situations where the wind blows along the main axis of the
lake but inadequate for situations where the wind blows across the lake. This problem is
discussed in Section 6.2.
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6 WIND INPUT UNCERTAINTY

6.1 An Order of Magnitude Analysis

To begin this analysis we return to eqn. (3) and assume small errors, flo CD ' flo W,
and flo 0:, respectively, in the variables Co' W, and 0:. The error propagation in the wind
shear stress (related to Tsm axo = Pa CD W2

) in the vicinity of the nominal point 0 is then
characterized by

Tsmaxo
(S)

derived from eqn. (3) after linearizing it. The term floCo/Coo indicates parameter sensi
tivity while the remaining terms relate to input data sensitivity. The errors flo CD and flo W
are similar in nature. For instance errors of ±20% in CD or ±10% in W result in errors of
roughly ±IS% in I and Q, respectively (see Figure 6). These errors influence the magnitudes
involved but not the dynamic characteristics of the system; therefore they can be handled
reasonably well and require no further discussion here.

The situation regarding the second term in eqn. (S) is different because tl.o: can
change the sign of Ts and through this completely distort the time-dependent flow field.
This can be shown by the following order of magnitude analysis.

Based on simulation results (see Figures 2 and 3) for wind durations of T = 2 h,
the maximum water level difference and the flow rate at the Tihany peninsula can be
expressed approximately as functions of Ts' The error term 0:* can be also introduced,
thus leading to the following equations

(6)

and

(7)

where 1 is dimensionless and Q is in units of m3 s-1 . Here 0:* is zero if x = 0 (Figure 1)
and, in contrast to the previous definition, I can be positive or negative. The sign of Q is
the same as that of I.

Equation (6) clearly shows the main features of error propagation. There is no
effect if 0:; = 0 or 180° (corresponding to longitudinal winds), while the largest effect
occurs for 0:; = 90° or 270° (corresponding to transverse winds). The case of 0:; = 90°
corresponds fairly closely to the prevailing wind direction and thus is of major importance.
In this case - depending on the sign of floo: - positive or negative first amplitudes at the
same end of the lake and both flow directions are all possible. For example, relatively small
variations in input conditions (tl.o: = ±22.So if W = 10m s-1, or tl.o: = ±10° if W = IS ill

S-1 ) correspond to strikingly wide error ranges in z (±13 cm) and Q(± IS00 m3 s-I ).

When we recall some other features mentioned previously, such as the poor resolu
tion in the directional data, the inappropriate time averaging of the wind data (often,
only three-hour averages are available), and the fast response of the system, it is obvious



Influence of input data uncertainty and parameter sensitivity on a lake model 145

...,..,..,..00....

...
~..
,..

~

E ..
~ ...
<l: '00.

tJ.
~"" ....J

<l: ;-0.

:JOO.

200.

100.

N~

N- ..
!
tJ.

.. zoo.

-'JOG •

•• S

•• C......
•• 2

E
.. ,

N
.....
-o.Z.....
-0.4

-0. S

-0._
.000.

soDa.

4GOO.

'Sooo.

Z'Doo.

~ \000.
M-
E. o.

o -1000.

-'JOOO.

"4000.

-SODa.

-lIiiIUJCI.

t [h]

FIGURE 10 Simulation of a historical storm, 18/4/1967: (a) wind speed and direction at Szemes;
(b) F = I WI Wx ; (c) water level at Keszthely (1) and Kenese (2), respectively, together with observed
values (broken line); (d) flow rate at Tihany.



146 L. SomlyOdy

that in the vicinity of a6 = 90° an error in a single direction datum can result in the sort
of drastic change in the simulation described above. From this simple argument it follows
that any better agreement between simulation and observation for the last two examples
in Section 5 would, in fact, be surprising. For these reasons the more accurate Monte Carlo
simulation procedure described next was employed.

6.2 Monte Carlo Simulations

In the course of the Monte Carlo procedure a random component ~a(t) is added to
the mean scenario a* (t). The generation of ~a takes place numerically according to the
three types of error sources and their respective distributions as outlined in points (i)-(iii)
of Section 3. In this way a large number of at = a* + ~ai scenarios can be calculated and
computer simulations performed with them. Finally the statistics of the model output are
evaluated. The number of simulations required was initially tested on Example 2 (see be
low); experiments were made with between 50 and 1000 Monte Carlo runs and it was
eventually decided to use 100 runs. The values 16.8°, 22.5°, and 33.8° were assumed as
basic, realistic values for the standard deviations (or half ranges) of the Gaussian, "discrete",
and uniform distributions (see Section 3), respectively, but other values were also employed
in order to check sensitivity. The transformations of the original distributions with respect
to wind force, water level, and flow rate, respectively, were also studied. Some of the re
sults obtained are now discussed.

Example 1. The Monte Carlo simulations depicted in Figure 11 correspond to parts
b-d of Figure 7 and show the effects of considering the means, standard deviations (±),
and extreme values of each parameter (uniform distribution, half range 33.8°). In agree
ment with the findings of Section 6.1, the uncertainty in a influences the wind shear to
only a small extent (for wind conditions near to longitudinal). This is also true for z: for
exampIe, around t = 25 h the variance is practically zero. Again in accord with Section 6.1,
the uncertainty range for Q is essentially wider indicating at the same time that model
validation for discharge (or velocity) is more difficult than that for water level (see also
Figure 5). Note that the mean trajectories agree reasonably well with the deterministic
simulations (Figure 7), and that the discrete generator (option (ii» with a half range of
22.5° gave practically the same results as those illustrated in Figure 11.

In conclusion we may state that in this case uncertainty is not too important, this
being one reason why the validation in Section 5 was successful. 0

Example 2. Results for the uniform distribution are given in Figure 12. In contrast
to the previous example, the uncertainty produced in the wind shear stress by the same
range in a is much wider due to the cross-wind conditions (see Section 6.1). In practice
the water level variation can range between 0.15 and -0.15 m, thus including all the
observed values. The results explain the "noisy" character of the water level well and
show that under such conditions a model with deterministic input cannot be validated.
For the discharge a strikingly broad domain was obtained, covering most of the measured
values. Although it was stated in Section 5 that the model failed for this event, from the
present example it follows that the statement is only true if uncertainties are not accounted
for. Note that the order of magnitude estimate given in Section 6.1 coincides well with the
results described in Figure 12.
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Figure 13 summarizes the results obtained using various distributions for the dis
charge at Tihany. It is stressed that the situation described in Figure 13c represents the
smallest uncertainty range possible in practice since the resolution of the standard wind
direction data is 22.5°.

As compared to Example 1, the mean trajectories depend more strongly on the dis
tribution assumed for ~a and differ from the deterministic simulation. D

Example 3. Results for the water level at the eastern end of the lake are given in
Figure 14 (uniform distribution, half range 33.8°). The very wide uncertainty domain (see
also Section 6.1) is due to the cross-wind conditions around t = 100 h and the high wind
speed value (Figure 10). More attention is paid here to the mean trajectory which is
essentially different to the deterministic result; it is less noisy and agrees better with the
observations. D

Two main conclusions may be drawn from this section: (i) except in the case of
longitudinal wind conditions the model is far more sensitive to directional data than to
other model parameters, and this should be taken into account in model development and
use; (ii) the model was successfully validated in a stochastic fashion, which is a consider
able achievement as compared to deterministic simulations.

7 MULTIDIMENSIONAL MODELS AND OTHER SYSTEMS

It is of some interest to analyze first, whether the behavior of multidimensional
models as regards uncertainty propagation is similar to that of the l-D model and second,
what conclusions can be drawn for other lakes.

7.1 Multidimensional Models

For multidimensional approaches (3-D or horizontal 2-D models in the present case)
the wind shear stress vector as model input is given by the following equation

(8)

where e and e are unit vectors for directions x and y, respectively. In contrast to eqn.
(3), a s:cond t{rm now appears in parentheses representing the transverse shear stress.
The sensitivity of this equation to ~a can be characterized by the relationship

In the l-D model an error in the wind direction influences the absolute value (and
also the sign) of the shear stress appearing in the input. In contrast, the absolute value is
unaffected for 2-D or 3-D situations; only the direction and through this the components
are modified (eqn. 9). The sensitivity structure of eqn. (9) is, however, not very suitable.
For wind directions nearly perpendicular to the lake's axis Tsx is characterized by the
same (large) sensitivity as in the l-D model while for Tsy the sensitivity is negligibly
small (cos a; ~ 0). As the cross-sectional average discharge in a 2-D model is primarily
dependent on Tsx we may conclude that the sensitivity of the 2-D model to input data
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uncertainty has a similar character to that encountered with the I-D approach. This explains
why Shanahan and Harleman (1981) failed to simulate the discharge adequately for the
two storms discussed in their report.

It is more difficult to reach conclusions on the possible behavior of a 3-D model as
an additional important parameter, the vertical eddy viscosity, would appear in such a
model. This would influence first of all the shape of the vertical velocity profile (excluded
from both the I-D and 2-D approaches), and through this also the cross-sectional average
stream flow. Thus it is suspected that the input data sensitivity might be smaller for a 3-D
model, but that it would still be significant.

The sensitivity in T.sy (see eqn. 9) is highest for longitudinal wind conditions. This
will, however, primarily influence the circulation pattern, but only slightly affect Q and I.

7.2 Other Lake Systems

Among the most characteristic features of Lake Balaton are the lake's geometry,
the prevailing wind direction which is approximately perpendicular to the lake's axis, and
the relatively fast response of the system. The wind field also shows specific patterns of
temporal and spatial change. However, the methods of data collection used do not in fact
follow satisfactorily either the features of the wind field or those of the lake system (due
to insufficiently exact or inappropriate resolution in space, time, and direction). These are
all reasons for the large uncertainty found and for the dominant position of input data
sensitivity rather than parameter sensitivity.

Certainly other lakes can and do essentially differ from Balaton in their major char
acteristics. However all the systems are specific in their own different ways: for example,
no regular lake of circular shape has yet been found in nature for which uncertainties in
wind direction would equally influence the x and y components of a model simulation.
Moreover, for most lakes, typical values of length, width, and prevailing wind directions
can be straightforwardly defined. From these major characteristics the ranges and types of
possible uncertainties follow. More importan tiy, the major characteristics contain clues on
how the various uncertainties can be diminished by developing an appropriate monitoring
strategy .

8 CONCLUSIONS

Parameter sensitivity and the influence of input data uncertainty has been studied
for a one-dimensional model of Lake Balaton. The major characteristics of the Balaton
system are the long, narrow shape of the lake and the prevailing wind direction which is
approximately transverse to the lake's axis. In addition to detailed simulations, two
aggregated parameters, the maximum water level difference I along the lake and the
volume flow rate Q at the smallest cross-section, were used to describe the major features
of the system. Our conclusions are as follows:

(i) The wind field exhibits characteristic temporal and spatial changes. The response
time of the lake is very short: a typical measure is the longitudinal seiche period of around
ten hours according to the model. Storms of short duration (1-2 h) induce considerable



Influence of input data uncertainty and parameter sensitivity on a lake model

0.8

0.6

0.4

0.2

E O.
N

-{).2

-{).4

-{).6

-{).8
0 20 40 60 80 100 120 140

t[h]

153

FIGURE 14 Monte Carlo simulation of the storm of 18/4/1967: water level at Kenese ((3) mean
value, (4) and (2) mean value ± standard deviation, (1) and (5) extreme values; the bold line is derived
from observed values).

movement so that a steady state is practically impossible to define. The instrumental
resolu tions of wind data in time, space, and direction are inappropriate for the known
properties of the wind field and the fast dynamics of the system. This inappropriate
monitoring strategy causes large uncertainties in the wind input data and should be
accounted for in the course of model development.

(ii) The influences of the two major parameters, the wind drag and bottom friction
coefficient, on model performance are opposite. Thus, it is difficult to find a unique,
"best" parameter combination. In the ranges CD = 0.0011-0.0014 and 11.=0.002-0.008,
fittings of approximately equal quality can be arrived at for I and Q. Based also on the
damping properties of the system a parameter vector (0.0013, 0.003) was calculated.
Essentially the same results were obtained from the independent development and cali
bration of a horizontal 2·D model for Lake Balaton.

(iii) The model's behavior is obviously very sensitive (in fact, almost directly pro
portional) to the drag coefficient which influences the energy input to the system. In
marked contrast, the model output is quite insensitive to the bottom friction coefficient
(the only parameter directly associated to internal variables). In the range of Arelated to
the nominal calibrated value (0.25-8), I varies in the range + 15% to - 27%. For Q the
sensitivity is slightly higher, but bothI and Q are practically independent of/... for A/AD > 8.
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(iv) The model was successfully validated for longitudinal wind conditions. However,
this was not possible for winds closer to transversal and particularly not for the stream
flow, one of the two variables. The 2-D model showed the same properties.

(v) An order of magnitude analysis clearly indicated that the failure in validation
was due to uncertainties in the wind direction, which has almost no influence on the
model performance for longitudinal winds but a very major effect for transversal condi
tions. Errors of ±15 cm and ±1500 m3

S-1 can easily occur for I and Q, respectively
(the nominal value would be zero for both variables). While errors in the wind speed are
of a similar nature to those in the drag coefficient, in that they do not influence the
direction of the flow or the sign of a water level amplitude, an error in the wind direction
can completely distort the time pattern of the simulation. The behavior of the 2-D model
is expected to be similar.

(vi) By introducing an error component solely in the wind direction, Monte Carlo
simulations were performed. This more accurate approach justified the findings of the
order of magnitude analysis. Assuming realistic uncertainties in the wind direction (in
this case, a ±22.s° error domain) the model was successfully validated for all the historical
storms simulated. The mean trajectories of the Monte Carlo runs are close to the deter
ministic simulations for longitudinal wind directions with increasing deviation observed
on approaching cross-wind conditions.

(vii) In this particular case we can conclude that input data sensitivity is more
dominant than parameter sensitivity for the l-D model; the situation would probably be
similar for the 2-D model version. However, the pattern of course can and will be different
for other lakes. Nevertheless, it is generally of great importance to work out a proper wind
monitoring network, knowing the major features of the system studied (see conclusion
(i) above), in order to reduce the possible influence of various input data uncertainties.
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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
AND UNCERTAINTY IN PHYTOPLANKTON MODELS

G. van Straten
Department of Chemical Engineering, Twente University of Technology,
P.O. Box 217, Enschede (The Netherlands)

1 PROBLEM STATEMENT

In modeling large complex systems, estimates for the model parameters cannot
always be obtained by controlled experimentation or independent measurements. More
over, most parameters are lumped parameters in the sense that they represent a wealth
of underlying processes for which separate modeling is undesirable or impractical, so
that their numerical value has a well-defined physical meaning only for the system under
study within the context of the model specified. Consequently, some form of model
calibration, achieved by adjusting the parameters in some way, is inevitable.

Generally, modeling is used to enhance our understanding of the behavior of a
system as a whole, preferably in quantitative terms, from the action of each of the
components separately. Of course the eventual aim is to use models as a lOol to decide
upon the effects of possible control actions or alternative management strategies.
Obviously, the success of such applications depends critically upon the quality of the
calibration. Here it is not only essential to have parameter estimates that fit the data
well, but also important to have some idea about the accuracy of the estimates, and
about the uncertainty in the model predictions resulting from the uncertainty in the
parameters.

Formal calibration, or, if preferred, parameter estimation, based on minimization
of the sum of squared differences between model results and data (least-squares methods)
does allow for the simultaneous estimation of the parameter variance-covariance matrix
(see, for example, Draper and Smith, 1966). However, least-squares methods as such
ignore knowledge that might exist about the error structure of data, inputs, or model.
If something is known or can be assumed about the error structure, improved estimates
with lower variances can in principle be obtained by employing maximum likelihood
estimation.

In a previous paper maximum likelihood estimation was applied to a model for
phytoplankton dynamics (DiToro and van Straten, 1979), using data obtained for Lake
Ontario during the International Field Year of the Great Lakes (IFYGL, 1972-1973).
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In this case, a priori knowledge about the data error was available in the form of spatial
variances because the data were lake-wide means computed from numerous local samples.
The present paper reports on a second application of the same approach using the same
model for the same lake, but now for a ten-year lumped-data set. Here, the uncertainty
in the data arises from the variability among the different years.

First, the theory of the method as developed by DiToro and van Straten will
be restated, but cast in a more general framework. Next, the results of the application
to the IFYGL data will be summarized and supplemented with experience gained with
the ten-year lumped-data set. The key section is the discussion, in which the mathe
matical treatment is scrutinized to explain some of the difficulties encountered in the
practical application. The principal aim of this contribution is to show what can be learnt
about maximum likelihood estimation from practical experience, and how this leads to
suggestions for improvement. The actual implementation of these improvements will
be the subject of future research.

2 THE MODEL

To help the reader in the rather abstract derivations to follow, the model is first
briefly discussed, although detailed knowledge is not essential for the development in
the subsequent sections. The model was developed originally by the Manhattan College
(Thomann et al., 1975). State variables are phytoplankton carbon, herbivorous zoo
plankton carbon, and carnivorous zooplankton carbon; organic nitrogen, ammonia
nitrogen, and nitrate nitrogen; and organic phosphorus and orthophosphorus. Each of
these variables is modeled for both the epilimnion and the hypolimnion, but in the
horizontal plane it is assumed that the lake is homogeneous. Driving variables are total
daily solar irradiation, day length, extinction in the water column, water temperature in
the epilimnion and hypolimnion, mixing over the thermocline, and inputs of phosphorus
and nitrogen compounds. Data are available from the regular sampling program on a
rougWy ten-times-a-year basis from 1967 to 1976, and in addition from the IFYGL
program for a one-year period from 1972 to 1973. The measurements comprise
cWorophyll-a, total zooplankton biomass, total KjeldaW nitrogen, ammonia, nitrate,
and total and soluble reactive phosphorus. A comparison with model results is made
possible by a suitable linear combination of the model state variables.

Previously, the model has been calibrated using data for 1967-1970 (Thomann
et al., 1975), thus providing an initial guess for the parameter vector in the present
application. In what follows, the forcing functions representative of the period 1967-1970
have also been used, rather than the IFYGL or ten-year averaged forcings. Although
year-to-year differences for Lake Ontario are not excessive, some error will result from
this simplification, which is not accounted for here.

3 METHODOLOGY

3.1 Estimation

In this section the methodology as originally developed by DiToro and van Straten
(1979) is restated in a slightly more general form.
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Let jj be the column vector of model results at time instant tj (j = 1,2, ... ,n).
Thus

where [h(tj;~) denotes the model outcome for state variable k at time t j given the param
eter vector i3 (dimension p). The dimension of Jj is s, the number of state variables.
Further let Cj be the s-dimenslOnal vector of the observed lake-wide (average) concen
tration for the state variables:

Since fj is a model for Cj, one may postulate that

(1)

where Vj denotes the sum of all errors at time tj, which may be composed of measurement
errors, spatial errors, and model structural errors (including propagated input errors).

Under the additional assumption that the total error Vj is normally distributed
with variance-covariance matrix Rj (dimension s x s), the multivariate probability density
function of Cj given the process parameters b is

The multivariate likelihood function for Cj given the model parameters $, l(cj; $), has
the same form as eqn. (2). If the disturbances Vj are not correlated in time, the likelihood
function for the full time series can be written as

(3)

or

-In LCS)

Note that in eqn. (1) it is tacitly assumed that fj has the same dimension as the obser
vation vector. Thus, linear transformations of the actual model state variables are under
stood to have been performed before eqn. (1) is applied, and consequently, Ii should,
in fact, be viewed as the data-oriented model results vector rather than as a state vector
as such. It should also be noted that the summations in eqn. (4) must be taken over all
data points excluding missing data, so that in the case of missing data sn should read N,
the total number of actual observations made (N";;; sn).

In eqn. (4) both the elements ot Rj and the elements of the parameter vector S
are unknown. The estimation problem can now be formulated as: find ~j, Pthat mini
mize the right-hand side of eqn. (4) (these are then the estimates ltj and S). At this point
DiToro and van Straten (1979) make the tacit additional assumption that the estimate
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of R j does not depend upon tl:e parameter estimate ~. Under this assumption the param
eters can be found by differentiating eqn. (4) with respect to S, to yield

n

L (Cj -1i)TRj-1(a!ila~) = 0
j;J

(5)

The result of eqn. (5) is further simplified by assuming that no correlations exist between
the disturbances among states, so that Rj is a diagonal matrix:

o

(6)

o

The log likelihood is now reduced to

where a~kj, ckj, and fkj are shorthand notations for a~k(tj), Ck(tj), and fk(tj;S), respec
tively. Differentiation with respect to {3 yields, in a similar way to the derivation of
eqn. (5):

n •

L L {(Ckj - fkj)/a~kj}(afk)a~) = 0
j;1 k;1

This is equivalent to a weighted least-squares problem with weights

i.e., equivalent to minimizing

(8)

(9)

(10)

Equation (10) demonstrates the well-known fact that maximum likelihood gives a
probabilistic justification for the use of weighted least-squares, and, in addition, provides
a method to choose the weights, which must otherwise be chosen by engineering judg
ment.

At this stage of the development the weights are not known. The values of a~kj

must also be estimated. In order to do this, Vkj is split into a known, time-dependent
part Ilkj, i.e., the variance of the spatial mean of state variable k observed at time tj,
and an unknown part 77kj, expressing all other errors, mainly the model error. If both
errors are independent and normally distributed, and if the model error is supposed to
be time-invariant in lack of information, then
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(I I)

Differentiation of eqn. (7) with respect to the unknown a~k together with some algebraic
rearrangement leads to

( 12)

This is an implicit formula for a~k, but in this form is amenable to solution by successive
substitution. Note that if the variance of the spatial mean concentration is small, i.e.,
if a~kj <{ a~k, then a~k + a~kj is practically time-invariant and eqn. (12) transforms into

n n

(13)

so that the model error variance is the residual variance less the average of the spatial
heterogeneity contributions.

3.2 Parameter Variance-Covariance

A lower bound for the parameter variance-covariance is provided by the Cramer
Rao inequality (see, for example, Eykhoff, 1974):

(14)

where J is the Fisher information matrix:

(15)

Following DiToro and van Straten

(16)

But, because it is assumed that the residuals are not correlated in time and among states

(17)

where Dmn is the Kronecker delta (equal to I if m = n, and 0 otherwise), so that the final
result is (asymptotically)

(18)
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This is the conventional nonlinear weighted least-squares expression for the covariance
variance m?trix of the parameter estimates.

3.3 Prediction Error

When the parameter estimates Sand the associated variance-covariance matrix are
available one may also estimate the error in the prediction resulting from the parameter
uncertainty:

(19)

Linearization of fJ,j(h + t.(3) around hby a Taylor-series expansion yields

p P

V{fhj(S)} = E{(af/a{3cJ(af/a{3{3)iJ.{3aiJ.{3{3} = L L (af/a{3a)(af/a{3{3) cov({3a, (3(3)
a=l {3=1

(20)

This result is reasonable only if the linearization around the parameter values is reason
able. In cases of pronounced nonlinear behavior, eqn. (20) may be expected to yield
misleading results.

4 APPLICAnON

4.1 IFYGL Data

In the application to the IFYGL data a~hj is the variance of the spatial mean,
computed as

2 (1/Nkj )aiki (21)a llhj

Nhj

aiki {l/(Nki -l)} L (Cjjh -Chj)2 (22)
j=l

Nhj

Chj (1/Nhj) L Cjjh (23)
i=l

where Cijh is the observation of variable k at time t j at location i, Nhj the total number
of locations sampled for variable k at time t j , Chj the spatial average concentration, and
aihj the sample variance of the individual Cijh values.

The parameter-estimation procedure involves the solution of eqn. (8), which can
be done by conventional nonlinear least-squares routines. The only difference is that the
weights in this application depend upon the parameters chosen, and a continuous update
of the weights according to eqn. (12) is necessary during the optimization.
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The results can be summarized as follows.
(a) The objective function (eqn. 10) using a continuous weight update turned out

to be very insensitive to the parameter choice (see discussion below); consequently,
convergence was slow. Since the principle interest of DiToro and van Straten was in
the parameter uncertainty, they decided to skip the optimization step in this preliminary
application. Instead, the nominal values resulting from the 1967-1970 hand calibration
were used as reasonable approximations of the maximum likelihood estimates.

(b) Coefficients of variation for the parameters resulting from the analysis are
shown in Table 1, column a. Because no direct calibration with the 1972 data was done
(and, moreover, forcings representative of 1967-1970 rather than the actual 1972 data
were used), the fit is not as good as would otherwise have been possible. Consequently,
the model errors as shown in Table 2 are definitely larger than expected. This, in turn,
inflates the parameter covariances, allowing for only qualitative conclusions. Generally,
the kinetic parameters and stoichiometric ratios associated with the phytoplankton,
phosphorus, and nitrogen cycles can be estimated with fair accuracy. On the basis of
the field data less can be said about the value of the Michaelis-Menten coefficients,
especially for nitrogen. This is not surprising because, in Lake Ontario, nitrogen is only
limiting for a relatively short period. Perhaps most striking in column a of Table 1 is
the relatively large uncertainty in the zooplankton parameters. Apparently, zooplankton
kinetic parameters cannot be estimated with confidence from the available field data,
at least for herbivorous zooplankton. It is somewhat surprising that the uncertainty for
the carnivorous zooplankton seems to be smaller, especially because its behavior has only
a secondary effect on the phytoplankton and nutrient concentrations.

(c) Table 3, column a, gives an impression of the prediction error due to parameter
uncertainty, calculated from eqn. (20). Prediction errors tend to be largest in summer
and smallest in winter but only yearly averages are shown in Table 3. Clearly, the predic
tion of zooplankton is without much meaning in this case. The numbers in parentheses
indicate the prediction error when the covariance structure of the parameters is ignored.
Since several parameters are strongly correlated the effect is rather dramatic. Correlations
arise from the structure of the model. For example, since

dA/dt = (G - D)A (24)

where A is phytoplankton, G the specific growth rate, and D the death rate, G and D
have a strong positive correlation upon estimation, because it is in fact the difference that
determines the behavior pattern of phytoplankton rather than the individual G and D
associated parameters. Consequently, a large uncertainty in each of the parameters
individually does not necessarily imply a large prediction error, because of the mitigating
effect of the covariance terms in eqn. (20).

4.2 Ten-Year Data Set

In the application of this paper the ten-year data were used to construct a lumped
data set for one "average" year. For this purpose the measurement data for a particular
month were averaged over ten years (as far as data were available). Since the year-to-year
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TABLE 1 Parameter uncertainty in coefficients of variation (%)a.

a b

Phytoplankton
Growth rate 63 48
Respiration rate 81 26
N, Michaelis-Menton 479 267
PO., Michaelis-Menton 411 115
N/chlorophyll-a 53 19
PO./chlorophyll-a 63 16
Settling velocity 76 > 1000

Nitrogen
Organic N-NH 3 transformation rate 31 42
NH 3 -N03 transformation rate 25 33
N settling 85 38

PllOSphonJs
Unavailable P-PO. transformation rate 113 43
P settling 237 32

Zooplankton
C/chlorophyll-a 235 131
Herbivorous grazing 170 86
Herbivorou s assimilation efficiency 800 210
Herbivorous respiration > 1000 79
Herbivorous grazing saturation > 1000 280
Carnivorous grazing 95 49
Carnivorous assimilation efficiency 116 78
Carnivorous respiration 160 51

c

71
27

>1000
174

28
16
86

57
51
53

48
41

247
228

90

d

83
38

> 1000
173

29
20

102

57
51
57

48
45

515
428
771
920

> 1000
317
785
896

a a: 1972 IFYGL data. Nominal parameter set without optimization. b, c, d: 1967-1976 data.
Optimization with fixed weights; b, all parameters, c, five parameters fixed at nominal value, and
d, full uncertainty with parameter set found under c.

variability was much larger than the spatial variance the latter was ignored, and the
variance assigned to each of the twelve data points was simply taken as the sample
variance about the ten-year mean. (Note that this variance may be up to ten times larger
than the variance of the mean. This choice implies that the ten-year mean is seen as the
most likely value for any individual year, while the sample variance relates to the interval
in which the datum is expected for any individual year rather than the interval in which
the mean is expected.) The variance obtained in this way somehow comprises the year
to-year variability in inputs and forcing functions, and thus compensates more or less
for the fact that these variations have not been explicitly taken into account. Next,
the lumped-data set was substituted for the IFYGL set and the estimation procedure
repeated in the same fashion as before. However, because of the insensitivity of the
objective function, as mentioned previously, it was decided to optimize the param
eters with a fixed weight, based on the data variance alone. Thus, no weight update
incorporating the model error was performed during the optimization. However, once
the optimum point was found, an estimate of the model error was made using eqn. (12),
and the parameter variance-covariances were calculated with the updated weights
according to eqns. (11) and (18). Because in this case the data variance is much larger
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TABLE 2 Model error versus data errora .

a b c/d

Model Data Model Data Model Data

Epilimnion
Chlorophyll-a 89 7 2 22 6 22
TKNb 52 4 47 47
NH 3-N 260 6 10 21 21 21
N0 3-N 44 2 13 34 13 34
Total P 10 1 42 42
PO.-p 87 3 19 5 19

Hypolimnion
Chlorophyll-a 70 18 7 59 9 59
TKNb 17 4 50 50
NH 3-N 390 6 15 15
N0 3-N 8 1 20 40 16 40
Total P 16 1 I 41 1 41
P04-P 91 2 17 17

a See footnote to Table 1.
b Total Kjeldahl nitrogen.

TABLE 3 Annually averaged prediction error (as % coefficient of variation) for some of the
epilirnnion variablesa,b.

a b c d

Chlorophyll-a 56 (705) 10(295) 8 (110) 9 (150)
Zooplankton 350 (2050) 43 (1200) 14(130) 27 (460)
Ortho-P 74 (430) 9 (90) 9 (150) 10 (150)
Total P 6 (36) 5 (35) 4 (18) 5 (21)

a See footnote to Table I.
b Values in parentheses show the prediction error when the covariance structure of the parameters is
ignored.

than in the IFYGL case, calculation of the model error with eqn. (12) was not always
possible. That is, the data error encompasses the span of all possible errors including
model errors, and there is simply not enough information to separate the individual
errors.

In contrast to the IFYGL application a parameter optimization was performed
prior to uncertainty calculations, rather than using the nominal parameter set. First,
a full unconstrained 20-parameter search was made. No difficulty was met in finding
a parameter set that produced a better fit than the nominal one. Consequently, as can
be seen from Table I, column b, the parameter error is much less than in the case of no
optimization (the high relative error for the settling velocity is artificial, because its
value turns out to be estimated as nearly zero, in which case a coefficient of variation
is not a suitable error measure). With the optimized set, apparently, a lower model
error (as far as this could be computed, see Table 2, column b) and a lower prediction
error (Table 3, column b) are obtained. However, when looking at the parameter values
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arrived at, it became clear immediately that the improved fit was obtained at a physically
nonfeasible point in parameter space. For example, the carnivorous assimilation effi
ciency was raised from 0.6 in the nominal set to a value much larger than 1 in the opti
mized set, which is, of course, impossible. And although most other parameters remained
within reasonable ranges, some of the suggestions made by the optimization, such as a
five-fold larger carbon-to-chlorophyll ratio, are highly unlikely. These results serve to
illustrate that multiparameter optimizations in complex systems with relatively few data
tend to yield nonsensical answers if no constraints are imposed on the parameters.

To overcome these difficulties a second run was made in which some of the most
uncertain and some of the physically most constrained parameters were fixed at their
nominal values (all associated with the zooplankton cycle). A new optimization was
carried out with these constraints, and a new optimum was found with values quite
different from those of the full parameter case. As expected, the model error was larger
in this case (see Table 2, column c/d) because fixing some of the parameters restricts
the number of degrees of freedom to adapt the state trajectory to the data. The param
eter covariances were computed in two ways. Firstly, the fixed parameters were treated
as constants, so that they do not appear in the variance-covariance calculations (see
Table 1, column c). This is equivalent to assuming that these parameters are known with
certainty. In the second method, uncertainty was also assigned to the fixed parameters
by including them in the variance-covariance computations. This is equivalent to
assuming that the fixed parameters belong to the optin1al set. The results are given in
Table 1, column d. As can be seen, the fixed parameters are associated with very large
uncertain ties, which is not unexpected because uncertainty was one of the criteria for
selecting them to be fIxed. In the case of the optimal poin t, a large uncertainty would
have meant that these parameters could hardly be estimated from the data. Away from
the optimal point this conclusion is not necessarily justified (compare columns a and d).
On the other hand, a large uncertain ty does indicate that at the actual parameter poin t
the model is not very sensitive to these parameters. This is why it is perhaps more appro
pria te to speak of sensitivities rather than uncertain ties when the estimates are not close
to the "true" values (see Schweppe, 1973).

It is also interesting to note from Table I that the assumption that some of the
parameters are known with certainty decreases the uncertainty in the remaining param
eter estimates. This agrees with the intuitive feeling that the availability of such a
strong piece of external information permits a better estimation to be made. This point
is further illustrated in Figure 1, in the simple case of two parameters. Suppose that
the point (C, D) is found after optimization with PI fixed at C. Now the uncertainty
of the parameters resulting from the Cramer-Rao inequality (eqn. 14), assuming both
parameters to be unknown, is represented by the ellipse around (C, D), which is a linear
approximation of the true nonlinear confidence contour represented by the line drawn.
Thus, the uncertainty in parameter P2 is given by U3' However, if C is considered to
be known with certainty, the true point cannot be everywhere within the confidence
ellipse bu t must be on the line PI = C. Then, the uncertainty in P2 under the condition
PI = C is the distance U2 only, and is therefore smaller than before.

Assuming the parameters to be known with certainty reduces the uncertainty of
the remaining parameters only if we stay in the same point of parameter space. It is not
true in general, as can be seen from a comparison of columns band c in Table 2. Allowing
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FIGURE I Effect on parameter uncertainty of fixing a parameter off the optimal point (two
parameter example, for explanation see text).

for a full optimization does decrease the parameter variances. Again, reference is made
to Figure 1. If, instead of fIxing PI at C, a full optimization is carried out, one would
find the true minimum (A, B). Since this is a true minimum the variance a I is expected
to be lower than at other points somewhere "up the hill". It may, of course, be that
the point (A, B) is physically not feasible (as is the case with column b in Table 1).

Finally, a word must be said about the prediction error in the three cases. As
expected, the average prediction error is smaller in case c than in case d because the
parameters are known with less uncertainty. However, it is surprising that the prediction
errors in the full parameter case (column b) are somewhat larger than in cases c and d,
despite the better fIt in this point. It may be that this has something to do with the non
linearities in the model. One might expect the model to be particularly nonlinear around
nonfeasible points in parameter space (as in case b), and this might have an inflating
effect on the prediction uncertain ties. The result confIrms that care must be exercised
in applying eqn. (20).

5 DISCUSSION

The theme of central importance in maximum likelihood estimation is what is
known or can be assumed about the structure of the errors. The results are reasonable
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inasmuch as the assumptions are reasonable. In this application the assumption was
that model errors are additive with the state variables, so that they can be treated in
essentially the same fashion as observation errors. It was also implicitly assumed that
input errors are either absent or propagate linearly with the state estimates, which is
perhaps not very likely in the case of an essentially nonlinear model. It may also be that
system disturbances do not lead to additive state noise. In such situations a stochastic
differential equation might be a more appropriate model than a deterministic description
(see McLaugWin, 1978). Further, the initial conditions were assumed to be known with
certainty. In reality, of course, they are not known exactly and this will, in principle,
lead to a nonwhite state error because the initial condition error vanishes as time pro
ceeds in this kind of model. A possible solution to this problem could be to treat the
initial conditions as additional parameters and estimate them simultaneously.

With these limitations in mind, some of the problems encountered can now be
discussed. First consider the question of the observed insensitivity of the objective
function of eqn. (IO) to the parameters. In both applications of this study the total
error as given by eqn. (l1) is only a weak function of time; in the IFYGL case because
a~kj ~ a~k' and in the ten-year data case because the error in the data estimates is not
much different throughout the year. Then a~k is approximated by eqn. (l3), and sub
stitution back into eqn. (l I) yields

n n

"" (lIn) L (ckj-!kj)2-(lln) L a~kj+a~kj
j=l j=l

Obviously the two latter terms almost cancel out so that

n

a~k "" (lIn) L (Ckj - fkj)2
j=l

Thus, the objective function given by eqn. (l0)

s n

S = L L (lla~kj)(ckj - fkj@))2
k=l j=l

becomes

(25)

(26)

ns (27)

In other words, S is almost constant, irrespective of the parameter choice. Indeed, in the
applications the numerical value of the objective function was always approximately
equal to the total number of observations as predicted by eqn. (27).

The situation can be analyzed further in more general terms. Consider the maxi
mization of the likelihood function (eqn. 4) in two cases: first where Rj is known a priori.
In this case the In terms in eqn. (4) do not depend on the parameters and the parameter
estimation is done by minimizing
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n

S = I [(Cj - h({3))TRj-
1
(Cj - h({3))]

j=l
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(28)

This is a weighted least-squares procedure with fIxed weights. The optimization step in
the ten-year data analysis falls in this category.

Now assume Rj is not known. In this case it is reasonable to assume that Rj is
time-invariant. It can be shown that differentiation of the likelihood function with
respect to the unknown element of R yields

(29)

in the optimum point ~. This result is easily verified for a diagonal R matrix, but it is
true in general (see Schweppe, 1973). Thus, in the optimum the last term of the likeli
hood function (eqn. 3) is

n _ _

I [(Cj - h@))TR-1(cj - h(~))
j=l

n _ _

tr{R- 1 I (Cj - fj(~))(Cj - h(~))T}
h=l

tr{R-1nR} = n tr{!} = ns (30)

In other words, this term is virtually constant (in agreement with what was found in
the derivation of eqn. 27), and optimization of the likelihood function must be per
formed by minimizing

S2=ln1RI

or by minimizing

(31)

(32)

This is not equivalent to a weighted least-squares procedure.
To get a better feeling for the meaning of eqn. (32) it is interesting to consider

the special case where cross-correlations in the residuals among states are absent. In that
case R is diagonal. The parameter estimation is then equivalent to

(33)

Or in words: minimize the product of the sum of the squared differences of the states.
Equation (33) has attractive properties in that it automatically solves the problem
of different unit dimensions normally encountered in multistate least-squares. Also it
puts automatically more weight on those state variables for which the model fits well.

But what about the case where R contains both unknown and known, time
variable parts, as was the situation in the applications in this paper? A full mathematical
treatment is not so easy, but by analogy one might infer that minimization of
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8 n

Ss = n I (l/a~jk)(Cjk - fik)2
k = 1 j= I

G. van Straten

(34)

is a reasonable pragmatic approach in this case. Weighting the residuals by the measure
ment variances reduces the influence of unreliable data points. This idea can be incor
porated in eqn. (32) for the more general correlated case.

A final word about the prediction problem. The prediction error, eqn. (20), is not
a true error propagation formula. It merely states the variance in the prediction that
arises from parameter uncertainty at any point in time around the given, deterministic
trajectory. Thus, errors do not build up as time proceeds. It may be that real error
propagation calculations based on recursive-filtering techniques (Beck et aI., 1979) are
more useful. Both prediction-error and error-propagation computations depend heavily
upon the validity of the linearization around the optimum. When in doubt, the use of
Monte Carlo simulation, employing the estimated parameter variance-covariance struc
ture, may be preferable. An additional advantage of a Monte Carlo approach is the
possibility of studying the effects of input uncertainty and uncertainty in initial con
ditions. Maximum likelihood estimation is still possible in these more general cases
(Schweppe, 1973), but the equations are rather complex and their practical implemen
tation is cumbersome.

6 CONCLUSION

Maximum likelihood estimation is a practical and useful procedure in cases involving
additive process and measurement noise. The resulting weighted least-squares optimi
zation can be successfully performed when the error statistics are known. For errors that
are only partly known our experience has been less favorable. The least-squares objective
function with continuous weight update during optimization is particularly insensitive
to the choice of parameters, especially when the total error is only a weak function of
time, as is frequently the case. The theoretical development for completely unknown
error statistics shows that weighted least-squares is doomed to fail in this situation, and
that the product of the sum of squared residuals is a more appropriate objective function.
This may also be the proper function to use when the errors are partially known, in
which case weighting based on the known error component, e.g., measurement error,
may be a suitable modification. A forthcoming study will investigate these ideas in
practical applications.

Experience from this study shows that unconstrained optimization of multi
parameter systems may easily lead to nonfeasible solutions. To prevent this undesirable
behavior, constrained optimization is needed, but this has a definite effect on the parameter
variance-covariance matrix. In the case of the most extreme constraint possible, namely
fixing some of the parameters entirely, the overall parameter uncertainty increases.
Moreoever, these uncertainty estimates are still too low when the fixed parameters,
though assumed to be known with certainty, are in reality uncertain. Thus, the practice
of fixing some of the parameters must be viewed with caution. In fact one may question
whether a model is actually well-structured if the use of parameter constraints is the only
way to avoid nonfeasible solutions. Further ~search in this area is definitely needed.
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Uncertainty in predictions because of parameter uncertainty is strongly mitigated
by the parameter covariance structure. This must be taken into account when employing
Monte Carlo simulation as an alternative to the error prediction formula derived from
a linearization around the optimum. The results indicate that the linearized equation
may lead to suspicious results, especially for points where the model is nonlinear, or
for points located at a constraint. More insight can probably be obtained by comparison
with results from error-propagation calculations based on recursive-fIltering algorithms.

ACKNOWLEDGMENT

I am indebted to Gerard Golbach who created the ten-year lumped-data set and
redesigned the computer program. His critical comments were highly appreciated and
have led to considerable rethinking of some of the basic concepts of the approach.

REFERENCES

Beck, M.B., Halfon, E., and van Straten, G. (1979). The Propagation of Errors and Uncertainty in
Forecasting Water Quality, Part I - Method. WP-79-100. International Institute for Applied
Systems Analysis, Laxenburg, Austria.

DiToro, D.M. and van Straten, G. (1979). Uncertainty in the Parameters and Predictions of Phyto
plankton Models. WP-79-27. International Institu te for Applied Systems Analysis, Laxenburg,
Austria.

Draper, N.R. and Smith, H. (1966). Applied Regression Analysis. Wiley, New York, pp. 263-299.
Eykhoff, P. (1974). System Identification, Parameter and State Estimation. Wiley, New York, pp.

410-414.
McLaughlin, D. (1978). Parameter estimation problems in water resource modeling. In G.C. Van

steenkiste (Editor), Modeling, Identification, and Control in Environmental Systems. North
Holland, Amsterdam, pp. 137-151.

Schweppe, F.C. (1973). Uncertain Dynamic Systems. Prentice-Hall Series in Electrical Engineering.
Prentice~all, Englewood Cliffs, New Jersey, pp. 423-468.

Thomann, R.V., DiToro, D.M., Winfield, R.P., and O'Connor, DJ. (975). Mathematical Modeling
of Phytoplankton in Lake Ontario, I. Model Development and Verification. EPA-{)60/3-75-005.
US Environmental Protection Agency, Corvallis, Oregon.





173

IDENTIFICATION METHODS APPLIED
TO TWO DANISH LAKES

Henning Mejer and Leif J¢rgensen
K¢benhavns Teknikum. Copenhagen 2200 N (Denmark)

1 NOMENCLATURE USED IN THE PAPER

Throughout this paper the following nomenclature will be used:

"J; = model state variables,

"J;0 = observed state variables,
t = time,
r= space coordinates,
ii = parameter set,
e= normalized parameter set,
1'i = (weighted) residuals,
~ = cubic splines,
J = (weighted) sensitivity matrix (Jacobian),
A= Marquardt parameter,
i = state variables (i = I, 2, , n),
j = sampling times(j= 1,2, , mJ,
k = estimatable parameters (k = 1,2, ... , p),
r = iterations in parameter search (r = 0, 1,2, ...),
- = (single bar) vector quantity,
= = (double bar) matrix,
T = transposition,
o = (zero) initial guess, and
° = nbserved value.

2 INTRODUCTION TO THE PROBLEMS

Given a set of field data on a lake system {l/Ji(tj )} at sampling times t 1 < t2 < ...
< tj < ... < t m i and a proposed deterministic model

d"J;/dt = f ("J;, t; ii) (1)
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at least three questions immediately arise:

(i) How should observations 1/17 (or linear combinations of 1/17) be identified with
model state variables I/I;? _ _

(ii) Which feasible parameter set(s) ii will minimize deviations between I/J and 1/10, given
a model structure f?

(iii) How could submodel constructs be selected and modified in ways that both obey a
priori biological and chemical knowledge in a qualitative sense and fit the observed
data in a more quantitative sense?

Since the dimensions of both state space and parameter space are usually high (> 10) in
structured lake models, traditional parameter-search routines often fail to answer these
questions unless the initial parameter guess is very close to an optimum,

This paper contains some down-to-earth methods for answering these questions,
Most of the techniques described may be extended to apply to distributed models of the
form

a~/at (2)

3 PARAMETER-SEARCH METHODS

Three iterative methods will be discussed: the Gauss-Newton, the steepest descent,
and the Marquardt. To avoid scaling problems, both the parameters (ii) and the state vari
able residuals (~ - ~O) are normalized in the following way

(3)

1J;j == w;[I/I;Ctj) -1/I?(tj)]/<I/I?>, where <I/I?> = (lIm;)r I/I?(t) (4)

{a~} is an initial parameter guess and w; are weights that may be chosen, for example,
as inverse normalized elements of the diagonal variance-covariance matrix of the observed
state variables (see also Di Toro and van Straten, 1979),

Introducing a Jacobian (sensitivity matrix) as

J = af//aO
n

(dimension: 1: m, X p)
;=1 I

(5)

the three methods may be formulated as follows

Gauss-Newton: 0r+l

Steepest descent: 0r+l

Marquardt: 8r +
1

where r numerates the iterat~ons (r = 0, I, 2, .. ,), A is the Marquardt parameter, Y is a
positive definite matrix, and [is the p X p identity matrix.



Identification methods applied to two Danish lakes 175

Y is usually set as an identity matrix for the first iteration and updated at each sub
sequent iteration, as shown by Fletcher and Powell (1963). Ais reduced each time TiTTi
decreases and increased when TiTTi increases (Marquardt, 1963). As A + 0 the search direc
tion in parameter space approaches Gauss-Newton directions. As A -+ 00 the direction
approaches steepest descent, Le., the direction opposite to the gradient. It is therefore
possible to shift "dynamically" between the three methods according to new information
on the Jacobian gained during computations. The Jacobian is for the first iteration, when
r = 1, evaluated as difference quotients, but for later iterations higher-order estimates
may be used.

4 CSMPOPT - A PARAMETER ESTIMATION PACKAGE

A computer package using a combination of the three numerical methods mentioned
in the previous section and including inequality constraints on the parameter set as a
whole (Le., I(j I < a user-specified limit) and several other options was written by one of
us (H.M.) in 1975. Since then the package has been tested on about a dozen different
water-quality models. Practical experience has shown that this tool only yields feasible
parameter estimates when the dimensions of the problem are low «5) or when the
package is used for fine-tuning an already well-calibrated model.

CSMPOPT is a program that is transparent to the user in the sense that his model
should be coded as a CSMP source text. Except for a few statements to be added, there
are no restrictions in the CSMP facilities (including the possibility that the entire source
text might be called from a FORTRAN subprogram embracing the whole model). The
supplementary statements are as follows:

FIT <list of variable names>,
specifying state variables to be fitted to observed variables;
ADJUST <list of parameter names>,
specifying parameters to be perturbed;
STORAGE <obs(dim», <wg(dim», ... ,
specifying tables of observed time series (~O) and weights (w).

Additionally, an initial grid search may be required.
The output from the program includes iteration history and, if convergence has

been achieved, fmal parameter values, residuals, and (optionally) an approximate sensiti
vity matrix and various measures of error statistics.

5 DERIVATIVE ESTIMATES

Originally intended to provide a good initial parameter guess for CSMPOPT, the
derivative (d f/dt for lumped models, aif/at, aif/a" and a2if/a,2 in distributed models)
were estimated leaving aas the only unknown in model equations (1) and (2). When this
technique was applied, some useful side-effects were discovered, namely the possibility
of state-variable identification and model structure validation (or rather, invalidation).

Cubic splines (and bicubic splines in the distributed two-dimensional case) have
also been applied. The resulting algorithm for the lumped model case is shown in Table 1;
the underlying reasoning is explained in Mejer et al. (1980a, b).
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TABLE 1 Algorithm for computing cubic-spline estimates dsj/dt of time
derivatives d>JiCtj)/dt, givensj = >JiCtj),j = 1,2, ... , m.

Step] (j=2,3, ... ,m-1)

0'. j = (tj -I - tj)/2(tj+, - tj -I)

I3j = (tj+1 - tj)/2(tj+1 ~ tj -I)

'Yj = 3{[Csj+, -Sj)/(tj+1 -tj)] - [(Sj -sj-I)/(tj-tj_I)j}/(tj+1 -tj_l)

Step 2

IJ; = 0

:rl = 0

Step 3 (j = 1, 2, ... , m - 2)

1ii+1 = I3j+,/O + O'.j+1 Iii)
'Yj+1 bj+, + O'.j+1 ;;;j)/O + O'.j+1 Iii)

Step 4

d2 sm/dt2 = 0

Step 5 (j = m - 1, m - 2, ... , 1)

d 2sj /dt 2 = ;;;j - (~d2Sj+1 /dt 2)

Step 6

dsi/dt = [(S2 -SI)/Ct2 -tl )] - [(d 2s2/dt 2)(t2 --t , )/6]

Step 7 (j = 1, 2, ... , m - 1)

dsj+l/dt = (dsj/dt) + {(tj+1 - tj)[(d 2sj/dt') + (d 2 Sj+1 /dt')] /2}

H. Mejer, L. J<jrgensen

The spline functions s/t) are forced through the observed values

(6)

and the outputs of the algorithm are estimates of d {f/dt at sampling times t.
]

dlji.(t.)/dt ~ ds.(t.)/dt
I 1 I 1

(7)

Since the spline functions here are not used for interpolation - as is usually the case 
the algorithm in Table 1 is very much simplified compared to other reported algorithms
(see, for example, Greville, 1967).

It is vital to the accuracy of eqn. (7) that tj +1 - tj should be sufficiently small. To
get an impression of how small, the plots presented in Figure 1 were prepared; the figure
shows - albeit in a rather academic way - that the number of samples per peak should
be at least four. Considering typical timescales in lake processes, this means as a rule of
thumb that the sampling frequency should be about twice a week when studying the
water body and about once per fortnight when sediment samples are taken.
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178 H. Mejer, L. !tPrgensen

0 0
0 0

.r: N I'l) 0
~ E
N "" a..
I'l)
E (])

" E
a..
(]) 0
E 0

0
Cll

0

0
0
(J)

0

0
0
~

0
0

I 0
0
N

o
o
~

o

o

\
\

\

\. ~._.-.!t+.
:!( "

.~

\

""

20

4>
I

I
I

I
I
;

I
I

.~

;:...
;' '.

;' ~'--" .~
;' ~.. \

! \
~ .

~

days

FIGURE 2 Time-<1erivative estimates (M based on observed orthophosphate concentrations (D) for
Lake G1ums¢, Denmark. Note the time gap between the two sampling periods, in spring and autumn.

Figure 2 shows a more realistic case, namely the concentration of soluble ortho
phosphate in Lake Glums¢, Denmark, as measured in two distinct sampling studies.

6 EXAMPLES

6.1 State Variable Identification

The technique described above has been applied to a 17 state-variable/14 calibrated
parameter model for the shallow Lake Glums¢, Denmark (see J¢rgensen et a1., 1978).
One of the state variables (PHYT) was intended to describe phytoplankton biomass

(8)
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where the fs denote functions of temperature (1), intracellular nitrogen (N), phosphorus
(P), and carbon (C); Q is the water outflow and Gz is a zooplankton grazing function.
Other symbols represent constants: CDR max = maximum cell division rate, Sa = settling
rate of algae, V = lake volume, and Y = a yield factor.

At the outset, eight observed time series were possible candidates for identifying
PHYT: chlorophyll-a, algal fresh weight, chemical oxygen demand (COD), glucose, organic
phosphorus (I-80-J..lm fraction), organic nitrogen (I--80-J..lm fraction), dry matter, and
Secchi-disk readings.

Rearranging eqn. (8) and neglecting the zooplankton term we obtain

(9)

By substituting each of the eight candidate parameters one at a time for PHYT in this
equation it was possible to test which gave the most constant values of CDR m ax' Note
that any proportionality factor relating observed and modelled state variables is irrelevant
here because of the logarithmic derivative. Since the last six candidate parameters are
defmitely known to include nonalgal condensed matter, it was expected that chlorophyll-a
and algal fresh weight would most closely represent PHYT, and this was actually suggested
by the analysis.

6.2 Local Parameter Estimation

Another equation in the model of Lake Glums¢ mentioned above reads as follows

dN Idt = UNPHYT- [S + (Q/V) + (G In] Nc a z c (10)

where the new symbols Nc and UN represent intracellular nitrogen and nitrogen uptake
rate, respectively. UN is calculated as

UN = UN g.,N I(KN +N)max JY S S
(II)

where g1l/ is a known function of Nc and PHYT, and Ns is soluble nitrogen in the water
phase. The constants UNmax (maximum uptake rate) and KN (nitrogen Michaelis constant)
remain to be estimated. Combining eqns. (10) and (11) and again neglecting the zooplank
ton term, we obtain

PHYTN g.,1 {(dN Id1) + [S + (Q/V)N]) ~ (II UN )N + (KN/ UN )(12)s JV cae max s max

which has the shape of a linear regression model

Y=ax+b

Calculation of slope an~ intercept leads to estimates of UNmax and KN

(13)

uN-max = 0.043 [day-l]
A

KN = 0.26 [gN m- 3 j

(0.034-0.059)

(0.15-0.45)



180 H. Mejer, L. J,Jrgensen

Units are given in square brackets and the numbers in parentheses are 95% confidence
limits.

A corresponding calculation for phosphorus only leads to an estimate of maximum
uptake rate (UP ); the Michaelis constant estiInate (KP) fails, obviously because phos-max
phorus was not limiting at any time during the measurement periods. Despite this over-
parameterization, KP was still retained in the model, mainly because phosphorus might
become a limiting factor in this lake in the future.

6.3 Submodel Construct Determination

Measurement of primary production leads to an estimate of maximum cell division
rate through the relation

(14)

where

(and similar relations for fp and fc)

(15)

(16)

After a local calibration on N~in, etc., these parameters changed CDR max as shown in
Table 2.

TABLE 2 CDR max estimated from primary production.

Original NIDin, etc.c .
Local calibrated N ffim

, etc.
fOld ~ fnew C

T T
Literature values

Mean

0.71
7.00
4.71

-4

Standard
deviation

0.65
2.65
1.00

-I

Coefficient
of variation (%)

92
38
21

-25

By inspection of the factors f T , fN' fp , and fc , it was evident that f T did not depict
the observed response on growth rate very well, especially near the optimum temperature
Topt ' Another construct was therefore suggested

(17)

(see Lassiter, 1975). The constant a is chosen to make f~ew = f<tld at T = 0, where
f Tld is given by eqn. (15). The resulting coefficient of variation decreased as shown in
Table 2. Also, CDR now falls within the range of literature values (when correctedmax
for the effects of light limitation on growth).



Identification methods applied to two Danis!l lakes

6.4 Distributed Models

181

In several versions of a sediment model for Lake Esrom, (see Kamp-Nielsen, 1978;
Mejer, 1978; Mejer et aI., 1980b) a significant discrepancy between observed and modelled
exchangeable phosphorus (Pe) occurred for values for the month of May; otherwise the
models behaved fairly well. One of the four partial-differential equations in the latest
version is

K(T) == l/[T + (1/<k»]

where

and
dZ/dt

-K(T)g(T. OX)Pe -(dZ/dt)(aPe/az)

Zmax

[(S-R)/lODMoPsedl - f K(T)g(T. OX)(Pe/Ptotal)dz
o

(18)

(19)

(20)

There are two independent variables in the model, time (t) and depth in the sediment (z).
Z is the displacement of the sediment/water interface determined mainly by the sedimen
tation rate (S), resuspension rate (R), and a compression term (the integral in eqn. 19).
DMo denotes the dry matter content at the sediment surface and geT. OX) is a known
function of temperature (T) and oxygen (OX). The decay rate K(T) is a function of
"effective" age T == T (t, z) and an average rate constant of newly sedimented material
«k», and it should be strictly positive (cL eqn. 20).

Applying bicubic splines to estimate aPe/at and aPe/az. K(T) was calculated at
various sampling times and depths from eqn. (18). It turned out that K(T) was negative
for the May values, suggesting that the incorrect section of the model was located near
the term K(T)g(T.OX)Pe in eqn. (18). Unless data for this month are obsolete, a positive
term is missing on the right-hand side of eqn. (18).

7 CONCLUSIONS

Traditional parameter-search methods usually fail when applied to structured lake
models with more than about ten dimensions in state space and parameter space. Estimat
ing derivatives from intensive measurement programs, e.g., by using spline functions, seems
to improve the initial parameter guesses needed for these methods. Since low-order param
eter subspaces are manipulated at each stage of the technique described, state variable
identification and debilitated submodel diagnosis turn out to be valuable side-effects of
this - admittedly somewhat simplistic - method.
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ANALYSIS OF PREDICTION UNCERTAINTY: MONTE
CARLO SIMULATION AND NONLINEAR LEAST-SQUARES
ESTIMATION OF A VERTICAL TRANSPORT SUBMODEL
FOR LAKE NANTUA

F. Chahuneau
Laboratoire de Biometrie, INRA-CNRZ Domaine de Vi/vert, Jouy-en-Josas
78350 (France)

S. des Clers and J.A. Meyer
Laboratoire de Zoologie, Ecole Normale Superieure, 46 rue d'Ulm,
75230 Cedex 05 Paris (France)

INTRODUCTION

Lake Nantua (see Figure 1 for lake characteristics) is a small eutrophic alpine lake
undergoing frequent algal blooms (the blue-green alga Oscillatoria rubescens). The en tire
water body is thermally stratified from April to December and completely mixed after
the late-autumn overturn (the lake is monomictic). Given the rather small lake area
and its simple morphometry, the water body is considered horizontally homogeneous and
a one-dimensional submodel was developed to describe vertical transport processes (eddy
diffusion and advection).

The submodel (briefly described in this paper) accounting for density stratification
is used here to compute evolution of temperature profiles due to heat transport and
surface exchanges. This allows simulation of the thermal dynamics of Lake Nantua
and subsequent modifications of vertical transport rates for the substances involved in
chemical and ecological cycles. This transport submodel will be included in a larger water
qualityjecological model describing the lake ecosystem dynamics. This latter model,
still under development, will help to assess the efficiency of different restoration tech
niques (such as hypolimnetic aeration or withdrawal) and to define optimal operational
rules.

This paper describes how experimental temperature profiles are used in the non
linear least-squares estimation of some submodel parameters. The calibrated model is
then validated against another set of field data. Finally, Monte Carlo simulation,
employing the parameter variance-covariance structure identified in the parameter esti
mation procedures, is used to investigate the prediction error variance (or uncertainty).
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Catchment area: 50.3 km 2

Lake area: 1.42 km 2

Maximum depth: 42.8 m
Mean depth: 30.0 m
Retention time: 251 days

500 mo

FIGURE 1 Lake Nantua: basic information.

This is done in order to avoid inaccuracies in the computation of prediction confidence
arising when the usual linearization around the parameter estimates is used.

2 MODEL DESCRIPTION

2.1 Fundamental Equation

The water-quality model consists of a system of parabolic partial-differential
equations describing vertical transport of dissolved substances or biota, and their inter
actions. For example, the mass-balance equation describing the temperature variations
T(z, t) with time (t) at a given depth (z) is

aT(z, t) 1 a ( aT(z, t)) 1 a
at = A(z) az A(z)K(z, t) az - A(z) az (A(z) W(z, t) T(z, t))

transport by vertical dispersion transport by vertical advection

+ Qin(Z, t) Tin(z, t) - Qout(z, t) T(z, t) + SS(z, t) (1)

inflow outflow source-sink
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where
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A(z)
K(z, t)
T(z, t)
W(z, t)

Qin(Z, t), Qout(z, t)

Tin(z, t)
SS(z, t)

horizontal cross section at depth z (m 2),
dispersion coefficient (m2 S-I),
temperature at depth z CC),
vertical advection velocity (m s-I),
rates of volume displacement corresponding to inflows and
outflows, respectively (S-I),
temperature of in flowing water CC), and
rate of change due to internal sources and sinks (OC S-I).

Equation (I) is solved by a finite difference technique. The water body is vertically
discretized; in each layer the concentration of a given substance is assumed to be homo
geneous. In the case of Lake Nantua, 43 layers were considered (each 1.0 m thick). The
Crank-Nicolson approximation, associated with central differences for spatial dis
cretization, was applied. Nonlinearity in eqn. (1), due to the source-sink term and
the dependence of K(z, t) on the vertical temperature gradient, is treated by iteration
at each time step (Remson et aI., 1971). The time step (about 0.1 day) is automatically
adjusted according to the convergence rate of the iterative process.

2.2 Description of Vertical Transport

2.1.1 Dispersion
Equation (1) includes a diffusional transport term. Given the spatial and temporal

scale characterizing the model (Ford and Thornton, 1979), the "diffusion" coefficient
expresses much more than eddy diffusion generated by local shear. The transport
equation is spatially averaged over horizontal planes, and the characteristic time scale
is of the order of one day (i.e., we are interested in day-to-day variations). Thus, in
addition to the typical diffusional transport, the "diffusion" coefficient includes
implicitly all transport mechanisms of an advective nature for which the fluxes through
horizontal planes are balanced. This concerns such mechanisms as mixing by internal
seiches, nocturnal thermal convection, local upwellings and downwellings generated by
wind-driven circulation, and transient convection cells such as Langmuir circulations.
This is expressed precisely in the concept of "effective dispersion" developed by Orlob
and Selna (1970). The "effective dispersion" coefficient is an operational parameter
which cannot be easily measured in the field, but can only be estimated by computing
layer-to-Iayer mass or heat budgets.

Parametrization of the dispersion coefficient is based on the following qualitative
considerations: vertical dispersion increases with wind speed (kinetic energy input),
even in the thermocline (shear stresses) and in the hypolimnion (through large eddies
associated with seiche oscillations), and decreases with the local degree of stability of
the water column (density gradient), through buoyancy effects; vertical dispersion asso

ciated with large vertical eddies necessarily decreases near physical boundaries (including
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the free surface and thermocline). The vertical dispersion coefficient is calculated using
the following formulae. In the epilimnion:

K(z) = (k/Pr) U*lmixO + SIGMA RirPow

where

K(z)
k

Pr
U*

CD IO

Pa,P w

lmix

SIGMA,POW =

Ri =

vertical dispersion coefficient (m2s-I) at depth z (m),
von Karman constant (= 0.4),
turbulent Prandtl number (= 1.0),
friction velocity = [(P a /Pw)CDIO U?O]I/2 (m S-I),
drag coefficient for wind speed at 10m (UIO , m S-I),
densities of air and water, respectively,
mixing length = distance (m) to the closest physical boundary
with the additional constraint lmix ,,;;; ZSCALE (maximum eddy
scale); for z";;; ladd (surface layers), lmix = ladd, where ladd =

additional mixing length (expressing wave mixing and nocturnal
convection effects),
empirical, nondimensional parameters expressing the sensitivity of
turbulence to stratification effects, and

local Richardson number = (g/pw )(apw/az)lau/azl-2, where
lau/az I is the vertical gradient in horizontal flow velocity, and is
computed from a stratified boundary-layer approximation (see
Tucker and Green, 1977).

In the metalimnion and hypolimnion:

where

N(z) = Brunt-VaisaHi frequency (S-I) = [(g/pw)(apw/az)] 1/2,
Kth , Nth = values at the thermocline of the dispersion coefficient and the

Brunt-Vaisala frequency, respectively,
lmix mixing length (m), and

ALPHA, POW2 = empirical parameters.

The additional constraint K(z)";;; lOKth is introduced in the hypolimnion.
A detailed justification of the semiempirical equations used will be given elsewhere

(Chahuneau and des Clers, in preparation). The classical concept of mixing length (distance
to boundaries), modulated by wind speed and local density gradient (see for instance
Leonard et aI., 1978), was used. Near the free surface, the dispersion coefficient is
increased to account for wave mixing and nocturnal thermal convection.
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The whole formulation involves a total of six parameters, namely, CD IO , SIGMA,
POW, ZSCALE, ALPHA, and POW2.

2.2.2 Advection
Computation of vertical advective transport is based on the empirical formulae

used by the US Army Corps of Engineers in 1974 (see Tetra Tech., 1978) for reservoir
modeling. The inflow zone is centered on the depth where the density of incoming
water matches lake water density. The zone extends over and under this level; its total
thickness depends on both local density gradient and the inflow rate. A uniform distri
bution of inflow is assumed (i.e., an equal proportion of total inflow is added to every
layer in this zone). Water withdrawal is restricted to the well-mixed surface zone, where it
is uniformly distributed.

More detailed approaches, for example, Gaussian distribution of inflows (Ryan
and Harleman, 1971), were not attempted, since the uncertainty on loadings is large
and Lake Nantua is a natural lake with little through-flow.

2.2.3 Convection
Thermal convection is not introduced in eqn. (l). It operates separately, in the

discrete framework defmed by the finite difference grid.
At the end of each time step, the algorithm checks the computed temperature

profile for density instabilities. The checking procedure starts from the surface down
wards. Whenever a density instability between two adjacent layers is detected, mixing
starts and works upwards until the instability is removed (on some occasions, it may
reach the surface). Starting again from the level where mixing was initiated, it checks
the profile further down, and so on, until overall stability is obtained. Density is used
here rather than temperature, so that the mixing algorithm is valid even in the case of
inverse winter stratification.

Thus, thermal convection is modeled as an instantaneous process, which is in
accordance with the characteristic time scale of interest.

2.3 Boundary Conditions for Thermal Simulation

It is assumed that no heat transfer occurs through the lake bottom. The equation
that defines heat transfer at the air-water interface is a nonlinear function of surface
and air temperatures, atmospheric pressure, vapor pressure, etc., taking into account
explicitly the various heat-transfer processes illustrated in Figure 2.

The global heat budget is expressed by

Qnet = Qsw + Qat ± Qc ± Qe -Qbr

where

Qnet net surface heat flux,
Qsw net short-wave radiation (only a fraction is absorbed at the surface),
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incoming long-wave radiation from the atmosphere,
flux of convected heat (net convected energy),
flux of latent heat (heat loss because of water evaporation), and
long-wave back-radiation from the lake surface,

all measured in units of Wem-2.

Wind shear

•

Short-wave rad iationQ,¥
Q net Q sw + Qat ± Q c ± Q e - Q br

Long-wave rad iation
Qat

:-80nvection \
Evaporation Q e Long-wave \\

Dback radiation\
Q br \

Conduction Qc \

~ ~ ( \: Tem,PeratureC\9
'"'\-.. \ I profile C\-~..............21 ",./ Velocity

Short-wave radiation

~ePth

===::=i~C-..-=-=-_~~

FIGURE 2 Physical processes accounted for in the thermal submodel (adapted from Svensson,
1978).

2.4 Forcing Variables for Thermal Simulation

The forcing variables used in the model are listed in Table 1 together with their
measurement frequencies. Some forcing variables were not measured directly but were
estimated from other field data. For example, global solar radiation was estimated from
astronomic computations and daily sunshine duration data. Inflow temperature was
linearly interpolated between monthly measurements. These estimations are the major
sources of uncertainty in the forcings for the simulated period.
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3 MODEL CALIBRATlON

3.1 Fixing the Values of Some of the Parameters

The estimation of the six parameters occurring in the formula for the vertical
dispersion coefficient is not an easy task. To our knowledge, there is no unique, straight
forward, and guaranteed strategy to organize parameter estimation for complex models.
All that can be done is to fix those parameter values that are more certain than others,
and concentrate on the latter in order to reduce the dimensions of the parameter space.
One can also test the sensitivity of the model to various parameters and discard those
parameters for which model sensitivity is low. Examination of the correlation between
parameter estimates can also provide a guideline in the parameter-fixing procedure.

Reasonable estimates for the parameters CDIO and POW2 are available in the
literature. For moderate winds and for small lakes, values of CDIO seem to vary between
0.7 x 10-3 and 2.3 x 10-3 (Bengtsson, 1978), and therefore CDIO was fixed at an average
value of 1.7 x 10-3 , given the average wind speed at Nantua. For POW2, which appears in
the relation between the eddy diffusion coefficient K(z) and the Brunt-ViiisiHa frequency
(N) in the hypolimnion, values ranging from 0.25 to 1.0 (Lerman, 1979) are reported
in the literature. Thus, this parameter was fixed at a value of 0.6.

The next step was to evaluate the orders of magnitude of the remaining parameters.
Values reported for SIGMA vary widely, according to the way in which the vertical
velocity gradient, and hence the Richardson number, is approximated. A range from
1.76 x 10-3 to about 10 can be found in the literature. Associated values for POW vary
from 0.5 to 2.0 (Munk and Anderson, 1948; Newbold and Ligget, 1974; Bowden and
Hamilton, 1975; Leonard et al., 1978; Walters et al., 1978).

The physical meaning of ZSCALE is that of an upper limit to the size of wind
induced eddies (mixing length). In Lake Nantua (30-m average depth), a value of 10m
can be reasonably adopted as an order of magnitude (the range 5-10 m was defined
as "physically acceptable").

The value of ALPHA is unknown. However, when one considers the values of N
below the thermocline, it can be seen that values of ALPHA greater than 0.1 will produce
a rapid increase in K(z) under the thermocline, a feature which is not observed in the
empirically obtained K(z) profiles presented in the literature (Bella, 1970; Orlob and
Selna, 1970; Li, 1973). Values ranging between 0.001 and 0.1 can be anticipated.

Once some parameter values have been fixed, or "physically acceptable" ranges
have been defmed, one can use visual fitting to get a first idea of model sensitivity to
parameter changes. In this step, observation of animated sequences on a television
raster display proved very useful (see below).

It was observed that changes in ALPHA modify the K(z) profile under the thermo
cline, but have little influence on the temperature profIle. The thermal simulation is not
very sensitive to ALPHA so that the latter may be regarded as almost fixed. A value
of 0.025 gives K(z) profiles quite similar to the experimental profiles presented in the
literature. It should be noted that ALPHA may become important when materials con
sumed (such as dissolved oxygen) or produced (such as phosphate) at the sediment
water interface are included in the model.
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3.2 Calibration
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The three parameters SIGMA and POW, which express sensitivity of the dispersion
coefficient to the local Richardson number, and ZSCALE (maximum mixing length),
which strongly influences thermocline depth, remain to be identified. The objective
function to be minimized was defmed as the sum of the squared differences between
simulated and observed values (least-squares criterion). For the year 1972, temperature
data were available for eight unevenly-spaced depths: 0.0 m, 2.5 m, 5.0 m, 7.5 m, 10 m,
20 m, 30 m, and 43 m, at roughly monthly intervals.

The optimization routine used is a slightly modified version of the Marquardt
algorithm (Meeter, 1968), combining the steepest-descent method (far from the mini
mum) and the Gauss-Newton method (close to the minimum) (Marquardt, 1963).

The three initial parameter values were estimated from previous sensitivity tests,
in the range suggested by literature values. The initial values were chosen as SIGMA = 10,
POW = 1.8, and ZSCALE = 9 m. Convergence of the algorithm led to SIGMA = 13,
POW = 1.6, and ZSCALE = 7.4 m. The sum of the squared deviations was reduced to
26% of its initial value. The uneven distribution of observed temperature data along
depth (five points out of eight are in the first 10m) favors transfer of residual deviation
between model and data to the hypolimnion. This uneven weighting could have been
avoided by interpolating the observed temperature profIle at equally spaced depths.

From linear approximation around the minimum, the optimization routine provides
an estimation of the correlation coefficients between the parameter estimates and the
confidence limits for these estimates. Confidence intervals for model predictions are also
computed with this linear approximation. Owing to the strongly nonlinear nature of
the model (with respect to the parameters), these confidence intervals must be considered
as rough estimates only. The Monte Carlo technique was used as an alternative method
to estimate these confidence intervals (see Section 7). The correlation matrix for this first
calibration is given in Table 2. Examination of the correlation matrix obtained at the
end of the three-parameter calibration shows a strong negative correlation between
SIGMA and POW: the parameter estimation problem is ill-conditioned.

TABLE 2 Parameter-estimate correlation matrices.

Calibration I
Correlation rna trix

Final parameter values
95% confidence limits for estimates

Calibration 2
Correlation coefficients

Final parameter values
95% confidence limit for estimates

SIGMA

1
-0.894
-0.030
13.0
16.87
9.21

POW

1
0.417
1.6
1.72
1.45

1
0.834
1.7
1.75
1.64

ZSCALE

1
7.4 m
9.01 m
5.76 m

1
7.6m
9.08m
6.07 m
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Because of the antagonistic effect between SIGMA and POW, many (SIGMA, PO W)
pairs can produce equally good fits, based on the sum-of-squares criterion. However, it
was found that values greater than 10.0 modify the shape of the thermal profile in
the metalimnion, by shifting the point of inflexion of the profile close to the bottom
of the mixed layer, a feature which is not observed in the experimental data. Therefore,
we decided to perform a second calibration, on two parameters (POW and ZSCALE),

with SIGMA fixed at a value of 10.
Convergence was obtained with POW = 1.7 and ZSCALE = 7.6 m (starting from

values of 1.3 and 4, respectively), which was quite close to the previous results. The
residual sum of squares (69.8°C2

) was quite close to its value for the three-parameter
calibration (67.4°C2

). The correlation matrix, estimated parameters, and confidence
limits for this second calibration are given in Table 2. It should be noted that fixing
SIGMA narrows the confidence interval of the estimate of POw.

Convergence required 23 runs. Note that several runs of the model are necessary for
each iteration in the calibration procedure, since the partial derivatives of the model with
respect to the parameters are computed numerically and several trials may be necessary
before a new search direction is determined. As a model run requires 2 min CPU time
on an IBM 370/168, this last calibration used 46 min of CPU.

It should be noted that the estimated parameter values were very close to our
initial guess, even in the second calibration where the initial values were intentionally

2.5

2.0

1.5

1.0

..
0.5 ...

0.0 ......
-0.5

-1.0

-1.5

-2.0

-2.5
L.-.- I I ! I ! ! ! , ! !

-2.5 -2.0-1.5 -1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 3 Normal probability plot of residuals.
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shifted to check the uniqueness of the minimum in the neighborhood of the solution
obtained for the first calibration.

4 ANALYSIS OF RESIDUALS

The use of the least-squares criterion corresponds to the maximum likelihood
criterion if model residuals are independent, normal, random variables with zero mean
and equal variances. This property was checked a posteriori using a normal probability
plot (probit test) of residuals (Figure 3). Fitting a straight line by eye through the set
of points shows that the distribution mean (intercept with y = 0) does not depart very
much from zero.

9
15.0

7

LlJ
...J

C3 6
CJ)
N

5

4

3

FIGURE 4 Contours of objective function (mean of squared deviations).
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5 MAPPING THE PARAMETER SPACE

As only two parameters were left for calibration, a visual mapping of the parameter
space was possible, for checking the uniqueness of the minimum in the range of physically
acceptable values. The mapping also provides some visual impression of the nonlinearities
in the model and the correlation between parameters, and shows the efficiency of the
Marquardt algorithm.

The model was run for 81 different pairs of POW (varying from 1.1 to 1.9 at 0.1

intervals) and ZSCALE (from 5.5 to 9.5 at 0.5 intervals) values. The least-squares criterion
was computed and normalized (that is, the sum was divided by 12 x 8, which is the
number of observed data). Contour lines were linearly interpolated on the 81-point
grid (Figure 4). The path followed by the optimization routine between two iterations
has been drawn a posteriori.

6 MODEL VALIDATION

Model validation was carried out for the year 1973, all parameters being held
constant. Some calibration (1972) and validation (1973) results are given in Figure 5,
which shows data points plotted and four predicted profiles. These pictures are snapshots
taken from an animation sequence, which was generated on an experimental television
raster display and stored on a videocassette (designed by P. Matherat of the Centre de
Calcul de I'Ecole Normale Superieure, Paris).

The agreement between experimental and predicted profiles was equally good for
calibration and validation runs, which shows that goodness of fit for the year 1972 was
not just an artifact of the calibration procedure (Figure 6).

7 MONTE CARLO SIMULATION

A Monte Carlo simulation (100 runs) was performed with two parameters (POW
and ZSCALE) randomly chosen from a bivariate correlated Gaussian distribution (Lehman,
1977). The distribution mean, standard deviations, and correlation coefficient estimates
(Table 2) were those computed by the last calibration.

The use of the Monte Carlo technique enables the simulation outputs to be pre
sented in terms of a mean (stochastic mean) (Tiwari et aI., 1978) and associated variance.
The Monte Carlo runs are then compared to the calibration run (deterministic run) to
identify dates and depths critically affected by parameter uncertainty. Finally, Monte
Carlo results are compared to the confidence intervals estimated from linear approxi
mation, and to observed data points.

Monte Carlo simulation results are given in Figure 7 for four different depths.
In the epilimnion layers (at 0.0 m, 2.5 m, and 7.5 m) there is relatively no error accu
mulation (in terms of prediction variance) due to parameter uncertain ty. This is explained
by the feedback mechanisms acting on the heat balance at the air-water interface and
their characteristic time scale. In contrast, once the lake is thermally stratified, model
error may accumulate in the hypolimnion predictions (at 30.0 m). This illustrates the
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sensitivity of the hypolimnetic equation for vertical dispersion to the two parameters,
as well as the relatively high inertia of hypolimnetic temperature variations. By the
end of a yearly cycle very little uncertainty remains that could be transferred to a second
year of simulation, because of the complete mixing of the lake at that time.

Another representation of the Monte Carlo simulation results is given in Figure 8
where, following O'Neill and Gardner (1979), error accumulation over the year is given
for four observation depths (0.0 m, 2.5 m, 7.5 m, and 30.0 m). The percentage of runs
that remain "valid", given an error tolerance, at any particular day is plotted against
time for the year 1972. The error criterion is given as a coefficient of variation around
the deterministic value. For instance, up to day 219 at 0.0 m, about 10 runs from 100
satisfy the 2% error criterion but more than 80 runs from 100 satisfy the 10% error
criterion. Concerning error accumulation over time at depth 0.0 m, the key dates 
day 74 (14 March 1972) and day 350 (18 December 1972) - correspond to the triggering
of thermal stratification and autumn mixing, respectively. Simulated hypolimnion tem
peratures are again seen to be more affected by parameter uncertainty (only 70% of the
Monte Carlo runs remained within 20% error up to day 366).

The limited number of field data available for calibration makes comparison between
Monte Carlo prediction variance and linear confidence interval estimations difficult,
since these intervals are computed here only around the data points. Nevertheless, it
can be seen (Figure 7) that the linearly estimated (95%) confidence intervals are always
smaller than the Monte Carlo ± one standard-deviation intervals. Thus, in the case of this
model, linearization around estimated-parameter values strongly underestimates pre
diction uncertainty. This would probably be the case for most highly nonlinear models,
and thus shows the suitability of the Monte Carlo technique for uncertainty analysis.

The observed data nearly always lie within a ± one standard-deviation interval
around the stochastic mean (and always within the ± two standard-deviation interval, as
expected).

Finally, it is also noticeable that the "stochastic mean" and the deterministic run
are sometimes quite different.

8 CONCLUSION

This study shows that some techniques which are currently used by statisticians
in nonlinear curve-fitting problems can be successfully applied to complex, spatially
distributed simulation models. Examination of error accumulation over time reveals
some critical periods for the system's dynamics. This information could be used to
optimize data collection, by concentrating on these critical periods. Such unevenly
distributed data over time would favor information transfer from data to model parame
ters during the calibration phase. Other techniques, using model-sensitivity analysis
for optimal sampling design (Vila, 1980), could probably be rewardingly applied to this
kind of problem.

It is expected that statistical analysis on model behavior will become an important
research field in environmental modeling. Such methodology should reinforce feedback
from model-building to the design of field-data collection procedures.
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MULTIDIMENSIONAL SCALING APPROACH TO
CLUSTERING MULTIVARIATE DATA FOR
WATER-QUALITY MODELING

Saburo Ikeda*

Department ofApplied Mathematics and Physics, Faculty ofEngineering,
Kyoto University, 606 Kyoto (Japan)

Hidekiyo Itakura**

Department ofElectrical Engineering, Faculty ofEngineering, Kyoto
University, 606 Kyoto (Japan)

INTRODUCTION

This paper is concerned with a statistical treatment of multivariate water-quality
data to help regulatory and operational personnel engaged in monitoring, control, and
managing problems of water pollution and eutrophication to obtain a comprehensive
view of water quality in their own areas. Because of the variety of parameters observed
as water-quality data, and the complexity and uncertainty involved in pollution and
eu trophication mechanisms in aquatic environments, it is necessary to develop a method
ology that is able to identify common and differing aspects of water quality in data from
various sources. In particular, in order to build a water-quality model of the compartment
type which is better able to identify regional characteristics, it is necessary to have an
integrated index of regional water quality which makes it possible to divide a designated
area into several compartments.

In this paper a statistical method is presented in which expert knowledge or experi
ence can be utilized together with extracted regional statistics based on an observed data
set obtained at various points in the area of interest. The method consists of aggregating
the data available on many measures of water quality, for example, transparency, chem
ical oxygen demand (COD), nutrients, chlorophyll-a, etc., obtained over many years, into

* Present address: Institute of Socio-Economic Planning, University of Tsukuba, Sakura, 305 Ibaraki,
Japan.
** Present address: Department of Electrical Engineering, Chiba Institute of Technology, Narashino,
275 Chiba, Japan.
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a smaller number of indices which define criteria to represent the differences in water
quality at various sampling points; then a visible representation of those differences in
two-dimensional space is obtained by means of multidimensional scaling (MDS) (Shepard
et aI., 1972; Itakura et aI., 1979). This visible representation gives model-builders
information from which subjective groupings may be made, in contrast to the rigid
grouping obtained by using the formal procedure of sampling points in a spatial segmen
tation for water-quality modeling under the specific situation of uncertainty involved
when using multivariate water-quality data.
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FIGURE 2 Loading of nitrogen (N) and phosphorus (P) in Lake Biwa (Lake Biwa Office, Ministry
of Construction, 1974). The symbols 0 and. refer to the Northern and Southern Lakes, respectively.

The method is applied to the water-quality assessment of Lake Biwa, the largest lake
in Japan, which supplies drinking water to twelve million people, and industrial water to
the economic center of western Japan, as shown in Figure I. Recent socioeconomic
features of the lake basin have made the water quality worse, owing to an increase in both
the demand for water and the discharge of various pollutants into the lake. Much research
and data collection work has been done on the water quality of Lake Biwa (Japan Society
of Civil Engineering, 1970-1977; Ikeda and Adachi, 1978). Information gathered by
those efforts shows that the lake is now in a hazardous situation, being tranformed from
an oligotrophic to a eutrophic state (see Figure 2) (Lake Biwa Office, Ministry of Con
struction, 1974). The main purpose of the present study is to gain more knowledge
about the eutrophication phenomena in various parts of the lake by making use of recent
monitoring data on water quality.

2 WATER-QUALITY DATA FOR LAKE BIWA

Lake Biwa is 680 km2 in area and 27.56km3 in volume. Several million years ago
the lake was formed by a disastrophism and it is thought to be as old as lakes such as
Baikal and Tanganyika. The lake is composed of two parts: the northern part, the main
lacustrine, is called the Northern Lake and is in an oligotrophic state; the southern part,
a smaller and shallower sublacustrine, is called the Southern Lake and is in a eutrophic
state. More than 100 rivers flow into the lake, but it has only one outlet, situated at the
end of the Southern Lake. The general characteristics of Lake Biwa are given in Table I.

The regulatory office conducts regular monthly monitoring of a number of water
quality parameters at 23 points in the lake; 12 of these are situated in the Northern Lake
and 11 in the Southern Lake, as shown in Figure 3. A set of data on water quality which
includes biological data, on, e.g., cWorophyll-a, has been collected from 1975 to date
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T ABLE I Characteristics of Lake Biwa (Lake Biwa Office, Ministry of Con
struction, 1974).

S. Ikeda, H. Itakura

Normal water level
Total area of lake
Average depth
Maximum depth
Volume of water
Average annual precipitation
Average annual runoff
Average monthly air temperature
Number of tributaries
Retention time
Ratio of catchment area to lake surface
Population around the lake
Land usage in catchment area (%)

Forests, etc.
Lake Biwa
Rice paddies
Other

TABLE 2 Measured parameters of water quality.

Parameter

Transparency
pH
Dissolved oxygen
Chemical oxygen demand
Suspended solids
Ammonia nitrogen
Nitrite nitrogen
Nitra te nitrogen
Organic nitrogen
Total nitrogen
Orthophosphorus
Total phosphorus
Chlorophyll-a
Water temperature
Water level
Solar radiation
Wind velocity

84.371 m above sea level
680km'

41.2m
103.6 m

27.5 km'
1900mm

53XIO"m'
3.l-26.2°C

121
5.2 years
5.7

95 X 10'

54.8
17.7
17.4
10.1

Unit

m

mgl- 1

mgl- t

mgl-'
mgl- I

mgl- t

mgr'
mgl- 1

mgl- t

mgl- t

mgl- t

/Lg I-I

°c
cm (± standard)
calcm-'
ms- t

Symbol

TRANSP
PH
DO
COD
SS
NH4
N02
NO]
ORGN
TN
P04
TP
CHLORA
WATTMP
WATLEV
SOLAR
WNDVEL

(Lake Biwa Office, Ministry of Construction, 1974-1979). Thus for the present analysis
a set of data exists for 17 parameters (listed in Table 2) for every month from April
1975 to March 1979. Among these are data on physical parameters for the lake which
might affect water quality, such as water temperature, water level, solar radiation, and
wind velocity.

Figure 4 shows the difference in annual averaged values of typical water-quality
parameters such as COD, SS, N0 3 (N03), and chlorophyll-a (CHLORA) between the
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NORTHERN LAKE

21. Mihagasaki
23. Juzenjigawa

Oki Chua

'24. Seta

FIGURE 3 The observation points.

SOUTHERN LAKE
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Northern and Southern Lakes over a four-year period. Apparently, the lake has different
pollution levels in the northern and southern parts. Furthermore, since it has been
pointed out that a clear distinction exists between the dominant species of phyto
plankton and zooplankton in the two parts of the lake, a separate analysis should be
done for each part.
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Figures 5-7 show the montWy variations of three of the parameters of Figure 4,
which have been measured at the 23 points indicated in Figure 3. It can be seen that the
value of each parameter differs from point to point in the lake. However, note that some
common interrelationships exist between certain parameters in these figures. Motivated
by these observations, an attempt was made to use the MDS statistical technique, out
lined in the next section, to extract some quantitative information from the analysis.

3 MDS APPROACH TO DATA ANALYSIS CONCERNING WATER QUALITY

This section outlines the analytical techniques of multidimensional scaling (MDS)
and principal component analysis (PCA). The approach is tailored for the analysis of a
set of data associated with the water quality of Lake Biwa. The principal aim is to group
the observation points such that the water quality at points within a group exhibits a
common aggregate index.

The simplest way of grouping the observation points is to use cluster analysis.
Once a measure representing the difference in water quality between observation points
has been defined, the analysis gives unique grouping through a formal procedure. But
unique grouping is not always efficient because it is too rigid and account cannot always
be taken of a priori knowledge or information about water quality in the area of interest.
To incorporate such expert knowledge and experience into the clustering technique, it is
necessary to integrate the data on many parameters over several years, define a measure
that represents the difference in water quality, and make a visual representation of these
differences.

First, the PCA technique, which aims to derive an integrated index of water quality,
will be discussed. The technique is generally used for aggregating statistical data on a
small number of hypothetical variables. This aggregation is done through linear com
binations of the original variables.

Consider a set of data containing n variables XI , x 2 , ..• ,Xn , and also consider the
linear combination

(1)

Now assume that the data on all variables have been normalized with a zero mean and a
variance of unity. The values of unknown coefficients ali are determined such that the
resulting value of Z I has maximum variance, under the restriction

ai I + ai2 + ... + ai n = 1 (2)

The procedure used to obtain ali consists of reducing the calculation to an eigenvalue
problem on a correlation-coefficient matrix of Xi' The coefficients ali obtained weight
the parameters Xi and contain information about each variable Xi (j = 1, 2, ... , n).

Although the variable Zl aggregates most of the information contained in the data on
X I, X 2, ... , X n , the rest of the information will be missed.

Now consider a second linear combination
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(3)

The values of a2i are determined such that the correlation of Z2 to Z 1 is a minimum and
the variance of Z2 is a maximum under the restriction

(4)

The quantity z 1 is called the first principal component and Z2 the second principal
component. The third, fourth, etc., components are designated in a similar way. The
ratio of the quantity of information contained in each component to that contained in
all the variables is called the component contribution, and this is evaluated by the eigen
value associated with the corresponding component. For instance, in the present case
of Lake Biwa, the three components up to Z 3 contain 65-75% of all information in the
original data from parameters x 1 to x no Once the au values are determined, substitu ting
the normalized real data xi into eqns. (J) and (3) yields the value of Z i' Let zimp be the
value of Z i at observation point p in the lake and in month m; this is designated the
principal-component (PC) value.

Next, based on the PC value of Z i' the parameter dpq that represents the difference
in water quality between points p and q is defined by

(5)

Several ways exist of making this summation over i, the PC number, on only one of the
components or over a number of components. If the values xi are exactly the same at
two points, then dpq = 0 for these points; if they are very different, then dpq is large.
Thus, dpq is considered to represent totally the differences between the water quality
at the different points. A table could be drawn up in which the values of dpq were
listed, and this could provide a summary of the differences, but the numerical values in
such a table would be of doubtful worth. Therefore, an attempt was made to introduce
a technique that would give a visual representation of dpq . This is the MDS technique,
which provides a simple graphic display of dpq •

The MDS technique is useful for the analysis of a variety of data from the social
and behavioral sciences. Its purpose is to extract the structure that is hidden within a
set of data and to represent this structure in the form of a more accessible geometrical
picture. The objects studied are represented by points in an r-dimensional space, in such
a way that the significant features of the data are revealed in the geometrical relations
between the points.

Although there are a variety of MDS procedures, corresponding to the varying
features of the data to be analyzed, the basic framework is as follows. Let rp be the
coordinate-value vector corresponding to observation point p in r-dimensional space.
To obtain ~p, the least-squares criterion

(6)
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is introduced. The vector rp is determined by minimizing J. There are N x r parameters
to be estimated in eqn. (6), where N is the number of sampling points (in practice, some
of the parameters need not be estimated; for example the first point may be placed at
the origin, the second point on one of the axes, etc.). This estimation problem can be
solved by a conventional unconstrained nonlinear optimization method, for instance,
that of Hooke and Jeeves (1961). The quantity dpq represents a Euclidean distance
between points p and q distributed in r-dimensional space. Plotting the [p values obtained
in the r-space gives a geometrical picture representing the differences in water quality
between the observation points. Unless the dimension r is very high and/or the dpq

values exactly satisfy the so-called triangle law, the minimum value of J is not zero in
most cases. In addition, a very high-dimensional space is unsuitable for visual represen
tation and so a two- or three-dimensional space is often used. Thus the aim is to incorpo
rate the original dpq values into the dpq values in a lower-dimensional space. This naturally
results in nonzero J, but the results give more useful information than would a table
containing only numerical values of dpq .

4 ANALYSIS AND DISCUSSION

Among the seventeen parameters of water quality listed in Table 2, the following
variables were selected to construct the integrated index to describe the physical nature
of water quality: TRANSP, PH, DO, COD, SS, N03, TN, TP, and CHLORA. The corre
lation-coefficient matrix of these variables for the Northern Lake is given in Table 3, and
the corresponding matrix for the Southern Lake in Table 4.

TABLE 3 Correlation-coefficient matrices of variables for the Northern Lake.

TRANSP PH DO COD SS NO] TN TP CHI ORA

TRANSP 1.0
PH - 0.267 1.0
DO - 0.028 - 0.160 1.0
COD - 0.287 0.600 -0.230 1.0
SS -0.606 0.221 0.079 0.366 1.0
NO] -0.013 -0.434 0.543 - 0.464 0.085 1.0
TN -0.260 - 0.149 0.272 -0.192 0.258 0.558 1.0
TP - 0.343 0.004 0.077 0.056 0.405 0.202 0.301 1.0
CHI ORA - 0.388 0.399 0.159 0.394 0.398 - 0.013 0.168 0.222 1.0

Taking the correlation matrices of Tables 3 and 4 into account, a PCA was under
taken for a series of cases with different combinations of these nine water-quality variables.
Four examples from these cases are shown in Table 5; they were selected simply because
of the (relatively) good figures for the first three principal components in terms of com
ponent contribution in the PCA.

For convenience of explanation of the proposed procedure, case 3 will be discussed,
since it has well-suited PC coefficients aij for both the physical meaning of the
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TABLE 4 Correlation-{:oefficient rna trices of variables for the Southern Lake.

TRANSP PH DO COD SS NO] TN TP CHIORA

TRANSP 1.0
PH ~ 0.Dl5 1.0
DO 0.089 -0.231 1.0
COD - 0.395 0.344 - 0.398 1.0
SS -0.586 - 0.041 0.009 0.330 1.0
NO] - 0.049 - 0.463 0.401 - 0.313 0.074 1.0
TN - 0.267 - 0.163 0.053 0.169 0.267 0.627 1.0
TP -0.327 - 0.063 -0.004 0.228 0.231 0.267 0.383 1.0
CHIORA - 0.309 0.328 - 0.082 0.417 0.192 - 0.152 0.170 0.120 1.0

TABLE 5 Combinations of water-quality variables chosen for PCA.

Variable Case I Case 2 Case 3 Case 4

TRANSP X X X X
PH X X X X
DO X X
COD X X X X
SS X X X X
NO] X X

TN X X X X
TP X X X X
CHIORA X X X X

TABLE 6 Cumulative values of the contributions of the first three components (%).

Northern Lake
Southern Lake

Case I

69.2
65.0

Case 2

69.0
64.2

Case 3

71.8
70.2

Case 4

72.8
70.0

water-quality index and for the total information con tained in the original data. Cumu
lative values of the contributions of the first three components are given in Table 6.
Furthermore, the fewer factors a particular PCA has, the higher the percentage con
tribution that can be obtained by summing over the first three components, because
the relative proportion of information involved becomes larger than for other cases which
have more factors. Hence a tradeoff must be made between the number of factors in the
PCA and the cumulative value of the contributions of the first three components.

The PC coefficients au for case 3 are given in Table 7. If we examine the italicized
values in Table 7, it seems that the first PC tends to describe a quantity associated with
organic substances, while the second PC tends to describe a quantity associated with
inorganic substances. This is because coefficients such as SS, COD, PH, and CHLORA in
the first PC, and N03, TN, and TP in the second PC, have much larger positive values
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TABLE 7 Principal component (PC) coefficients aii of case 3.

Northern Lake Southern Lake

1st PC 2nd PC 3rd PC 1st PC 2nd PC 3rd PC

TRANSP - 0.265 - 0.184 0.183 - 0.307 0.039 0.394
PH 0.233 - 0.332 0.277 0.038 - 0.508 0.377
COD 0.254 - 0.325 0.019 0.249 - 0.352 0.071
SS 0.272 0.212 -0.242 0.277 0.010 - 0.551
N03 -0.074 0.559 0.278 0.078 0.599 0.220
TN 0.059 0.525 0.382 0.239 0.369 0.393
TP 0.156 0.339 - 0.578 0.232 0.185 0.220
CHLORA 0.255 0.043 0.523 0.209 -0.295 0.377

Contribution (%) 34.5 27.6 9.7 31.7 26.5 12.0

than the others. Figures 8 and 9 illustrate the distributions of monthly variations in the
first and second PC values for each observation point. The two figures (compare, for
instance, (a) and (b) in Figures 8 and 9) display different seasonal behavior in the
variation of these two PCs.

By using the calculated results from the MDS procedure described in the previous
section, a graphic display of observation points is obtained, based on the following
four different versions of metric distances dpq : (a) 1st PC, (b) 2nd PC, (c) 1st + 2nd +
3rd PCs, and (d) all components. Figures 10 and II show these four types of graphic
display obtained using the MDS approach, where the numbers 1-23 correspond to the
locations in the two parts of the lake (see Figure 3).

Taking account of the geographical location of the observation points and past
trends in water quality, it is reasonable to choose the following clusters of points from
Figures 10(a) and II (a):

Northern Lake: (1,3), (2,4,5), (7,10), (8,9,11), (6), (13)

Southern Lake: (15,16,18), (21,22,24), (20,23), (14), (17), (19)

(7)

(8)

Clustering patterns (7) and (8) agree with those in Figures 10(d) and II(d) except for
point 5 in the Northern Lake and point 21 in the Southern Lake, although patterns
(7) and (8) are much more consistent with existing knowledge about the water quality
of Lake Biwa. This means that it is not necessary to use all the original information
and only three components are needed to derive the fundamental characteristics of
water quality in the area concerned in terms of filtered information from the noisy
multivariate data. Furthermore, compared with the clustering of points encircled
in parts (b) and (c) of Figure II, it is clear that the relative location of clusters (21,
22,24) and (15,16,18) is reversed for point 17, which has the worst water quality in
the entire area. The other points are in almost the same positions. This fact indicates
that the two clusters have different characteristics with respect to the worst point,
17, depending on whether organic or inorganic water pollution is considered, as has
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FIGURE 9 Variation of the values of the 2nd PC with time: (a) in the Northern Lake; (b) in the
Southern Lake. The capital letters used are the same as those in Figure 5.
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FIGURE 10 Configuration of the observed points in the Northern Lake, with distance defined using:
(a) the first three PCs; (b) the 1st PC; (c) the 2nd PC; (d) all the components.

already been described for the difference of PC coefficients. That is, the southeast section
of the Southem Lake has a greater similarity to the most poilu ted point, 17, than does
the northeast section in terms of organic pollution. A similar observation can be made
for the Northern Lake, comparing parts (a) and (b) in Figure 10, as regards the relative
position of the northeast section (1,3) with respect to effluent point 13.

Thus, various interpretations can be made from these figures depending on our
knowledge and experience of the area concerned. We consider that the more general
participation of specialists in this analysis could yield even more useful and practical
information for producing a comprehensive survey of water quality and, particularly,
for the further elaboration of water-quality modeling.
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FIGURE 11 Configuration of the observation points in the Southern Lake, with distance defined
using: (a) the first three PCs; (b) the 1st PC; (c) the 2nd PC; (d) all the components.

5 CONCLUSIONS

An MDS approach to clustering multivariate water-quality data has been presented.
This yields a graphic display of regional characteristics with respect to an integrated
index of water quality. In this paper, only the physical and chemical aspects of water
quality have been discussed, in terms of similar monthly variation patterns in the data
concerned. In the next step of the work, the biological aspects of water quality will be
examined using other types of measure, for example, coefficients of regression analysis
for a particular biological element such as the biomass of different types of algae. This
approach might extract effective information from the original data by applying expert
knowledge and experience to the analysis of aggregate measures plotted in two-dimen
sional space.
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NONLINEAR STEADY-STATE MODELING OF RIVER
QUALITY BY A REVISED GROUP METHOD OF DATA
HANDLING

Hiroyuki Tamura and Tadashi Kondo*
Department ofPrecision Engineering, Osaka University, 2-1 Yamada-aka,
Suita, Osaka 565 (Japan)

INTRODUCTION

In river-quality systems there are many complex phenomena at work, such as
biochemical reactions, thermal behavior, sedimentation, and photosynthetic oxygen
production; therefore the structure of any physical model that considers the influence
of these phenomena is necessarily very complex (Rinaldi et aI., 1976, 1979). Parameter
estimation procedures for physical models (Rinaldi et aI., 1976) that have been used
for predicting pollution levels of river quality are also very complicated.

The Group Method of Data Handling (GMDH) (Ivakhnenko, 1970, 1971) is a
useful technique of data analysis for identifying these complex nonlinear s:vstems through
statistical analysis of input-output data, especially when only few data are available.
The basic GMDH and its modifications (Duffy and Franklin, 1975; Ikeda et aI., 1976;
Tamura and Kondo, 1978, 1980) have many advantages, probably the most remarkable
being that they automatically select the structure (degree of nonlinearity) of the model
without using a priori information on relationships among the input-output variables.
Therefore, if the system is predominantly nonlinear and its mechanistic structure is
not known explicitly, GMDH can be a useful technique for modeling and identification.
However, using a conventional GMDH it is difficult to identify a physically meaningful
structure among the input-output variables because the partial polynomials, in which
the intermediate variables are used as the input variables in each selection layer, have
been estimated and accumulated in the multilayered structure.

In this paper, a nonlinear steady-state river-quality system is identified using a
revised GMDH (Kondo and Tamura, 1979), which generates optimal intermediate poly
nomials instead of partial polynomials in each selection layer. The optimal intermediate

* Present address: Toshiba Corporation, Fuchu, Tokyo 183, Japan.
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polynomials express the direct relationships among the input-output variables, and
they are generated so as to minimize the Akaike information criterion (AIC) (Akaike,
1972, 1973, 1974) evaluated by using all the data. Therefore, even if the internally
descriptive (mechanistic) model is not known explicitly, the physically meaningful
structure can be identified by using this revised GMDH when the characteristics of the
system are well incorporated in the measured data. By using various measures of river
quality such as biochemical oxygen demand (BOD) and dissolved oxygen (DO) levels,
for the example of the Bormida River, Italy, two kinds of nonlinear models of steady
state river quality are constructed, and the structures and prediction accuracies are com
pared with those of Rinaldi's linear physical (mechanistic) model.

2 MODELING THE STEADY-STATE RIVER QUALITY

BOD and DO levels have been widely accepted as the most important indexes of
organic river quality. The dynamic behavior of these levels can be described using a
generalized Streeter-Phelps model (Rinaldi et aI., 1979)

ob/at + Vob/ol = - (kl (T) + (k3( V)/A))b (l a)

oc/ot+ Voc/ol = -kl(T)b + (k2 (T,Q)/H(Q))(c s(T)-c) + k 4 /A (lb)

where

b = BOD (mgl-1
),

c = DO (mgl- I),
Cs = saturation level of DO (mgl- I),
k l = deoxygenation rate (day-I),
k2 = reoxygenation rate (m day-I),
k3 = suspended BOD sedimentation rate (m2 day-I),
k4 = photosynthetic oxygen production rate ((mg 1-1)(m2 day-I)),
t = time (day),
I = distance (kIn),

T = water temperature COC),
A = cross-sectional area (m 2

),

Q = flow rate (I03 m3day-l),

V = (Q/A) = average stream velocity (km day-I), and
H = mean river depth (m).

Here, for simplicity, it is assumed that the cross-sectional area A does not vary along the
river and that the velocity V is constant over space and time. Then, the steady-state BOD
and DO levels satisfy the differential equations

db/dl

dc/dl

(2a)

(2b)



Modeling ofriver quality using revised GMDH 227

where the functions Kh (h = 1, 2, 3,4) depend upon the two independent variables Q
and T, Le.

(3a)

(3b)

K 3(T, Q) = k2 (T, Q)/(H(Q)V(Q))

The solu tions to eqns. (2) are

(3c)

(3d)

(4a)

(4b)

where bo and Co are the BOD and DO levels, respectively, near the discharge point, and
it is assumed that there is no discharge inside the subject range.

Data are measured for n different steady states. The ith steady state is characterized
by the flow rate Qi and the temperature T i. The BOD and DO levels are measured at r
points along the river as shown in Figure 1. We will assume that the following measured
da ta are available:

(b~,c~) (i= 1,2, ... ,n)

(bJ,cj) (i=I,2, ... ,n; j=1,2, ... ,r)

where j denotes the jth measuring point along the river.

2.1 Parameter Estimation of the Physical Model (Rinaldi et al., 1976)

(Sa)

(Sb)

Here, the estimation method for the parameters contained in eqns. (4a) and (4b)
is introduced briefly. The structures of the functions Kh contained in eqns. (4a) and (4b)
are assumed to be

where the flh denote the parameters contained in Kh. By using the measured data (Sa)
and (Sb), the parameters flh are estimated so as to minimize the criterion

n

J = L Ji
i=!

(6a)
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I I
>

Distance I

.. . .. . . . . .. . . ..

FIGURE I The variables measured in a river. Superscript i denotes the ith steady state in the river.

where

r

L [AEli + (l - A)E1i
] (0 ~ A~ 1)

j=1

ji - [ (l K i K i K i K i b i i) _ i]2Ec - C j, 1, 2, 3, 4, 0, Co Cj

(6b)

(6c)

(6d)

and Eli is a square error between the measured value of the BOD level of the ith steady
state at the jth point and the estimated value from eqn. (4a). E1i is a square error for
the DO level, and A is a weight for the BOD level. It is very difficult to estimate the
parameters flh directly so as to minimize J in eqn. (6a) because the dimension of flh is very
high; therefore, the following procedure is used for this estimation. Firstly, by using
the data measured in each steady state, functions K~ (h = 1, 2, 3, 4; i = 1, 2, ... , n) are
estimated so as to minimize Ji (i = 1,2, ... ,n). Then, by using the estimated values
of K~, the parameters flh are estimated so as to minimize

J'
n 4

L L (Kh(flh, Ti, Qi) - K~)2
i=1 h=l

(7)

A more precise description of this procedure can be found in Rinaldi et al. (1976).
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2.2 Modeling the Steady-State System using the Revised GMDH

229

Here, the steady-state model of river quality is constructed using the revised GMDH
algorithm. In this algorithm, optimal intermediate polynomials, which express the direct
relationships between the input and output variables, are generated automatically in
each selection layer so as to minimize the Ale, and the final model is obtained from
the optimal intermediate polynomial remaining in the final layer. Using the revised
GMDH algorithm, the following two steady-state models are constructed.

2.2.1 Steady-State Model /
A steady-state model in the form of eqns. (2) is constructed. Two variables,

b(j + I) and e(j + I), are used as output variables and five variables, b(j), e(j), Q-l,
Q-O.5, and T, are used as input variables. Here it is assumed that the measuring points
for the BOD and DO levels are equally spaced along the river. The steady-state model
to be identified by the revised GMDH is

Equations (8) can be transformed to

(b(j + 1) - b(j»/t.1 = (l/t./H!I(bU), e(j), Q-l, Q-O.5, T) - b(j)}

(e(j + 1) - e(j»/t.1 = (l/t./H!2(b(j), e(j), Q-l, Q-O.5, T) - e(j)}

(8a)

(8b)

(9a)

(9b)

If the left·hand sides of eqns. (9a) and (9b) are accepted as approximations for db/dl
and de/d/, respectively, a steady-state model in the form of eqns. (2) can be obtained.

2.2.2 Steady-State Model II
A steady-state model in the form of eqns. (4) is constructed. Two variables, b(l)

and e(l), are used as output variables and seven variables, bo, co, I, r 1, QO.5, Q-O.5, and T,
are used as input variables. In this case, no physical interpretation of the model con
structed by the revised GMDH is possible, because eqns. (4) cannot be described as
physically meaningful polynomials in terms of these input variables. That is, the revised
GMDH model obtained is a nonphysical model. The steady-state model to be identified
by the revised GMDH is

(lOa)

(lOb)

For constructing this model, the measuring points for BOD and DO levels need not
necessarily be equally spaced along the river.
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3 THE REVISED GMDH

From the many kinds of mathematical models available, such as polynomials,
Bayes formulas, trigonometrical functions, etc., the Kolmogorov-Gabor polynomial

(II)

is widely used in the GMDH as a complete description of the system model. If a con
ventional multiple regression analysis is followed, it is necessary to estimate the enormous
number of parameters in eqn. (I I) simultaneously, which is impossible from both the
statistical and the computational points of view. Equation (I I) can be constructed by
combining so-called partial polynomials

(12)

of two variables in multilayers, where the Yk values are called the intermediate variables.
On going to the second layer, the intermediate variables Yl, Y2, ... ,YL are regarded as
the input variables of the second layer. That is, the partial polynomials generated in the
second layer are of the form

(12')

In the basic GMDH originated by Ivakhnenko the available data were divided into two
sets: the training data and the checking data. The training data were used for estimating
the parameters in the partial polynomials, and the checking data were used for selecting
intermediate variables. Much research was done by Ivakhnenko's group on the best
method of dividing the data into these two data sets (Ivakhnenko et aI., 1979).

In the revised GMDH used in this paper, this artificial differentiation between
training and checking data is eliminated. Furthermore, instead of partial polynomials
(eqns. (I2) and (I2')), the intermediate polynomials are used. These intermediate poly
nomials are constructed from the direct relationships among the original input/output
variables (while, as seen from eqn. (I 2'), the partial polynomials were constructed from
the relationships among the intermediate variables and the output variables), and they
are generated so as to minimize the Ale evaluated by using all the available data. A
detailed discussion of the mathematical form for the intermediate polynomials can be
found in Kondo and Tamura (I979). By using this revised GMDH a physically meaning
ful structure can be identified when the characteristics of the system are well incorporated
in the data, even if the internally descriptive (mechanistic) model is not known
explicitly.

Figure 2(a) shows the block diagram of a conventional GMDH, while Figure 2(b)
shows the revised GMDH used in this paper. A detailed discussion on the algorithm of
the revised GMDH can be found in Kondo and Tamura (I979).
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1

x =a--.=1 G ---+. Y2
X3

11-

(a)

III

~I~

--

(i= 1,2, ... ,ml)
(b)

FIGURE 2 Block diagrams of: (a) basic GMDH (I, division of original data into two sets; II. self
selection of the intermediate variables; Ill, optimization of the threshold; G. generator of the partial
polynomials); and (b) revised GMDH (I, self-seleetion of the optimal intermediate polynomials; G1,
G2, G3. generators of the optimal intermediate polynomials).

4 MODELING THE STEADY-STATE WATER QUALITY OF THE BORMIDA
RNER

The steady-state model of the Bormida River shown in Figure 3 is constructed by
applying the revised GMDH algorithm to the data shown in Table 1; the predicted results
obtained using the revised GMDH model are compared with those obtained from the
physical model estimated by Rinaldi et al.
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FIGURE 3 The Bormida River and locations of measurements stations (Rinaldi et aI., 1976).

The data measured in the Bormida River (Rinaldi et aI., 1976) are used; four
variables, namely BOD level b, DO level c, flow rate Q, and temperature T, are measured,
and these are shown in Table 1. Data for BOD and DO levels are daily average values
measured at six points located at intervals of about ID-15km along the river. Here,
the data obtained for the fourth point are not the measured values but values obtained
by linear interpolation. Temperature data are average values obtained at six points but
the measurement time is different for each steady state, and therefore it is difficult to
give a significant interpretation. The effect of temperature variation was, in fact, simply
neglected. Fifteen steady states are measured (n = 15). From these, data from thirteen
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steady states are used for modeling and data from the remaining two steady states are
used for model validation.

4.1 Results of Parameter Estimation of the Physical Model (Rinaldi et aI., 1976)

Parameters of the physical model are estimated using the procedure described in
Section 2.1. The data of the steady states 1-13 are used for modeling. The structures of
the functions Kh (17 = I, 2,3,4) are assumed to be

(13)

where

Functions K~ (17 = 1,2,3,4; i = I, 2, ... , 13) are estimated so as to minimize Ji
(i = 1,2, ... ,13) in eqn. (6b) and as a result

(14)

is obtained. This result shows that the BOD and DO levels in the Bormida River can be
described by a Streeter-Phelps model. Then parameters f}1 and f}3 are estimated so as
to minimize l' in eqn. (7) and the results

db/dl = - 0.2Q-OA3b (I Sa)

dc/dl

are obtained.

(ISb)

4.2 Results of Modeling Using the Revised GMDH

4.2.1 Steady-State Model J
Four variables, b(j), c(j), Q-\ and Q-O.5, are used as input variables. BOD models

identified by the revised GMDH will be considered first and these are shown in Table 2.
Model 4 is identified using all the data from the 15 steady states. It can be seen that the
structure of the model varies slightly according to the measured data used for modeling.
In the revised GMDH, the structure of the model is determined by using only the
measured data, and therefore the dependence of the structure of the model on the
statistical characteristics of the measured data cannot be avoided. However, if sufficient
data can be used, the dependence can be reduced. Model 3

b(j + I) = - 4.22 + 0.920b(j) + 0.000037b(j)2 - 0.0133 Q-o.5b(j)2 (16)
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TABLE 2 Structure of the BOD model I

Model Prediction Constant b b' bQ-o., b'Q-o.s

number points

1 4,5 -5.84 0.960 -0.00040 -0.011
2 9,10 -2.38 1.027 -0.00070 -2.06
3 14,15 -4.22 0.920 0.00004 -0.013
4 0 ~3.82 0.900 0.00008 -0.013

is identified using the measured data for steady states 1-13. This model can be trans
formed to

(b(j + I) - b(j))/Al (I/Al){- 4.22 - 0.080b(j) + 0.000037b(j)2

(17)

Since Al ~ 10 lan, eqn. (17) can be approximately reduced to

db/dl = - 0.422 - 0.0080b + 0.0000037b2- 0.00133Q-o.sb 2 (18)

From this model it is found that the second-order terms of the BOD level are contained
in eqn. (18), and the structure of the model is a little more complex than physical model
(2a). In order to verify the effectiveness of eqn. (16), the prediction errors for the steady
states 14 and 15 of eqn. (16) are compared with those of the physical model (2a). In
eqn. (16), the BOD concentration b(l) is predicted using the measured data bo, and
the BOD levels b(j + I) for j = 1-4 are obtained using the predicted values for j = 0-3.
Predicted results for steady states 14 and 15 are shown in Figure 4. It can be seen that
the prediction accuracy obtained from the revised GMDH model (16) is identical with
that obtained from physical model (2a).

DO models identified by the revised GMDH will now be considered (see Table 3).
Model 4 is identified by using all the data from the 15 steady states. From Table 3,
it can be seen that the structure of the model varies remarkably according to the
measured data used for modeling. In particular, the terms concerned with flow rate Q

are very varied. The reason for this is that the number of different measurement data
for the flow rate are very few compared with the number of terms contained in the
model. In other words more data for different flow rates are needed before more precise
information can be extracted from the data concerned with input variable Q. Model 3

c(j + I) = 6.72 + 0.43Ic(j) - 0.000203b(j)2 + 0.00222Q-O.5b(j)2

- 46.lQ-O.5 + 3.9IQ-o.sc(j) (19)

is identified using the measured data for steady states 1-13. This model can be trans
formed to
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FIGURE 4 Measured and computed values of BOD from model 1-3: (a) steady state 14; (b) steady
state 15.

(c(j + I) - c(j))/ f.l (1/f.I) {6.72 - 0.569c(j) - 0.000203b(J)2

+ 0.00222Q-o.5b(J)2 - 46.1Q-O.5 + 3.91Q-O.5C(j)} (20)

Once again using f.l::::= 10 km, eqn. (20) can be approximately reduced to

dc/dl = 0.672 - 0.0569c - 0.0000203b2+ 0.000222Q-O.5b2

- 4.6IQ-O.5 + 0.391Q-O.5C (21)

It can be seen that the second-order terms b2 and Q-o.5b 2 are contained in both the BOD
model (18) and the DO model (2I). The terms Q-O.5 and Q-O.5 C are similar to the terms
Q-O.8 and Q-O.8c, respectively, contained in the physical model (2b). In order to verify
the effectiveness of eqn. (19), the prediction errors for steady states 14 and 15 of eqn.
(19) are compared with those of the physical model (2b). In eqn. (19), the DO level
c(1) is predicted using the measured data bo and Co, and the DO levels c(j + I) for j = 1-4
are obtained using the predicted values for j = 0-3. Predicted results for steady states
14 and 15 are shown in Figure 5. From Figure 5(a), it can be seen that the revised GMDH
model (19) gives much better prediction accuracy for steady state 14 than does the
physical model (2b). From these prediction results, it can be seen that the steady-state
model I identified by the revised GMDH algorithm is fairly reliable as a prediction model.
Furthermore, the structure of steady-state model I is a little more complex than that
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FIGURE 5 Measured and computed values of DO from model 1-3: (a) steady state 14; (b) steady
state IS.

of the physical model but the two are very similar. This shows that statistical analysis of
the input and output data by the revised GMDH algorithm using intermediate poly
nomials gives important information about the physical structure of the system.

4.2.2 Steady-State Model II
Six variables, bo, Co, I, r l , QO.s, and Q-o.s, are used as input variables. The BOD

model identified by the revised GMDH will be considered first. By using the measured
data of steady states 1-13, the BOD model is identified as

+ 0.0004bJQo.s + 0.871 bocoQ-o.s - 0.000042bJcoQo.s (22)

It can be seen that the structure of eqn. (22) is more complex than that of the steady
state model I (I 6). In order to verify the effectiveness of eqn. (22), the prediction errors
for steady states 14 and 15 of eqn. (22) are compared with those from the physical model
(4a). Predicted results for steady states 14 and 15 are shown in Figure 6. It can be seen
that the revised GMDH model (22) has the same prediction accuracy as the physical
model (4a).

The DO model identified by the revised GMDH will now be considered. By using
the measured data for steady states 1-13, the DO model is identified as
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FIGURE 6 Measured and computed values of BOD from model II: (a) steady state 14; (b) steady
state 15.

c(l) - 34.8 + 1.74Qo.s - 11.6r1 - 0.00104/ 2 + 189Q-o.s + 9.26coQ-o.s

+ 0.0106Qo,s/- 0.000436bocol + 0.000004bo/ 2 + 0.000003b5col (23)

It can be seen that the structure of eqn. (23) is once again more complex than that of
the steady-state model 1 (I9). In order to verify the effectiveness of eqn. (23), the pre
diction errors for steady states 14 and 15 of eqn. (23) are compared with those of the
physical model (4b). Predicted results for steady states 14 and 15 are shown in Figure 7.
From Figure 7(b), we see that the revised GMDH model (23) gives a worse prediction
accuracy for steady state 15 than does the physical model (4b). The reason for this is
that the structure of the system for the DO level is very complex and cannot just be
described as a polynomial approximation of the six input variables used here; in other
words, more suitable input variables are needed for this model.

5 CONCLUSIONS

In this paper, two kinds of steady-state river-quality models are constructed by
applying the revised GMDH algorithm to the measured data for the Bormida River. On
comparing the revised GMDH model with the physical model identified by Rinaldi et al.
the following results are obtained.

For the steady-state model J identified by the revised GMDH, the second-order
terms of the BOD level are contained in both the BOD and DO models. It is interesting
to see that the remaining terms are quite similar to those in the physical (mechanistic)
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FIGURE 7 Measured and computed values of DO from model II: (a) steady state 14; (b) steady
state 15.

model. This implies that the revised GMDH model using intermediate polynomials gives
important information about the physical structure of the system.

Steady-state model I gives the same prediction accuracy as the physical model for
the BOD level but better prediction accuracy than the physical model for the DO level.

In the revised GMDH models for the DO concentration, steady-state model I gives
better prediction accuracy than does steady-state model II. This is because the structure
of the system for DO concentration is very complex and cannot be described as a poly
nomial approximation of only the six input variables used here. More suitable input
variables are needed for this case.

The structure of the revised GMDH model is heavily dependent on the statistical
properties of the data used for modeling because the structure (degree of nonlinearity)
of the model is determined by using input-output data only. In the case of the Bormida
River example, the flow rate terms in the revised GMDH model are particularly depen
dent on the data because of the lack of information about different flow rates in the
available data.

Finally, in the physical model the computation for estimating the parameters is
quite complex, but in the revised GMDH model this is not so.
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PARAMETER UNCERTAINTY AND MODEL PREDICTIONS:
A REVIEW OF MONTE CARLO RESULTS

R.H. Gardner and R.Y. O'Neill
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37830 (USA)

1 INTRODUCTION

Uncertainty in ecological models (O'Neill and Gardner, 1979) is due to a number
of factors. The total error associated with model predictions can only be assessed by a
validation process (Caswell, 1976; Mankin et al., 1977) which tests the model against
independent data (Shaeffer, 1979). However, such validation experiments are often
infeasible, and modeling research has focused on individual factors that contribute to
total error. These factors include assumptions in model construction (Harrison, 1978;
Cale and Odell, 1979; O'Neill and Rust, 1979), measurement errors (O'Neill, 1973;
Argentesi and Olivi, 1976), and errors in formulating ecosystem processes (O'Neill,
1979a).

Of the factors contributing to total error, parameter variability has received the
greatest emphasis. Many studies have taken advantage of the availability of analytical
methods for estimating the variance on model output (see, for example, Argentesi and
Olivi, 1976; Beck et al., 1979; DiToro and van Straten, 1979; l..ettenmaier and Richey,
1979). In the series of studies reviewed in this paper, we approached the study of parame
ter variability by Monte Carlo analysis, i.e., repeated simulations of the model with
randomly selected parameter values. At the beginning of each simulation (or at intervals
during the simulation), parameter values are chosen from specific frequency distributions.
This process is continued for a number of iterations sufficient to converge on an estimate
of the frequency distribution of the output variables.

Our goal in these studies was not merely to establish error bounds around model
predictions, but to explore the general properties of error propagation in models. In our
opinion, the Monte Carlo approach is uniquely suited to this exploration because the
technique is not limited to any specific set of assumptions, the sources of model error
must be explicitly considered, and the method can be quickly implemented, allowing
the comparison of many different models.

In all of our studies we have assumed that parameters are measured in independent
laboratory or field experiments. This assumption is appropriate for models that synthesize
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individual physiological studies (see, for example, Park et aI., 1974). However, the assump
tion is inappropriate when all parameters of a model are simultaneously fitted to sequen
tial measurements of the state variables, either by nonlinear least-squares (see, for
example, Halfon, 1975) or extended Kalman filter (see, for example, Beck, 1979)
methods. In this paper we will review our recent error analysis studies, with emphasis on
the counter-intuitive results produced by the Monte Carlo approach.

2 TWO SOURCES OF PARAMETER VARIABILITY

Differences in the assumed sources of error lead to differences in formulating the
results. Figure I illustrates the interplay between two sources of error: natural variability
in the ecosystem and error in parameter estimation. Figure I(a) shows the simple case
with no natural variability and no measurement error; in this case every parameter of
the model is known exactly. In this case, the "true" behavior of the system can be
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represented by a frequency distribution which is a single vertical line of height 1.0.
Assuming that there are no errors in model construction (as we will assume throughout
this paper), the model predicts the distribution perfectly and there is no need for error
analysis. This situation, of course, never actually occurs but will serve as a reference
for more realistic cases.

In Figure I(b), the ecosystem has natural variability but there is no measurement
error. In this case, we must represent ecosystem behavior by a distribution representing
the statistical population of behaviors of which the ecosystem is capable. This is an
important point to keep in mind: natural variability in the ecosystem implies a popu
lation of possible behaviors. The Monte Carlo implementation of the model explicitly
accounts for this variability and exactly predicts the distribution correctly if all sources
of natural variability are known exactly. The deterministic model, in contrast, still
predicts a single value and, even without error in measuring the mean of each parameter,
this prediction is incorrect. This bias or shift in the predicted value results from
attempting to represent the variable system by a deterministic model. The error results
from the fact that

E[f(A)] =1= f[E(A)] (1)

whenever f(A) is a nonlinear function. In other words, the expected value of a function,
E[f()], with a set, A, of randomly varying parameters is not necessarily equal to the
value of the function using the expected value of each of the parameters. The two are
equal only when f(A) is simply the sum or product of the A terms or when the function
is linear (O'Neill, 1979b), but these cases do not appear particularly relevant for
ecological models. Even a system of linear differential equations produces anf(A) which
is an exponential function.

Figure I(c) depicts the situation in which the ecosystem has no natural variability
but where parameter values determined in independent experiments are measured with
error. In this case, the deterministic model shows a shift in the predicted value because
the parameters are incorrect. The mean value from the Monte Carlo implementation
of the model is also incorrect, but it is possible to make a probabilistic statement about
the magnitude of the error, because the distribution of model ou tpu ts is produced.

Figure led) shows the most common situation, in which there is both natural
variability and also uncertainty in model parameters, each of which has been measured
independently. The deterministic model is incorrect because incorrect parameters are
used and bias is introduced by the model (eqn. I). The expected value of the Monte
Carlo iterations is also incorrect due to measurement errors. However, the shift or bias
in the expected value will be less than in the deterministic model, and an estimate of
the uncertainty associated with the prediction is possible.

3 SENSITIVITY ANALYSIS AS AN APPROXIMATION TO ERROR ANALYSIS

In many studies, the contribution of error on individual parameters to overall pre
diction uncertainty is estimated by sensitivity analysis (see, for example, van Straten
and de Boer, 1979). This approach evaluates the partial derivative of some model output
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(typically, the value of a state variable) with respect to each of the parameters. However,
this method only approximates the contribution of each parameter because of three
implicit assump tions:

(1) The expected behavior of the model is equal to the behavior of the model using
the expected parameter values (Argentesi and Olivi, 1976).

(2) The contribution to total error can be approximated by examining the contri
bution due to each parameter separately.

(3) Small perturbations in the parameters approximate errors resulting from large
uncertainties (van Straten and de Boer, 1979), i.e., higher-order effects are
absent.

Since sensitivity analysis is the most commonly applied method for this type of
analysis, it is important that we examine the extent to which these assumptions are valid.

It should be clear from our discussion of Figure 1 that a deterministic model of a
variable system always yields a biased prediction of the expected behavior. Thus, the
first assumption of sensitivity analysis is ordinarily violated. However, the magnitude
of the bias can vary significantly. In one study (Gardner et aI., 1980b) comparing six
phytoplankton-zooplankton models, all of the models were calibrated to a single hypo
thetical data base. As a result, bias was small, ranging from 1% to about 10% of the total
uncertainty in the model prediction. In contrast, a study of a marsh hydrology model
(Gardner et aI., 1980a) showed that the deterministic prediction can be in error by an
order of magnitude due to bias! In the majority of the applications examined, however,
the bias has been small (approximately 10%). It seems reasonable to conclude, therefore,
that violation of the first assumption of sensitivity analysis will not lead to serious
problems. If the first-order approximation of Hahn and Shapiro (1968) is used, the
assumption will be violated only in unusual cases.

Our past studies do not provide a direct test of the second assumption that each
parameter contributes independently to total error. We can, however, approach the
question by comparing partial and simple correlation coefficients calculated between
individual parameters and total model variability. When all parameters are varied simul
taneously, the partial correlation coefficient indicates the direct contribution of that
parameter to the variance of the predicted value. If there are no interaction terms
between parameters, the partial correlation coefficient will approximate the individual
sensitivity coefficient. The simple correlation coefficient represents the direct relation
ship between a parameter and predicted values when all parameters are varied simul
taneously. Comparison between simple and partial correlations is a test of the second
assumption if we assume that no higher-order interaction terms are present. If the partial
is not equal to the simple correlation, this indicates that the variance of the other
parameters has altered the relationships between parameters and predictions. We use
the correlation coefficient for this analysis because, when the coefficient is squared, it
expresses the fraction of the prediction uncertainty that is accounted for by variability
in the parameter.

A comparison of partial and simple correlation coefficients is possible for our analysis
of the marsh hydrology model (Gardner et aI., 1980a; Huff and Young, 1980). For most
parameters, the partial and simple coefficients are similar and the second assumption



Parameter uncertainty and model predictions 249

appears valid. Where they diverge, it is usually only for a portion of the simulated annual
cycle. The few exceptions that were found among the 14 parameters had unusually high
variances. For example, the greatest divergence occurs for a parameter with a coefficient
of variation of 48%. Our analysis indicates that the sensitivity coefficients are con
servative; that is, the effect of simultaneously considering all parameters is a decrease
in the correlation between an individual parameter and total model error. A similar
conclusion was reached by DiToro and van Straten (1979).

The third assumption is that the uncertainty in model output can be characterized
by examining small variations in the parameters; that is, large variations, more charac
teristic of ecological measurements, will not significantly alter parameter sensitivities.
We can address this assumption directly, based on unpublished analyses of the marsh
hydrology model. In separate Monte Carlo simulations, we assumed all parameters to
have, firstly, a coefficient of variation of I% and, secondly, variations characteristic of
real field measurements. By comparing the partial correlation coefficients generated
by these two runs, we can examine how larger variations alter sensitivity patterns. If
the model were linear, the coefficients would be identical for the two runs. Therefore,
differences should indicate the importance of nonlinearities when variances on parameters
are large.

In general, the partial correlation coefficients are similar between the two sets of
simulations, and the assumption appears valid for this model. The exceptions, however,
were drama tic. Figure 2 shows the partial correlation coefficient between the field
capacity of the soil (Fe) and water level for the 1% case (dashed line) and the case in
which all parameters were varied at realistic levels (solid line). Allowing all parameters
to take on large variations obviously has an important effect on the correlation of model
error to variability in this parameter (FC). In the 1% case, a significant fraction of the
variance in water level is explained by variance in FC, particularly early in the year
(days 0-40), during the summer (days 160-240), and following rainfall events (sharp
peaks in the graph). With high variances on parameters, nonlinear responses of the model
and, especially, nonlinear interaction terms between FC and other parameters, cause
very little of the variance in water level to be explained by variations in FC alone. In
general, when the coefficients diverge (Figure 2), sensitivity analysis indicates that the
model is more sensitive to a parameter than would be indicated by a Monte Carlo
analysis. In other words, it would overestimate the reduction in prediction uncertainty
resulting from better measurements of a parameter.

In an analysis of a phytoplankton-zooplankton model (O'Neill et aI., 1980;
Gardner et al., 1980b), increasing the variance associated with individual parameters from
4% to 10% of their means results in complex changes in the predicted values. The deter
ministic system is characterized by an increase in populations in the spring, a decline
during the summer months, a fall recovery, and a winter decline. Prediction error (sum
of squared deviation from the deterministic solution) increases in the spring and faU
when the populations are increasing rapidly (Figure 3). Because aU populations are
declining during the warm summer months, the errors at this point are at a minimum.
Seasonality in prediction uncertainty has also been noted by DiToro and van Straten
(1979).

Increasing the variability of the parameters from 4% to 10% changes the magnitude
of variation and the pattern of variability throughout the year (Figure 3). Herbivore
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errors increased approximately ten-fold and carnivore errors approximately five-fold.
Increase in parameter variability resulted in a smoothing and broadening of the peaks
of variability, and, because the relationship between populations is nonlinear, the pattern
of response of the fall carnivore populations is most affected. It should be noted that
this analysis ignored covariances between parameters. There is ample evidence (DiToro
and van Straten, 1979; O'Neill et a!., 1980) that correlations decrease prediction
uncertainty.

At the present stage of understanding, the assumptions of sensitivity analysis do
not appear to cause serious problems. This is a consoling result because most analyses
will be limited to this approach. However, some important exceptions to the rule were
observed. The marsh study (Gardner et a!., 1980a) showed that sensitivity analysis (1%
variation) could lead to erroneous decisions. Based on the sensitivity analysis, one would
be led to believe that model uncertainty could be significantly reduced by increasing the
accuracy of a small subset of parameters. The error analysis (i.e., realistic variances)
revealed that increased accuracy and precision in measuring this subset of parameters
would have little practical effect on model error. Sensitivity analysis has many practical
and theoretical uses for model examination, but caution must be exercised because the
assumptions can be violated under some circumstances.

3.1 Establishing the Domain of Applicability of an Analysis

Unless consideration is given to the different sources of parameter variability
(Figure 1), considerable ambiguity can be introduced into the interpretation of results.
The inferences which can be drawn from any particular error analysis study are depen
dent on the selection of nominal values for the parameters and the definition of their
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FIGURE 3 Thc daily total error of a coupled herbivore-carnivore system when parameters are
varied at either 4% or 10% of their mean value. The total sum of squares is calculated as the daily
mean of the sum of squares deviation from the deterministic system.

statistical properties (e.g., distributions, variances, maxima and minima, etc.). Any
assumptions implicit in the choice of these statistical properties will strongly influence
the inferences drawn from the analysis. If variances are measured for a specific system
in a specific year, conclusions should not be drawn about other systems or future years.
If study objectives call for inferences about a particular system, variances characteristic
of an entire class of systems should not be used. The problems associated with the for
mulation of a particular case and inferences which can be drawn are illustrated by two
recent studies.

In the analysis of the marsh hydrology model (Gardner et a!., 1980a), the statistical
distributions were assumed to be normal, with variances and extreme values estimated
a priori from available information on marsh systems. One parameter, W, set the upper
limit above which overland flow occurs and excess water drains rapidly into an adjacent
lake. When this value is allowed to vary from iteration to iteration it determines directly
the maximum water level of the marsh and, hence, the actual water level and storage
when the soils are saturated. The initial investigation set the mean of W at 15.2, the
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variance at 48% of the mean, and the minimum and maximum at 0.0 and 30.0, respec
tively. The resulting relationship between Wand predicted water level in the spring
(March, April, and May) was quite strong, with W the second most significant contributor
to water-level variability (R 2 being 44-77%).

This result had very little practical meaning for any single marsh. For an individual
marsh system the variability of W would be smaller and result largely from spatial
heterogeneity and measurement error. The uncertainty of the nominal value of W is
obviously much less "within" a marsh than is that of the "between marsh" value used
in the simulation. When the Monte Carlo experiment was repeated with the variance of
W reduced from 48% to 1%, the statistical relationship between Wand water level during
saturated periods disappeared.

The second example concerns the frequency distribution of predicted dose to the
thyroid of infants from a chronic release of radioactive iodine-131 (O'Neill et al., 1981).
The model includes a Gaussian-plume atmospheric dispersion, movement of the radio
isotope through the food-chain into milk, and the subsequent dose (resulting from
ingestion) to the thyroid gland of infants. The extreme value for a particular parameter,
B, which describes the transfer of radioisotope from the soil to pasture forage, proved
to be troublesome. The parameter B is dependent on the nature of the soil and is quite
variable between sites. In addition, there are few measured values of B. Variability of
B at a local site is restricted to the variability of the local soils within the area and yet
we can only characterize the universal variability of B across all soils. This point was
not apparent when we began our investigation but we soon realized that allowing the
maximum value of B to change by orders of magnitude from I to 1000 resulted in a
change in the correlation of B with dose from 0.06 to 0.32 and a shift in the mean and
maximum predicted dosages as well (Table 1). Like W in the marsh model, B has a small
effect on the predicted value when variances characteristic of one site are used, but when
either the region is large or knowledge of the parameter is insufficient, then the results
must be cast in a different light.

Meaningful insights must come from a meaningful definition of parameter values
and distributions. The approach must be applied uniformly across all parameters of
the model, otherwise meaningful relationships between parameters and predictions will
be obscured. It is most helpful to defme first the level of resolution of the model, then
defme the statistical properties of parameters within that framework.

3.2 Frequency Distributions of Parameters

Any real system (Figure Ic) contains natural variability, and system behavior is
most realistically represented as a frequency distribution of potential behaviors. The
distribution of system behaviors is the result of the mathematical characteristics of the
model and the distributions of model parameters. The factors used to select a parameter
distribution should include the probabilistic properties of specific processes in the model,
the empirical distribution of available data, and any information on the expected distri
bution of system behaviors. In our experience this information is seldom available, even
for a portion of the parameters of the model. Approximations must be made based on
the best available information (Morgan et al., 1978).
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TABLE I Relationship between the maximum value of B and the predicted dose to thyroid of
infants from chronic release of radioactive iodine-131 a.

Bmax Predicted dose (rem year-I) rb

Mean 95 percentile Maximum

1 0.87 2.9 9.4 0.06
10 0.88 2.9 9.6 0.07

100 1.03 3.4 11.5 0.14
1000 2.47 9.0 53.6 0.32

a Values of B were generated from a triangular distribution with minimum value equal to 0.0,
expected value of 0.2, and maximum value as indicated in the table. Each row summarizes the results
of 1000 Monte Carlo iterations. The expected value from the deterministic system is 0.72rem year-t.
b r is the simple correlation coefficient between B and the predicted dose.

Under such circumstances we concur with Tiwari and Hobbie's (1976) recom
mendation that the triangular distribution be selected. The few parameters necessary for
this distribution (mode, maximum, and minimum) can usually be inferred from the
physical process under investigation. Tiwari and Hobbie point out that the choice of
any other distribution involves additional assumptions. The triangular distribution is the
least biased assumption under these conditions. In addition, under many circumstances,
the results generated by the triangular distribution resemble results using more complex
distributions.

For purely analytical studies (for example, no statements about real confidence
limits are expected), we prefer normal distributions because covariances can be specified
with relative ease and the symmetrical distribution of parameters aids in interpreting
the often skewed frequency distributions of predicted values since, in this case, the
skewed distribution must be due to the mathematics of the model. The effects of altering
the distributions of parameters by changes in the variance, by specifying covariance
terms, or by selecting another distribution, can alter the frequency distribution of pre
dicted results. For instance, in a multiplicative chain model (prediction is calculated as
the simple product of a number of coefficients and variables), prediction errors can be
calculated analytically (Shaeffer, 1979) if parameters are lognormally distributed. The
choice of a lognormal distribution has been justified for a number of reasons, including
the fact that extreme values are more likely and predicted frequency distributions will
be conservative. However, the shape of the frequency distribution of predictions is
largely determined by the mathematics of the model rather than by the assumed distri
bution of model parameters. The mean and variance of the output distribution are
affected by the choice of the particular parameter distribution.

The effect of altering the parameter distributions is illustrated by holding the
parameter means and variances constant, but changing the frequency distributions from
lognormal to normal distributions for the radiation dose model (Shaeffer, 1979; O'Neill
et aI., 1981). When parameters are lognormally distributed, the mean, the 95 percentile,
and the maximum value of dose from 1000 iterations are 0.86, 2.9, and 9.5 rem year-I,
respectively. When the parameters are normally distributed, the mean value is lA, the
95 percentile 4.5, and the maximum 109.5 rem year- I (calculations based on an arbitrary
release of 1 Curie of iodine-131 per year).
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Examination of lognormal distributions with different variances (Hahn and Shapiro,
1968) shows that as variance increases, the peak of the distribution shifts farther to the
left, Le., more values lie below the mean. The complementary normal distribution is
symmetrical, and a proportionately larger fraction of the values lies above the mean.
The practical result is that the normal distribution predicts a slightly higher mean dose
and a much higher extreme dose. For this example, the choice of distribution affects
the mean, variance, and extreme value, and a choice of lognormal distribution for con
servative results is a poor one. However, no matter what parameter distribution is used,
the predictions appear to be lognormally distributed.

Another factor which affects the frequency distribution of predicted values is the
method chosen to simulate the problem. We recently studied density-independent Leslie
models of striped bass populations which predict abundances in each of 15 age classes
for 40 years, based on age-specific fecundities (Ft) and survival (Pi) parameters.

Leslie matrix models (Leslie, 1945, 1948) tend to predict population behavior
that approaches infinity or zero through time. The probability of choosing random
parameter values for the matrix that will result in a stable age distribution is very small.
One way of forcing the model to produce a stable result is to calculate the survival from
eggs to young-of-the-year, Po, based on the remaining parameters (Van Winkle et aI.,
1978). If parameters are chosen randomly only at the beginning of a Monte Carlo run,
if Po is calculated to ensure a stable age distribution, and if the parameters remain
unchanged for the 40 years of the simulation, the predicted mean population size is
equal to the deterministic solution of the model and the coefficient of variation is 5.9%.
If parameter values are chosen each year of the simulation (and Po recalculated each
year), the mean is 35% greater than the deterministic solution and the coefficient of
variation is 19%. The upward shift of the mean results from the continual adjustment
of Po to reach a new, stable age distribution based on current parameter and age distri
bution.

If we make Po a random variable, like the other parameters of the model, a stable
age distribution is no longer guaranteed. Now the predicted mean population size is 140%
greater than the deterministic solution and the coefficient of variation is 254%! The
shift to a higher mean value results from exponential increase in the population for some
parameter combinations. This exponential increase can result in very large populations
for a few iterations, resulting in an increased mean.

The fish population model also reflects an important advantage of the Monte Carlo
approach. The simulation in which all parameters, including Po, are assumed to vary
randomly, predicts an increased mean population size. Using an analytical approach
which reflects only the shift in the mean, this result indicates that the fish population
would be larger than the deterministic prediction. The Monte Carlo simulation produces
a complete frequency distribution of predictions. It is clear from this distribution
(Figure 4) that the most likely result is a reduction in population size. In this case, the
mode of the distribution is of greater significance because the mean is strongly influenced
by a few large numbers. The frequency distribution reveals that most populations will
lie well below the mean value. In this respect, dealing only with the means and variance
is deceptive, and the frequency distribution of predicted behaviors is needed to arrive at
a reasonable understanding of the result.
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FIGURE 4 The cumulative probability of predicted levels of a Leslie model of striped bass popu
lations when all parameters of the model are varied at 10% (N case) or when Po (the probability of
survival from eggs to young-<:>f-the-year) is calculated for each iteration (N - I case). Each line
represents the results obtained from 1000 iterations.

4 CONCLUSIONS

Much of this paper has been concerned with showing that prediction error is a
complex phenomenon that requires careful analysis in order to avoid confusion in inter
preting results. Figure I shows that natural variability in an ecosystem results in a bias
in any deterministic model of the system. Changing the variances on parameters or
changing the frequency distributions will affect conclusions drawn from the analysis.
Particular attention must be paid to any implicit assumptions involved in the selection
of statistical properties of parameters. If parameter distributions are representative of
an entire class of ecosystems, results will not be characteristic of prediction error applied
to a specific site.

In some cases, the purposes of the study will not be satisfied by simply stating a
confidence interval around model predictions. In the fish population study, the entire
frequency distribution of predictions was required to recognize that it was the mode
and not the mean value that was of greatest interest. In our analysis of the radiation dose
model, the probability of predicting an extremely high dose is of greater potential impor
tance than predicting the mean.

It is clear that the current state of information about prediction uncertainty for
ecosystem models is inadequate and in a state of rapid change. It would appear unwise
at present to advocate any single technique for error estimation to the exclusion of other
possible approaches. The Monte Carlo approach has distinct advantages during the present
exploratory stages because it is not limited to any particular set of assumptions about
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the nature of errors or their magnitude. The Monte Carlo approach may not always be
an efficient method for estimating error bounds on a prediction, but it may well be
the most effective approach for exploring the mechanisms involved in propagating uncer
tainty and the factors involved in minimizing and controlling these uncertainties.
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A MONTE CARLO APPROACH TO ESTIMATION AND
PREDICTION

Kurt Fedra
International Institute for Applied Systems Analysis, Laxenburg (Austria)

INTRODUCTION

The model representation of complex environmental systems requires numerous
simplifications; frequently, arbitrary choices of how to formally represent the relation
ships between causes and effects have to be made, since these relationships are neither
obvious nor easy to detect. Environmental systems in toto do not easily yield to the
classical scientific tool of planned experimentation. Consequently, the analyst has to
utilize whatever bits of information may be available, which as a rule are very few and
not strictly appropriate in terms of the problems addressed. A priori knowledge about
the structure and function of any ecosystem is generally poor, and reliable quantitative
information on the governing processes and their rates and interrelationships insufficient.
Consequently, building and testing models and finally applying them for predictive
purposes often consists of a more or less formalized trial-and-error iterative process of
estima tion, testing, and improvement. The following discussion proposes an approach for
formalizing this process of model building, calibration, and application; it emphasizes the
interdependences of the individual steps in the process. The approach proposed is based
on the recognition of uncertainty as an inevitable element in modeling, and uses straight
forward Monte Carlo techniques to cope with this uncertainty.

2 SOURCES OF UNCERTAINTY

2.1 System Variability

Ecosystems are diverse, complex (see, for example, Pielou, 1975), and mostly
large-scale systems. The number of component elements is usually extremely high, and
the relationships among these elements are complex. They are characterized by a rich
behavioral repertoire, are variable in time and highly structured in space (see, for example,
Steele, 1978), they are driven by (generally unpredictably) fluctuating external con
ditions, and exhibit complex feedback and control mechanisms (see, for example,
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Conrad, 1976; Straskraba, 1976, 1979) such as adaptation and self-organization. Most
functional relationships in such systems are nonlinear and time-variable, and even the
boundaries of the system must in many cases be defined quite arbitrarily. When attempting
formal description and representation, numerous sources of uncertainty can be identified
(see, for example, Beck et aI., 1979; DiToro and van Straten, 1979; O'Neill and Gardner,
1979; O'Neill and Rust, 1979; Reckhow, 1979; Fedra et aI., 1981). Summarizing, eco
systems seem to be just about the least desirable subjects for deterministic mathematical
modeling!

2.2 Theoretical Background

All the above features are well reflected in the theoretical background of systems
ecology. There is no well-established, unifying theory in systems ecology. At best, one
can find a mosaic of unrelated concepts and approaches (see, for example, Halfon,
1979). Quite often, ecological theories (or rather hypotheses) are contradictory. The
processes governing ecological systems are generally poorly understood, especially at
a high "systems level" of organization (or rather abstraction) - the level used in systems
modeling. This is due at least in part to the fact that much of the available information
stems from microscale laboratory experimentation. Usually, in such physiologically
oriented experiments, all but one (or a few) variables are kept constant, and the response
of the system (usually an individual organism or a monoculture) to changes in one
external condition is observed. Such experiments are difficult to interpret at the "eco
system level", where nothing is constant, everything affects (almost) everything else,
and the "unit" of interest is a functionally heterogeneous, diverse, adapting, multispecies,
multiage and size-class, more or less arbitrarily lumped aggregate. Generally, the empirical
basis or the data available are singular measurements, so that their reliability in terms of
the spatial or functional macrolevel used in the model cannot be estimated. Consequently,
ruling out or rejecting any hypothesis put forward is rather difficult (Fedra, 1981a),
and in fact, examples of more than one contradictory hypothetical construct, each
"possible" in terms of the data to be described, are known (Nihoul, 1975; Bierman et
aI., 1981). However, as a priori knowledge about a system is essential for the first steps
in model-building, the lack of reliable and unambiguous knowledge adds considerable
uncertainty to the problem.

2.3 Environmental Data Base

All the above features are, again, reflected in the data available on environmental
systems. Not only do spatial and temporal variability make data collection under logistic
constraints an art rather than a scientific procedure, but in many cases it is simply
impossible to sample or measure what is described (conceptualized) in a model. Most
state variables used in model descriptions are more easily represented in a flow diagram
than measured, as the level of abstraction in the model representation is completely
inaccessible to direct measurement. Consequently, ecological data are scarce, scattered,
distorted by sampling error, and usually only exist for the "wrong" variables in any given
numerical analysis. Monitoring programs, as a rule designed independently of subsequent
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evaluation and analysis, traditionally tend to concentrate on what other monitoring
programs have included. And as only theory can tell the observer or experimenter what
to measure (an only seemingly trivial truth ascribed to Albert Einstein), the "wrong"
variables are measured. Also, different variables tend to get measured at different places
and at different times. Even the most ambitious, money-consuming attempts at data
collection like the IFYGL do not result in the smooth, unambiguous curves one would
(probably rather naively) hope to find (compare Scavia, 1980a).

2.4 Model Uncertainty

Mathematical models designed to describe and simulate environmental systems
cover a wide range of detail and complexity: they range from very simple statistical
black-box models (see, for example, Vollenweider, 1969, 1975) to the "all-inclusive",
multicompartment, spatially disaggregated, physical or "explanatory" model (see, for
example, Park et aI., 1974). But even for the most detailed and spatially disaggregated
models, elements or compartments treated as being homogeneous (either in space or
functionally), are very large when compared to the sampling units from the field or
experiment, and are highly aggregated (see O'Neill and Rust, 1979, on the subject of
aggregation errors). What models really describe are extremely simplified conceptuali
zations of the real-world system, which are very difficult to relate directly to the point
samples from these systems. Models and data are on two different levels of abstraction
and aggregation, and therefore traditional data from a spatial or functional microlevel
can hardly be used directly. Instead, from the available data one can try to derive infor
mation about the system studied at an appropriate level of abstraction, for comparison
with the respective model equivalents. Ideally, the measurements should be made directly
at the appropriate level, but some of the more promising techniques in environmental
data collection are still in their infancy, at least as far as scientific applications are con
cerned (see, for example, Gjessing, 1979).

Simulation models consist of numerous, more or less arbitrary assumptions which
are made about certain relationships within the system, about boundary conditions,
and about the "meaning" of data in terms of the model and vice versa. Many authors
admit that their assumptions are arbitrary, that their simplifications are gross, and that,
by necessity, they ignore some more detailed (and confusing) knowledge. However, the
effects of such assumptions on the reliability and usefulness of a model are rarely
examined. Instead, the meta-assumption, "our assumptions will not affect the results
significantly", is often made. There seems to be little doubt that such models contain
a high degree of uncertainty.

3 AN ALTERNATIVE APPROACH

Considering all the above sources of uncertainty, the traditional, deterministic
mathematical approach to modeling does not seem to be an appropriate tool to cope
reliably with complex, environmental, real-world problems. One ought at least to explore
the effects of uncertainty on the reliability and usefulness of model applications.
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If one recognizes that the entities used in a simulation model and those measured
in the field or in a laboratory experiment are quite different, it is obvious that they
cannot be compared directly or used to estimate one from the other without taking into
account these differences and the resulting uncertainty. Since the model, due to its high
degree of abstraction, simulates average patterns or general features of a system (as con
ceptualized in the mode!), it is necessary to derive these patterns and estimate these
features at an appropriate level of abstraction and aggregation from the measured data.
Only such derived values should be compared with the terms generated using the model,
in order to test and improve model performance. For a discussion of the concept of
"problem-defming behavior" see Hornberger and Spear (1980) and Spear and Hornberger
(1980).

If we begin the discussion with problems of model-structure identification (in a
rather general and inclusive sense (cf. Beck, 1979a,b)), it should be recognized that any
model structure proposed for a complex system will itself be a complex, composite
hypothesis which has to be tested. Because of the very high number of interactions
between the numerous elements of ecological systems, considerable conceptual simpli
fication is needed to make the theories formulated about the structural properties and
functions of the systems traceable, interpretable, and useful. Universal statements
describing those properties of a system which are invariant in space and time may be
called models, whether they are based on informal verbal or mental descriptions or on
formalized mathematical structures. These scientific theories, or models, have to be
testable; that is to say, when one puts a set of specific singular statements (the initial
conditions, which, in the case of a mathematical model, also include the model parame
ters in a general sense (cf. Fedra et aI., 1981; Fedra, 1982)) into the model, it must be
possible to deduce or predict testable singular statements (observations or experimental
results). Disagreement between the prediction deduced from the hypothesis or model
and the available observations would then make it necessary to reject the given hypothesis,
to modify and improve it, or to look for alternative hypotheses, which would then be
subjected to the same procedure. This method, representing one strategy of scientific
research proposed by Popper (see, for example, Popper, 1959) has, however, one major
drawback when applied to complex simulation models or dynamic hypotheses describing
ecological systems: namely, the so-called initial conditions used with the basic structure
of the theory to deduce the testable predictions are not known exactly. Nonunique
inputs, however, will produce nonunique outputs (see, for example, Tiwari et aI., 1978).
This certainly could be viewed as the result of two basic shortcomings, one in the
measurement techniques available, and the other in the formulation of the models them
selves - if the models require unknowns as inputs, they are not well formulated. The
latter is certainly a generic shortcoming of ecological models, or of ecological theory
in general.

The same line of argument can be followed with regard to the observations used
for model-output comparison in hypothesis testing. The degree of abstraction and aggre
gation is quite different in the measurements and in the model conceptualization, so
that the measurements can only serve as samples of the properties of the units concep
tualized. As these units are generally heterogeneous (in terms of their measurable
properties), and are generally characterized by a high degree of variability, that is to say,
the repeatable part of the observations is only a certain range, further uncertainty
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has to be dealt with in the hypothesis-testing procedure. A formal concept of "dis
agreement" under uncertainty has yet to be formulated (Fedra, 1982). But whatever the
objective for a formal approach to the analysis of a complex, dynamic environmental
system may be, the testability of the models involved is an essential criterion when
evaluating them as useful scientific tools. Testability, however, has to be achieved with
the information available, that is to say with ranges and semiquantitative relations, if
models are to be used at all. There is no scientific way of identifying the "best" model
structure for a given system under uncertainty. Nonuniqueness on both sides of the test
ing procedure will always result in nonunique answers. All that can be done on a
rigid formal basis is to rule out grossly inadequate model structures. Since initial con
ditions and reference behavior for the test are uncertain, they can both be specified in
terms of acceptable ranges for the plausible inputs and acceptable outputs. The test is
then as follows: is there at least one set of plausible input conditions which will result in
an acceptable model response? The criterion is certainly one-sided and weak; however,
it implies a minimum of implicit arbitrariness in a formal approach.

Given a satisfactory model structure which passes the above test of adequacy, the
next step is to explore the full range and structure of the admissible initial conditions,
which are largely parameters in classical terminology. Estimating appropriate parameter
values is generally referred to as model calibration. To calibrate and run any given simu
lation model, one needs a set of numbers (the parameters, forcings and imports, and
the initial conditions) to be put into the model and a set of numbers to compare with
the model output. The comparison, together with a recursive tuning of the parameters
(by whatever method) may be called calibration (see, for example, Lewis and Nir, 1978;
Benson, 1979). To specify the above numbers, first one must understand their meaning
(in terms of the real-world system or the measurements derived from this system) as
conceptualized in the model. As discussed above, these numbers are average, aggregate
features of the system, so that the available singular measurements can only be used as
a first, rough approximation in the estimation procedure. Considering uncertainty, the
data describing the system behavior (in terms of the model output) can be specified as
ranges (Hornberger and Spear, 1980; Spear and Hornberger, 1980) or, given enough
information about the system, probability distributions. As the model represents average
and general aspects of system behavior, a data set for more than one year might be used
(in the absence of obvious trends), so that the basic data set will not only contain
sampling and measurement uncertainty, but also evidence of the variability of the system
over time. From the empirical data base, a formal definition of the system behavior is
derived in terms of ranges, for measures such as states and process rates or flows at a
given point in time, as well as derived relational or integrated properties. This description
of the system can be understood as a region in a hyperspace, where each measure
describing the system behavior defines one dimension. Of course, the kind of measures
to be used depends on what is described in the model as well as on the available infor
mation about the system.

Given this reference behavior for the estimation of model parameters, it is obvious
that more than one parameter set (including the initial conditions and the coefficients
used to parameterize time-variable forcings, which can also be viewed as parameters) will
generate a model response within the behavior-space region taken to describe the system.
Again, the concept of a parameter hyperspace can be useful. The estimation procedure
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now tries to identify that parameter-space region where the corresponding model response
is within the defined behavior-space region. This parameter-space region, or ensemble of
parameter sets with its characteristic variance-covariance structure, reflects the basic
uncertainty of the (deterministic) modeling exercise. Using such an ensemble of parameter
sets for predictions results in an ensemble of forecasts, where the variability of the fore
cast is an effect of the initial uncertainty and can be understood as an estimate of the
reliability of a prediction. This approach also demonstrates the intimate coupling between
"estimation" (which I prefer to use rather than the somewhat misleading term calibration,
which implies some objective reference point) and prediction.

3.1 The Concept of Allowable Ranges

The two sets of numbers to be specified in testing the model structure and using the
model for predictions - one describing the "expected" model behavior, the other the
parameters of the model - can only be estimated roughly from the information available
on the system studied, if at all. However, the raw data available will be quite different from
case to case, depending on the complexity and variability of the system, and the amount
and quality of the measurements. At best, time series of physical, chemical, and biological
variables will be available, together with an estimate of their distribution and sample
statistics within the spatial elements of the model. In addition, some independent experi
mental data on process rates may be available. However, generally only singular measure
ments are available, so that no estimation of their reliability in terms of the model's spa
tial and functional aggregation is possible. Also, the available measurements often do not
relate exactly to the state variables of the model; for example, it may be necessary to
simulate algae populations in terms of phosphorus, but if measurements are only available
in terms of chlorophyll then dubious (and quite arbitrary) conversions may be needed.
Also, the time intervals between measurements are often large (and traditionally con
stant), so that more transient dynamic features are rarely detected.

Nevertheless, the available information generally allows for the specification of
ranges within which any of the observed features can reasonably be expected. Such
"allowable ranges" can be formulated for the behavior-describing data - for example,
the value or timing of the spring algae peak - as well as for the initial conditions, the
forcings, and the parameters. Wherever such allowable ranges cannot be derived from
the specific set of data available, additional a priori information from similar systems
described in the literature, or simply ranges defined by physical laws or ecological
plausibility can be used. Certainly, such ranges will not be able to describe an individual
system unambiguously, but they will help to constrain the model response to realistic, or
rather plausible, regions. Calibrating a model using state variables only may well lead to
seemingly reasonable results (in terms of the state variables), but at the expense of
unrealistic process rates (see, for example, Scavia, 198Gb).

4 TESTING THE MODEL STRUCTURE: A MARINE ECOSYSTEM EXAMPLE

As an example to illustrate the first step in the approach, a data set from the
southern North Sea was used. Most of the information stems from the yearly reports of
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the Helgoland Biological Station, and describes physiochemical as well as biological
variables at the sampling station "Helgoland-Reede" for the period 1964-1979 (Biolo
gische Anstalt Helgoland, 1964-1979, including otherwise unpublished data of Hagmeier,
Hickel, Mangelsdorf, Treutner, Gassmann, and Gillbricht; Hagmeier, 1978; Lucht and
Gillbricht, 1978). However, various other sources have been used for additional informa
tion (for example, Steele, 1974; Nihoul, 1975) to compile a data set typical of an arbitrary
location representative of the German Bight, southern North Sea.

Figure 1 gives an example of the data used. The driving environmental variables
water temperature and radiation were sufficiently smooth and well behaved for direct
utilization of their long-term averages, approximated by simple sine waves. Data for
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nutrients (P04 -P) and algae (measured as chlorophyll as well as in terms of carbon,
recalculated from counts) showed consistent yearly patterns. However, when including
the year-to-year variations (as well as the implicit sampling errors), the high variability
of the observations and the difficulty in averaging over time (several years) become
obvious. Although the average phytoplankton dynamics show a single but extended
peak around July/August, the individual years exhibit at least two peaks in the summer,
which, because of their variable timing, are averaged out when looking at the long-term
mean (Figure I). Also, the long-term mean is about one order of magnitude below the
spiky peaks of the individual year's data. Little information was available on zooplankton
biomass values. However, some additional information from independent experiments,
mainly on primary production, was available.

Certain nonvariable and general features could be derived from the observations;
these are formulated in terms of the "allowable ranges" discussed above:

Primary producers remain below a chlorophyll level of 4 mg m-3 during the first
three months of the year; between days 120 and 270 of the calendar year there is
an increase of at least twofold in biomass.
At least two biomass peaks occur during this latter period, with a reduction of at
least 25% of the first peak value between the two peaks.
After day 270, biomass again remains below a chlorophyll level of 4 mg m-3.

The higher of the two peak values does not exceed a chlorophyll level of 25 mg m-3.

Yearly primary production falls within the range 300-700 g carbon m-2.

The first biomass peak value (defined as an increase of at least twofold over initial
biomass before a subsequent decline) is reached later for herbivorous consumers
(zooplankton) than for phytoplankton.
The maximum density of herbivorous consumers does not exceed 1000 mg carbon

-3m.
The level of P04-P stays above 20 mg m-3 between calendar days 1 and 90; on
average, it stays below 20 mg m-3 between days 120 and 240; after day 270 it
returns to values above 20mgm-3

• Throughout the whole year the P04-P level does
not move outside the range 2-50 mg m-3.

All state variables must be cyclically stable (with a ± 20% tolerance range).

This description of the observed system features, defining a region in the behavior hyper
space of the system, should be understood as a rough and at best semiquantitative
description of persistent patterns rather than a quantitative description of the system
for any specific period. Certainly, more resourceful analysis of the available data and the
incorporation of additional information would allow this description to be refined.

5 HYPOTHESIS GENERATION: DESIGNING ALTERNATIVE MODELS

There are several implicit assumptions hidden in the way the data are interpreted
and the description derived. Ignoring short-term spatiotemporal variations (e.g., those
caused by the tides) and looking instead at average features implies that we are con
sidering a hypothetical body of water that is not absolu tely fixed in space. The horizontal
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extension of this body of water is rather arbitrarily limited by the requirement of
homogeneity within this spatial element. In the vertical, the body of water considered
is defined by the extent of the measurements used, but again homogeneity has to be
assumed. At the lower bounJary, an "endless sink" of constant chemical properties
is assumed, that is to say, one which is very large compared to the productive upper
layer, and exchange between the upper layer and this sink is controlled by eddy dif
fusivity.

All these assumptions are more or less unrealistic if we think in terms of specific
physical units in time and space. However, their precise description is not the aim of our
modeling. The basic idea behind all our assumptions is that the simplified processes
considered largely dominate the behavior of the conceptual system and that the processes
ignored are relatively unimportant.

5.1 Hypothesis 1: Two Compartments in a Simple Physical Framework

An attempt will now be made to formulate one very simple hypothesis about the
pelagic food web described in the data set above. The system is conceptualized as con
sisting of only two compartments, namely particulate, photos)' ilthesizing organic matter,
and mineral nutrients, which are coupled by the processes of primary production and
nutrient uptake, mortality, and respiration/mineralization; one implicit assumption is
that nonphotosynthesizing organic matter is in a constant proportion with the living
fraction. The system is driven by light and temperature, and by turbulent mixing (eddy
diffusivity). Controlling mechanisms are light limitation and nutrient limitation of
prinlary production, self-shading of algae, and the temperature dependence of all the
biological processes. Figure 2a shows a diagrammatic representation of this system.

The model description uses Monod kinetics to describe nutrient limitation of
primary production, using a constant half-saturation concentration. Light limitation is
described using the double time-depth integral of DiToro et al. (1971) for Steele's
(1962) equation (for a discussion of the implications of this formulation see Kremer and
Nixon, 1978). Mortality is described as a nonlinear, concentration-dependent function
of algae biomass, and is directly coupled to remineralization, without any time lag or
further control. Mixing with a "deep layer" is described as the exchange of a constant
fraction of the volume of the upper layer (the top 10m), where the POcP concentration
of the deep layer equals the initial (winter) concentration of the upper layer, and the
algae concentration of the deep layer is zero, that is to say, algae can only be lost from
the system. The rate of mixing is varied by a step function, triggered by temperature,
such that the initial high (January) value is reduced to one-tenth of the initial value as
soon as the surface temperature reaches tluee times its starting level; the mixing rate
is reset to the initial high value as soon as the surface temperature drops below the
trigger level.

This model requires only six parameters to be estimated, given the initial con
ditions and that the driving variables are "known". For each of these parameters or rate
coefficients, a possible allowable range can be specified, depending on available knowl
edge. In the worst case, the mortality rate, for example, has to be greater than zero and
smaller than one. To circumvent the problem of uncertainty in initial conditions, a set
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of likely values (estimated from the available data) was taken and allowed to self-adjust
by letting the model run for three years. This strategy (using the results of the third
year after arbitrarily specifying the initial-state condition for year one instead of adding
more dimensions to the input-search-space) was followed with all the models described
below. The model is formulated in terms of phosphorus, with constant stoichiometric
conversions to carbon and a time-variable carbon-chlorophyll ratio. A discussion of the
description of the major biological processes can be found in Fedra (I979a).

5.1.1 Testing Hypothesis 1
To test the hypothesis formulated in model I, the model was incorporated into a

Monte Carlo framework, which randomly sampled a set of model parameters (the initial
conditions) from the allowable ranges, ran the model for a period of three years - to
allow the arbitrary initial values of the state variables to adjust - and finally tested for
violations of the constraint conditions. This process was repeated for a sufficiently large
number of trials (in fact, more than 100,000 model runs were performed with each of
the model structures).

Summarizing, model I could fulfill all of the constraint conditions except one:
it was not possible to reproduce two algae peaks during the summer period (without
violating several other conditions). Figure 3 shows a sample output from model 1.
Hypothesis I consequently had to be rejected. To construct an improved hypothesis,
the distributions and correlation structure of parameters and output variables from those
runs violating only condition 3 (the two algae peaks) were analyzed. For an example
of the output of the analysis programs used, see Table I (parts A-D). The analysis clearly
indicated that phytoplankton mortality is the critical process, and consequently that it
deserves a more refined treatment.

5.2 Hypothesis 2: a Four-Compartment Web

As a slightly more detailed alternative to model I, a second version was formulated
which incorporates detritus and omnivorous zooplankton, to allow for a more detailed
description of phytoplankton mortality. The description of primary production as well
as the physical framework are essentially the same as in the first version. Model 2, how
ever, splits the phytoplankton mortality into a natural, background mortality, which is
described as concentration-dependent, and losses due to grazing. Background mortality
as well as zooplankton mortality now feed into the detritus pool, which in turn (being
temperature-dependent) feeds back into the nutrient pool; detritus is also consumed by
zooplankton, for which, however, a certain preference for living algae is assumed. Zoo
plankton respiration also feeds into the nutrient pool. Figure 2b shows the flow chart
for this model. Grazing was described using a simple encounter theory, but the resulting
model performance was still not satisfactory: for low values of the grazing rate constant,
the zooplankton did not survive phytoplankton lows in winter, and died away; for high
values of the feeding rate, in contrast, phytoplankton was removed very quickly, as soon
as it started to grow in the spring, with a consequent collapse of the zooplankton popu
lation itself. In between, the system was able to produce classical prey-predator oscil
lations which were, however, unstable in the long run. Consequently, the encounter theory
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was rejected and the description of grazing was reformulated based on a saturation curve
(similar to Michaelis-Menten kinetics) using a temperature-dependent maximum feeding
rate coefficient, with the same temperature dependence as used for respiration and
remineralization.

Again this version was subjected to the simulation procedure described above, and
the resulting response was analyzed and used as the basis for yet another modification,
namely the introduction of another trophic level (carnivorous zooplankton), to explore
its importance in controlling the herbivores (Greve, 1981). This last and most complex
version (see Figure 2c) finally passed the test of adequacy, after some more refine
ments in the formulations of thresholds for grazing and starvation of zooplankters.
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TABLE lA Automatic parameter space analysis program: various results.

271

Behavior definition applied
Minimum primary production g C m-z year-I
Maximum primary production g C m- zyear-I
Time range for biomass peak value
Upper limit for biomass peak mg P m- 3

Minimum relative increase of biomass max/min
Orthophosphate maximum in mixed period mg m- 3

Total phosphorus output range
Upper limit, metric tons year-I
Lower limit, metric tons year- J

Maximum ratio of total P relative change

Automatic analysis results
Number of simulation runs evaluated
Number of well-behaved runs
Number of nonbehavior runs

Constraint conditions violated by BAD class
Primary production too low
Primary production too high
Biomass peak too early
Biomass peak too late
Biomass peak too high
Relative biomass increase too low
Orthophosphate level too high
Phosphorus outpu t too low
Phosphorus output too high
Relative change in P content too high

50.00
150.00
day 60 to day 210

15.00
2.00
2.50

8.00
2.00
0.50

10,000
293

9,707 including 26 aborted runs

849 cases
937 cases

4,991 cases
1,480 cases

4 cases
a cases

7,517 cases
2,089 cases

I case
2,250 cases

TABLE IB Automatic parameter space analysis program: constraint violations %-eoincidence
matrix.

Condition

2 3 4 5 6 7 8 9 10

I 100.00 0.00 74.79 3.53 0.00 0.00 54.30 55.01 0.00 26.74
2 0.00 100.00 13.02 39.27 0.43 0.00 100.00 0.00 O.ll 9.39
3 12.72 2.44 100.00 0.00 0.00 0.00 65.02 31.48 0.00 36.59
4 2.03 24.86 0.00 100.00 0.27 0.00 93.11 6.22 0.07 14.26
5 0.00 100.00 0.00 100.00 100.00 0.00 100.00 0.00 0.00 50.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 6.13 12.47 43.17 18.33 0.05 0.00 100.00 10.02 0.01 13.70
8 22.36 0.00 75.20 4.40 0.00 0.00 36.05 100.00 0.00 43.03
9 0.00 100.00 0.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00

10 10.09 3.91 81.16 9.38 0.09 0.00 45.78 39.96 0.00 100.00
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6 PARAMETER ESTIMATION AND PREDICTION

6.1 A Lake Modeling Example

The second step of the approach outlined above, parameter estimation and pre
diction, has been applied to a lake ecosystem, or rather to a lake ecosystem model. A
real-world example and an existing data set, showing all the deficiencies of the above
mentioned marine example, were used to test the practical applicability of the approach.
It also gave some insight into the model used, which was, admittedly, selected quite
arbitrarily. However, the model structure selected passed the above test of adequacy,
so that a more detailed study of parameter ranges and relationships was feasible.

6.2 Ecosystem, Data, and Model

The lake ecosystem chosen for this study was the Attersee, a deep, oligotrophic
lake in the Austrian Salzkammergut. Basic lake characteristics are compiled in Table 2,
and much detailed information about the lake system can be found in the yearly reports
of the Austrian Eutrophication Program, 'Projekt Salzkammergutseen' (Attersee Report,
1976, 1977; Muller, 1979; Moog, 1980), which is a national followup of the OECD
alpine lake eutrophication program.

TABLE 2 Attersee: basic lake data (after Flogl, 1974).

Geographical position
Altitude
Catchment area
Lake surface area
Length
Average width
Maximum depth
Average depth
Volume
Theoretical retention time
Average outflow

47° 52'N, 13° 32'E
469 m above sea level
463.5 km'

45.6 km 2

19.5 km
2.4km

171 m
84m

3934 X 106 m3

7-8 years
17.5m 3 s- 1

For the purposes of this study, it suffices to say that the available data showed
considerable uncertainty and variability. This was largely due to the limited manpower
and number of observations available (most of them being singular measurements). Also,
the monitoring program was designed independently of any subsequent analysis, and
in addition one of the key variables, namely orthophosphate concentration, varies around
the minimum level of detectability. Consequently, the method described above for
deriving a formal defmition of the systems behavior had to account for this uncertainty,
and only comparatively broad ranges could be specified for the behavior-describing
measures selected. Figure 4 shows a plot of total phosphorus data, averaged for a five
year period, for the two sampling stations on the lake. The plot gives some idea of data
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276 K. Fedra

FIGURE 5 Flow diagram for the lake model: P, available phosphorus (P0 4-P); A, particulate phos
phorus, representing algae biomass.

variability, and, considering the physical properties of the lake (namely the long reten
tion time) and the almost conservative nature of total phosphorus, also gives some
measure of data reliability.

The problem selected for the modeling approach was the relation of the lake's
trophic state or water quality (as described by, for example, algal peak biomass, yearly
primary production, or nutrient concentrations) to the nutrient imports or external
loading (Fedra, 1979b). For this purpose a rather simple model of lake phosphorus dynam
ics (Imboden and Giichter, 1978) was used, which considers only two state variables,
namely dissolved phosphorus (the available, limiting nutrient) and particulate phosphorus
(algal biomass). A flow chart of the model structure is shown in Figure 5; the model
structure corresponds to that in Figure 2a, although the description of depth-integrated
primary production and the physical framework are different (Imboden and Giichter,
1978). The model has been applied to various lake systems with a generally satisfactory
performance.

6.3 The Formal Definition of System Behavior

Depending on the problem addressed and the model selected, the behavior of the
system had to be described in terms of model response, relevant to the problem, and
supported by the available information. The measures selected were, in almost complete
agreement with the marine example test case, yearly primary production, algae peak
biomass (absolute level, as well as the timing), relative change in algae biomass during the
year, nutrient concentration during the periods when the lake water is fully mixed verti
cally, and phosphorus export from the lake. Figure 6 shows an example of the information
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FIGURE 6 Algae dynamics (chlorophyll-a, data of several years pooled). Behavior description
derived: the spring peak with a minimum extent of twice the winter minimum occurs between days
60 and 210 of the calendar year.

used to define the allowable ranges for the relative change in algae biomass, as well as the
timing of the peak value. The resulting estimates (day 60 to day 210, and a minimum
relative increase of 2.0) are certainly very broad. No attempt was made, however, to refine
them further by more resourceful analysis of the available data, as the major objective of
this study was methodological rather than problem-specific. These constraint conditions
are shown in Table I as a part of the output of the analysis program.

Again, allowable ranges had to be specified for the parameters, the coefficients
describing forcing, and the initial conditions of the model, in a manner similar to that
used for the behavior-describing measures. Altogether, the chosen model required
defmition of 22 such ranges, after some of the time-variable forcings had been redescribed
as functions of time, using auxiliary coefficients (see Fedra, 1979b; Fedra et al., 198 I).
A list of the parameters and inputs used is given in Table IC. For some of the ranges
specified, data to support the estimates were available, as for example in the case of the
extinction coefficient, the phosphorus loadings, hydraulic loading, and depth of the
thermocline. Here the ranges could be specified by a mean estimate and some observed
variability around it, or at least by any estimate with an arbitrary, ample range. Whenever
measurements to estimate allowable ranges were unavailable, values from the literature
or simply "educated guesses" had to be used, and the additional uncertainty was
reflected in the wide ranges. The subsequent estimation method, however, is not sensitive
to the initial choice of the ranges, as long as they are within plausible, and physically
and biologically feasible, bounds.
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6.4 The Estimation Process

Given the definition of allowable ranges for all the numbers to be put into the
model's computer code (parameters, coefficients describing forcing, and initial states)
and the defmition of allowable ranges for the model response, the estimation process
involves a straightforward application of Monte Carlo methods. From the input- or
parameter-space region defined, a random sample was taken (assuming rectangular,
independent probability density functions for the individual ranges), and this parameter
vector was then used for one simulation run. A sample output for the time-depth distri
bution of the two state variables "available phosphorus" and "algae biomass phosphorus"
is shown in Figure 7. The resulting model behavior was compared with the predefined
model response, and the parameter vector was classified according to whether it resulted
in the defmed response (the response being fully within the defined allowable response
region) or not. This process was repeated until a sufficient number of behavior-giving
parameter vectors was found. In fact, the process was repeated 10,000 times for the
parameter-space definition used (after an initial 10,000 pilot runs which allowed some
reduction to be made in the parameter space for the random search and established the
adequacy of the model structure, as discussed above), in order to arrive at a sufficient
number of behavior runs.

6.5 Model Response and Parameter-Space Structure

The 10,000 independent random combinations of 22 input (parameter) values,
each used to generate a model response, resulted in a rather broad overall region for
these model responses. Projections from this overall response space (a hyperspace with
the axes defmed by the response variables used in the behavior definition) on planes of
two response or constraint variables are shown in Figure 8 to illustrate this. The figure
also indicates the allowable, behavior-defining range of the constraint variables. Table 1
shows part of the output of one of the parameter-space and model-response analysis
programs used.

Only a small fraction of the 10,000 runs was fully within all of the ranges; in fact,
only 293 such behavior runs were found (compare Figure 7). This low "score" could be
attributed to the rather broad ranges for the parameters sampled; on the other hand
it has to be kept in mind that the ranges for the allowable response were quite liberal
too. However, selecting the random samples independently, i.e., without taking into
account possible correlations between them, may have been responsible for the low
number of allowable responses. In fact, when analyzing the behavior-giving set of 293
input data, a marked correlation structure was found (see also Figure 8). The correlation
between the parameters and the model-response variables was calculated as well, and
Table 1D gives a correlation matrix for the interparameter and parameter-response corre
lations for the 293 behavior-giving runs.

From the results shown in Table 1, it is obvious that the allowable orthophosphate
level as well as the timing of the algae spring peak are the most critical conditions to
be met. Also, it seems obvious that the behavior definition is not sufficient to force the
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model into cyclic stability in its phosphorus budget, which seems to be an important
condition for a fairly deep lake with a retention time of seven to eight years. Narrowing
the admissible range for the stability criterion (relative difference in total phosphorus
content between initial and final conditions) from 0.5 to 0.25, results in a lower number
of behavior runs, namely 112.

Summarizing, the overall model response was found to cover a very wide range in
response space, and only a very small portion of the range was satisfactory in terms of
the behavior defmition used. Also, the behavior-giving part of the parameter space
observed shows a marked correlation structure. This correlation structure indicates
not only the interdependence of the parameters, but also the possibility of arriving at
one and the same response region of a model, with different parameter combinations.
However, many features of the results are somewhat difficult to interpret due to the high
dimensionality of the hyperspaces involved.

The analysis of model response and parameter-space structure can also be inter
preted in terms of a sensitivity analysis, where again, through simultaneous variation in
all the parameters, sensitivity for the whole parameter-space and associated behavior
space region covered can be studied. This is in some contrast to more-classical approaches
to sensitivity analysis (see, for example, Argentesi and Olivi, 1976; van Straten and
de Boer, 1979), which explore only arbitrarily selected subregions of the parameter
space and response space along a very limited number of dimensions. For the behavior
giving class of parameters sets, the fourth moment, or kurtosis, of the frequency distri
butions of the individual parameters can be interpreted as a measure of sensitivity (this
is also true for the initial conditions and the forcing-describing coefficients; as they
are also estimated with a certain degree of uncertainty, an analysis of sensitivity is
also meaningful). Also, the linear correlation coefficient for any paired input-output
combination can be used as a measure of sensitivity. Another measure of sensitivity
can be obtained from the correlation structure of the parameter space itself. Here signifi
cant correlations identify parameter combinations which strongly determine the system
behavior as defined by the constraint conditions, and the sign of the correlation coeffi
cient is an indication of whether the parameters work together in the same "direction"
or against each other in opposite "directions". At the same time, the parameter-space
structure thus gives some insight into the functioning of the model structure, as dis
cussed above.

Whenever it is not possible to identify a region of increased probability for a given
parameter to give the defmed behavior, that is, where the final distribution is identical
with the initially assumed rectangular density distribution, that parameter may be
regarded as redundant. Either the available information does not allow its identification,
or it just does not affect the model response; in either case a change in the model struc
ture may be warranted. This would then lead to a repetition of the previous stage of
the estimation procedure, discussed above. Also, if no behavior-giving value for a given
parameter can be found within the admissible range specified, the function of this
parameter in the model and the concept of the parameter and/or its real-world equivalent
are not well matched, which again requires a reconsideration of the model structure.
These relationships again point to the intimate coupling of the individual steps in the
estimation procedure, since neither model structure nor parameter values can be esti
ma ted independently of each other.
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CHARACTER-VECTOR-SPACE PROJECTION
COMBINRTIONS FOR BEHAVIOUR GIVING CLASS

UNITS ON X-AXIS' /MONTH
UN ITS ON Z-AX IS' NIDAY

FIGURE 8 Projection from the parameter space and the model response space. (a) Frequency of
parameter combinations giving rise to the deImed behavior; (b) model response (10,000 runs) shown
as frequency distribution over a plane of two response (behavior-eonstraining) variables. The allowable,
behavior-defining response range is indicated.

6.6 Prediction With Ensembles

The ensemble of parameter sets or input sets identified in the estimation procedure
described above, together with the model structure selected, can be viewed as the best
available (model) description of the system under study, which also represents a certain
compromise between uncertainty and arbitrariness. In view of the uncertainty about
the system behavior as well as the coefficients to be used, any of the data sets in this
ensemble are equally good and valid descriptions of the system. This points directly to
the diffuse picture of the system we are bound to have, unless this picture is arbitrarily
made unambiguous.
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FIGURE 8 Continued. For details see caption opposite.

This uncertainty in the empirical basis, as well as in the theoretical understanding
of the systems being modeled, should consequently be reflected in the predictions
about the future behavior of these systems under changed conditions. The simplest and
most straightforward way to achieve this is merely to use all the possible descriptions
as a basis for a forecast, and thus project an ensemble of future behaviors. Again, such
ensembles will have certain statistical properties which can be used to estimate the
uncertainty (based on data error and model error) of the prediction, and its evolution
over time.

In the modeling exercise described here, the loading-determining coefficients were
altered to represent changes in the external conditions of the system, and for each change
all (or a subset) of the behavior-giving parameter combinations were then used for runs
with simulation times of up to ten years. Figure 9 shows a series of probability distri
butions, fitted to the model output frequencies, plotted against the changed input coeffi
cient. Figure 10 shows a dynamic version of the model's first-year response to a pro
nounced relative change (twofold multiplication) in the nutrient inputs. Finally,
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FIGURE 9 Probability distributions for a model output variable (primary production) for various
levels of an input (phosphorus-loading).

Figure 11 summarizes the general pattern observed, namely the increase of relative pre
diction uncertainty (e.g., measured as a coefficient of variation for any of the model
outputs) with degree of change in the input conditions and with time.

Uncertainty of the prediction in terms of a coefficient of variation increases with
time as well as with increasing changes in the external or input conditions. This is
certainly what one would expect intuitively. The coefficients of variation reach a certain
maximum in time after several years of simulation, as the model also reaches a new
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equilibrium because of the continuous application of one and the same set of inputs and
parameters. The method thus estimates the uncertainty of the equilibrium state of the
model for a given input condition. This equilibrium uncertainty is now found to be
related to the degree of change in the input conditions, i.e., the loading-determining
coefficients in this example. The larger the change to be simulated, the more uncertainty
there will be in the predictions of the final as well as the intermediate states of the sys
tem. These results correspond with what one would assume intuitively, and in addition
the method allows one to estimate quantitatively prediction uncertainty or the limits
of predictability for a given initial uncertainty that stems from data uncertainty as well
as system variability.

7 DISCUSSION

To build the complex hypotheses required to describe and explain the structural
and behavioral features of ecological systems, a formal approach and rigorous testing
procedures are required. As has been demonstrated, parts of the observed behavior of
a system may easily be reproduced. This, however, goes in parallel with unrealistic
behavior in other parts of the system. A complex hypothesis or model, however, can
only be accepted as a valuable working tool with explanatory value and predictive
capabilities if it fulfills all the constraints one formulates as defining the observed system
behavior. Violation of one single condition necessitates the rejection of such a model,
which should be just one step in an iterative process of analysis. This represents an
alternative concept of "disagreement" under uncertainty, where a gradual "goodness
of fit" concept is replaced by the more appropriate test of individual conditions.

A basic idea of the approach is to use the available information according to its
relevance for the model's (in other words, the theory's) level of abstraction. Obviously,
the states of a system can be described much more easily on the appropriate level than
can the process rates and controls (just think in terms of phytoplankton biomass versus
production rate). Consequently, the argument of the hypothesis-testing process is turned
around: instead of putting the "known" initial conditions (the rates, among other factors)
into the model structure and deriving the response for comparison, the allowable response
is used as a constraint to identify possible initial conditions. This is to say, a given region
in the response hyperspace of a model is mapped back into the input hyperspace.

The test is then as follows: does this region in the input space exist within the
specified possible or plausible bounds? In addition, several other features of the input
space can be used as a basis for either rejecting or corroborating a given hypothesis, for
example, the uniqueness of the input-space region, whether or not it is closed, and its
structure, which is determined by the interdependence of the individual input values.
In addition, -,:1 these features, including the relationship or correlation of input and
output space, allow us to learn something about the way the proposed system structure
functions. The method facilitates understanding of system behavior on the appropriate
level of abstraction (in terms of the input and output of the model) and it also provides
diagnostic information for hypothesis generation.

The same underlying idea of inverse mapping of response space into the input
space of the model is used in the parameter-estimation procedure. A formal discussion
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of this procedure is given in Fedra et al. (1981). Thus the approach illustrates the inti
mate coupling between estimation (or calibration) and prediction. At the same time,
it points out the importance of data uncertainty and/or systems variability for the esti
mation process, resulting in nonunique estimates of the parameters or inputs to be
estimated, which in turn are reflected in nonunique predictions.

The approach emphasizes the discrepancy between the raw data, measurements
or experiments, and the entities conceptualized in the model. Taking into account the
sample nature of the data describing the system, it is necessary to derive a description
of the system that is meaningful in terms of the model entities, taking into account
the sample statistics as well as the problems of interpretation or mapping the data into
the (model) system. This is an attempt to model the system, not the data. In addition,
the approach tries to capture the full behavioral repertoire of the system rather than
to use any (arbitrarily) specific set of observations to test and improve the model's
performance. All these attempts to reduce arbitrariness by explicitly accounting for
various sources and effects of uncertainty, however, lead to seemingly imprecise,
ambiguous results.

The dilemma of an easily defendable, but ambiguous description of a system, and
a seemingly precise, but arbitrary one, is irritating (Fedra et al., 1981); but it should
also lead to a more critical reconsideration of the basic and implicit assumptions of any
model-based analysis, and to a clearer statement of the questions to be addressed and
the objectives of the answers to be expected.

Predictions by means of the above methods quickly degenerate into trivial state
ments about the future of the system modeled. This, however, should be taken as a
warning to the analyst that there are obvious limits to predictability. In many cases, the
initial information available will not support a quantitative analysis of the response of
the system to changes in its external conditions. If "precision" has to be based on
arbitrary assumptions which cannot be tested against available empirical evidence or
purely logical reasoning based on well-established theories, no useful and reliable fore
cast is possible. However, the method proposed should also allow identification of data
needs and critical gaps in the available knowledge. The analysis of the structure of input
or parameter space can be very useful in terms of sensitivity analysis, and could even
be used to indicate inadequacies in the model structure and process descriptions.

The probability distributions generated for the model output variables must be
understood as the results of the evolution or propagation of the initial uncertainty in
the available information. This uncertainty can only in part be attributed to problems of
data collection and interpretation; much of the uncertainty may stem from noise in
the driving conditions of the system, such as, for example, weather phenomena. However,
as this part of the uncertainty at least is inevitable and an essential feature of the system
itself, we must learn to live with it and increasingly incorporate it into numerical analysis
and modeling, rather than ignore it.
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THE NEED FOR SIMPLE APPROACHES FOR THE
ESTIMATION OF LAKE MODEL PREDICTION
UNCERTAINTY

Kenneth H. Reckhow*
Michigan State University, East Lansing, Michigan (USA)

Steven C. Chapra**
National Oceanic and Atmospheric Administration, Ann Arbor, Michigan
(USA)

1 INTRODUCTION

A variety of water-quality models have been developed to help assess the impact
of land use on water quality. Initially, most models proposed were deterministic. How
ever, as modelers acquired more information on the functioning of lake-watershed
systems, and as engineers and planners inquired about the reliability of the models,
considerations of uncertainty began to appear. Modelers who examined uncertainty in
their models, and planners who demanded an estimate of the uncertainty in the tech
niques that they used, realized that they must have a measure of the reliability of their
methods. Without this, there was no way to assess the value of the information provided
by a model. Under those conditions, inefficient or incorrect decisions were more apt
to be made because the model results were given too much or too little weight.

Despite the fact that many water-quality models exist and more are being devel
oped, this does not necessarily represent a significant duplication of effort. Models are
needed for a range of problems, and thus they are developed to address a variety of
issues at different levels of mathematical complexity and for different degrees of spatial
and temporal resolution. Thus, for a model user, the choice of model to be applied will
depend upon: (1) the issue of concern; (2) the level of spatial and temporal aggregation
appropriate to the issue; (3) the familiarity of the users with a particular model, or the
mathematical sophistication of the user; (4) the cost and time required for acquisition
of data necessary to run the model; and (5) the cost of model acquisition and model
runs.

In the field of lake trophic-quality modeling, ecosystem models (Thomann et al.,
1975; Scavia and Robertson, 1979) have been developed to address the problem of

* Present address: Duke University, Durham, North Carolina, USA.
** Present address: Texas A & M University, College Station, Texas, USA.
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eutrophication in a multidimensional manner, often with a fairly high degree of spatial
and temporal resolution. In order to make these models more useful in the planmng
process, modelers have begun to quantify the error terms for ecosystem models. As
this occurs, lake ecosystem models will become even more useful for the evaluation of
lake-management strategies.

At the other end of the lake-model complexity spectrum, black-box nutrient
models have been proposed for the assessment of certain lake-quality issues where con
siderable spatial and temporal aggregation is permissible. These models are attractive
to many planners and engineers because they are often more compatible with the
position of the planner/engineer on the model-selection criteria mentioned above
(particularly with regard to mathematical background and financial support). Since it
has been shown that uncertainty analysis is relatively easily applied to the black-box
model, modeling with error analysis is now being undertaken by a group of model users
who might otherwise work strictly with deterministic methods.

This is not to say that all lake-model users addressing management concerns
should be applying black-box models. On the contrary, model-selection criteria (I)
and (2) above clearly state that the model chosen should be appropriate to the issue
of concern. Certainly there are many issues of importance in lake quality that are
not addressed well with a black-box model. Yet, at the same time, there are issues,
and potential model users, who need simple, aggregated models, because of model
selection criteria (3), (4), and (5). Some of these users may demand an estimate of
the model uncertainty. It is more likely, however, that many of these users may not
have thought a great deal about uncertainty. A procedure that allows these users to
calculate a numerical value for an estimate of prediction uncertainty can be a powerful
tool for convincing engineers, planners, and decision-makers of the importance of
uncertainty.

2 SIMPLE APPROACHES TO LAKE MODELING UNDER UNCERTAINTY

Most simple lake models have dealt with nutrient enrichment or eutrophication
and stem from the work of Vollenweider (1968, 1975, 1976). While there have been
a variety of expressions of Vollenweider's approach, which is generally referred to as
the "phosphorus-loading concept", the models are typically designed to predict a
measure of trophic state (such as total phosphorus concentration) as a function of a
small number of variables representing the lake's loading, morphometry, and hydrol
ogy. Although some of the models have a theoretical basis, they are generally statis
tical in the sense that the functional relationships are derived from data for large numbers
of lakes; in other words, they are the result of regression analysis. However, possibly
because some of the seminal contributions were developed in an informal or intuitive
fashion, little was done to quantify the errors associated with these models. Recently,
attempts have been made to estimate the uncertainty of these models as well as to
develop methods for presenting the probabilistic information in an easily utilizable
format (Reckhow, 1977, 1979a,b,c; Chapra and Reckhow, 1979; Reckhow and
Chapra, 1979; Reckhow and Simpson, 1980). In the present report, three of these
papers, which illustrate the progress as well as the deficiencies of efforts to date, are
reviewed.
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2.1 Chapra and Reckhow (1979)

One of the initial attempts to quantify the uncertainty of the phosphorus-loading
concept took the obvious step of determining the standard error of the regression used
to derive one of Vollenweider's (1976) most widely applied models. This model is
expressed rna thema tically as

(I)

where [Ph is the lake's total phosphorus concentration in mg m-3, [Ph is the phosphorus
inflow concentration (which represents the loading divided by the water flow into the
lake) in mg m-3, and T w is the lake's water residence time in years. Data from 117 lakes in
the Northern hemisphere, temperate climatic zone, were used to corroborate this model
form and to estimate the standard error. Figure 1 presents a comparison of predictions,
using eqn. (I) ([Ph,vILcM), with the measured values ([Ph) from the 117 lakes. (The
subscript VILCM denotes Vollenweider's Improved Loading Criteria Model.) Also pre
sented in Figure 1 is the standard error expressed in terms of prediction intervals. The
logarithmic transform was used to maintain homoscedacity (constant variance).
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By assuming that the standard error was a valid estimate of the uncertainty of
the model's predictions, two methods were presented to suggest how such information
might be structured for use by a lake manager. First, limnological studies were used to
express trophic state in terms of the model's dependent variable (total phosphorus con
centration). For example, a lake was classified as mesotrophic when [Ph. fell between
10 and 20 mg m-3. Then, by assuming that the standard error was normally distributed,
the prediction was expressed in terms of the probability that a lake will fall within the
bounds of a particular trophic state (as illustrated in Figure 2). For example, if eqn. (1)
was used to predict that the lake in question would have a phosphorus concentration of
20mgm-3

, Figure 2 could be used to estimate that the lake would have approximately
a 4%, 46%, 49%, and 1% chance of being oligotrophic, mesotrophic, eutrophic, and
hypereutrophic, respectively.

Another way in which models such as eqn. (1) are used is to determine the loading
that is required to maintain a lake's trophic state at a prespecified level. Figure 3, which
was also developed using the model's standard error, is designed for that application.
With knowledge of a lake's residence time, this plot may be used to determine the
loading level (as reflected by the inflow concentration [P];) that is needed to insure that
the lake would be at a particular trophic state with a specified degree of certainty. For
example, it might be desired that a lake with a residence time of 16 years be 95% certain
of being better than eutrophic «20mgm-3

). Figure 3 can then be used to estimate
that the inflow concentration would have to be set at approximately 50 mg m-3 to
attain this goal.

Obviously, the foregoing exercise entails assumptions and limitations. Some of
these, such as divergence from normality and the effect of parameter error, were tested
and judged to have negligible effect on the plots. Others represent important questions
regarding the efficacy of the technique. The primary deficiency relates to the fact that
there are errors in the estimates of both the dependent and independent variables in
the model-development data set which tend to inflate the model's standard error.
One way to circumvent this shortcoming is to stipulate that the model's application be
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FIGURE 3 Probabilistic loading plot showing the logarithm of the predicted inflow concentration
as a function of the water residence time. Percentages represent the certainty of the effectiveness of
the inflow concentration achieving the expected trophic state.

limited to lakes where observations were gathered at about the same level of uncertainty
as those for the model-development data set. This is obviously a severe limitation on
the model's use since each lake could have a different level of uncertainty in the variables
representing its condition. In particular, nutrient loadings from projected land uses
cannot be measured and must be indirectly estimated, frequently from values in the
literature. These extrapolated literature values may be quite uncertain. An attempt to
account for this is described in the next section.

2.2 Reckhow (1979c)

In this publication, the standard error of another of Vollenweider's models was
estimated. The model, which was derived from 47 north, temperate lakes, can be
expressed mathematically as

[Ph. = L/(1 1.6 + 1.2Qs) = yL (2)

where L is the lake's areal phosphorus loading in g m-2 year-I, and Qs is the areal water
load in m year-I.

In this case, the total prediction uncertainty, ST, was expressed as

(3)
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FIGURE 4 Probability of oligotrophic classification as a function of phosphorus loading, model
uncertainty, and phosphorus-loading uncertainty.

where sm is the model standard error, and SL is the uncertainty of the loading. The error
terms were converted to mutually consistent units and then added together in variance
form. For mathematical convenience, SL is expressed as a fraction, k, of the loading

SL = kL (4)

As in Chapra and Reckhow (1979), this information can be expressed graphically
(Figures 4-6). For example, for Lake Charlevoix, Michigan: L = O.l2gm-2 year- 1,

qs = 5.25myear-\ and SL is assumed to be 0.5L. Using Figures 4-6, and the k = 0.5
line, it is then estimated that the probability of Lake Charlevoix being oligotrophic is
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FIGURE 5 Probability of mesotrophic classification as a function of phosphorus loading, model
uncertainty, and phosphorus-loading uncertainty.

approximately 0.80, the mesotrophic probability approXimately 0.20, and the eutrophic
probability approximately zero.

Such a procedure is valid only if certain assumptions are made. First, parameter
error, dependent-variable error, and error in qs are assumed to be negligible in comparison
to the standard error of the model and the loadings. Second, when the loading is
measured directly it is assumed that the error is approximately the same as for lakes in
the model-development data set. In this case, the uncertainty of the loading is incor
porated in the model standard error, and the trophic-state probability is estimated using
Figures 4-6 with the k = a lines. In cases where the loading is approximated from the
literature, k may be estimated, and then the appropriate k-curve in Figures 4-6 is used
to assign trophic-state probabilities. While this involves a double counting of loading
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error, it is assumed that the component of the standard error contributed by the loading
estimates in the model-development data set is small in comparison to the uncertainty
associated with the literature loading estimates. The next section describes an analysis
of the error terms, including a procedure for reducing double counting of errors.

2.3 Reckhow and Simpson (1980)

It should be apparent that in order to make these simple phosphorus lake models
truly useful for planners and engineers examining lake-management policy, the model
developer must clearly describe the interpretation of the error terms. This is important
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since, as noted above, a portion of the independent-variable (L and qs) uncertainty is
incorporated in the standard error for the model. This incorporated portion of variable
error represents the variance and bias inherent in these variables in the data set used
to construct the model. Many applications of the models (including all those for which
future projection of water quality is the goal of the analysis) will be undertaken using
data that were acquired in a manner different from the techniques used to acquire the
model-development data set. This means that the model developer must understand
the methods used to collect his data, and he must further understand what these methods
mean in terms of variability and bias. This information is then conveyed to the model
users as model documentation.

The model user in turn, must add, or remove, terms from the prediction error
that represent the difference in variable errors between the model-development data
set and the application lake. As a first attempt at suggesting how this might be accom
plished, Reckhow and Simpson (1980) have taken the work of Reckhow (1979c) a bit
further by proposing a step-by-step procedure for modeling the impact of watershed
land use on lake trophic quality using Reckhow's model. In their paper, Reckhow and
Simpson attempt to specify the issues of concern when error terms are estimated. By
determining the approximate sources and levels of phosphorus-loading errors in the
model-development data set, Reckhow and Simpson are able to estimate the additional
loading error needed when the model is applied to other lakes. For example, they
recommend that the error term for septic-system phosphorus loading be a function of:
uncertainty in the projection of future population and future occupancy rate; and
the estimated retention of phosphorus by the soil. This latter becomes important only
when the estimated phosphorus loading from septic systems is substantial or when the
average soil retention is thought to be quite different from 90%. These recommendations
for the error term are based on the methods of data collection for the model-development
data set, and the uncertainty in phosphorus loading expected as a result of those
methods. Thus, it was determined that additional loading error, beyond that specified
above, was not necessary for septic-tank phosphorus loading, because of the error already
inherent in the model standard error.

Reckhow and Simpson describe the composition of the other error terms associated
with variable error so that the double counting, or neglecting, of errors is minimized.
This aspect of the error-term defmition is most effective when the model developer has
control over the design of the sampling program used to acquire the model-development
data set, or when the modeler at least has intimate knowledge of this data set. Unfor
tunately, Reckhow and Simpson relied on data from several sources with different
sampling schemes, some of which probably led to biased estimates of the independent
variables. Therefore, at best, they were able only to suggest the composition of the appli
cation lake error terms based on limited knowledge and some speculation on the errors
in the model-development data set.

3 WHERE DO WE GO FROM HERE?

Experience to date with the black-box nutrient model and error analysis has
firmly convinced the authors that this approach is useful for lake management. Yet
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some issues clearly exist that need to be addressed before this modeling approach can
achieve its potential effectiveness. Some suggestions are presented below for future
directions of research and development with the black-box lake model.

(1) A better understanding of the data in the model-development data sets is critical.
It is probably not worthwhile examining the data used to develop most existing
models because of the poor sampling design used to acquire those data. How
ever, for data gathered under a good sampling scheme, data analyses should be
undertaken prior to model development. In particular, the modeler should study
the cross-sectional (multilake) data distributions and the single-lake data distri
butions. This will help in the identification of appropriate summary statistics,
data transformations, and error terms.

(2) Once the data have been thoroughly studied, a general1y-applicable model may
be developed if the independent-variable error in the model-development data
set is removed from the model standard error. This, of course, can be undertaken
only if the modeler can identify these error terms and estimate their magnitudes.

(3) An alternative is to develop a group of data set-specific models. Under this
approach, different models would be proposed for data sets acquired under
different conditions, so that error levels would be homogeneous within data
sets. Then, essentially all of the prediction error would be contained within the
model standard error, and additional error-accounting processes would not be
necessary. For example, a model should be developed using indirect estimates
of nutrient loading (e.g., literature nutrient-export coefficients) for use in the
prediction of future trophic quality from projected land use. In that case, the
only additional error term needed would be the uncertainty in the future land
use projections.

(4) Since the distributional aspects of the data and the prediction errors have been
inadequately characterized, a nonparametric approach should be adopted.
Existing work (Reckhow, 1979b; Reckhow and Simpson, 1980) is based on an
assumption of normality, but that cannot be justified at this time. Therefore,
error bounds should be constructed using nonparametric methods un til the
distribu tions are studied and iden tified.

(5) To examine the effectiveness of the first-order error-propagation equation (the
method used here to combine errors from different sources) for this lake
modeling application, a Monte Carlo simulation should be run, after the distri
butions are characterized. This may be useful for a number of purposes in
model development (including the analysis of a time-dependent model), and in
the evaluation of lake-management strategies when the necessary resources exist.

In summary, there is a need for a variety of lake water-quality models and for an
analysis of the uncertainty associated with the application of these models. Particular
concerns and circumstances will favor different modeling approaches. For example, the
black-box nutrient model has been found to be useful when the issue of interest may
be analyzed on an aggregated basis, or when the resources of the model user preclude
any other type of mathematical model. Regardless of the modeling/error analysis
procedures employed, however, it is imperative that the communication between the
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model developer and the model user be explicit. Thus, for example, when the model
documentation includes a step for "estimation of the phosphorus-loading error term",
the model user must be told exactly what is meant and the exact intended composition
of this term. Without this clear communication, model-prediction error may ironically
be increased by a well-intentioned but ill-constructed uncertainty analysis.
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STATISTICAL ANALYSIS OF UNCERTAINTY PROPAGATION
AND MODEL ACCURACY

Dennis B. McLaugWin
Resource Management Associates, 3738 Mt. Diablo Blvd., Suite 200,
Lafayette, California 94549 (USA)

1 INTRODUCTION

Until recently the subjects of model uncertainty and prediction accuracy were
largely ignored by water-quality modelers. There were many reasons for this, including
a widespread conviction that model predictions could be made as accurate as desired
simply by increasing the detail and complexity of the governing equations. Enthusiasm
for complex model structures led to a proliferation of sophisticated ecosystem models,
which grew larger and larger and included more and more biological compartments,
chemical interactions, etc. Unfortunately, increases in model size and complexity did
not necessarily provide the expected improvements in prediction accuracy. If anything,
they made the models more difficult to use and the results harder to interpret. It became
apparent that the primary factor limiting model performance in many applications was
not lack of detail but rather insufficiently accurate model inputs.

Classical statistics provides a convenient means for analyzing the effects of input
errors on prediction accuracy when a model's basic structure is adequate, i.e., when the
model has the inherent complexity and flexibility needed to reproduce observed behavior
patterns. In such cases it is possible to quantify propagation of uncertainty from the
inputs of the model (e.g., its coefficients, initial conditions, source terms, etc.) forward
to its predictions of particular water-quality constituent concentrations. Each model
input can be assigned an a priori covariance which measures its uncertainty or probable
level of error. The error-propagation equations then predict the accuracy that would
be achieved if the a priori levels of uncertainty were actually encountered in practice.
One of the major advantages of this approach is its emphasis on "what if" questions,
which focus on the relative sensitivity of each error source rather than on a single aggre
gated measure of accuracy.

This paper presents an analysis of uncertainty propagation which is particularly
appropriate for distributed-parameter water-quality models satisfying the "structural
adequacy" requirement mentioned above. A typical example is the familar conservative
constituent mass-transport equation
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ac/at

where

- V" VC+ V"KV'C +S
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(1)

C(x, t)
Vex)
K(x)

sex, t)
x
t

concentration of the conservative constituent,
advective vector velocity (assumed, for simplicity, to be time-invariant),
time-invariant dispersivity (diffusivity) tensor,
source term,
location vector, and
time.

This equation is based on fundamental principles of conservation-of-mass and continuum
fluid flow and should be "structurally adequate" for most water-quality transport prob
lems. The difficulties in actually applying it result from the need for accurate specifi
cation of the following inputs: the velocity field Vex) and the dispersivity tensor K(x)
(model parameters); the initial concentration field C(x, to) (initial conditions); values for
C(x, t) or V'C(x, t) on the boundaries of the region of interest (boundary conditions); and
the source term Sex, t). Error-propagation analysis provides a straightforward way to
determine how errors in such inputs influence a model's predictive accuracy.

The paper begins with a review of numerical methods for solving distributed
parameter model equations such as eqn. (l). This review is followed by a derivation of
the error-propagation equations and a discussion of the a priori covariances required in
the error analysis. The final section provides a brief summary of the major results
described in the paper and an assessment of the practical potential of error-propagation
analysis.

2 STATE-SPACE FORMULATION OF DISTRIBUTED-PARAMETER MODELS

Most distributed-parameter water-quality models are originally formulated as
partial-differential equations similar to eqn. (1). Although such equations may be solved
analytically in certain special cases, numerical solution methods are required for problems
having irregular geometries and/or inhomogeneities. Numerical solutions generally pro
ceed in two phases. First, the partial-differential equation is discretized in space. Next,
the resulting set of ordinary-differential equations is discretized in time to provide a set
of recursive "state-space" equations. These state-space equations are the starting point
for our statistical analysis of uncertainty propagation.

This section briefly reviews numerical procedures for converting the linear
conservation-of-mass transport model of eqn. (1) into vector state-space form. The
procedures described here apply to any linear distributed-parameter model and may, in
fact, be readily extended to nonlinear models as well (see McLaughlin, 1979). Further
details on numerical methods for solving partial-differential equations may be found in
texts such as Zienkiewicz (1977).

The dependent variable C and the independent variables V, K, and S defined in
eqn. (1) are generally continuous functions of location. In order for this equation to be
solved numerically, the spatial derivatives of these functions - the terms V' VC and
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V· KVC - must be approximated or discretized. Two of the more general methods for
accomplishing this discretization are the finite-difference and finite-element solution
techniques. Both of these techniques conceptually superimpose a grid of N discrete
"node points" on the geographical region of interest. An unknown time-dependent
concentration value Cj(f) is assigned to each node U= 1, 2, ... ,N) and the continuous
function C(x, f) is approximated by a weighted sum of the Cj(f) values:

(2)

where

C = an unknown state vector of nodal concentration values (CI(f) . .. CNCt)),
and

TJ(x) = an unknown interpolation vector of simple location-dependent poly
nomials which weight the various components of C.

Similar methods may be used to discretize the independent variables u, K, and S. Gener
ally speaking, these variables need not be discretized as finely as C(x, f).

When the nodal weighting technique of eqn. (2) is used to approximate spatial
variations in the model's variables, eqn. (l) may be transformed into the following
ordinary-differential equation:

where

ac/af = A(a)C + D(a)u + E(a)~ (3)

A(a) an N x N matrix of coefficients which depend on the geometry of the
spa tial discretization grid,

D(a) an N x M matrix of grid-dependent coefficients which weight the influence
of the M discretized source terms,

E(a) an N x P matrix of grid-dependent coefficients which weight the influence
of the P discretized boundary conditions,

u a vector ofM discretized source terms derived from S(x, f),
~ = a time-invariant vector of P discretized boundary-condition terms derived

from specified values of Cor VC along the regional boundaries, and
a = a vector of discretized parameter (Le., V and K) values derived by applying

an approximation similar to eqn. (2) to the functions Vex) andK(x).

Note that the matrices A(ci) , D(a), and E(a) are nonlinear functions of the model's dis
cretized parameters. These parameters are lumped, for convenience, into a single vector
a. Both Ii and ~ are assumed to be time-invariant in order to simplify subsequent statis
tical expressions. These assumptions are not essential and may, in fact, need to be relaxed
in certain practical applications.

A number of different temporal discretization techniques are typically used to
integrate eqn. (3). Most of these approximate at/af and C at time fk+1 with functions
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of Ck and Ck + l , the nodal concentration vectors at tk and tk + l , respectively. The resulting
ordinary-difference equation for Ck + 1 may be written as

(4)

where

ell (a), r (a), A(a) = N x N, N x M, and N x P matrices that depend on A(a), D(a),
E(a), and t::.t (the time step); and

Uk = source term vector U evaluated at time tk .

Equation (4) can be conveniently generalized if the coefficient matrices are allowed to
vary with time. This can be indicated symbolically with appropriate subscripts:

(5)

Equation (5) is solved recursively, starting with a vector of initial concentrations Co
defmed at each of the N node points. On each time step, all time-dependent terms are
updated and the next concentration vector Ck + 1 is computed.

In some applications, the variables of most interest are not the nodal concentrations
but concentrations at other locations such as monitoring sites. The nodal weighting tech
nique of eqn. (2) provides a way to predict concentrations at any desired set of locations.
The method is conveniently summarized by the following equation:

(6)

where

Zk+l a vector of predicted concentrations (at time tk+l) at L specified points
(Xl, X2, ... ,xd in the region of interest, and

H an L x N matrix of coefficients constructed from the weighting functions
T](x) evaluated at Xl, X2, ... , XL'

The rows of the matrix H weight appropriate nodal concentrations to give interpolated
concentration values at the locations Xl, X2, ... , XL' The resulting model output vector
Zk+l depends, directly or indirectly, on the initial condition, parameter, source rate, and
boundary-condition values specified by the modeler. Errors in these values clearly have an
effect on the accuracy of the model's predictions.

3 FIRST-ORDER ANALYSIS OF MODEL ERROR PROPAGAnON

The preceding section demonstrates how a typical distributed-parameter water
resource model may be formulated in "state-space" terms, Le., as a set of linear-difference
equations. This set of equations summarizes the modeler's deterministic view of reality.
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The equations for a deterministic model for simulation and prediction are
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(7)

(8)

In order to perform an a priori analysis of the potential accuracy of this model, it is
convenient to postulate a stochastic (nondeterministic) model of the real world. This
stochastic model has an overall structure similar to the deterministic model of eqns. (7)
and (8) but includes a number of random terms and coefficients.

The equations for a stochastic model for accuracy analysis are as follows

where

(9)

(10)

Wk+l

Ck

Zk+1
Co

C!lk' rk,Ak, H

random parameter vector,
random source-sink vector,
random boundMy-condition vector,
random sampling-error vector (measurement noise),
random vector of "true" nodal concentrations,
random vector of concentration measurement,
random initial condition vector, and
sy5tem matrices defined previously.

This stochastic model can be viewed as an attempt to explain the quasirandom (never
completely predictable) behavior of the real-world system. In a sense, field observations
(the Zk values of eqn. (10)) behave as if they were produced by complicated noise
generators which add random variations to the "known" deterministic inputs a,~, Uk,
and C. The detrimental effects of these hypothetical noise generators can be derived
from a statistical analysis of the model state and output errors.

Since Ck + 1 is the deterministic model's simulated state and Ck + 1 is the supposed
"true" state, the model's state error may be measured by the difference between Ck + 1

and Ck + I' Inspection of eqns. (7)-(10) shows that this difference is:

(11)

The statistical properties of the state error Sk+1 can be better explored if the nonlinear
functions of a are expanded. This can be done with the Vetter calculus (see, for example,
Dettinger and Wilson, 1979) or a simple perturbation approach may be used. The non
linear functions of interest may be written as:
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where the SC!l, Sr, S A are random (matrix) error terms caused by differences between the
parameter vectors of the deterministic and stochastic models. Similarly, the true state,
source rate, and boundary-condition vectors may be written as:

where the Sh , V h , S ~ are random error terms.
With these defmitions, eqn. (11) may be written as a function of the known system

matricesC!lh(a), rk(a), and Ak(a) and random error terms:

(12)

The last term on each line of this expression is a second-order error term (the product
of two errors) while the other terms are first order. Note that eqn. (12) does not depend
on any approximations - it is exact.

Some approximations must now be introduced if the effects of parameter errors
are to be included explicitly in the error analysis. One alternative is to define two non
linear vector functions of a

first order: tea) = SC!l(a, a)Ch+ sr (a, a)Uh + SA(a, a)P

second order: g(a) = SC!l(a, a)Sh(a) +sr(a, a)"k +SA(a, a)S13

Each of these functions may be expanded in a Taylor series about a, as follows:

tea) = tea) + D,,,(a)S,, + higher-order terms

where

(13)

(14)

(15)

Df,,(a) = matrix of tea) gradients, taken with respect to a and evaluated at <I, and
S,,=a-a.
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The derivatives in the second-order (g( a)) expansion are fairly difficult to evaluate, either
numerically or analytically. Since we wish to illustrate the concepts of error propagation
with a minimum amount of mathematical complexity, we will retain only the first-order
(t(a)) terms of eqn. (12). A first-order analysis can be informative and revealing, even
though it is admittedly approximate. Further details on second-order analysis of the state
error (specifically, second-order mean analysis) are presented in Dettinger and Wilson
(1979).

The first-order f(a) expansion of eqn. (15) may be written as:

+ second-order and other higher-order tenns ignored in first-order analysis

(16)

Since f(a) is zero and the second bracketed term in eqn. (16) is independent of t f(a) is

(17)

where Dak is a sensitivity matrix with element ij given by

The sensitivity matrix may be evaluated numerically at each step of the simulation, either
with simple perturbations or with the Vetter calculus (see Dettinger and Wilson, 1979).

Substitution of eqn. (17) into eqn. (12) gives, when second-order terms are
omitted, the following expression for the state error:

(18)

This equation contains only deterministic (known) coefficient matrices (cJlk(a), rk(a),
I\k (a), and Dak ) and random error vectors (Sk' v k, ~, S a). The statistical properties of
Sk+l may be recursively derived from eqn. (18) if the properties of all the noise-generating
random vectors are defmed. In particular, the first and second moments of each random
error source must be specified, together with appropriate information on cross-correlations
between errors and on the temporal correlation properties ofv k. Although many alter
natives are possible, the following seem reasonable:

First moments (means)

E[So] = E[~] = E[Sa] a

E[Vk] a (for all k)
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Second moments (covariances)

cov [50] Po

cov ~] PiJ

cov [50:] Po:

cov [Vk] = Qk

Cross-correiations

D.D. McLaughlin

E[So13] = E[5 0 So:]

Temporal correlation of Vk

o

The rationales for the assumptions reflected in these definitions are as follows:
First moments. It is reasonable to assume that all error means are zero since if any

error had a known nonzero mean, this mean would be incorporated into the deter
ministic model as a compensation factor. Of course, the errors may have unknown
nonzero means but there is no way to deal with this without complicating the error
analysis further.

Cross-correlation. It is reasonable to suppose that the fundamental error sources 
initial condition errors, parameter errors, source-sink errors, and boundary-condition
errors - arise from different statistically independent effects (this is one of the reasons
the errors are classified into four separate categories). Statistical independence implies
zero correlation.

Temporal correlation ofvk. In many situations the errors influencing source-sink
terms are statistically independent from time to time, location to location, and sample
to sample. When available field information indicates this is not the case, the error
equations may be modified to account for temporal correlation of Vk, provided that good
estimates of the correlation function can be obtained. Otherwise, it is best to assume that
the source-sink errors are completely uncorrelated.

With the above assumptions, the first and second moments of5k+l may be obtained
directly from eqn. (18):

(19)

where
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Pk

PkiJ , PiJk , Pka, Pak

cov [Ok], and
cross-covariances defined below.

The dependence of the coefficient matrices on eX is now assumed rather than indicated
explicitly. Also, note that Ok and Vk are uncorrelated because Ok depends only on va
through Vk-l, which are uncorrelated with Vk.

The first-order state error mean of eqn. (19) is zero because all of the component
error source means are zero (the second-order state error mean is not zero but, instead,
depends on the error source second moments). The first-order state error covariance of
eqn. (20) depends on three types of terms: the propaeated error covariances, the propa
gated cross-covariances of Ok and J3 (PkiJ and PiJk ), and the propagated cross-covariances
of Ok and a (Pka and Pak ). The error covariances Po, Qk, PiJ, and Pa are specified (i.e.,
assumed a priori). The cross-covariances PkiJ , PiJk, Pak , and Pka are, on the other hand,
obtained from separate recursive equations. This is illustrated by the derivation of
Pk + 1•iJ from eqn. (18):

or

(21 )

Note that the cross-terms containing E[VkJ3T] and E[oaJ3T] are zero because J3 is assumed
uncorrelated with Vk and oa' Also, P013 is zero because the initial condition error 00 and
boundaI)' condition error J3 are assumed to be uncorrelated. Similar reasoniag may be
used to show that:

(22)

The other cross-covariances PiJ.k+1 and Pa.k+l are the transposes of Pk+ [.13 and Pk+ 1.a'
Equations (20)-(22) constitute a coupled set of recursive algorithms for computing

the error covariance of the model state vector at any time. The first term (<t>kPk<t>f) of
eqn. (20) describes the evolution of uncertainty in Ck forward to Ck +1 • If the linear
system is stable, scalar metrics of <t>k Pk<t>f will be smaller than Pk , indicating that the
system dynamics tend to damp initial-condition uncertainty (in a sense, Ck is the initial
condition for Ck + I)' The nex t three terms of eqn. (20) describe the incremental addition
of uncertainty between times tk and tk + 1 due to random source, boundaI)' condition,
and parameter errors. Since the boundary condition and parameter errors are assumed
to be time-invariant, theIr incremental uncertainty contributions (from time step to
time step) will be correlated. The last four terms of eqn. (20) are "correction factors"
which account for this correlation effect. The correction factors depend on cross
covariances such as PkiJ which are, in turn, derived recursively (in eqns. 21 and 22) from
the parameter and boundaI)'-condition covariances, Pa and PiJ.

The state error covariance is a measure of the "closeness" of the simulated state
Ck to the true state Ck . A similar error covariance can be derived to measure the closeness
of the simulated model output Zk to the field measurement vector Zk' Equations (8)
and (10) imply that:
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(23)

The statistical properties of the measurement error (.o)k+1 may be defined by analogy
with the model error sources discussed earlier:

o

It is reasonable to assume that the measurement error mean is zero since any known
nonzero mean (bias) would be subtracted from the measurement during or subsequent
to field sampling. It is also reasonable to assume that the measurement error during the
simulation period (i.e., after model calibration/parameter estimation has been com
pleted) is uncorrelated with the other random errors included in our analysis. Output
measurement errors during this period generally arise independently of any errors
influencing the model's initial conditions, source terms, boundary conditions, or parame
ters. It is worth noting, however, that the parameter error may be correlated with output
measurements taken prior to the simulation period if these earlier measurements were
used to estimate the parameter vector a. This prior parameter/measurement correlation
does not influence E[Wk+150:] because the measurement error sequence is assumed to
be temporally uncorrelated, i.e., w k+1 is not correlated with errors in the measurements
used to estimate a.

With the statistical properties of the measurement error defined, the first and
second moments of E k+1 may be obtained directly from eqn. (23):

(24)

(25)

Also of interest is the mean of the scalar sum-squared output error, which is often used as
an empirical measure of model accuracy:

This expression reduces (see Kendall and Stuart, 1973) to:

E[S] = L {Tr[HTPk+1 H] + Tr[Rk+1]}

"
(26)

where Tr [ .] is the scalar trace of the matrix in brackets. Equation (26) suggests that
the sum-squared error computed from a comparison of model outputs with field
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observations will depend on both model errors (Hf'Pk + 1Hk ) and measurement errors
(Rk + 1). The sum-squared error computed from any particular set of field observations is,
of course, a single sample from a random population having a mean E[S]. The variance
of this population depends on higher-order moments of S k+ I and to) k+ I and generally
decreases as the number of measurements increases.

Equations (24)-(26) complete our analysis of uncertainty propagation. Although
the error covariance equations derived in this analysis appear complex at first glance,
they may be readily incorporated into a model's normal computational cycle. The only
complication is evaluation of the parameter sensitivity matrix Dak , which adds somewhat
to the overall computation cost since an additional (perturbed) simulation must be per
formed at each time step. In return, the modeler obtains a step-by-step, node-by-node
breakdown of his model's performance which provides estimates of the relative influence
of each potential error source. Needless to say, this information can be valuable not only
to the model-user concerned with prediction accuracy but also to the model-developer
seeking to reduce the detrimental effects of input errors.

4 SPECIFICATION OF A PRIORI COVARIANCES

The error-propagation analysis presented in the preceding section is implicitly
based on a Bayesian viewpoint, which assumes that an a priori probability density func
tion can be assigned to each error source. The a priori covariances Po, PiJ, Pa, Qk> and Rk

are the covariances of these density functions. If no measurements of input or sampling
error are available, the a priori density functions reflect the modeler's own subjective
uncertainty about the "true" values of the model inputs and field measurements. In
some applications, the a priori densities must be based entirely on intuition and common
sense. But often enough data are available to suggest at least a range of reasonable values
for a priori statistics. The types of data likely to be used to help define apriori covariances
in water-resource applications are discussed briefly below.

4.1 Errors in Initial Conditions and Boundary Conditions

The initial conditions and boundary conditions needed to solve eqn. (I) or other
similar distributed-parameter model equations are often estimated from field samples
taken at scattered monitoring sites. Even if field-measurement procedures are perfect
(which they rarely are in water-quality applications), errors arise when the measure
ments are extrapolated over an entire nodal grid. The magnitudes and distribution of
these errors depend, of course, on the extrapolation/interpolation method used. Auto
mated interpolation methods such as spline-fitting routines or Kriging algorithms are
particularly convenient from an error analysis point of view because they provide esti
mates of their own accuracy (see Delhomme, 1976; Moore and McLaughlin, 1980).
Most Kriging programs supply contour maps of estimation error variance which define
the initial-condition error covariance Po and boundary-condition error covariance PiJ used
in eqns. (20) and (21). These maps can also help the modeler decide where to draw
regional boundaries and where to propose additional sampling sites.



316 D.B. McLaughlin

4.2 Source Rate Errors

In most water-quality simulation studies, source rates such as pollutant-loadings
are either hypothesized or inferred from extrapolations of historical measurements. In
the first case, the source rate errors depend on the accuracy of the modeler's hypotheses
and must generally be estimated subjectively. In the second case, the errors depend on
the accuracy of the historical measurements and the extrapolation procedure used to
extend these measurements forward in time. If the extrapolation procedure can be
described statistically it may be possible to assign approximate variances to the source
rate errors associated with a particular simulation. For example, the mean, variance, and
autocorrelation function of pollutant-loading rates extrapolated from a least-squares
trend line may be readily derived if certain assumptions are made about the statistical
properties of the residual errors. Such statistical measures can help define the elements
of the source rate error covariance Qh used in eqn. (20).

4.3 Measurement Errors

Measurement errors depend on both field-sampling and laboratory-analysis pro
cedures. The statistical properties of such errors can be derived from a careful analysis
of each stage of the sampling procedure, using manufacturer's specifications or published
guidelines to establish the accuracy of measuring instruments or laboratory tests.
Alternatively, replicate samples can be collected in the field and the pooled statistics of
these replicates used to define the error covariance matrix Rh + 1 required by eqns. (25)
and (26).

4.4 Parameter Errors

Model parameters are frequently estimated indirectly from field measurements of
related variables, often with the aid of the simulation model itself. The diffusion coeffi
cients of a transport model such as eqn. (1) may, for example, be estimated from
historical measurements of pollutant concentration during periods when loading rates
and boundary conditions were well known. A wide variety of parameter-estimation
procedures have been proposed in the literature, including such statistically-oriented
techniques as least-squares, Kalman fIltering, instrumental variables, and maximum likeli
hood (see Beck and Young, 1976; Lettenmaier and Burges, 1976; Moore, 1978). Most
of these procedures include algorithms for computing the covariances of their parameter
estimates, given certain assumptions about the model and measurement errors acting
when the estimates were derived. These covariances may be used to define the matrix
Pa reqUired in eqns. (20) and (22).

It should be emphasized that the covariance values supplied by statistical analyses
such as those outlined above are approximate and can be modified by the modeler if
desired. The Bayesian approach does not require that the a prio.ri covariances in
eqns. (20)-(26) be estimated from field data. Derived estimates of such covariances
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serve merely to refme the modeler's subjective assessment of input and measurement
uncertainties.

5 SUMMARY AND CONCLUSIONS

The error-propagation analysis presented in this paper provides a set of recursive
equations for computing the mean and covariance of the states of a linear distributed
parameter simulation model. The equations, which are summarized in the Appendix,
depend on two types of matrix variables:

Coefficient matrices - the matrices «Ph, r h, Ah, Dah , and H, which may be numeri
cally or analytically derived from the model's governing equations, discretization
procedures, and interpolation algorithms.

- A priori covariance matrices - the matrices Po, Qh, Pa , P!1, and Rh , which are
measures of the modeler's a priori uncertainty about the magnitudes of errors in
initial conditions, source rates, parameters, boundary conditions, and field measure
ments.

In practice, the modeler assigns a priori covariance matrices which reflect the levels of
input uncertainty likely to be encountered during a model simulation run. The error
propagation equations then predict the accuracy (error covariance) that would be
achieved if these a priori levels of uncertainty were actually attained. This approach to
error analysis allows the modeler to evaluate the effects of a range of input uncertainties,
from very optimistic levels to very pessimistic levels. The "most likely" input covariances
falling in the middle of this range can be based on quantitative measures of input accuracy
derived from statistical analyses of field data, if sufficient data are available.

The error-propagation algorithms derived in this paper are easy to program and can,
in fact, be incorporated into most simulation models with a minimal amount of effort.
Although there are few examples of formal error-propagation studies in the water-quality
field, it is likely that the number of practical applications will increase dramatically in
the near future. Related studies of groundwater flow models have already been reported
by Dettinger and Wilson (1979). As such applications become more common, water
quality modelers will undoubtedly begin to appreciate the advantages of quantitative
error analysis and will rely on it increasingly, both as a research tool and as a practical
method for evaluating model performance.
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APPENDIX: SUMMARY OF FIRST-ORDER ERROR-PROPAGATION EQUATIONS

Error Means

State error mean (eqn. 19):
Measurement error mean (eqn. 24):

Recursive Error Covariance Equations

State error covariance (eqn. 20):

o (for all k)
o (fora11k)

Pk+1 = cJlkPkcJl~ + rr.Qkr~ + AkPI3A~ + DCl!kPCl!DJk--- ------- ------ '---...--'"

state source boundary parameter
error error condition error

propagation propagation error propagation
propagation

+ ~cJlkPkI3A~ + AkPl3kcJl~

state-boundary condition correlations

state-parameter correlations
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State-boundary condition cross-covariance (eqn. 21):
State-parameter cross-covariance (eqn. 22):
Measurement-error covariance (eqn. 25):

Error Covariance Initial Conditions

319

Pk+1•iJ = <l>kPkiJ + AkPiJ
Pk + 1.", = <l>kPk", + D"'k P",

cov [Ek+d = HPk+1H
T + Rk+1

Initial state error covariance:
Initial state boundary condition cross-covariance:
Initial state parameter cross-covariance:

Variable Definitions

Po ~ Po
POiJ 0
Po", = 0

Time-dependent coefficient matrices derived from the model's
governing equa tions and discretization procedures,
Parameter-sensitivity matrix evaluated at each time step with
element ij given by

H = Matrix of coefficients constructed from spatial interpolation
functions relating nodal locations to measurement locations,

Po, Qk, PiJ, P"" Rk = A priori covariance matrices for errors in initial conditions,
source rates, boundary conditions, parameters, and measure
ments, respectively,

Pk+1 Covariance of the error between true and simulated nodal con
centrations at time k + 1,

cov [Ek+ d Covariance of the error between model outputs and field
measurements at time k + 1,

PkiJ, Pk"', P"'k, PiJk Cross-covariances computed as intermediate variables in the
error-propagation equations.

Detailed definitions of these variables are provided in Sections 2 and 3 of this paper.
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MODELING AND FORECASTING WATER QUALITY IN
NONTIDAL RIVERS: THE BEDFORD OUSE STUDY

P.G. Whitehead
Institute ofHydrology, Wallingford, Oxfordshire (UK)

1 INTRODUCTION

In addition to being the major sources of water, river systems are used as the prin
cipal disposal pathways for waste material from man's activities. Such waste material alters
the concentration of many chemical substances in water and impairs the quality and thus
the usefulness of that water. Moreover, the variety of pollutants generated by a highly
industrial society appears to grow continuously and as discussed by Stott (1979), "the
problems of water quality are now more difficult and demanding than water quantity".

While, in general, average water quality in the UK has tended to improve, in certain
respects there have been grounds for concern. For example, some water authorities
have been observing progressively increasing levels of nitrates in their system. The mech
anisms governing these increases are not wholly understood and, as a result, strategies
for the management of nitrate levels have not been fully identified. In particular, nitrate
levels in the River Thames and the River Lea have increased dramatically over the past
ten years with the average concentration increasing from 4 mg N 1-1 in 1968 to an average
of 11.1 mg N 1-1 in 1977 in the River Lea (Thames Water Statistics, 1978). This level
is close to the World Health Organization (WHO) limit of 11.3 mgNl- 1 and at certain
times of the year nitrate levels in the River Lea have in fact exceeded the WHO limit,
thereby preventing the abstraction of water for potable supply. Moreover, the observation
that certain acceptable limits of quality are exceeded from time to time indicates that
desirable stream quality is not only quantified in terms of, say, yearly average indices;
transient, intermittent deterioration of quality is also important, and may be of growing
concern for the future.

In this paper water-quality models developed during the recent Bedford Ouse Study
(Bedford Ouse Study, 1979; Whitehead et aI., 1979, 1981) are briefly described and
applied to assess the impact of effluent on the river system. Concern over the future
water quality in the Bedford Ouse has led to the development of an extensive automatic
water-quality monitoring and computer-controlled telemetry system. Water-quality
models are included in the mini/microcomputer system and provide forecasts for opera
tional management. In this paper, models of ammonia and dissolved oxygen are developed
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using the extended Kalman filter (EKF) technique applied to data obtained from the
automatic monitors and the utility of such forecasting schemes is discussed.

2 MODELING FOR WATER-QUALITY MANAGEMENT

There has been a tendency in recent years to categorize water-quality models as
either planning or operational management aids. However, such a breakdown is not
strictly correct since planning models provide the "steady state" or annual average
water-quality conditions and identify measures which alter the natural distribution of
water quality in time and space in accordance with an overall development objective.
Steady-state planning models do not account for the uncertainties in the system such as
errors associated with sampling measurement and the imprecise knowledge of system
mechanisms; they provide only a rough guide to likely future water-quality levels.

By contrast operational management is concerned with the short-term (hourly or
daily) behavior of water quality and models are required for selecting optimal operating
rules and control procedures and providing real-time forecasts of water quality in river
systems.

A third intermediate stage between planning and operational models is required
during the detailed design of a water-resource system. Here, there must be some con
sideration of risk and information on the day-to-day changes in river quality is required,
since it is the transient violation of water-quality standards that creates particular prob
lems. The approach of digital simulation provides a convenient method of analyzing
systems during this design phase and historic and synthetic inputs can be simulated and
information on the distributions of water quality used to assess risk.

If the model is to be useful for the purpose of design it should possess the following
properties:

I. It should be a truly dynamic model, capable of accepting time-varying input
(upstream) functions of water quality which are used to compute time-varying
output (downstream) responses.

2. The model should be as simple as possible yet consistent with the ability to charac
terize adequately the important dynamic and steady-state aspects of the system
behavior.

3. It should provide a reasonable mathematical approximation of the physicochemical
changes occurring in the river system and should be calibrated against real data
collected from the river at a sufficiently high frequency and for a sufficiently long
period of time.

4. It should account for both the inevitable errors associated with laboratory analysis
and sampling, and the uncertainty associated with imprecise knowledge of the
pertinent physical, chemical, and biological mechanisms.

3 AN INTEGRATED MODEL OF FLOW AND WATER QUALITY

Mathematical models which satisfy these four properties have been developed
during the recent Bedford Ouse Study (Whitehead et al., 1979, 1981) and the principal
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FIGURE 1 Interaction between hydrological and water-quality models.

interactions between flow and water-quality components of the model are illustrated
in Figure 1. The underlying hydrology of a river system is modeled using a deterministic
nonlinear storage model to relate flow variations at downstream points on the system
to input flows at the upstream system boundaries. Having accounted for most of the flow
variations with the deterministic streamflow model, the residual between the deter
ministic model output and the observed downstream flow is modeled using stochastic
methods of time-series analysis (Whitehead, 1979). The stochastic time-series models
represent the residual flow variations due to rainfall and runoff effects. As snown in
Figure 1, information on flow is transferred to physicochemical models of water quality
which contain the principal mechanisms governing water-quality behavior, based on a
mass balance over the reach.

The structure of these models is based on a transportation delay/continuously
stirred reactor (CSTR) idealization of a river (Beck and Young, 1976). The mathematical
formulation of this model is in terms of lumped-parameter, ordinary-differential
equations and draws upon standard elements of chemical engineering reactor analysis
(see, for example, Himmelblau and Bischoff, 1968). As indicated by Whitehead et al.
(1979), this idealization can be shown to approximate the analytical properties of the
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distributed-parameter, partial-differential equation representations of advection dis
persion mass transport in addition to the experimentally observed transport and dis
persion mechanisms (Whitehead, 1980).

The principal advantages of this model over the equivalent partial-differential
equation descriptions are:

(a) the simplified computation required to solve the lumped-parameter differential
equations;

(b) the availability of statistically efficient algorithms for model identification and
parameter estimation, which can only be readily applied to the lumped
parameter form;

(c) the availability of extensive control system methods which may be used for
management purposes and are most suited to the ordinary-differential equation
model.

The rna thema tical form of the model is derived from a component mass balance.
For the CSTR

(dx/dt)(t) = (Q/V)(t) li(t) - (Q/V)(t)x(t) +Set) + ~(t)

and for the transportation delay

li(t) = u(t - ret))

where

(1)

u(t)
ii(t)

x(t)
S(t)
~(t)

Q(t)
V=

ret)
t =

the vector of input, upstream component concentration (mgl- I),
the vector of time-delayed input, upstream component concentration
(mgl- I),
the vector of output, downstream component concentration (mg I-I),
the vector of component source and sink terms (mg I-I),
the vector of chance, random disturbances affecting the system (mgl- I),
the stream discharge (m 3 day-I),
the reach volume (m3

),

the magnitude of the transportation-delay element (day), and
the independent variable of time.

The errors associated with the laboratory analysis and sampling are included in the
observation equation

yet) = x(t) +'let)

where

(2)

yet) the vector of observed (measured) downstream component concentration
(mgl- I), and

'let) the vector of the chance measurement error.
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Equations (I) and (2) provide the basic description of the conceptual water-quality
model. The identification and estimation of these models against water-quality data is
given in detail elsewhere (Beck and Young, 1976; Whitehead et a!., 1979, 1981).

4 THE BEDFORD OUSE STUDY

The Bedford Ouse Study was initiated in 1972 by the Great Ouse River Division
of the Anglian Water Authority and the Department of the Environment. The objective of
the study was to develop and utilize water-quality models in the planning, design, and
operational management of the Bedford Ouse River system in central eastern England.
In particular the development of the new city of Milton Keynes (see Figure 2) is likely
to have a considerable impact, and effluent from the city is discharged about 55 km
upstream of an abstraction plant supplying water to Bedford.

The research has therefore been directed towards obtaining models of water quality
which could be used to investigate the impact of effluent on the aquatic environment.
Details of the Bedford Ouse Study are given elsewhere (Bedford Ouse Study, 1979;
Whitehead et al., 1979, 1981) and the integrated models of flow and water quality
discussed in the previous section have been extensively applied to the Bedford Ouse
River system. For example, a typical simulation of flow based on data from the upstream
flow-gauging stations and the daily rainfall in the area is given in Figure 3. This shows
the simulated river flow superimposed on the observed flows together with a plot of
the residual error. The mean percentage error of 8.6% is within the accuracy of the
flow-gauging stations estimated at 10% by the Great Ouse River Division. In addition,
the model explains 99% of the variance of the original flow series and the errors are

Bedford
effluent

• Automatic monitors
o Flow gauging stations

River Ouse \

River Ouzel Milton Keynes
effluent

FIGURE 2 The Bedford Ouse River system.
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FIGURE 3 Simulated, observed, and residual flows on the Bedford Ouse over 1972.

within 10% of the observed flow for 70% of the time. The model has been validated using
several years data and it appears that the combination of a deterministic flow-routing
model and the stochastic rainfall-runoff model provides a satisfactory representation of
the system.

4.1 Assessing the Impact of Effluent on River Water Quality

Water-quality models for the Bedford Ouse have been developed for chloride, dis
solved oxygen (DO), biochemical oxygen demand (BOD), total oxidized nitrogen (TON),
and ammonia.
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A typical simulation for nitrate over 1974 is given in Figure 4 and again upstream
water-quality information can be used to reliably simulate downstream behavior. In
addition, since the models are based on mass-balance principles, it is possible to assess
the impact of effluent in the river system. Figure 4 shows the effect on downstream
nitrate levels assuming an effluent flow from Milton Keynes of 114,OOOm3 day-1 with
nitrate levels of 10 mg I-I. During high flow conditions the impact of the effluent is mini
mal because of dilution effects, and upstream sources of nitrogen and runoff effects
predominate. In this situation nitrate treatment at Milton Keynes would have relatively
little effect and alternative methods of overcoming the high nitrate levels are required,
such as blending with groundwater or reservoir water at the abstraction plant at Bedford.
During low flow conditions and increased temperature levels during summer, the back
ground levels of nitrogen fall, and the effluent effect is more significant.

In addition to providing time-varying concentrations at the downstream point,
the models may be used in a Monte Carlo simulation study to provide predictions directly
in terms of probability distributions rather than exact values (Whitehead and Young,
1979). The stochastic simulation approach is extremely useful where analytical solutions
are difficult or even impossible to obtain, as is often the case with reasonably complicated
dynamic systems. The system calculations (usually simulations) are performed a large
number of times, each time with the values for the stochastic inputs or uncertain parame
ters selected at random from their assumed (i.e., estimated) parent probability distri
butions. Each such random experiment or simulation yields a different result for any
variable of interest and when all these results are taken together the required probability
distribution can be ascertained to any required degree of accuracy from the sample
statistics. The degree of accuracy of the probability distribution function estimated in
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this' manner is, of course, a function of the number of random simulations used to
calculate the sample statistics, but it is possible to quantify the degree of uncertainty
on the distribution using nonparametric statistical tests such as the Kolmogorov-Renyi
statistics.

Monte Carlo simulation is a flexible, albeit computationally expensive tool with
which to investigate certain design problems. For example, the water-quality standards
that are proposed in the Bedford Ouse Study (1979) are presented in terms of the
percentage of time that a water-quality level is exceeded, and therefore, provide a
reference against which the water quality can be tested. It would be possible to
perform Monte Carlo simulation analysis using the water-quality models developed
for the study section of the Bedford Ouse and making various assumptions about
future levels of effluent input. The outcome of such an analysis would be probabil
ity density functions for the water-quality states, which could be compared directly
with the water-quality standards. Such information would be extremely useful in
assessing the impact of effluent on the system and determining the degree of treatment
necessary at Milton Keynes in order to ensure satisfactory water quality at the abstraction
point.

TABLE 1 Effluent conditions used to assess the impact on aquatic environments.

Flow rate BOD concentration in effluent Variance of
(m 3 S-I) (mgl- 1) BOD levels

Case 1 0.1 5 1
Case 2 0.4 10 4
Case 3 1.0 10 4

An initial assessment of the impact of Milton Keynes effluent on the aquatic
environment may now be obtained using Monte Carlo simulation; details are given in
Whitehead and Young (1979). Altogether three effluent conditions were considered at
different flow rates and BOD levels, as shown in Table 1. It was assumed that the effluent
has no dissolved oxygen present; this condition represents the worst situation but is
not unrealistic, since the effluent is to be pumped directly from the treatment works
via a 4-km pipe into the river. Effluent BOD levels fluctuate in practice and a stochastic
component defmed by a noise signal of variance of 1, 4, and 4mgl-\ respectively, was
added to the three BOD levels shown in Table 1. The distributions of BOD and DO at
Bedford given these three effluent conditions are compared with the present situations
in Figure 5. At low discharge conditions there is relatively little effect on the aquatic
environment. At the 1m 3 s- 1 condition, however, the mean BOD level has risen to
4.5 mg I-t, the mean DO level has fallen to 6.5 mgr1

, and the DO distribution ranges
from 4.5 to 9 mg I-I. These distributions represent only an initial assessment of the
impact of Milton Keynes effluent, and an updated prediction based on a reestimated
model in two years time may indicate an improved situation. On the other hand the DO
levels may be adversely affected by the changing biological nature of the river and some
form of control action may be necessary to improve the DO distribution.
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FIGURE 5 Distributions of DO and BOD at Clapham obtained from the Monte Carlo simulation
study.

5 THE REAL-TIME MONITORING SCHEME FOR THE BEDFORD OUSE

In the short-term operational management of water-resource systems, a major
requirement is for information on the present condition of the river system and on future
changes in water quality. Operational managers must be able to respond quickly to
emergency situations in order to protect and conserve the river and maintain adequate
water supplies for public use. Moreover, the costs of water treatment and bankside
storage are particularly high and there are therefore considerable benefits to be gained
from the efficient operational management of river systems from the viewpoint of water
quality (Young and Beck, 1974; Whitehead, 1978; Beck, 1979; Rinaldi et aI., 1979).

In recent years there has been some progress towards providing more efficient
operational management by the installation of automatic, continuous water-quality
monitors on river systems. These measure such water.quality variables as dissolved
oxygen, ammonia, and temperature, and, if combined with a telemetry scheme relaying
information to a central location, provide immediate information on the state of the
river for pollution control officers. Whilst the reliability of such schemes is still rather
poor, there is now an opportunity to use this information together with mathematical
models for making real-time forecasts of water quality.

The practical problems associated with the continuous field measurement and
telemetry of water quality have largely limited the application of on-line forecasting
and control schemes. Continuous flow of water past sensors for measuring water quality
gives rise to severe fouling of optical and membrane surfaces, thereby drastically reducing
the accuracy of the data produced. In recent years, however, there have been several
studies and applications of continuous water-quality monitors (Briggs, 1975; Kohonen
et a!., 1978). Most UK water authorities have established monitoring and telemetry
schemes (Cooke, 1975; Hinge and Stott, 1975; Caddy and Akielan, 1978) and report
reasonable reliability provided the monitors are regularly maintained. More recently,
Wallwork (1979) has described an application on the River Wear in northeast England
where a continuous monitor is used to protect an abstraction point.

The application of particular interest in this paper is an extensive monitoring
and telemetry scheme which has been developed along the Bedford Ouse River system.
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FIGURE 6 Monitoring, telemetry, and mini/microcomputing system operational management.

As indicated in Figure 6, automatic water-quality monitors have been installed at several
sites along the river and data on dissolved oxygen, pH, ammonia, and temperature are
telemetered at four-hourly intervals to the central control station located in Cambridge.
It is proposed to extend this telemetry scheme to include information on flow and such
variables as rainfall and solar radiation, and to use a mini/microcomputer located in
Cambridge to analyze the data on-line. The system will provide rapid information on
the present state of the river and will incorporate a dynamic water-quality model for
making real-time forecasts of flow and quality at key locations along the river system.

The data from the automatic monitors are telemetered at four-hourly intervals
to the central master station in Cambridge and, in order to assess and model the short
term behavior, data have been obtained for the monitoring stations located at Sharnbrook
and Tempsford (see Figure 2) for the period from July to November 1978. The stretch
of river between these two sites is of particular interest to the Anglian Water Authority
because of the location of the Bedford Water Division abstraction plant at Clapham,
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the discharge of effluent from Bedford Sewage Works, and the abstraction of water at
Offord just downstream of Tempsford.

Data have been obtained for dissolved oxygen, ammonia, flow, temperature, and
solar radiation together with data on the quality and quantity of effluent from Bedford
Sewage Works. A plot of dissolved oxygen at the upstream site is given in Figure 7 and
shows clearly the daily oscillations caused by oxygen production and consumption
processes, and the longer-term fluctuations which are due to other variables such as
temperature and streamflow. Initially, mathematical analysis of these data has been
restricted to the first 108 samples (18 days) since this period corresponds with a major
storm event and high levels of ammonia in the river downstream of the sewage works.

6 AMMONIA AND DISSOLVED OXYGEN MODELS

The model of ammonia and dissolved oxygen is based on the mass-balance descrip
tion of eqn. (1) but contains additional terms to describe source and sink processes
such as the nitrification of ammonia and the production of oxygen by photosynthesis.
The river between Sharnbrook and Tempsford has been divided into four reaches with
reach boundaries corresponding to the abstraction plant at Bedford, the Bedford Sewage
Works, and an intermediate point between the sewage works discharge and the Tempsford
monitor. The upstream ammonia concentrations are particularly low « 0.05 mg r 1

)

and therefore the ammonia model has been formulated for just the two reaches below
the sewage works. The models identified using the EKF are as follows:
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Dissolved oxygen

P. G. Whitehead

dxddt (3)

(4)

(5)

Ammonia

(6)

dxs!dt

where

(7)

(8)

Xl, X2, X3, X4 = DO at the downstream boundary of the four reaches (mgr 1
),

Xs, X6 = the ammonia concentrations at the downstream boundary of the
third and fourth reaches,

u 1 = the upstream DO concentration entering the first reach at Sharn
brook (mg 1-1),

Ue = the ammonia in the effluent discharge calculated as the effective
instream ammonia level (mg 1-1),

Q = the flow rate measured at Bedford (m 3 day-I),
S = a sunlight term to account for addition of oxygen by photosyn

thesis,
VI, V2 , V3 , V4 = volumes of the reaches (m3

),

k 1 = the rate constant associated with oxygen production by photo
synthesis (day-1),

"-2 = the loss of DO caused by BOD upstream of Bedford (mg 1-1 day-I),
k3 = the loss of DO caused by BOD downstream of Bedford (mgl- 1

day-I), and
k4 = the nitrification rate (day-I).

The sunlight term, S, is a function of solar radiation, Sr (see Water Research Centre
Annual Report, 1968) and is determined as

The constant 4.33 in eqns. (5) and (6) represents the mass of oxygen removed from the
water for each unit mass of ammonia nitrified.

One feature of particular interest in this model is the inclusion of the flow term,
Q, in the ammonia nitrification expression in eqns. (5)-(8). The flow is included to
account for the lower nitrification rate occurring under high flow conditions (Garland,
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FIGURE 8 Recursive estimate of ammonia-decay coefficient and measured flow at Tempsford.

1978). During the initial EKF runs the flow term was not included and the parameter
k4 , as shown in Figure 8, is estimated recursively and appears to be inversely propor
tional to the flow, Q. Inclusion of the flow term and reestimation of k4 produced an
essentially constant or slowly varying parameter, as shown in Figure 9. The higher flows
tend to flush the reach of the nitrifying bacteria which are responsible for the conversion
of ammonia to nitrite and nitrate and hence reduce the nitrification processes. The EKF
is particularly useful in identifying this behavior and reducing an essentially time-varying
parameter model to a model which is time-invariant (Whitehead, 1979).

The other parameters in the dissolved oxygen model do not vary significantly
over the sampling period, as shown in Figure 9, although the parameter k1 increases
slightly during the estimation. This is most probably due to the presence of large algal
populations in the river, which have not been explicitly included in the model. During
the course of the Bedford Ouse Study (1979) the sunlight term was modified to account
for the algal populations using cWorophyll-a concentrations as a measure of the oxygen
producing matter in the river. In the present study, cWorophyll-a data are not available
and the sunlight term is therefore dependent on solar radiation only. As shown in
Figure 10, there are large diurnal variations in dissolved oxygen which are indicative
of algal activity, and further work incorporating the algal components is therefore
required.

The simulation of dissolved oxygen and ammonia, as shown in Figure 10, is
reasonable although the peak of the ammonia is considerably underestimated. This may
be due to the inaccurate measurement of effluent flow from the sewage plant during
the peak of the storm and the additional inputs along the reach from agricultural and
urban runoff.

7 CONCLUSIONS

The design of a water-resource system from the viewpoint of water quality has
conventionally been based on "steady-state" models which provide information on
annual average conditions. However, for many design problems, detailed information
on the transient behavior of water quality is required together with a description of the



334 P.G. Whitehead

o

o 25 50

Sample number

75 100

10· k 4

-----------~--------~

7.5

~

::l 5.0
'">....
~....
~

E
~ 2.5'"0..

50
Sample number

-----------
O.Ob~ , __

o 25
!

75
,

100

FIGURE 9 Recursive estimates of parameters with inclusion of flow term.



Modeling and forecasting water quality in non tidal rivers: the Bedford Ouse

"- 8
OJ

E

o
o

6

335

"
OJ

E
co
c::
o
E
E«

o

2

o

25

25

50

Sample number

50

Sample number

75

75

100

FIGURE 10 Simulated and observed DO and ammonia concentrations at Tempsford.

stochastic aspects of water quality. Such information can be obtained using the inte
grated models of flow and water quality developed during the Bedford Ouse Study.
In this paper the models have been used to assess the impact of effluent on the Bedford
Ouse River.
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In recent years continuous water-quality monitoring schemes have been developed
in conjunction with telemetry systems to provide real-time information for operational
management. The rapid development in microcomputers has enhanced such schemes
by providing considerable analytical power for on-line data-processing at relatively low
cost. The application of real-time forecasting and control of water quality along critical
stretches of river systems is therefore an option available to operational management.
Such an application has been considered for the Bedford Ouse river system and this
scheme is currently being implemented by the Anglian Water Authority and the Institute
of Hydrology.
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ADAPTIVE PREDICTION OF WATER QUALITY IN THE
RIVER CAM

H.N. Koivo and J.T. Tanttu
Tampere University of Technology, Tampere (Finland)

1 INTRODUCTION

Modeling can be used for two main purposes - prediction or control. This must
be kept in mind when methods for either, or both, of the purposes are chosen. In this
paper the prediction of water quality in a river is investigated.

Prediction or forecasting has received much attention, especially in the time·series
literature (Brown, 1963; Coutie, 1964; Box and Jenkins, 1970). Applications of fore·
casting methods to water-pollution research have been described by, for example,
Kashyap and Rao (1973) and Beck (1977). In addition, a very thorough account of
related modeling aspects has been given by Beck (1978), in which river water quality
is specifically discussed. In this volume, the papers by Ikeda and Itakura (1983) and by
Tamura and Kondo (1983) describe the application of the group method of data handling
to forecasting.

In this paper a recently developed adaptive self·tuning predictor for multivariable
stochastic processes (Tanttu, 1980) is used for real-time prediction of water quality in
the River Cam.

The field data are given in Beck (1978). The basic idea of a self· tuning predictor
is easy to explain: instead of identifying plant parameters and then constructing a multi·
variable predictor, predictor parameters are identified and updated at each step. This
technique was suggested by Wittenmark (1974) and Holst (1977) for the scalar case. It
was motivated by the success of self·tuning controllers (Astrom and Wittenmark, 1974;
Koivo, 1980) and, especially in the multivariate case, by the ease with which compu·
tations can be performed compared with the explicit scheme.

2 REVIEW OF THE SELF·TUNING PREDICTOR

Many time-series can be described by an autoregressive moving average (ARMA)
model (Box and Jenkins, 1970), which in the multivariable case takes the form
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+ Cnce(t - nc) (t == 0, 1, ...) (1)

where yet) E SfP is the (measured) output, e(t) ESfP and teet), t == 0, 1, ... } is a
sequence of independent, equally distributed random vectors with zero mean and
covariance R. Introducing the backward shift operator q-I, q-Iy(t) := yet - 1), eqn. (1)
can be written in the more compact form

(2)

where the p x p polynomial matrices are given by

The matrices Ai, Ci (i == 1, 2, ... , n) are assumed to be time-invariant and they may
also be zero. It is further required that det A(z) and det C(z) have all their zeroes outside
the unit disk, i.e., the process is stationary and invertible (Box and Jenkins, 1970).

The following notations will be used below. yet + kit) is the k-step-ahead prediction
of outputy(t + k), kEf. The prediction error at time t + k is

E(t + k) == y(t+ k)- y(t+ kit)

It can be shown (Tanttu, 1980) that model (2) can be written in the form

(3)

(4)

where yet + kit) is the prediction that minimizes the loss function (the minimum variance
prediction) :

the prediction error is then given by

E(t + k) == E(q-I )e(t + k)

The key aim is now to estimate recursively the parameters of the model

(4')

so that the estimation error wet) is minimized. The matrices A(q-I) and B(q-I) can be
calculated if matrices A(q-I) and C(q-I) of model (2) are known. Then according to
eqn. (4) the minimum variance prediction is obtained from
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(5)

If model (4') is used, however, and the matrices A(q-l) and B(q-l) are estimated recur
sively, the new prediction is calculated from

(6)

Now the prediction algorithm can be presented.

2.1 The Prediction Algorithm

2.1.1 Step 1: Choosing the Model and Initial Values
Choose the integers m and I in eqns. (7) and (8):

(7)

(8)

and the initial values of the matrices ..10 , AI, ... ,Am' Bo,R1 , ••• ,Rz•

2.1.2 Step 2: Estimation
Choose the matrices Ai (i = 0, 1, ... , I), Rj (j = 0, 1, ... , m) in

so that the estimation error {W(t)TW(t)} is minimized.

2.1.3 Step 3: Prediction
Compute the predicted value ofy(t + k) from

The well-known recursive parameter-estimation algorithms, in particular the recursive
least-squares (RLS) method (see Appendix) and its variant the square-root algorithm
(Peterka, 1975; Koivo, 1980) can be used in step 2 if the data vector, parameter matrix,
and "measurement vector" are defined as follows:

z(t) = E (t)

(9)

(10)

(11)
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Using the above notation the prediction algorithm takes the following form.

2.1.4 Algorithm 1
(I) Read the new outputy(t).
(2) Form the vectorsx(t) and z(t) according to eqns. (9) and (11).
(3) Update the parameter matrix

using the RLS method.
(4) Compute the new prediction from

(5) Set t := t + I and return to (I).

2.2 A Modified Algorithm

Usually the predicted signal contains deterministic or almost deterministic com
ponents. These parts of the signal may be handled by adding an extra measurement
vector vet). Now we estimate the parameters of the model

where vet - k) is the additionalp-vector and

is a p x p polynomial matrix. The new prediction is computed from

This can be stated in the form of the following algorithm.

2.2.1 Algorithm 2
(1) Read the values ofy(t) and vet).
(2) Form the data vector

x(t) = [ET(t-k),ET(t-k-I), ... ,ET(t-k-m);

yT(tlt -k),yT(t - lit - k - 1), ... ,yT(t -lit - k -I);

vT(t-k),vT(t-k-1), ... ,vT(t-k-r)]

(3) Update the parameter estimate matrix

(13)
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(4) Compute the new prediction from

(5) Set t := t + 1 and return to (I).

3 A CASE STUDY - THE RIVER CAM

343

The algorithms developed were applied to the field data presented in Beck (I978)
on the DO and BOD concentrations of the River Cam. A restriction was that only 81
samples were available (80 days). This could have caused problems because in the com
puter simulations it usually took 10-20 steps before the prediction and parameter esti
mates became satisfactory.

The origin of the data and several models of DO-BOD-algae interaction are dis
cussed in Beck (I978). In the present case the following notation is used. The data
obtained at measurement station D (see Figure 1) are denoted by

[
YI (t)J

y(t) =
Yz(t)

(t = 0, 1, ... , 80)

where YI (t) is the measured DO concentration (g m-3) and Yz(t) the measured BOD con
centration (g m-3), both at time t.

EFFLUENT DISCHARGE

WEIR
\ BAIT'S BITE,

RIVER FLOW

BOTTISHAM

200 m 1100 m1-1·--- 4 . 5km ---~_\ \.
I I I WEIR

I I-- DEFINED SYSTEM ----l
U D

FIGURE 1 Schematic definition of the study reach showing the location of the effluent discharge
from Cambridge Sewage Works.
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Similarly the data at measurement station U are denoted by

H.N. Koivo. J. T. Tanttu

(t=0,1, ... ,80)

vet) is used as an auxiliary variable in Algorithm 2; another auxiliary variable, r, was also
used, defined as

(t = 0, 1, ... , 80)

where ri(t) is the stream temperature CO C) and r2(t) is the duration of sunlight (h day-i).
The aim was to predict y(t + k) based on known data at time t, that is y(n) and v(n)
{r(n)}, 0 ,.;;; n ,.;;; t. In the following, one-step-ahead predictors are discussed.

When Algorithm 1 is used, only measured values yet) .. .y(O) are employed to
predict yet + 1). Though the algorithm is self-tuning, some parameters must be pre
selected: (1) the order of the model, that is, integers m and I in eqns. (7) and (8); (2) the
initial values for the parameter estimation algorithm (see Appendix), that is, P(O) the
initial covariance matrix and 8(0) the initial parameter estimates; (3) (0";;; A";;; 1), the
"forgetting factor"; and (4) the initial values for the predictor. The effect ofP(O) can be
seen from eqns. (A2) and (A3) in the Appendix. It is usually chosen as r x I, where I is
an identity matrix and r a large positive constant. The forgetting factor A is used to put
more weight on recent data; its value should be chosen as less than 1, especially when the
system is time-variant.

Extensive simulations of both self-tuning predictors and controllers have shown
that the effects of parameters described in (2) and (4) above are not significant when
hundreds or thousands of simulation runs are used.

In all examples, the so-called square-root algorithm (see Appendix) was used, since it
is numerically more reliable than the original RLS method. In all the examples that fol
low, S(O) = 10001 (eqn. A6 in the Appendix), and initial parameter estimates are set equal
to zero, except for Bo, which is equal to I (Bo is inverted in the prediction algorithm).

The initial prediction vector is equal to [8.0,2.oF which is near the true value
[8.0,2.3 F =yeO). Different values of A and different predictor structures are compared
in Table 1. The loss function V is defined as

80

V = (1/61) L ET(t) E(t)
20

TABLE 1 Values of the loss function using Algorithm I.

~ = 1.0 ~ = 0.98

(14)
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o
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1.034
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v
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The initial value in the calculation of V is 20 because the predictor only "settles" after
10-20 prediction steps (this is due to the parameter estimation algorithm). For com
parison, V = 1.082 when the "trivial" predictor yet + lit) =yet) is used.

The prediction results are shown in Figures 2-5 together with the parameter esti
mates. The best results are obtained with m = 0, 1= 1. The final values of the elements
of matrix Al are about a x 10-5

, 0 < lal < 1, and thus it is sufficient to estimate matrix
Ao only.

There is also a slight drift in some elements of matrices Ao and 8 1 , Using a for
getting factor of less than unity yields, however, slightly worse results. It is also inter
esting to note the similarity of estimated matrices Ao and 8 1 after about 10 steps. This
also holds true for the other cases. The fmal values of these matrices are as in Figure 2:

_ [1.00 -0.00565]
Ao -

0.184 0.698

_ [-0.999 -0.00296]
8 0 -

0.00197 -1.01

_ [1.00 -0.00555]
8 1 -

0.185 0.698

So if we assume that Ao = 8 1 and 8 0 = - I, the model is

or
I(t) = AOI(t -1) + (-1 + Aoq-I)y(tlt - 1) + wet)

(1- Aoq-I)(I(t) + )I(tlt- 1))- wet) = 0

Noting that I (t) +y(tlt - 1) equals yet) we obtain the first-order autoregressive
process

yet) = Aoy(t - 1) + wet)

where

[
1.00 -0.0057]

Ao R::

0.19 0.70

12

(IS)

jI,
c '
o 8 ,. ','

'.j:j , I \ "
.!S . \ ~,r' / I~'" -/ \, ,;'~

, ~!, ~ ~,!\ ~
" 4y'"", '{vJ\'~" cI .! '\ ." I I • I ~ v, ....r 0 4
I I 10\ • I., I' (J

.; '. 0
Cl

FIGURE 6 Fixed predictor y(t + lit) = AoY(t).
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Also the fixed predictor

yet + lit) = Aoy(t)

was used, and the results are given in Figure 6. The loss function V is equal to 0.209,
which is much worse than the values obtained with self-tuning predictors.

When Algorithm 2 is used, the remarks about preselected parameters hold. There is,
however, one parameter more to select, that is, integer r in eqn. (13).

The results when auxiliary variable v (upstream DO and BOD concentrations) is
used are presented in Table 2, and are also shown in Figures 7-10. It can be seen that
Algorithm 1 gives better results. It is again obvious that Al parameters are not needed
because this matrix is practically zero.

The auxiliary variable r was only used with the structure m = 0, 1= 1, r = 0
(Figure 11). The results were almost equal to those shown in Table 1. So the effect of
r is negligible, which can also be seen from the values of the Go parameters.

12 12

c:
0

'';:; c:
co 8 0.... '';:;.... co :c: ....
a> ....
t.l c: ,c:

~
a> ,

0 " t.l
t.l ' . c: ,

4 I / ~ I 0 4 ,
Q t.l

,
0

,
0 ,

a:l Q

"
0' 0::

0 2 40 60 80 0 20 40 60 80
Time Time

FIGURE 9 Same predictor structure as in Figure 6(a) but Ais 0.98.
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FIGURE 10 Same predictor structure as in Figure 7(a) but Ais 0.98.
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TABLE 2 Values of the loss function using Algorithm 2.

A = 1.0 A = 0.98

m

o
I

o
o

v
1.052
1.182

m

o
I

r

o
o

v
1.082
1.123

It is clear that the prediction method presented cannot be utilized in real time,
since BOD measurement requires five days to complete. Thus, at time t, only values
Y2(O),Y2(l), ... ,Y2(t - 5) and V2(O), V2(1), ... ,V2(t - 5) are available.

4 CONCLUSIONS

A multivariable self-tuning predictor has been applied to real field data, with
encouraging results. The ease of implementation of the self-tuning predictor is obvious.
The proposed prediction algorithm is particularly useful when the system model is not
well-known or when the system parameters vary slowly with time. The algorithm is
suitable for short-term prediction, but should not be used in long-term forecasting.

A more straightforward prediction algorithm would first fit the system model
and then recursively identify the parameters, which would then be used in a precalculated
optimal predictor. However, computationally this method is more laborious than that
proposed, and therefore it was not used here.
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APPENDIX: RECURSIVE LEAST-SQUARES METHOD

Here the recursive least-squares method is reviewed briefly. We introduce the fol
lowing notation: a row vector x(t) E.9t P which contains data known at time t, a parame
ter matrix a= r81 ,8 2 " •. , 8 p ], and a "measurement vector" z(t) E~P.

If we try to fit a model of the form

z(t) = aT X(t)T

between z and x, the columns of the parameter matrix can be computed recursively as
follows:

ai(t) = 9 i(t-I)+K(t)[zi(t)-x(t)9i(t-I)] (i= I,2, ... ,p)

K(t) = P(t)x(t)T[I+x(t)P(t)XT(t)r1

P(t+ 1) = {P(t)-K(t)[1 +x(t)P(t)xT(t)]KT(t)}/A

(AI)

(A2)

(A3)

In eqn. (AI), Zi(t) denotes the ith component of z(t). In eqn. (A3) the scalar A is the
exponential "forgetting factor", which is usually chosen so that 0.9 < A:o( 1.0.

In the square-root algorithm the main difference is that, instead of the pet) matriX,
its square-root Set) is updated. Now the equations become

K(t) = sP /a~

P(t+ 1) = S(t+ I)ST(t+ I)

where

(A4)

(AS)

(A6)

Set + I)ij (i,j = 1,2, ... ,p) (P = dim x)
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where Ais the forgetting factor, and

aj = (aJ_1+fj)l!2 U=1,2, .. "p)

j

fj = L S(t)ijX(t)i U= 1,2, ... ,p)
i=1

H.N. Koivo, J. T. Tanttu

(i = 1,2, ... , f)
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UNCERTAINTY AND DYNAMIC POLICIES FOR THE
CONTROL OF NUTRIENT INPUTS TO LAKES

I.H. Fisher
Resource Engineering Department. University ofNew England, Armidale.
New South Wales (Australia)

1 THE PROBLEM OF NUTRIENT INPUTS TO LAKES

Both natural and man-made lakes are receiving increasing nutrient loads, particu
larly in the forms of sewage and runoff from agricultural land. These inputs may be
treated to a greater or lesser extent prior to discharge into lakes. A lumped representation
of this situation is given in Figure 1. The output is neglected in the following discussion
on the assumption that its impact on the total nutrient load is small in comparison with
the inputs and biological sources-sinks.

The major reason for controlling nutrient inputs is taken to be the prevention of
accelerated primary production, usually in the form of algae and especially blue-green
algae, and the consequent deterioration in the quality of water for drinking or recre
ational uses. It is usual to postulate that the maintenance of algal concentration at
acceptable levels can be accomplished by maintaining certain nutrient concentrations
below specified levels. This is generally an impossible task for two reasons. Firstly, there
are usually uncontrolled inputs to the lake of a significance comparable with the amounts
removed from the controlled inputs. Secondly, the sedimentary and biological sources
sinks of nutrients within lakes are subject to large, uncontrolled disturbances, for
example, by wind-induced currents.

Under these circumstances, the best that can be hoped for is the maintenance of
nutrient concentrations below specified levels for a specified proportion of the time.
This is in direct contrast to the aim of achieving specified trajectories (or nutrient con
centrations), which is so common in the literature of state-variable control theory. It
reflects a fundamental philosophical difference between the physical and environmental
sciences. Given the lack of understanding of the ecological behavior of lakes, it would
be presumptuous, if not dangerous, to aim to achieve particular trajectories of nutrient
concentrations over time. Indeed, from the point of view of maintaining resilience
(Holling, 1978), the system state should be as unconstrained as management objectives
will permit.

The above aim is to be achieved by using an optimal operational policy for the
(partial) control of nutrient inputs, within the constraints of the present plant available
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FIGURE 1 Lumped input-output representation of a lake.

for nutrient removal. The term "optimal" is defined here in a welfare sense; that is, an
optimal policy is one which results in smaller social net costs, however defined, than do
alternative policies. It is quite distinct from the notion of minimizing some squared
deviation from a nominal trajectory of state - a notion often criticized in the control
theory literature (see, for example, Rosenbrock and McMorran, 1971).

2 DEVELOPMENTAL DECISIONS AND OPERATIONAL POLICIES

Management of lake water quality may be considered to comprise two broad
types of decision, namely developmental (long run) and operational (short run). The
former type usually involves capital investment, and results in a decrease in social costs,
however defined, over a future period of many years. Such decisions are taken infre
quently. The installation of equipment to remove phosphates from river water before
it enters a lake is an example of a developmental decision which might be taken in the
context of controlling nutrient inputs to lakes.

In contrast, operational decisions are made relatively frequently and can be
readily and substantially reversed over time, even if at some significant cost. For such
decision-making, some level of development is assumed to have resulted from develop
mental decisions taken in the past. Continuing the above example, the degree of phos
phate removal by the plant over a given time would constitute an operational decision,
which would depend substantially upon the characteristics of the plant installed.

Because the behavior of complex systems must be obtained numerically rather
than analytically from their mathematical representation, it is convenient to assume that
operational decision-making is a discrete process; that is, the decision taken remains
in force for a specified period (the decision period), at the end of which a new decision
is taken. However, there are often practical reasons for using the same decision struc
ture. Then the operational management of the system involves a sequence of decisions
which are to some extent interrelated through their effects on the system state. Further
more, it is intuitively evident that each decision in the sequence should be related to the
current system state, if the system's assimilative capacity is not to be impaired. Returning
to the previous example, the degree of phosphate removal should be somewhat dependent
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upon algal biomass or other variables which denote the phosphorus-dominated state of
the lake at a given time.

An operational policy is therefore defined as a procedure for selecting a sequence
of operational decisions (one for each decision period) which takes due consideration
of the system state.

This paper discusses the applicability of simulation and certain techniques from
control theory to the derivation of optimal operational policies for controlling nutrient
inputs to lakes, under the uncertainty associated with uncontrolled disturbances to
the quality of the water impounded. The problems of uncertainty in the estimation of
model parameters and the related uncertainty of field measurements are assumed to
have been resolved previously. However, the effect of these uncertainties on the pre
dictions will be considered in relation to the combined simulation/dynamic programming
procedure developed in Section 5.

It may be argued that optimal operational policies for nutrient input control may
be derived from operator experience or from simpler models which depend upon the
availability of intensive time-series data for both the inputs and the lake. However, this
is feasible only if the plant (or other developments) have already been installed. Such an
approach is not applicable to the problem of determining optimal plant capacity (or
scale of other developments), because no time-series data are available during the planning
phase. Yet the solution to such a problem is in general strongly related to the operational
policies to be adopted for the proposed development. The remainder of this paper is
written with such problems in mind.

3 SIMULATION

Simulation is the most direct method of deriving optimal operational policies for
renewable resource systems. System dynamics are represented by a set of differential
or difference equations of state which may incorporate constrain ts on system behavior.
Given the initial values of the state variables, methods for calculating inputs, and a
plausible operating policy, the equations of state may be solved simultaneously to yield
the system state over the long-term period of interest. Furthermore, the contribution
of system operation towards some specified objective can be computed for the same
period.

To obtain the optimal operational policy, another simulation run is performed
which differs from the first only in that an alternative operational policy is implemented.
The policy which results in the larger contribution toward the specified objective is
denoted as currently optimal. Other plausible policies are similarly tested against that
currently optimal policy until no further improvement can be found. Then the currently
optimal policy is regarded as the true optimal operational policy for the system. The
procedure is illustrated in Figure 2.

A major advantage of this approach is that complex models and trial operational
policies may be tested. The only requirements are that the state equations and the contri
bution of system operation to the objective can be formulated algorithmically, and that
computing facilities are adequate for the task. Simplicity of the optimization procedure
is an added benefit. However, there are several inherent difficulties.
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FIGURE 2 Procedure to obtain optimal operational policies by direct simulation. Vi is the value of
the objective function resulting from applying the ith policy; Vopt is the current optimal value of the
objective function; Uopt is the policy resulting in Vopt .

The first disadvantage of the simulation approach is that the currently optimal
policy may yield only a locally optimal value of the objective function. The greater the
complexity of the simulation, the more frequent is the occurrence of local optima, the
more complex is the operating policy, and the less likely are search methods such as
steepest descent or the "complex" method to fmd the globally optimal policy. When
faced with this problem, Zuzman and Amiad (1965) used a partial factorial experimental
design to determine the regions of the problem space which were to be examined by
steepest descent. If the number of such regions is large, this may be unacceptable because
of the computing time involved.

The second disadvantage of the application of simulation is a consequence of the
simplicity of the optimizing procedure - the number of trial policies obtained by
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selecting, at the start of each of n decision periods, one element from a set of m admis
sible values of control is m n - which can be extremely large even when m and n are
quite small. To test even a substantial subset of these policies is unrealistic when the
available computer time is limited or expensive. Furthermore, there may be important
interactions between the initial state of the system and the proposed operating policies
which require further simulation runs to elucidate.

The inputs to lakes within each decision period are not known with certainty.
Frequently, they are assumed to conform to probability density functions whose parame
ters are possibly seasonally varying and are to be estimated from historical records.
Simulation of such systems requires the generation of a sequence of inputs (one for
each decision period) by random sampling from these density functions. If two different
input sequences are so generated from the same set of density functions, significantly
different optimal operational policies are obtained when the two different input
sequences are used in an otherwise identical simulation procedure. That is, a different
operational decision is chosen as optimal for the same (or comparable) decision period,
when faced with the same system state in each case. Yet, such "mixed strategies" are
suboptimal where the probability densities of the stochastic inputs are stationary or
"cyclically stationary" in time (O'Loughlin, 1971). Any deterministic procedure applied
to system models which incorporate stochastic elements will suffer from this contra
diction.

In a dynamic programming study of optimal operational policies for simple water
resource systems, Hall and Howell (I963) suggested that the "pure strategy" which is
expected to exist might be obtained by averaging the corresponding elements of the
optimal policies which were derived under different sequences of the stochastic inpu ts.
O'Loughlin (I 971) found that such average policies were considerably less optimal than
those obtained by the stochastic dynamic programming technique discussed in
Section 4.4.

4 TECHNIQUES FROM CONTROL THEORY

4.1 Conventional Control Theory

Conventional control theory is taken to comprise those methods based on the
use of transfer functions in the frequency domain (see, for example, Horowitz, 1963).
The fundamental objection to the use of such techniques for the determination of
policies for controlling nutrient inputs lies in the assumption of linear relationships
between system inputs and outputs.

It is often argued that the assumption of linearity is reasonable for the treatment
of small perturbations about some long-term (low-frequency) behavior of the observed
variables (see, for example, Brewer, 1974). Even if this is true, the low-frequency behav
ior is usually assumed to be some equilibrium or simple trend, because this is the desired
trajectory which the control policy aims to achieve. For the present problem, a nominal
trajectory is not to be assumed for the reasons given in Section 1. As a consequence,
nonlinear system dynamics must be assumed from the outset, and conventional control
theory is then inappropriate. A further objection to these methods is the difficulty
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involved in incorporating constraints on state and control variables, which is vital in this
case (Heidari et aI., 1971).

4.2 Modem Control Theory

Modern control theory is taken to comprise those methods of control analysis
carried out in terms of state space. In particular, the methods of state-variable feedback
(Salmon and Young, 1979) have considerable appeal from the point of view of designing
robust control policies. However, they suffer from the same deficiencies as conventional
control theory when attempting to derive control policies for nutrient inputs to lakes.

In contrast, the technique of dynamic programming (Bellman, 1957) may be
applied to general nonlinear systems in state-space terms. Constraints on both state
and control variables actually reduce the amount of computation required and are
readily implemented. It will become apparent from the next two sections that dynamic
programming, by itself, is not without its difficulties when applied to the control of
nutrient inputs.

4.3 Deterministic Dynamic Programming

Dynamic programming is based upon Bellman's (1957) principle of optimality
which states that: "an optimal policy has the property that, whatever the initial system
state and initial decision, the remaining decisions must constitute an optimal policy with
respect to the sta te resulting from the first decision".

For the problem of control of nutrient inputs, dynamic programming may be
reformulated as follows.

If x(t) is a vector of n variables which define the state of the system at any time
t, and u(t) is a vector of m variables which define the operational policy, then the
equations of state for the system may be written in discrete form as

x(t + ot) = x(t) + f[x(t), u(t), tJot (1)

where f is some functional form defining the change of state from t to t + ot. In general,
both x and u may be constrained differently at different times so that x EX(t) and
u E U~, t) are the sets of admissible states and controls, respectively, at time t. If the con
tribution of the controlled system to the objective function over the time t to t + 0 t is

b.J = r[x(t), u(t), tJot

then direct application of Bellman's principle of optimality yields

l(x,t) = min {r[x,u,tJot+l[x+f(x,u,t)ot, t+ot]}
uEU

(2)

(3)

where l(x, t) is the minimum cost which may be accumulated by proceeding from state
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x at time t to any admissible state at final time t f, and r[x, u, t] is the net cost accruing
per unit time at time t.

The iterative functional equation (3) may be solved for discrete values of x and U

to obtain the optimal long-term operating policy for the system by commencing with
estimated values of l[x, u, tfJ and proceeding backwards in discrete time-steps of at
until the initial time to is reached. Figure 3 illustrates the form of the solution for a
constrained problem in one state variable and one control variable. Although formu
lations which progress forward in time are possible, these require the inverse of the
equations of state. If these equations are at all complex, finding their inverse is impos
sible, so that forward formulations are not feasible. In contrast, the backward formulation
permits the use of an algorithmic rather than analytic specification of these equations,
i.e., a simulation of the system over each period t to t + at.

In the case of controlling nutrient inputs, the lake system must be considered
stochastic, not only because of the uncertainty associated with inputs, but also because
there are more variables exerting a significant influence on the state variables than can
be incorporated in the dynamic programming formulation.

4.4 Stochastic Dynamic Programming

There are, fortunately, versions of dynamic programming which treat stochastic
changes of system state over the decision period t to t + at. The equations of state now
include a set of random variables Wi, i = 1,2, ... ,V, which affect some or all of the
state variables, so that

x(t + at) = x(t) + f[x(t) , u(t), wet), tJot (4)

The parameters of the joint probability density function (PDF) of the random
variables may vary with time, but the densities are assumed to be independent between
successive decision periods. That is

P[w(1), w(2) ... w(Tf)] = P[w(1)]P[w(2)] ... P[w(Tf)] (5)

where Tf is the number of decision periods and P(y) denotes the probability of y.
Because future states are partly dependent on wet), only their probability of

occurrence is known, even when the present state and the control policy are known.
Hence a function of present and future states and controls can no longer be optimized.
Instead, the expected value of the function is used. That is

J = E {I r[x(t),u(t), wet), t]ot}
w(I),w(2) ... w(Tf) t=1

and

l(x,t) = min {E[r(x,u,w,t)ot+l(x+!(x,u,w,t)ot,t+ot)J}
uEU w

(6)

(7)

Computationally, the difference between deterministic and stochastic dynamic
programming is the manner of evaluating the term inside the braces. In the latter case,
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for a given discretized state x and control u, each discretized value of w (denoted w(a);

a = 1, 2, ... ,A) is substituted into the square brackets of eqn. (7) and the result is
multiplied by the probability of obtaining that w(a). The sum for all possible w is the
required term. That is

E{r(x, u, w, t)bt + I[x + [(x, u, w, t)bt, t + btl}
w

A

= L p[w(a)j{r(x, u, w(a), t)bt + I[x + [(x, u, w(a), t)bt, t + bt]} (8)
a=1

There are, however, several difficulties with such an approach. Firstly, by inspection
of eqn. (8) it is apparent that a stochastic problem involves approximately A times the
amount of computation associated with the deterministic counterpart. This can lead to
prohibitive processing times for problems involving large numbers of discretized states 
as is the case for the control of nutrient inputs to lakes.

There is a compensating factor, however. The formulation offers a direct means
of imposing probabilistic constrain ts on nutrient concentrations (or other state variables)
of the form

P[x >xmaxl <P* (9)

where P* is the probability with which the state may be outside the acceptable state, in
a single decision period. These constraints, which were proposed in Section 1 as a major
part of the operational objective, may be implemented as follows.

During execution of the computation implied by eqn. (8), x(t + bt) for a given
control u and for each w(a) are computed from eqn. (4) and checked to determine
whether x(t + bt) <xmax . If any of the x(t + bt) do not satisfy this condition, the
associated values of p[w(a)j are cumulated. If this cumulation exceeds P*, then the
given control u is regarded as inadmissible. Of course, p* may vary with time of year
and is related to an annual probability via eqn. (5).

Secondly, for stochastic dynamic programming to be applied to a problem involving
several stochastic variables, a technique is required for the evaluation of the P [w(a)], the
probability of obtaining a particular set of discrete values of wet), the random variables,
at any time t (see eqn. 8). In the case where the elements of w(a), Wi (i = 1, 2, ... , v),
are uncorrelated, the product of the P[w/a)j yields the desired result, so that knowledge
of the discrete univariate distribution for each Wi is sufficient for the purpose.

In general, some or all of the random variables will exhibit marked correlation with
each other. Then the joint probability of obtaining each combination of discrete values
of the Wi must be evaluated separately and stored for use when needed by the com
putational procedure. For reasons indicated in the next section, the joint PDF of the Wi

may be specified in continuous form. Its conversion to the discrete form needed for
dynamic programming may be accomplished by first assuming that all combinations of
discrete values of the Wi are placed at the center of (hyper-)rectangles in v-dimensional
space. Then the probability of obtaining a particular combination is given by the (v + 1)
dimensional (hyper-)volume between its (hyper-)rectangle and the projection onto the
(hyper-)surface of the PDF.
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FIGURE 4 Joint probability associated with a particular combination of the stochastic
variables (two-dimensional case).

The case of two random variables distributed joint-normally is illustrated in Figure 4.
Doran (personal communication, 1972) developed an algorithm based on Gauss-Legendre
quadrature to evaluate the probability elements from this distribution. Fisher (I 974) gen
eralized this algorithm to suit any multivariate normal distribution. It would, with minor
changes, be suitable for any other multivariate distribution, so that the lack of comprehen
sive probability tables for multivariate distributions and the mismatching of element
limits needed in the dynamic programming problem with those given in the available
tables are no longer barriers to the application of stochastic dynamic programming.

Instead, the chief obstacle to such an application lies in the specification of the
joint PDF for the random variables (wa so that it is appropriate to the particular system
for which the operational policy is to be developed. It is in this respect that simulation
plays a crucial role, as discussed in the next section.

5 COMBINED SIMULATION/STOCHASTIC DYNAMIC PROGRAMMING

There are two factors which prevent the direct application of stochastic dynamic
programming as presented in Section 4.4 to lake inputs. Firstly it is difficult to specify
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a functional form for the state eqns. (4) which is an adequate representation of the
changes which may occur in the lake state over a whole decision period. Even if this
could be done, it will be virtually impossible to evaluate the joint probabilities P[w/a )]

with an acceptable degree of statistical confidence due to lack of data, at least in the
planning situation referred to in Section 2.

At this point, it is helpful to recognize that stochastic dynamic programming
actually requires the probabilities of changes in the system state from each given dis
cretized value x(t) to any admissible discretized state x(t + 8t), during the decision period
t to t + 8t. Subsequently, these are referred to as "state transition probabilities". For
simplicity of explanation here, these probabilities are assumed constant over all decision
periods, but for environmental systems generally, different values for different times
of the year would need to be considered.

In these circumstances, the state eqns. (4) may be replaced by an appropriate
simulation of the internally descriptive type, so that the random variables Wi are replaced
by the combined effects of uncertain (stochastic) inputs and endogenous variables which
are themselves neither state variables nor control variables. In the phosphorus-removal
example, if concentrations of algae, soluble reactive phosphorus, and particulate phos
phorus were state variables for the lake system, a simulation incorporating phosphorus
dynamics as influenced by endogenous variables such as uncontrolled inflows and wind
induced mixing could be substituted for eqns. (4), as indicated by eqns. (4a):

x(t + 8t) = g [x(t), u]

where g denotes the transformations in the system state produced by the simulation.
The right-hand side of eqn. (8) would then be

B

LP[x(t + 8t)lx(t)]{r[x, u, t] + I [x(t + 8t), t + 8t]}
b:l

(4a)

(8a)

where B is the number of alternative state transitions which may occur within the
decision period in the dynamic programming formulation.

The frequency estimates of P[x(t + 8t)lx(t)] are obtained from a Monte Carlo
simulation possessing the following properties: the initial condition is set at a discretized
state x*(t), and the simulation period is one decision period, t to t + 8t. Such a simu
lation procedure must be repeated for each admissible discretized value of initial state
to obtain the full set of state transition probabilities required in the computation of
eqns. (4a).

Because large numbers of discretized states are involved in a realistic dynamic
programming formulation, it will generally require far less total simulation time to
perform one large Monte Carlo experiment with the duration of each run still one
decision period, but with the initial conditions randomly sampled from admissible state
space. The state transition probabilities are then obtained from the fundamental multi
plication theorem

P[x(t + 8t)lx(t)] = P[x(t + 8t),x(t)]/P[x(t)] (I 0)



368 I.H. Fisher

Monte Carlo
simulation

I
Frequency distributions
of [x(t + ot)lx(t)]

Type of
probability
distribution

?

Discrete Continuous

Convert frequencies to Choose joint distribution and
P[x(t + Ot)lx(t)] estimate its parameters

I
Use P[x(t + ot)I.x(t)] Generate P[x(t + Ot)jx(t)]
in stochastic from joint distribution
dynamic programming using Gauss-Legendre quadrature

I
Optimal operational
policies

FIGURE 5 Combined simulation/stochastic dynamic programming procedure.

where the last term is the marginal probability which is derivable from the Monte Carlo
estimates of the joint probabilities in the usual manner. The combined simulation/
stochastic dynamic programming procedure is outlined in Figure 5.

Fisher (I974) argued that far less simulation might be needed to obtain state
transition probabilities if some multivariate distribution were assumed for the joint
probabilities P[x(t + 8t), x(t)], its parameters were estimated, and probabilities for
stochastic dynamic programming were computed by Gauss-Legendre quadrature as
described in the previous section. For a joint multivariate normal distribution, this proved
efficient computationally, but it was not an adequate description of state transition in
controlled arid grazing systems. For the case of nutrient inputs to lakes, it is unlikely
to fare better because the simulations are of similar complexity. One of the methods
involving direct frequency estimates of state transition probabilities is therefore to be
preferred.

This discussion of the combined procedure contains an important feature con
cerning uncertainty. In another paper in this volume, Halfon and Maguire (1983) discuss
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the accumulation of uncertainty in predictions which result from prolonged operation
of a simulation. There is very little such accumulation occurring in the combined
simulation/stochastic dynamic programming procedure just described because no simu
lation is longer than one decision period.

In this section, the role of Monte Carlo simulation in the combined procedure has
been emphasized. However, the optimal policies are obtained directly from stochastic
dynamic programming. Hence, the problem does not arise that different policies are
found to be optimal under different, but equally likely, sequences of stochastic inpu ts,
as it did in the direct simulation approach of Section 3.

6 CONCLUSION

Any method for deriving management strategies for the control of nutrient inpu ts
to lakes must recognize the uncertainties in their behavior induced by stochastic inputs
and uncontrolled endogenous variables. In the particular case of deriving optimal
operational policies, direct simulation adequately treats the complex dynamic nature
of the problem, but it yields conflicting policies for equally likely sequences of the
stochastic system state. Furthermore, even if systematic search techniques are employed,
the simulation approach is computationally inefficient in comparison with techniques
from control theory, because it does not take advantage of the structure of the sequential
decision problem.

For ecological and philosophical reasons, methods from control theory are con
sidered to be inappropriate if they require the specification of a target trajectory for the
system state. Stochastic dynamic programming is acceptable from this viewpoint, and
it exploits, to computational advantage, the structure of the sequential decision problem
at hand. Furthermore, probabilistic constraints on the state variables may be incor
porated; indeed, this can lead to improved computational efficiency. It is, however,
limited in the number of state variables which can be comfortably included in the state
equations. More importantly, some method is needed to obtain actual values for the state
transition probabilities.

With suitable modification of the system state equations, Monte Carlo simulation
may be used to provide state transition probabilities which reflect the uncertainties
resulting from large stochastic inputs and uncontrolled endogenous variables. Further
more, each run of the Monte Carlo experiment is only one decision period in duration, so
that uncertainty in the predictions of system state does not have a chance to accumulate,
as it does in the direct simulation approach.
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UNCERTAINTY AND FORECASTING OF WATER QUALITY:
REFLECTIONS OF AN IGNORANT BAYESIAN

Mark Sharefkin
Resources/or the Future, Washington, D.C (USA)

BACKGROUND

I was privileged to join in the Task Force meeting of November 12-14, 1979.
Much of the terminology employed by the water quality modelers was new to me, or
used in new ways: calibration, validation, model structure identification are notable
examples. Because I am more at home in the jargon of decision theory and econometrics,
I assumed at first that no more than the usual difficulties of translation were involved.

I am no longer so sure: in fact, I suspect that the two disciplines share more than
terminological imprecision, and in fact, labor under some of the same substantive confu
sions. In this note I try to identify those confusions, and I will pose what are perhaps
naive solutions.

2 ECONOMETRICS AND WATER QUALITY MODELING UNDER
UNCERTAINTY: SIMILARITIES

Econometricians work almost entirely with nonexperimental data, whereas water
quality modelers work with measurements they have made - with data that are the
products of a conscious experimental design. However, since the Task Force meeting
hardly touched on the experimental design problem - how best to spend a given budget
in gathering data on a particular river or lake - I put this difference aside.

Much more important is the essential similarity: both econometricians and water
quality modelers often work with data that are quite "poor" relative to the rich and
complicated systems they wish to study. In at least this sense, most of the systems that
econometricians study are, in the terminology heavily favored by several Task Force
meeting participants, "badly defmed systems". What some of those participants call
"model structure identification", econometricians call "specification". Many would agree
that, given a "model structure" or, in econometrics, a "specification", the logically
secondary step of estimation is relatively straightforward and less interesting.
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What to do? Econometricians have generally left the specification problem to
the imagination, or worse. One notoriously common practice is to run all plausible
regressions, choose the one with the highest R 2 value, and report it as if it was the first
regression run.

That something is seriously wrong with this kind of practice has long been recog
nized by econometricians, but a consensus about just what is wrong, and about what
would be better, is only now developing (see, for example, Leamer, 1978). I cannot
report with authority about the prevailing situation in water quality modeling, but
the discussions in Vienna left me with the impression that something similar may be
happening there.

3 "MODEL STRUCTURE IDENTIFICATION" OR "SPECIFICATION":
WHAT IS THE ISSUE?

Because both econometrics and water quality modeling operate in data-poor (i.e.,
data-expensive) regimes, both must make the best possible use of all available information.
Some information lies buried in the data, and we call it "data information"; sometimes
that data information can be efficiently summarized by a few sample statistics. But some
relevant informa tion is prior information, information held by the investigator before even
looking at the data. It seems to be a fact that there are many varieties of prior informa
tion: Bayesians learn, or try to learn, to live with that fact and its implications. One
important implication: different investigators will interpret the data evidence in different
ways, because their interpretation of that evidence - their a posteriori estimated model
structure - is the result of an exercise in which prior information and data information
are combined. Bayesians can boast a systematic way of combining the two types of
information; non-Bayesians often make that combination implicitly, and sometimes
opportunistically. Bayesians feel obligated to report fully their prior information and the
map of that prior information into a posteriori information. Non-Bayesians see them
selves as under no such obligation: frequently their prior information, and the use they
have made of it, can only be seen dimly, in their final, reported estimates.

"Model structure identification" and "specification" are processes in which prior
and data information are combined. At the Task Force meeting I sensed underlying dis
agreement about what prior information was available on the systems being modeled
and about what that prior information was worth. There also seemed to be open disagree
ment about how to combine prior and data information. The first such disagreement is
understandable, and even predictable; the second is neither.

4 WHAT KIND OF PRIOR INFORMATION IS AVAILABLE FOR WATER
QUALITY MODELING?

Individuals will differ in their prior information, and from one perspective much
of the discussion at the Task Force meeting consisted of articulation of those disagree
ments. Two papers, both concerned with specification and estimation of models for the
control of algal blooms in lakes, can be contrasted to illustrate the range of prior infor
rna tion deemed relevant by at least some water quality modelers.
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Paper A (Chahuneau et aI., 1983) describes a diffusion equation based hydro
dynamical model of a lake: that model will be one module of a larger management
oriented model of the lake. All parameters of the underlying partial-differential equation
were assigned a certain prior value, except for two; nonlinear programming was used to fit
those two remaining parameters by minimizing a quadratic distance between observed
and predicted temperatures at two depths. Paper B (Hornberger and Spear, 1983) aims at
determining a best strategy for control of algal blooms in a lake, but the approach is
entirely different. A simple dynamic model of the system is constructed - with relatively
little a priori structure imposed. That model, like the model of Paper A, has many more
parameters than can be "confidently estimated" from data available on the lake. The
authors of Paper B raid the literature for decent values of many of the relevant parameters
which have been measured elsewhere, and then fit the remaining undetermined parameters
by imposing the requirement that the fully-fitted equation reproduce a few rough, quali
tative features of the lake, including of course the spectacular and objectionable algal
blooms, the control of which motivates the whole exercise.

At one level, the essential difference between the two approaches is a difference
in the interpretation and treatment of prior information. The authors of Paper A bring
to their work two kinds of prior information: measured characteristics of the lake,
including the temperature distribution, and the "prior information" embodied in the
diffusion equation employed, and in the coefficients of that equation assigned fixed
values before the optimization. The authors of Paper B, on the other hand, import prior
information on those physical parameters measured in similar systems elsewhere and
on the gross qualitative features of the system they are trying to control.

Who is right? That question is meaningless. A more instructive question is: which
judgment is closer to the mark regarding the kind of prior information we now have,
and might buy at reasonable cost, on lake ecosystems? Below I offer some speculation:
here, I look at the problem in the following perspective. Because of my ignorance of
the subject, I would be very unwilling to let either prior or data information dominate
the mapping of prior in to posterior for water quality modeling: this much I learned at
the Task Force meeting. For that reason, I would choose to cast prior information in
a form in which it might be substantially modified by the kind of sample information
(data information) readily available on water quality systems. My suspicion is that only
the approach taken in Paper B will do. The only way in which the key piece of prior
information exploited in Paper A - the partial-differential equation - can be "dis
credited" by the data information is if the optimization assigns the two estimated coeffi
cients values that are wildly implausible.

But it is a poor critic indeed who cannot find fault with everything. Turning to
the way in which prior information is mapped into posterior information, I can find
fault with both Papers A and B, and can even find a way to make some possibly construc
tive suggestions.

5 MAPPING PRIORS INTO POSTERIORS

Paper B devises a method for mapping priors into posteriors and is explicit about
that method. Prior information in this case is of two kinds: the four nonlinear dynamic
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equations chosen to represent the system and rectangular prior probability distributions
on the parameters entering into those equations. Those intervals defining the prior
probability intervals are taken from the literature on other, presumably similar, water
bodies.

The "data" information enters in a way that is novel and is the novel feature of
the paper. "Data" means certain gross structural features of the system, in particular
the algal blooms. These are data in the sense that they are the only observed features
of the dynamic system, and they are also data in the sense that they are to be tested
against prior information.

Paper B sets up that confrontation as follows. Each prior parameter set implies
a specific nonlinear deterministic equation set. If that equation set defines a system
trajectory consistent with the "data" ~ the inequality constraints imposed upon the
real-time behavior of the system - then the corresponding parameter-space point is
assigned to one region (behavior), and to another region (nonbehavior) if the inequality
constraints are violated. Monte Carlo methods allow exploration of the parameter-space
hypercube, and - through run-by-run comparison of the output with the inequality
constraints - partition off the original parameter-space hypercube into two (presumably
connected) regions, "behavior" and "nonbehavior". If the behavior subregion is "large",
then the prior information is concluded to be reasonable and reasonably compatible
with the data evidence. The implication, for management and control, is that selection
of a point from the behavior region, and use of the corresponding equation, may be a
sensible procedure.

Much as this procedure cheers a Bayesian, I lodge the following complaint: the
way in which the procedure uses data evidence to map priors into posteriors is, to say
the least, less than subtle, and may seriously distort the data evidence. In particular,
posterior probability distributions are always uniform distributions on a subregion of
the support hypercube of the original prior distribution. Put another way, the data
evidence can never be strong enough to drag us ou t of the original prior parameter region.
The very binary nature of the inequality constraints on system trajectories - those
trajectories are either consistent with the inequality constraints or they are not - rules
out any finer discrimination between prior points. (See the example in the Appendix.)

One of the stronger arguments, if not for Bayesian econometrics then for a style
of presentation of econometric results with a Bayesian flavor, goes as follows: the best
way to get a sense of the power and persuasiveness of the data evidence is to report
the way in which the data evidence maps priors into posteriors. In Paper B, only one
such mapping is presented. In the next section I suggest alternative methods - for com
putation and reporting - in the spirit of Paper B.

Paper A can be similarly dissected. Prior information in this case is the partial
differential (diffusion) equation which is the basis for the hydrodynamical model of the
lake, taken together with those coefficient values which are assigned certain point values,
typically from the literature on other, similar water bodies. The data information consists
of the relatively few measurements made on the lake, typically temperatures at specific
points and levels, and several inflow values.

The approach in Paper A is classical (as compared to Bayesian): the remaining
(unassigned) model parameters are determined by nonlinear optimization, with the
criterion being the sum of squared deviations between data and model prediction points.
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For purposes of comparison with Paper B, however, we choose to imagine that the
authors of Paper A were to rework their prior information and data information, this
time in a Bayesian spirit. This could be done as follows. First assign prior probabilities
to the two model parameters that are not assigned certain point values. Those prior
probabilities on model parameters imply corresponding prior probabilities on the physical
variables for which some data exist, obtained by solving the model repetitively over the
prior in tervals.

Now, beginning from the two optimized model parameters obtained in the non
linear optimization, compute equal likelihood contours in the space of the unassigned
model parameters. Taken together, the equal prior probability surfaces and the equal
likelihood surfaces define a set of best compromises between prior and data information.
They also indicate how decisive or persuasive the data evidence is against the sample
evidence. If, for example, the data likelihood surface embraces all reasonable priors,
then the data evidence is, for this way of comparing data and prior evidence, relatively
weak.

My own suspicion is that, for a large, over-parameterized model, this will usually
be the case. A key criterion in the choice of a model should be the following: that
the model permits a constructive and instructive confrontation between prior and
data evidence. Larger, over-parameterized models typically will fare badly under this
criterion.

6 SOME CONSTRUCTIVE SUGGESTIONS

1 have argued, above and elsewhere, that both the model order criterion - or the
information criterion from which it derives - and least-squares estimation have serious
deficiencies (see Sawa, 1978; Leamer, 1979). The first is simply meaningless, and the
second is, except for a few very special cases, strictly dominated. Here is a proposal
for reform, followed by a proposal for a fair test of the relative merits of the modeling
approaches exemplified by Papers A and B.

My proposals for reform are couched in the form of a set of statements. I hope
these statements will meet with general agreement. First, in water quality modeling
for water quality management, both prior and data information are exploited. This is a
triviality worth repeating: there is data information, typically too sparse to say anything
on its own, and there is prior information, again often too sparse to be decisive on its
own. The reasons for the second situation are different than the reasons for the first.
Some kinds of prior informa tion are relatively weak without certain particular pieces of
information that would be very expensive to obtain. I have in mind here information of
the following kind: the boundary information which, in principle, is needed to apply a
diffusion equation to a large wa ter body.

Second, an ideal reporting style for analyses of a situation in which neither prior
nor data information is decisive is reporting the mapping of priors into posteriors: that
is, in showing how several priors, somehow chosen over a reasonable range, are mapped
into posteriors by the data.

Third, an implied criterion for choosing among water quality modeling approaches
is their convenience and ease in assisting us in this exercise. This criterion will, in practice,
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heavily favor models with small numbers of parameters. That is, the entire procedure of
specifying and adjusting priors becomes cumbersome once more than two or three
parameters are involved.

Finally, a promising suggested test of the approach of Papers A and B. The test
should be made in the context of a particular management problem. Begin with the
assumption that the "true" system is that described by the approach taken in Paper A.
Use the hydrodynamical and ecosystem models of that approach to generate pseudodata
on the behavior of the system: each data set should be generated so as to permit appli
cation of either the Paper A or Paper B approaches. Now approach that data in two
ways. For the Paper B approach assign some parameters from other water bodies, and
fit the rest with our proposed modification of the approach of that paper. Do the same
for Paper A, this time fitting the unassigned parameters with the technique of that
paper. Finally, assign a loss function on the effect to be controlled, and compare - at
each prior probability/data probability point - the losses imposed by the use of the two
approaches.
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APPENDIX: A SIMPLE EXAMPLE

Suppose that we are studying a dynamical system known to be described by
eqn. (1) and initial condition (2):

x(t) (1)

x(O) - C (2)

We are asked to estimate the two scalar parameters a h a2; the only data we are
given is in the form of one inequality restriction (3) on x(t):

(3)
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Because the solu tion to (i) is:

x(t) = c exp (al t) exp (a2 sin t)

condition (3) implies the inequality

379

(4)

(5)

For each value of t in the interval [tl, t2 ], inequality (5) defines a closed half plane of
the (al, a2) plane, so that the set of restrictions (5) defined as t varies over that interval
defines the intersection of a set of closed half planes. For convenience (and without loss
of generality) choose units so that our prior hypercube in (al, a2) space is the unit square
[0, 11 x [0, 1], and consider the trivial case in which the t·interval reduces to one point:
t l = t2 = f. Then the method of Paper B tells us to summarize the "data" xU) ~ L by
constructing the half plane

and by restricting our attention, in (al,a2) space, to

[0,1] x [0,11 rJH

(6)

(7)

Compare this with an analog of the more familiar form of data summary. Consider
the loci of points in the (al, a2) plane defined by constant values of the loss function

(8)

Those loci are lines parallel to the boundary of the region (7). Clearly the data summaries
provided by (7) and (8) are very different.
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