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ABSTRACT

The problemsof waterloggingand salinity on agriculturallandshasled to
the installation of agricultural drainagesystems. The effect of soil pro-
perty uncertainty on drainage system design and thus ,drain perfor-
manceis not implicitly consideredby presentdesignprocedures.This is
the first in a seriesof papersthat will present methodsfor analyzing
the effect of soil property unc'ertaintyon drainage system design. An
analysisof the natureof uncertaintyand spatialvariability in recharge
rate and soil permeability is presented.A First Order-SecondMoment
(FOSM) approach is developedfor the Hooghoudtsteady-statedrainage
designequation to provide an estimateof the of the uncertaintyof the
dewateringzone betweenthe drains as a function of the designvariables
and the uncertainty in the soil propert!p,s. Based upon the FOSM
approach, a ChanceConstraintmodel for optimal design of drains is
developedwhich incorporatesuncertaintyin rechargerate , permeabil-
ity, dewateringzone with the economicsof drain installationto provide
the leastcostdesignfor given reliabilities of drainperformance.
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DESIGN OF AGRICULTURAL DRAINAGE
UNDER UNCERTAINTY.1.
A CHANCE CONSTRAINT APPROACH

KennethM. Strzepek.JohnL. Wilson andDavid H. Marks

1. Introduction

In the designof drainagesystemsto alleviate problemsof waterlog-

ging and salinity on agricultural lands uncertaintycanbe found in many

aspectsof the analysis:the modeL the physicalproperties,the agronomic

response,economiccoefficients, and institutional factors. The effect of

theseuncertaintieson drain performanceis not consideredby present

designprocedures,which also lack any explicit considerationof economic

efficiency. This series of paperswill presentfor the first time methods

for analyZing the effect of soil propertyuncertaintyon drainagesystem

design. A method to provide a measureof uncertaintyin drain perfor-

mancewill thenbe usedto developa model for the economicallyoptimal

design of surface or subsurfacedrains under steady-stateconditions of

waterapplication.
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An analysis of the nature of uncertaintyand spatial variability in

rechargerate (sometimescalled drainagerate or drainagecoefficient)

and soil permeability (hydraulic conductivity) is presented. A First

Order-SecondMoment (FOSM) approach which is developed for the

Hooghoudtsteady-statedrainagedesignequation providesanestimateof

the first and secondmomentsof the dewateringzone betweenthe drains

as a function of the designvariablesand the uncertaintyin the soil pro-

perties. Basedupon the FOSM approachtwo methodsfor optimal design

of drains are developed.One of thesetwo methods,a ChanceConstraint

model which minimizes drainageinstallationcost subjectto a reliability

constrainton drain performance,is presentedin this paper. In a second

paper [Strzepek, Marks, and Wilson.19B2] a Stochastic Programming

model which incorporatescrop yield functions into optimal drain design

is developed,applied. and the two approachesare compared.

2. Uncertainty in Drainage Design

Figures la and 1b are representationsof the drainagedesignprob-

lem. The objective of installing a drainagesystemis to control the dewa-

tering zone, DWZ, betweenthe drains. The dewateringzone is a function

of the designvariables: the spacingbetweendrains.L: the depth to the

water level in the ditch,D I and the penetrationof the ditch below the

water level,P. for surface drains (see Figure la) and for sub-surface

drains (seeFigure 1b) DWZ is a function of the spacingbetweendrains,LI

the depthof the drains.D,and their effective radius,T. In both casesthe

soil properties,permeability,K, and the rechargerate ,N, and the depth

to the imperviouslayer.Z. effect the dewateringzoneThe soil properties'
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and the design variables' effect upon the dewatering zone betweenthe

drains is related through a model of the physics of groundwaterflow.

The goal of the designeris to choosea depth, D , and a spacing ,L, that

satisfy designcriteria for the dewateringzone. Thesedesigncriteriaare

usually basedupon crop responseto variousdewateringzones.The pos-

sible combinationsof D and L which meetthis criteria are relatedto the

physical parametersthrough the model. The D and L that are chosen

shouldmaximizethe benefitsof drainageinstallations.

A problem that arisesin drainagedesignis that the model formula-

tion and the estimatesof the physical parameterscontain uncertainty

and thereforethe performanceof the drainagedesignis itself uncertain.

With respectto uncertaintyin the .physicalparameters,Strzepek,Wilson,

andMarks [1982] have shownthat drain designis insensitiveto the depth

to imperviouslayer for sufficiently large Z. It can also be demonstrated

[Strzepek,etal, 1982] that subsurfacedrainagedesignis relatively insen-

sitive to the effective drain radius,r,and surfacedrain designis insensi-

tive to the penetrationdepth, P, for the rangeof values encounteredin

the field. Thus, uncertaintyin theseparametersare neglectedin these

papers,although if necessary,they could easily be accountedfor. The

importantparametersarerechargerate ,N, andsoil permeability,K. The

uncertaintyof these parameterseffect the design processand will be

analyzedin detail. In addition, any mathematicalmodel of drainageflow

will be an approximationandthus be uncertain.
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2.1. Model Uncertainty

Model uncertaintyarises from the assumptionsand approximations

implicit in the model of the physical system. For the Hooghought

Model[Hooghouhgt,1940, Wesseling,1979] presentedbelow these include

the assumptionsof steady-stateflow,essentially horizontal flow except

nearthe drains, constantpermeabilityover the depthof the groundwater

system, and a fixed depth to an impervious stratum below. The

Hooghought model also assumesspatially uniform permeability and

rechargerate. The importanceof theselast two assumptionsis evaluated

later in this paper. As alreadymentionedthe assumptionof a fixed depth

for the imperviouslayer below is valid for sufficiently largedepth.

Steady-statenow is a significant assumption, which is not always

applicable.On the contrary. rechargerate is a stochasticvariable in both

time and space.Sagar[1980] evaluatesthe effectsof stochastictemporal

variation of a uniform rechargeon the time responseof the water table

betweentwo drains. Earlier work by Gelhar[1974]andGelharet al. [1974]

uses spectral methods to examine a similar problem. The present

approachcanbe extended to accountfor the temporalsourceof uncer-

tainty.

Another significant assumptionis that flow is essentiallyhorizontal

exceptnearthe drains. A greatdeal of attentionhasbeenfocusedon this

topic in the drainageliterature.using deterministicanalysis. In fact. the

HooghoughtModel is a simple modification of the Dupuit Model [see.e.g.

Wesseling. 1979] to accountfor the non-horizontalflow near the drains.

The essentiallyhorizontal flow assumptionhas often beenusedin previ-

ous analysesof the stochasticspatial variability [See,e.g.,Gelhar et al ,



-6-

1974;Freeze,1975;Gelhar,1976;Smithand Freeze.1979;Dettingerand Wil-

son,1981.1982;Wilson and Dettinger,1982], but up to this time there has

beenno definitive evaluationof it for stochasticspatialvariation. Gelhar

[1974] has demonstratedunder what conditions the horizontal flow

assumptionis valid, for stochastictemporalvariation.

The most basic study of model uncertaintyappearsin Bakr et al,

[1978] and Gutjhar et al,[1979]. They show that there is a significant

differencebetweenthe effects of stochasticpermeabilityvariationin one

and three dimensions.In one-dimensionalflow, zonesof low permeability

have an exaggeratedinfluence on the flow field. This is of concernhere,

as the Hooghought Model is one dimensional.[as are the models of

Freeze,1975;Gelhar,1976;Smith and Freeze,1979;and Wilson and Det-

tinger,1981]. This problem is specifically avoided by assumingthat the

permeabilityis constantover the vertical. In fact, the permeabilityof the

HooghoughtModel actually representssomeweighteddepthaverageper-

meability of the soil. The effectsof spatialvariationsin the two horizontal

directionsare analyzedbelow and comparedto resultspresentedfor the

simplerone-dimensionalHooghoughtModel.

2.2. ParameterUncertainty

2.2.1. Permeability Uncertainty

Information uncertaintyfor the soil permeabilityis due both to the

error in taking eachindividual sampleand to the sparsenessof the sam-

pling network. Punctualmeasurementsof permeabilityareusuallymade

via the auger hole method [Beers,1976]or some equivalent technique.

These samples are made at a small distance beneath the ground
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surface(say,2to 3 meters).They are subsequentlyassumedto represent

the permeabilityfor the entire soil columnat that point, unlessthereis a

well defined soil stratification. Coupling this assumptiontogether'with

the difficulty of accuratelyrepeatingan experimentat the "same" point

leads to the sampleerror. This sampleerror can be estimatedthrough

statisticalanalysisof exhaustivefield investigations,or more practically,

it can be subjectively estimatedon the basis of experience. In either

casesampleerror can be directly taken into accountin the estimation

techniquesintroducedbelow.

Information uncertaintydue to datasparsenessis closely relatedto

the issue of spatial variability, and for that reasonspatial variability is

addressednext. Consider an agricultural field located on the Embabe

Drain in the Nile Delta of Egypt(SeeFigure 2 ). The field is approximately

1500 feddans(1 feddan=0.4hectare ｾ 1 acre) in areaand has 101 two

meterdeepaugerhole permeabilityteststakenon analmostregulargrid

of 200 meterspacing,as shownin Figure 3. The permeabilityvaluesrange

from 0.01 to 0.45 ｭ ･ ｴ ･ ｲ ｳ Ｏ ｾ ｡ ｹ Ｌ and assumingindependence,are distri-

buted lognormally,at the 85% significance leveL(seeFigure 4), which is

typical for this parameter[seeFreeze,1975].Figure 3 is a contourplot of

the data. Spatialvariability, suchas that presentedin thesefigures, may

havelarge scaletrends(or drifts) as well as smallerscalestochasticfluc-

tuations. The slowly varying large scale trends can be identified by

trend[eg,Davis,1973] or drift[eg,David,1978;Delhomme,1978] analysis,

while the covariogram[David.1978;Delhomme,1978]describesthe higher

frequencyvariability of the parameter.ｾ ｮ the casewhere the parameter

variability has a finite variance ,the covariogram ?,[u] is relatedto the
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Figure 3. EmbabeStudyArea andContourof Ln of PermeabilityData
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covariancefunction by:

'l[u] = Var[O] - Gov[u] (1)

where the Gov [u] is the covariance of the parameterover the distance

u [assumingisotropic] , Var[O] is the point variance,andgamma[u] is

the covariogramover u .

Subtractingthe large scale trend from the spatialprocessproduces

a residual of the process. The residual contains information about the

small scale spatial structure, which can be represented by the

covariogram[see ,eg, David,1978] . Using automatic(generalizedKriging

using BLUEPACK- described in Delfiner[1976], see also Journel and

HUijbregts,[1978]), as well as manual[David,1978]drift identifiers it has

beenfound that thereis no identifiable drift in the Embabedata.Thus the

soil permeabilityis apprOXimatelyhomogeneousin the mean, which can

be subtractedfrom the sampledatato yield the residual.

The covariogramof the residualsof naturallog permeabilityis shown

in Figure 5. It has a "nugget effect" [see Delhomme,1978]equal to 0.40.

This is probably due to sampleerror in the augerhole tests , which has

been subjectively estimated by local engineers to be "+ j- 25%"

[Amer,1979], as well as small scalepermeabilityvariationnot capturedby

the 200 meterscalegrid. The range of the covariogram,l , is apprOXi-

mately 1000 meters, and the sill is 0.74. The "best fit" covariogram

which is shown is achieved with a spherical function

[David,1978;Delhomme:1978]. The datais secondorderstationaryas indi-

catedby the presenceof the sill, which implies a finite variance.
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Sill = 7lnK(OO)=VartnK(O)-COVtnK(OO)= VartnK(O)=a&K= 0.74 (2)

This is almostidentical to the value of the varianceof InK calculatedfrom

the sampledataassumingindependence(seefigure 4).

The uncertaintyintrinsic in the spatialvariability of the permeability

can be reducedby sampling or using the estimatedsmall scale spatial

structureof the fluctuation[asrepresentedby the covariogram]to inter-

polate betweenthe sampling points. This , of course, is the purposeof

Kriging[see, eg,David,1978;Delhomme,1978;JournelandHuijbreghts;1978].

The degreeof uncertaintyreductionachievedby samplingdependson the

degree of spatial correlation and the density of the sampling network.

Therefore ,if one wishes to reduceparameteruncertaintyin the design

procedure,in order to provide more reliable and less expensivedesigns,

thenone must increasethe samplingnetwork. However, thereis a trade-

off betweenthe additionalinformation obtainedand the cost of sampling

.The correlationstructureand the sampleerror may lead to a maximum

density of sampling above which the information returnedis simply not

worth the effort. This subjectwill be addressedin future papers.

2.2.2. RechargeRate Uncertainty

Rechargerate variesstochasticallyin both time and space,although

the former will be ignoredin this analysis.Perhapsmore importantly, it is

much more difficult to directly sample rechargethan it is to directly

samplea propertysuchas permeability.One indirect approachis to infer

it through an "inverse solution", but this is unrealistic in the types of

designsituationsfacedin the field. A more commonindirect approachis

to perform a local salt balanceat each point in the field at which a
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permeabilitytest is performed. The water applicationrate and salt con-

centrationis the estimatedfrom records,thencomparedto the salt con-

centrationin the water found in the augerhole to yield a crudeestimate

of rechargerate as a function of space. Eventhis test is a luxury in many

situations,and a uniform rechargerate for the entire field is estimated

via "engineeringjudgement."

For the Embabedrain data 154 samplesof salt concentrationwere

madeat the augerholes. The valuesfor the salt concentrationexhibited

a lognormal distribution, at an 85% significancelevel. There was almost

no correlationfound betweenthe permeability values and those of the

salt values, in fact therewas a slight negativecorrelationof PKN =-.014

(seeTable 1.).

2.3. Uncertainty in Prediction of the Dewatering Zone

The dewateringzone DWZ is the distancefrom the groundsurfaceto

the water table. The crop responseto the drainagesystemdependson

the size of this zone. A predictive model is usedto estimateDWZ based

on estimatesof rechargerate ,N, and permeability ,K, for eachalterna-

tive designdrain spacing,L,and depth, D. By assumingthat N andK are

uniform (constant)betweenthe drains, simple analyticalexpressionscan

be usedto predict DWZ. If the estimatesof the uniform NandK are unc-

ertain, thenprobabilistic modelsare employedto accountfor the uncer-

tainty of the DWZ prediction, and thereforethe uncertaintyof the crop

response. If Nand K are assumedto be spatially variable, numerical

models are required,with appropriatemodifications to handle the sto-

chasticnatureof the variables.
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The evidencecollectedfrom the Embabeareaindicatesthat permea-

bility is correlatedover large distances,of the order of five hundred

metersor so. The evidenceis somewhatambiguousbecauseof the "nug-

get effect" observedin the covariogram(Figure5), which may indicate

sampleerror or simply reflect the fact that the closestdata points are

still a full 200 metersapart. If the correlationlengthof K is truly on the

orderof five hundredmeters,thenpermeabilityfluctuationsbetweentwo

drains. spacedonly 20 to 40 metersapart, will be relatively small. When

this is the case it is possible to assumethat K is uniform (constant)

betweenthe drains, but uncertain. It is uncertainbecausethe samples

containerrorsand becausethere may be no direct measurementof K in

that particular location, so that K must be inferred from measurements

at nearbystationsusing, for example,Kriging.

No major spatialstructurecould be identified for the salt concentra-

tion datafor the Embabearea. In addition ,this is a crude indirect esti-

mateof rechargerate N . Thereforeit is assumedthe rechargerate N is

uniform betweenthe drains,but uncertain.

The first model presentedbelow is basedon the assumptionof con-

stant,but uncertainNandK betweenthe drains.However. if the corre-

lation length of NandK is somewhatsmaller. approachingin magnitude

the spacingbetweenthe drains. thenthe spatialvariationof theseparam-

etersbecomesimportant. The secondmodel examinesstochasticspatial

variation using a one-dimensionalnumerical discretizationbetweenthe

drains. A third numerical model has been formulated to examine the

more realistic two-dimensional horizontal flow pattern between two

drains,fromthe collector at which they dischargeup to the edge of the
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field. All threemodelsare basedon the approximateprobabilisticmodel-

ing approachcalled First Order-SecondMoment(FOSM) analysis[seeBen-

jamin and Cornell,1970;Dettingerand Wilson,198!. 1982,andWilson and

Dettinger,1982].All three models focus on predicting the water table

,h ,and dewateringzone, DWZ, at the midpoint betweendrains, because

under most conditions the water table will be a maximum at this point

and DWZ a minimum. This mid-point is designatedby the subscriptL / 2.

The modelsare written in termsof water table heighth. The statisticsof

the predicted dewatering zone {)WZ are related to those of the water

table height by the expressionsin which the over bar presentsthe

expectedvalue.

DWZ =D - h

DWZ= D-1i.

a 2 - a2
DWZ - 11.

2.3.1. Uniform but ｕ ｮ ｣ ･ ｲ ｴ ｾ ｮ PermeabilityandRecharge.

(3a)

(3b)

(3c)

A model of this situation is given by the Hooghoudt equation,

[Hooghoudt, 1940]. From FOSM analysis, [see, for example, Wilson and

Dettinger. 1981], the first order expectedvalue of the water table eleva-

tion midway betweenthe drainsis

1i.L12 =f I(L ,d',N,l<) (4)

=-d' + Id" + ｾｲ
The first order estimateis identical to the deterministicestimate,with

the parametersevaluatedat their expectedvalue. The vertical flow near

the drains is accountedfor by replacingthe true depthby an equivalent

depthd' , which dependson the geometry:L ,d, andtype andsize of drain.
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For tile drains. the equivalentdepth has beenexpressedin closed form

[USBR. 1978]

(5)
if 0 31 < ｾ. L

d if 0.0 < ｾ :s: 0.31

1 + ｾＲＮＵＵｬｮＨＺ ｾ - 3.55 - 1.6( ｾ ｾ Ｋ Ｒ Ｈ ｾ ｾ Ｒ

Ld'=

r L
2.55lln(? - 1.15

It dependsprimarily on design parameters.and is not a function of

rechargerate N or permeabilityK. ｗ ｨ ｾ ｮ d' =d, the Hooghoudtmodel

becomesa simple Dupuit model. The varianceof water table estimateat

the midpoint, calculatedby FOSM, is [Strzepeket al., 1982; see also Wil-

sonandDettinger, 1981]

N and permeabilityK. and PKN is the correlationbetweenNand K. In

the Embabecasestudy, PKN is almostzero [PKN=-0,014]. WhenK is log

normally distributed,with Y=logK normally distributed,the ratio Ux in
K

(5) is replacedby Uy and the remaining K in (3) and (4) represent

geometric(logorithmic) averagesof the permeabilitydata. The correla-

tion coefficientbecomesPm .

Using the data from the Embabe area, (Table 1 with

UN=0.0004m / d). the predicted (3) water table elevation above the

drains, and an estimateof its reliability (5) are given in Table 2. The

drain spacingin this exampleis L =40m. andthe depthto the impervious
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Table 1. Field Datafor the EmbabeCaseStudy

Propertiesfor Mean
Standard
Deviation

SampleK 0.OB5m/day 0.OB2m/day

SampleY=lnK -2.830 0.B63

K calculated 0.OB6m/day 0.090m/day
from SampledY (geometricmean)

SampleW=LnS l 3.75 0.B15

N calculated 0.0004m/day 0.0006m/day
from SampledW

Subjective
0.0004m/day 0.0004m/dayEstimates for N

Samplecorrelationof NandK: PKN = -0.014

1 S = samplesof salt concentration

Table 2. Statisticsof WaterTableElevationfor Uniform but
UncertainParameters

Uncertain Correlation 1i.L r 2 UhL/2

Parameters PKNorpYN (m) (m)

K,N 0 0.299 0.396

K,N -0.014 0.299 0.399

K - 0.299 0.275

N - 0.299 0.2B5

Y,N 0 0.299 0,374

Y,N 0 0,396· 0.374

• SecondOrderEstimateof ExpectedValue

bottomis d. =3m =d.' (neglectingvertical flow lead losses). The first order

expectedvalue ot the water table height at the midpoint is 0.299meters.

assumingK is normally distributed. The standarddeviationot this esti-
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mateis 0.396 m. neglectingthe slight negativecorrelationbetweenNand

K, and 0.395 m accounting for it. In this example, the correlation is

unimportantand is ignored below. If only the permeabilityis uncertain,

thenthe estimatedstandarddeviationdrops to 0.275 m, while if only the

rechargerate is uncertain, it still drops to an almost identical value,

0.285 m. RecogniZing that K is log-normally distributedhardly disturbs

the first order estimateof the water table height, but it does decrease

the estimatedstandarddeviation by 6%. Becausein this examplethe.

coefficientsof variationof K andN are on the orderof one, FOSM maybe

only approximate,having neglectedhigher order terms in the relation-

ship betweenthe estimateforh andthe momentsof K andN.

A secondorder estimateof the water table height can be found that

dependsonly on the first two momentsof K and N, Following the pro-

cedurein Benjaminand Cornell [1970], and Wilson and Dettinger [1981],

this estimateis

Ｑ ｩ ｌ ｬ Ｒ Ｑ Ｒ ｮ ｾ ｏ ｲ ､ ･ ｔ =f 4(L,d',N,K,ay)

=1iLI211RorlteT + N
L2

!d,2 + ｾｲｬＯＲ x (7)
8K 4K

fl ..!.... - N L
2

!d ,2 + !J2t
1Ia2

2 16K 4KJ Y

where K is log-normally distributed. The importanceof this additional

term for the example is shown at the bottom of Table 2, where it adds

almosta tenthof a meterto the expectedheight of the water table. The

log-normality of the permeabilitydatadoes not changethe reliability of

the prediction significantly, but the large coefficientsof variation for N

and K imply that first orderestimatesmay be non-conservative,as illus-

trated in the example. In the remaininganalysesand designsdescribed
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in this paper,K will be takenas normal. and only first order estimatesof

expectedwater tablesheightwill be made. In practice,log-normality and

secondorderestimateswould be the rule.

2.3.2. SpatialVariation in I-D BetweentheDrains.

Permeabilityand rechargemay vary betweenthe drains. Assume

that the statisticsof this stochasticspatialvariation are known a priori,

and are representedin terms of expectedvalues and a covariogramor

variance-covariance.If the spatialscaleof the fluctuationsare large com-

paredto the distancebetweenthe drains. thenthe analyticalHooghoudt

model basedon uniform but uncertainparametersshould accurately

representthe uncertain physicalsystem. If, on the otherhand, the scale

of fluctuation is small comparedto the distancebetweendrains. then

spatialvariability betweenthe drainsbecomesimportantanda stochastic

. distributedparametermodel for the physical responsemust be used.

In most cases,this model will be solved numerically using Monte Carlo

Simulation [see, for example,Freeze, 1975, or Smith and Freeze,1979],

or FOSM [seeDettingerandWilson. 1981,1982]. Considerthe drain design

explained above with the Hooghoudt model, in which

L =40m,andd=d' ］ Ｓ ｾ Ｎ For spatially varying K and N, the groundwater

responseto this designis describedby the Dupuit model

ｾ [K(h + d):] =-N Q,;, z '" L (Bl

with boundaryconditions (neglectingthe vertical flow under the drains.

Le.. d=d'). This modelcanbe transformedto

d ｲｋ､ｾ =-N
､ ［ ｬ ｾ

ｏ ｾ ｸ ｾ L (9)
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where ｾ =[ (h ｾ d)'1. which has boundaryconditions ｾ ］ d
2
' at"=0,L.

Solved on DettingerandWilson's [1981] FOSM stochasticnumericalmodel

of groundwaterflow, the results , in terms of meanand standarddevia-

tion of ｾｌＱＲ at the midpoint betweenthe drains are convertedto the

statisticsfor hL 12 via

1i.L12 = ＨＲｾＩＱＯＲ (lOa)

atL/2
a - (lOb)

"'L/2 - 2'"
'¥L12

Spatialvariation of Nand K is somewhatarbitrarily representedby an

exponential variogram/variance-covariance.For example. the spatial

structureof logK is describedby

or

")'(u) = ｡ｾｋＨＱ - e-ulI )

where l is sometimesreferredto as the "correlationlength".

(lla)

(llb)

Figures6 plots dimensionlesscorrelationlength, II L. versusa[hL 12]

, using the dataof Table 1 (with aN =0.0004m/day), for uncertaintyin

K and N. In both cases,the uncertaintyof the watertable elevationpred-

iction convergesto the value predictedby the uniform parametermodel.

For II ｌ ｾ ｬ , thereis essentiallyno difference. The first orderpredicted

meanis constantfor all l. Thus, the uniform but uncertainmodel pro-

vides an accurateindication of prediction uncertainty.for spatialvaria-

tion scaleson the orderor largerthanthe spacingof the drains.
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____....! ｾｾＵＬ uniform, but uncertain N

/ 1-0 Model for spatially varying K

aN =0.0

aK =0.082mId

a 0.5 1.0

IlL

1.5 2.0 2.5

0.3

0.2

Eqn. 5, uniform', but uncertain K

"- - - ｾＺＮＮ］ＮＮＺｾ］Ｍ］ＺＮＮ］ＮＮＺＺＺ［ＺＺＮ］ＮＺｾｾＭＭＭＮ

CT. 1·0 Model for spatially varying N
Tl L/ 2 "

0.1 aN =0.0004mId

aK =o.b

0.5 1.0
IlL

1.5 2.0 2.5

Figure6. CT"LI. versuscorrelationlengthof K&N
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2.3.3. SpatialVariation in 2-D betweenthe DrainsandCollector.

Figure 7 is a plan of a section of a drainageproject, boundedby

drains to the left and right, by a collector at the top and the edgeof the

drainedfield below. Although it is not strictly correctfor spatialstochas-

tic systems,assumethat the top and bottom boundariesare exact "no

flow" boundariesof symmetry. Following the assumptionsof the previous

case,the groundwaterflow in the field. for spatially variable K and N is

describedby

:x [K(h + d) :: J + d: [K(h + d) :;I=-N

equationwith boundaryconditions

OSx sL
ｏ ｾ ｹ ｾ ｂ

(12)

(h - d) dh = 0 Os x ｾ L,y = O,B
dx

h = 0 Os y s B , x = O,L

In the transformedstatewith variable cP, this becomes

(13a)

(13b)

d 2cP2 d 2cP2
K--+ K--= -N (14)

d,x2 dy 2

with ｢ ｯ ｵ ｮ ､ ｡ ｾ ｩ ･ ｳ cP= ｾＲ on the drainsand ｾ ］ = 0 at the collectorand at

the lower edge of the drained field. Modeling this situation using Det-

tinger andWilson's [1981] FOSM stochasticnumericalmodel yields identi-

cal results to the previous models for the first order expectedvalue of

the water table. The sensitivity of the water table uncertaintyin the mid-

dIe of the field [x =L 12,y=B 12] to permeabilitycorrelationis shownin

Figure 8. In this multi-dimensionalcase.permeabilityvariation resultsin

a reductionof the water table uncertaintybecausewater is now able to

flow aroundareasof low permeability. Nevertheless.the predicteduncer-

tainty convergesto the value found for uniform but uncertainparameters
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0.3
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(J. (m)
T1 L / 2 ,8/2

0.1

Eqn. 5, uniform, but uncertain K

"

• 1·0MOdel}
A 2.0Model for spatially varying K

UN =0.0

UK =0.082mId

o 2 3 4 5 6 7 8 9 10

ilL

Figure8. rTJ&.L/2 versusCorrelationlengthK in 2-D

for l/ L >5 . once againdemonstratingthat for sufficiently large correla-

tion lengththe simpleuniform modelcanbe reasonablyemployed.

2.3.4. The PDF of h and DWZ.

The FOSM models used above to examine the uncertaintyof water

table predictionsare, by definition, secondmomentmodels. They pro-

vide estimatesof the first two momentsof the probability density func-

tion (PDF) of h andDWZ via (2). However. the drainagedesigndependson

the full PDF, not solely on its moments,whenthe decisionis basedon rell-

ability, as in this paper, or expectedloss, as in Strzepeket al., [1982].

For smallwatertable standarddeviationrelativeto thewatertable height

above the drains, the PDF of h or DWZ is normal. This has been
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demonstratedby full distributional Monte Carlo simulations for similar

problems[see, for example,Freeze.1975: Smith and Freeze,1979], which

show that the farther from the boundaries(drains) one gets. the more

normal the distribution. For larger relative variance of the water table

prediction, due to increasingvarianceof K or N, the distributionon h or

DWZ becomesskewed. Since the water table cannot rise above the

groundsurface,and if we presumeit will not fall below the drains (steady-

state), then it is clear that the true distribution on h or DWZ is finite.

Ｐ Ｍ Ｕ Ｎ ｨ ｾ ｄ , and ｏ ｾ ｄ ｗ ｚ Ｍ Ｕ Ｎ ｄ , but with various shapesdependingon the posi-

tion betweenthe drains and the expectedheight and variance of the

water tableelevation.

A finite distribution that would allow for varying shapesof h would be

the p distribution. Furtherexperimentsneedto be performedto confirm

the validity of the p distributionfor the pdf of h. The resultsof the FOSM

analysis provide 1i and an which can be directly usedto estimatethe p

distribution. However. in this series of papersto demonstratethe pro-

cedures,h will be assumedto be normally distributedwhich is true for

aN aK
smallvaluesof -=-and ｾ

N K

3. Optimal Designof Agricultural Drains.

The goal of agricultural drainage is the establishmentor mainte-

nance of soil water conditions for the optimal utilization of agricultural

lands. The dewateringzone that is createdby the drainagesystemshould

provide for optimal crop productiongiven that all other factors are as

assumed. In presentdesign procedures,a design dewatering zone is

selected, a drain depth is fixed due to institutional or hydraulic
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considerationsand then the designequationis solved for the drain spac-

ing that achievesthe desireddewateringzone, assumingthe systemto be

deterministic. The issueof determiningthe optimal combinationof depth

and spacingthat meetsthe designcriteria ratherthan fixing the deptha

priori is seldom addressed.Given a cost function for tile drainage,the

selectionof the optimal designcanbe castinto a MathematicalProgram-

ming Problem (MPP) which would determinethe depthand spacingthat

minimize the cost of achieving the desired drainage performanceas

definedby the drainageequationand the deterministicparameters.

Since the physical parametersof the drainage equation are not

deterministic, the performanceof the drains becomesuncertain. This

translatesinto uncertaintyin achievingthe desiredsoil water conditions

upon which the drainage benefits are estimated. The problem then

becomeshow to design economically efficient drainage systemswhen

there is uncertaintyin meeting the design criteria. MathematicalPro-

grammingunderuncertaintywas developedto addressthis type of issue.

Two main approachescan be identified. The first, "Chance Constraint"

Programming,was presentedby Charnesand Cooper[1959], and is based

upon the concept of reliability in system performance. The second

approach."StochasticProgramming",usesan economicresponseof the

systemoutput. togetherwith the probability distribution of the system

output, to determinean expectedsystemresponse. This approachwas

developedby Dantzig [1955]. This paper presentsa "ChanceConstraint"

approachto optimal drainagedesigngiven uncertaintyin systemperfor-

mance and no information about the economic responseof crops to

drainage. In the second paper in this series, [Strzepek. Marks, and
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Wilson, 1962]. a "StochasticProgramming"approachbasedupon empiri-

cal dataof the crop responseto drainageis developed,and a comparison

of the two approachesand the implicationsof eachare presented.

3.1. ChanceConstraint Model

The optimal designof drains is mademore complexby the fact that

the designcriteria for the soil water condition. the dewateringzone, can-

not be met with certainty. Instead, there is a probability distribution

describingthe depthof the dewateringzone,DWZ. The questionbecomes

how to accountfor this uncertaintyin the drainagedesignprocess. The

performancecriteria for drain performanceis a specifiedvalue of the

dewateringzone, which representsthe optimal conditionfor crop produc-

tion. Many times there is no informationaboutthe responseof cropsdue

to variationsfrom this optimum. In thesecases.it is assumedthat the

designDWZ representssome thresholdvalue. For DWZ depthsgreater

thanthis designvalue, the yield is assumedconstantat the optimal value,

while for smaller DWZ there is a decreasein benefits. Strzepeket al.,

[1962], will showthat this is seldomthe caseandthat this assumptioncan

leadto poor results. However, if no dataexistson crop response,thenan

approachbaseduponthis singlevalue mustbe developed.

In the drain designMPP. thereis a constraintthat requiresthe dewa-

tering zone midway betweenthe drains to achievea certaindesignvalue.

This constraintcanbe met with a specifiedreliability, and thus a certain

probability, a. A generalized"chanceconstraint"is definedas

Pr(a. z S ｢Ｉｾ a (15)

which statesthat the constraint ｡ Ｎ ｺ ｾ ｢ mustbe metwith a probability a .
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when x representsthe decision variables. 11 representsthe coeffi-
;

cients. and b representsthe resourcelimitations. The "chance con-

straint" can be transformedinto a deterministic equivalent constraint

when b is a randomvariablewith known probability distribution. From

the propertiesof the distribution of b , a value of b that satisfiesthe

condition that ex % of the distributionwill be less thanthe value b IX can

be found. The deterministicequivalentconstraintbecomes

11 X ｾ b IX

which satisfiesthe "chanceconstraint".

(16)

(17)

To this point, all discussionhas been applicable to the analysis of

both surfaceand sub-surfacedrain design. For clarity, the remainderof

the paper focuses on the tile drains. All developmentspresentedcan

easilybe modified to addressthe analysisof surfacedrainagedesign.

In the drainagedesignMPP, the chanceconstrainton the drainage

performanceas definedby the Hooghoudtequationis

P,!DWZ(D,L) '" DWZ'j =P,(D+d' - ｾＧＲ + ｾ［ｲｬＲ '" DWZ'J'" a

where DWZ· is the designvalue of the dewateringzone. The chancecon-

straint must now be transformedinto a deterministicequivalent. It was

shown above that the dewateringzone can be assumednormally distri-

buted with a mean and variance defined by a FOSM analysis of the

Hooghoudt equation, when certain conditions on the uncertaintyin the

outputparametersare met. A propertyof the normaldistributionis that

a randomvariable X will exceeda certainvalue x with a probability ex

when the meanof X minus "A" times the standarddeviationis equivalent

to x, where "A" is a function of ex definedby the standardizednormal dis-
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tribution. With this property of the first and secondmoments of the

dewateringzone constraint, (17) can be transformedinto the following

deterministicequivalentconstraint

DWZ+ A X (jDWZ::?!: DWZ· (18b)

where d' is the Hoodhoudtequivalentdepth(5) which must be included

in the constraintset. To completethe ChanceConstraintformulation of

the tile drainageMPP, the completeconstraintset must be defined. The

depthof the drain will be constrainedto be lessthanthe maximumgrav-

ity flow in the main drainagesystem. Finally, the depthandspacingmust

not be lessthanzero.

The objective function for the Chance Constraint MPP for tile

drainagedesignis to minimize the cost of drain installation. This cost is

relatedto the numberof tiles needed,which is a function of the drain

spacing,and the cost per meterof laying the tiles ,which is a function of

the laying machine, the depth of the drains, labor costs, fuel cost etc.

Thesefunctions canvary from nation to nation, or from regionto region.

ChristopherandWinger [1975], have developedgeneralizedcost functions

for threetypesof drain laying machines,baseduponUS Bureauof Recla-

mation drainageprojects. El Berry [1979] has developeda detailedcost

function for tile drainageinstallationin the Nile Delta in Egypt. The gen-

eral form of the El Berry function is

(19)
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where C I,C 2,c3,andc4are coefficientsspecific to the region andthe type

of machineused. This paperwill look at a casestudy of tile drain design

under uncertaintyin the Nile Delta using the El Berry function for the

Embaberegion.

A ChanceConstraintMPP for tile drainagedesigncanbe formulated

as follows

drain designdescribedabove has a non-linearobjective

MIN CapitalCost =COST(D,L)

Subjectto:

DWZ + A x (]mtz ｾ DWZ·

DWZ=D -n.
(] 2 _ (]2

DWZ - h

n.L/2 =f I(L,d',N,K)

d' =f 2(L,d,r)

2 f --(]hL/2 = 3(L ,d',N,(]N,K,(]K,PKN)

D ｾ D max

d=Z-D

D,L ｾ 0.0

The MPP for tile

(20)

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

(21g)

(21h)

(2li)

function and a non-linearconstraintset. The objective function is a con-

vex function andthe constraintsetdefinesa convexregionfor the Egyp-

tian casestudyconditions. Thesetwo propertiesare necessaryand suffi-

cient conditions for obtaining a globally optimal solution to a minimiza-

tion problem. An algorithm, [Wismer and Chattery, 1978], using Newton's

method to solve for L in the implicit non-linear boundary to the con-

straint set, and a one-dimensionalgoldensectionsearchover D was used

to find the optimal drain designfor eachreliability and dewateringzone
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chosen.

If the conditionson the uncertaintyof the input parametersexist as

outlined above. thenthe ChanceConstraintMPP for drainagedesignis a

possibletool when there is no informationon the crop responsefunction.

The model can be used in many ways to aid decision makers and

designersin decisionseffecting drainagedesignunderuncertainty. The

next sectionpresentsan applicationof the model to tile drainagedesign

for the Embabecasestudyregionin Egypt.

3.2. CaseStudy Application

The resultsof the analysisof the uncertaintyfor the soil parameters

in the Embaberegion are used as a databasefor an applicationof the

ChanceConstraintapproachto drainagedesign.

Table 3. Parametersfor Drain DesignMPP

I.PhysicalParameters

fJ =0.0004m/ day aN =0.0006m/ day

K =0.085m/ day aK = 0.082m/ day

DWZ· =1.0m

Dmu =2.0m

II. ObjectiveFunctionParameters

C 1 =52.2

C2 =1.646

Cs =0.365

C4 =55.892
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Table 3 lists the statisticsfor the input parametersNandK as well

as the design parameters; Dmax =2.0mandDWZ· =1.0m for Egyptian

clover. With thesevalues and a choice of a design reliability, the con-

straint set is defined. Table 3 also lists the parametersfor the EI Berry

cost function in the Embaberegion of the Nile Delta. The function pro-

vides for the costper feddanin Egyptianpounds(1 L.E. = 1.5 U.S. Dollar)

of tile drain installation using a Hoes drain laying machine [EI

Berry,1979].

For eachreliability of the depthto the water table midway between

the drains, a new optimal tile drain designis found. Curve 1 in Figure 9 is

a plot of the cost per feddanof the optimal solution for a given reliabil-

ity. The resultsshowthat the greaterthe reliability, the greaterthe cost

of the design. As the reliability of the designdewateringzone increases,

more and more of the probability distribution of the dewatering zone

must be greaterthanthe designvalue. This is accomplishedby increas-

ing the value of the m,eandewateringzone or reducingthe variance,both

of which require more costly designs. This curve could also be viewed in

economic terms as a supply curve for reliability on a fixed dewatering

zone. If the drainageproject budgetwas limited and a maximuminvest-

ment per feddanwas determined,thena decisionmakercould determine

the optimal reliability availablewith that investment.

Many times in the design processthe drain depth is fixed due to

institutional or hydraulic considerations.This adds a new constraintto

the model. Curves 2 and 3 in Figure 9 show the resultswhen the drain

depthis fixed to 1.75 and 1.5 metersrespectively. It is seenthat the cost

increasesfor the samereliability when the depthis fixed. This increase
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follows optimizationtheory. which statesthat as a minimization problem

becomesmore constrained,the cost of the optimal solution increases.

The effect of a priori fixing the drain depthis examinedin more detail in

Figure 10 for a reliability of 93%. It showsfor this casestudy that as the

drain depth increases,the cost of the optimal solution decreases.The

decision maker could use this type of result to examine the economic

trade-offsbetweenthe costof modifying the drainagesystem,(especially

main drains), in order to allow deeperdrains,and the cost saving result-

ing from installing the drainsat a deeperdepth.

Figures 11 and 12 are plots of the cost of the optimal solution as a

function of uncertaintyin the recharge rate, N, and the permeability,K,

respectively. In eachfigure are curvesfor 63% and 93% reliability which

are found by solving a seriesof models with all factors constantexcept

the single input parameterbeing analyzed. The results show that the

model solution is equally sensitiveto the uncertaintiesof NandK, over

the rangeof valuesexpectedfor the casestudyconditions. Theseresults

provide a measureof the benefitsin reducing the uncertaintyabout the

input parameters.This type of information could be usedto aid decision

makersin designingdatasamplingnetworksfor tile drainage.

Figure 13 illustrates the dilemmafacing the designeras a result of

the shortcomingsof the ChanceConstraintapproach. The ChanceCon-

straint approachis basedupon achievinga desiredreliability on a single

value of the dewateringzone. The questionfacing the designeris not just

what reliability to choose, but also upon what value of the dewatering

zone to imposethat reliability. In Figure 13 a seriesof curvesreveal this

problem. It shows that for a given reliability, the cost increasesas the
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design dewatering zone gets larger. The figure also emphasizesthat

increasingreliability increasescost. It doesnot show how the benefitsto

the crop increasewith reliability. The decisionmakermust choosea de-

wateringzoneand a reliability with no informationaboutbenefits.

The optimal solution from an economic efficiency viewpoint is to

obtain the design in which the marginal benefits of drainage equal the

marginal cost of drainage. In the ChanceConstraintapproach,a judg-

ment decisionhas to be made as to a design criterion that meets this

requirement.The choice of the wrong reliability could resultin lost bene-

fits due to over- or under-design. Incorporating information about the

economic responseof the crop to the output of the drainage system

would allow for explicit considerationof the economic efficiency of the

crop/drainsystem.

4. Conclusions

The results of the applicationsin this paper have shown that the

assumptions of deterministic and homogeneous soil properties in

drainagedesignare not valid anduncertaintyin thesepropertiesmustbe

accountedfor in the design process. The uncertaintyin soil properties

was identified to take two forms, informat,ionuncertaintyand spatialvari-

ability. A First Order-SecondMoment analysis of the Hooghoudtsteady

statedrainageequationwas performedwhich allowed for the uncertainty

in tile drainageperformanceto be quantifiedgiven dataon uncertaintyof

the soil parametersbetweentwo drains. It was shownthat spatialvaria-

bility does exist in the soil properties. It was demonstratedthat for the

analysisof uncertaintyin the dewateringzonemidway betweentwo drains
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that bothsmall andlarge scalespatialvariability could be ignored.

A ChanceConstraintprogrammingmodel for the optimal design of

tile drains was developedwhich minimized the cost of drainageinstalla-

tion while meeting reliability criteria on drain performance.The results

showedthat the presentdeterministicapproachprovidesonly a 50% reli-

ability on the designperformance. It was shownthat thereare trade-offs

betweenincreasedreliability of drain performanceand the capital costs

of drain installation, as well as increasedcostsdue to a priori fixing the

depthof the tile drains. The ChanceConstraintmodelcanbe usedto pro-

vide valuableinformation for the designerwhen faced with little dataon

the responseof cropsto drainage. However, it is difficult for the designer

to choosea reliability for which marginalbenefitsequalmarginalcosts. A

drawbackof the ChanceConstraintapproachis that it doesnot take into

accountthe optimal drain designwhenthereis more thanone crop being

grown on the land being drained.

In the secondpaperof this series,a stochasticprogrammingmodel

will be presentedthat will incorporatethe crop responsefunction into

the optimal designfor tile drains. This modelwill be extendedto include

the designundera multiple croppingregime,and the resultswill be com-

paredwith thosefrom the ChanceConstraintapproach.
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