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ABSTRACT

The effect of soil property uncertaintyon drainagesystemdesign was
presentedin the first of a series of paperson methodsfor optimal
design of agricultural drains. A First Order-SecondMoment (FOSM)
approachwas developedfor the Hooghoudtsteady-statedrainagedesign
,equation to provide an estimateof the of the uncertaintyof the dewater-
ing zone betweenthe drains as a function of the designvariablesand the
uncertaintyin the soil properties. In this paper,a StochasticProgram-.
ming Model for optimal designof drains under uncertainty,basedupon
the FOSM approach, is developed. The StochasticProgrammingModel
incorporatesuncertainty in the objective function of the model as the
expectedloss in crop productionas a function of uncertaintyin the dewa-
tering zone. The StochasticProgrammingmodel is extendedto included
a multiple cropping situation and finally , the Chance Constraint
approach,presentedin the first paper ,is comparedwith the Stochastic
ProgrammingApproach to drainagedesign and advantagesof eachare
presented.
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DESIGN OF AGRICULTURAL DRAINAGE
UNDER UNCERTAINTY,2,
A STOCHASTIC PROGRAMMING APPROACH

KennethM. Strzepek, David H. Marks and JohnL. Wilson

1. Introduction

This paper is the second in a series that presentstools for the

"optimal" design of agricultural drainage. The issues of the design of

agriculture drainage were presentedin the first paper of this series

[Strzepek,Wilson and Marks, 1982] , and it was shownthat thereis a need

to incorporateuncertaintyand economicsin drain design.The approach

presentedin the first paperwas ChanceConstraintProgrammingwhich

provideda drain design that meetsa certainreliability on the drain per-

formance at minimum cost. In this paper, uncertaintyin drain perfor-

manceis addressednot by a reliability approach,but by "StochasticPro-

gramming" which incorporatesinformation of the entire probability dis-

tribution into an expectedvalue of systemperformance.The Stochastic

Programmingapproachto uncertaintyin mathematicalprogrammingwas
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developedby Dantzig [1955] and is possibleif there exists a relationship

betweensystemresponseandsystemoutput.

It is possibleto calculatean expectedcrop yield as a function of the

drain designif a crop yield versusdewateringzone (DWZ) and a probabil-

ity density function of the dewateringzone exist. It was shown in first

paperthat the first two momentsof the dewateringzonemidway between

the drains (DWZ and aDlfZ) can be calculatedby the First Order Second

Moment (FOSM) analysis of the Hooghoudt equation and that these

moments defined the parametersof a probability density function of

DWZ. For demonstrationpurposes,the normal distribution was chosen,

altoughother distributionswill work. For the drain designproblemthere

is empirical datarelating systemresponse,crop yield, to 'systemoutput,

the dewateringzone being midway betweenthe drains. It is possible to

calculatean expectedcrop yield as a function of drain design.

The first paper [Strzepek,et at. 1982] presentsa detaileddescrip-

tion of soil propertyuncertaintyin soil permeabilityand rechargerate .

An analysisof uncertaintyin soil permeabilityrevealedthat this uncer-

tainty could be decomposedinto informationuncertaintyand spatialvari-

ability. It was shownfor certainforms of the spatialstructurethat small

scalevariability can be ignored and large scalevariability assumedcon-

stantfor soil permeabilitybetweentwo drains. Whenthis conditionexists

the uncertainty in the soil permeability betweentwo drains can be

described by the information uncertainty. A FOSM analysis of the

Hooghoudt steady-statedrainage equation [Strzepek ,et at. 1982], is

presentedas a method for analyZing uncertaintyin drain performance

due to informationuncertaintyin soil permeabilityandrechargerate.
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A ChanceConstraint Model which minimizes the cost of drain instal-

lation while meeting a given reliability on the dewateringzone midway

betweenthe drains was developed. This approach,however ,leavesthe

designerwith a numberof questionsto answerbefore an "optimal solu-

tion" canbe determined:(1) Which level of the dewateringzone shouldbe

chosenas a designcriterion? (2) What reliability shouldthe designdewa-

tering zone achieve?(3) What design criterion is used for lands where

more than one crop is grown? The ChanceConstraintapproachcanonly

provide an optimal designbasedupon the values of the dewateringzone

and reliability given by the designer, but it cannot determine which

valuesof theseparametersmaximize the net benefitsof drainageto crop

production.

The StochasticProgrammingModel(SPM), examinedin detail below,

is a secondapproachto optimal draindesignunderuncertainty. The SPM

for drain designis formulatedto minimize the sum of the capital costsof

drain installation and the expectedvalue of the annualcrop loss due to

non-optimal soil water conditions over the life of the drains subject to

certainphysicalconstraints. The selectionof an optimal drain designin

the SPM formulation occurswhen the marginalcapital costsof providing

a smaller expectedcrop loss equals the marginal savingsfrom reducing

the expectedcrop loss any further. The SPM approach resolves the

problems of .the choice of a design DWZ and design reliability , left

unansweredby the ChanceConstraintModel. The expectedcrop loss is

basedupon economic rather than physical criteria ,so it is possible to

extendthe methodto a multiple crop formulation.
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2. StochasticProgrammingModel for Agricultural Drain Design

2.1. Formulation

The StochasticProgrammingapproachincorporatesthe expected

value of systemperformancein the objective function of the Mathemati-

cal ProgrammingProblem (MPP). In this way, the uncertainty in drain

design is capturedby an economic measurein the objective function,

whereasthe ChanceConstraintapproachaccountsfor uncertaintyby a

physical measurein the constraint set. The StochasticProgramming

MPP minimizes the sum of capital costs CC(D,L) and the PresentValue

of ExpectedCrop lossesEL(D,L) , subjectto constraintson drain depths,

Dmax non-negativityof D and spacingL , and the FOSM Hooghoudtdefini-

tions . 1i andak where,

7i.L / 2 : f l(L,d',N,K)

=-d' + [d" + ｾｲ
d': f 2(L,d,r)

(1)

if 0 31 < !!... L

d':

d if 0.0 < ｾ s; 0.31

1 + f12.55ln( ｾ - 3.55 - 1. 6( ｾ ｾ +2( ｾ ｾ Ｒ

L (2)

(3)

DWZ: D - h

DWZ=D-7i.

a2 - a2
D'fI'Z - k

(4a)

(4b)

(4c)
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The parametersDWZ and aDPIZ of the probability densityfunction of DWZ.

are usedin the objectivefunction to calculatethe expectedloss, EL (D,L).

The mathematicalformulation of the StochasticProgram for Tile

draindesignis:

MIN CapitalCost(D,L )+ExpectedLoss(D ,L)

Subjectto:

DWZ =D -11.

aDlfz = ｡ｾ

11.£/2 =! l(L,d',N,K)

d'=!2(L,d,r)

2 ! --ah
LI2

= 3(L ,d ',N,aN,K,aK,PKN)

D ｾ Dmu

d=Z-D

D,L ｾ 0.0

(5)

(6a»

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

The objective function contains the same capital cost function for

drain installationas usedin the ChanceConstraintModel. It is definedas:

C 1 I c ICapitalCost(D ,L) = TT2D 3 + c4 (7)

wherec 1.c2.c3.andc4 are coefficientsthat are a function of technology

soil type, and regional economic costs. The expected loss function ,

EL (D ,L) ,is describedin detail in the next section.

2.2. ExpectedLossFunction

The Hooghoudt equationfor the dewateringzone mid-way between

the drain is a steady-statemodel. As such, the predicted levels are

assumedto be constantover the entire growing seasonof eachcrop and
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the samefor eachgrowing seasonover the life of the drains.From experi-

mentaland field data, crop yield as a function of dewateringzone canbe

determined. Figure I presentsa rangeof crop yield functions that have

beenobservedfor steady-statefield conditions in various places in the

world [Visser, 1958, and Ministry of Irrigation, ARE, 1965]. The appropri-

ate function mustbe determinedspecifically for eachcrop, soil condition,

and climate, as well as otherfactorsaffecting crop yield. The Type I func-

tion representsthe situationwherethereis no contributionfrom the sub-

surfacewater table to crop water use. Type III representsthe situation

where a great deal of the crop's water use comesfrom the subsurface

water table and lowering the water table will dramatically affect yield.

Neglecting effects of salinity, thesetwo forms representthe extremesof

the situation to be found in the field. These two extremesrarely occur,

and Type II, which representsa combinationof both effects, is Widely

observed[Amer,1979].

The curvesshownin Figure I are a measureof the crops' yield as a

function of the dewateringzone mid-way betweenthe drains. Thesefunc-

tions integrate the effects of the spatially varying dewatering zone

betweenthe drainsand expressthis effect as a function of the dewatering

zonemid-way betweenthe drains. If this were not the case,and the func-

tion reflected a point responseof the crop to a value of the dewatering

zone, the approachproposedis still valid. The expectedvalue of crop

yield could be found at each point x betweenthe drains, basedupon

FOSM of the Hooghoudtequationas a function of x. This spatiallyvarying

expectedyield function could then be integratedover the drain spacing.

L, to determinethe expectedyield for that drain design.
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Figure 1. CropYield Functions
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With a functional relationshipbetweencrop yield andthe dewatering

zone, the expectedyield for any crop over the growing seasoncan be

found by integratingthe productof the yield function andthe probability

densityfunction of the dewateringzone over the entire rangeof dewater-

ing zones. The steady-stateannualexpectedyield for eachcrop can be

usedto generatean economicmeasureof drain performance.The differ-

encebetweenthe projectedyield underoptimal soil water conditions,Y·

,and the expectedyield as a function of the drain design ,E[Y] , is

defined as the annualexpectedyield loss. This annual yield loss is then

multiplied by the price for that crop CP to obtain an annual economic

loss assumedconstantover the life of the drains. The presentworth fac-

tor for interestrate ,i ,over the life of the drains ,t, PWFf is usedto deter-

mine the presentvalue of the expectedcrop loss as a function of system

designEL (D,L) as:

EL(D,L) = [Y· - E[Y]]XCPXPWFf (7)

The integral for determiningthe expectedyield function cannotbe

evaluatedanalytically, but can be evaluatednumerically to sufficient

accuracy.

2.3. Solution Technique

The sum of capital costs and the presentvalue of expectedlosses

define the objective function of the StochasticProgrammingMPP. From

the descriptionabove, it is seenthat the objective function is non-linear

and the non- definition constraintsare linear. (The definition constraints

are actually part of the objective function, but are put in the constraint

set for clarity). The drain designstochasticprogrammingproblem is a
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two-dimensionalnon-linearprogrammingproblemwith a linear constraint

set. To assurea global solution to the minimization problem, the con-

straint set must define a convexfeaSible region, and the objective func-

tion a unimodalor quasi-convexfunction.

It is necessaryto show that thesecondition exist before we proceed

with an applicationof the model. The EmbabeRegionin Egypt presented

in the first paper [Strzepek,eta1,19B2a] will again prOVide the data for

examining the validity of the modelling approach. A plot of the objective

function using Embabedataand defined over the feasibleregionis shown

in Figure 2. Strzepek.et at, [19B2b] have shownthat for the Embabecase

study dataand the three forms of the yield function presentedin Figure

1. the objectivefunction is quasi-convexover the feasibleregion.

The most widely usedsolution techniquefor this class of MPP is the

gradient searchapproach. However, in this problem the objective func-

tion is so complexthat the calculationof the gradientat eachiterationis

computationallyburdensome.However, the objective function is unimo-

dal in both D and L. Taking advantageof this property, a recursivealgo-

rithm is usedwhich minimizes over D a function G which is the minimum

over L of function F for eachD, as follows

MIND G(D)

subjectto

(B)

(9)

Each one-dimensionalproblem was solved using the golden-section

searchmethod[Strzepeket at, 19B2bl. This providesa solutionaccuracy

well within the toleranceof drain installation.
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2.4. Case Study Applications

The Stochastic Programming Model for drain design has been

presentedtogetherwith a solutiontechnique. However, before a solution

canbe generated,a numberof parametersmust be defined, suchas pro-

jected crop yield, crop prices, interestrates, and the life of the project.

Although the resultsmay vary as theseparametersvary, Strzepek,et al.

[1982b], have shownthat for the rangeof valuespossiblefor the Embabe

case study, the results are stable and the most important parameter

which must be determinedis the type of yield function that the crop

possesses.In Table 1 part A, the model parametersfor the Embabecase

study region in the Nile Delta are presented.Basedupon theseparame-

ters, Table 1 part B presentsthe model solutions for the three types of

yield functions presentedabove. The results show Type I to have an

expectedcostmuchless than, anda designmuchdifferent to ,bothTypes

II and III. This is due to the fact that for Type I, the yield remainsat the

optimum level for valuesof DWZ greaterthanDWZ·. The model'sgoal is

to find the designthat minimizes the capital costsplus the lossesdue to

reducedyields. Thus, the model will attempt to design a systemsuch

that DWZ will be close to DWZ· and uDriZ will be as small as possible ,to

concentratethe probability densityat the optimumpoint andachievethe

highestpossibleexpectedyield. However. as is seenin the modelas DWZ

increasesand uDriZ decreases,reducing expectedlosses,the capital cost

of the drain increases.So the model must trade-off betweenthe reduc-

tion of expectedlossesandthe increasesof capitalcosts.
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Table 1. Optimal Drain DesignSensitivityto CropYield Function

A. Model Parameters

Z
K
N
Cl

C3

Crop
DWZ·
i

=7.Om
=0.085m/day
=0.0004m/day
=52.2
=0.365
=Qover
=l.Om
=10%

D·
uK
UN
C2

C4

Yield
t

=2.Om
=0.0815 m/day
= O. 0004m/day
=1.646
=55.892
= 200LE/feddan
=50 years

B. Model Results

Yield Function
Type I Type II Type III

2.00 1.46 1.43
43.17 21.95 20.57
89.14 138.23 147.43

8.93 60.09 57.21
98.07 198.32 204.64

Drain Depth,D (m)
Drain Spacing,L(m)
Capital Cost
Expected Loss
Total Cost

Note: All cost in LE per feddan.

There is little difference in the optimal design for Types II and III

becausethe model providesa designsuchthat the probability density is

concentratedat a point nearDWZ· andhaslittle densityin regionswhere

the yield is low. There is a great difference betweenType I and Type II

and III results, becausethe model allows UDrtZ in Type I to be large since

the yield function is constantat the optimal value and the expectation

will not changeif the probability densityis concentratedor distributedin

this region. Theseresultsemphasizethe necessityto obtainthe bestpos-

sible dataon the shapeof yield function for the crop for which the drains

aredesigned.
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3. Multiple CropStochasticProgrammingModel

The model presentedabove only partially answeredthe questions

raisedby the ChanceConstraintapproach. The questionof designunder

multiple cropsremains. Sincethe StochasticProgrammingapproachhas

transformedthe measureof performanceof the drains from a physical

measureto an economic measureand since the economicmeasurecan

be handledin an additive way, the objective function canbe extendedto

include the expectedlossesof eachcrop affected by the drain design.

The objective function in the single crop stochasticprogrammingmodel

minimizedtotal costof capital costsandexpectedlosses. In this manner,

the approachcan be extendedto minimize the sum of capital costs and

the expectedlossesof eachof the crops that are grown over the year on

the land drained.

The expectedloss function, as defined above, canbe determinedfor

eachcrop, given a yield function andcrop prices. The expectedloss func-

tion for eachcrop canthenbe weightedby the averageareacultivatedin

that crop Aj by the drains. The summationof the weightedexpectedloss

functions becomesa new multiple crop loss function. The capital cost

function remainsthe same,so that the objective function for a Multiple

Crop StochasticProgrammingmodelbecomes:

MIN Captial Cost(D,L) + ｪｾａｪｘ｛ｙ［Ｍ E[Yj]]XCPjXPWFf (10)

where the subscript j representseach crop up to NC. the number of

crops. This multiple crop objective function replacesthe objective func-

tion in the single crop stochasticprogrammingformulation .equation(6),

to provide a new Multiple Crop StochasticProgrammingmodel.
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3.1. CaseStudyApplication

The assumptionis made that for the EgyptianDelta conditions, the

appropriate yield function is the form of Type II. This assumptionis

baseduponthe soil physics.irrigation practices.climate, and experimen-

tal datafrom the Nile Delta [Ministry of Irrigation, 1965] which show that

for all crops of major importanceto agriculture in the Nile Delta, the

yield function follows a Type II form. Table 2 lists the datafor the impor-

tant crops for a non-rice areain the Nile Delta similar to the Embabe

region.

Table 2. Multiple CropYields in the Nile Delta

Crops

Cotton Maize Wheat Vegetables Berseem

Area
0.25 0.58 0.25 0.17 0.62

(per feddan)

Yield
0.35 2.14 1.72 8.40 24.66

(m. ton/fed.)

Price
466.67 51.2 50.00 60.00 0.44

(LE/m. ton)

Total
40.83 63.55 21.50 85.68 6.73

(LE/feddan)

DWZ·
1.3 1.15 1.1 1.0 1.0

(m)

With this data,a multiple crop expectedloss function canbe defined. Fig-

ure 3 is a plot of the objective function for the multiple crop stochastic
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programmingmodelusing the datafrom Tables1and2.
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Figure 3. Multiple Crop ObjectiveFunction
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Strzepeket al. [1982b], have shownthat this is a quasi- convexfunction.

The sameconstraintset as for the single crop model is used .The con-

straint set defines a convexfeasible region, so a global minimum canbe

found using the existing solutiontechnique. The optimal solution for this

caseis a drain depthD=1.38m, spacingL=21.96m. This resultsin a cap-

ital cost of 137.9 LE/feddanexpectedloss of 86.6 LE/feddanand a total

costof 224.5LE/feddan.

4. StochasticProgramming versusChanceConstraint Approach

Thus far. in this two-paperseries,chanceconstraintand stochastic

programming have been presentedas alternative methods to include

uncertaintyin optimal draindesign. This sectionwill examinethe proper-

ties of the two approaches.

The chance constraint approach to uncertainty is a reliability

approach. It requiresthat a systemoutput targetbe met with a certain

reliability. The targetvalue for the systemoutput is usually an optimal

value of systemperformance. In drainagedesignthe targetvalue is the

optimal dewateringzone for crop production. As the problem has been

presented,the greater the reliability, the better the system perfor-

mance. This approachassumesthat if the systemoutput surpassesthe

targetvalues, the systemperformancewill be as good, if not better, than

below the targetvalue. In otherwords, the systembenefit function is a

monotonically non-decreasingfunction. Figure 4 illustrates this argu-

ment. In Case(b), the targetvalue Z· is metwith a reliability of 95% and

the expectedsystembenefitsare greaterthan case(a). in which the tar-

get value is met with 80% reliability. This illustration shows the logic
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behind the chance constraint approach to uncertainty. However ,the

chanceconstraintapproachis valid only as long as the benefit function is

monotonicallynon-decreasingor the sign of the slopeof the function does

not changesover the range of possibleoutput. When this condition does

not occursthe result will be that a greaterreliability of the output tar-

get will produce poorer system performancethan lesser reliabilities.

Figure 5 illustratesthis pOint. In Case(a), a reliability of 50% on the tar-

get value providessubstantiallymore expectedbenefitsthana 95% relia-

bility on the targetvalue in Case(b).

The implication of the above argumentsfor drainagedesignis quite

clear and important. In Figure1. generalforms of typical crop yield func-

tions were shown. Three functions were presentedand only one was a

monotonicallynon-decreasingfunction. The two others had slopesthat

changedsign. m:aking the presentchanceconstraintapproachinvalid. If

a monotonically non-decreasingfunction is assumedin a chance con-

straint analysis and the actual yield function is not the assumedform,

therewill be a "regret."

To quantify the magnitudeof this regret for drainagedesign in the

Nile Delta an experimentwas performed. In Figure 1. threepossiblecrop

yield functions were illustrated. Type I is a monotonic non-decreasing

function while Type II andType III are not. An analysiswas done to quan-

tify the "regret" that would result if a drainage systemwas designed

assuminga Type I crop yield when, in fact. the function was actuallyType

II or Type III. The measureof regretwas the differencein expectedlosses

as describedabove. The systemwas designedfor a 98.5% reliability of a

dewateringzone of 1.0 metersfor clover. Table 3 is a summaryof the



- 19 -

z*
CASE b

Figure 5. Non-monotonicYield Function



- 20-

resultswhich shows that the regretcanbe quite substantial. This points

out the necessity to carefully define the crop yield function before

proceedingwith a chanceconstraintapproach.

The questionthat arisesthenis: "What is the appropriatedesignreli-

ability for a crop yield function with a slope that changessign?" To

answerthis question,anotherexperimentwas performed. For eachtype

of crop yield function. a system designwas found using the stochastic

programming model. Then the correspondingreliability , ex, on the

optimal dewateringzone ,DWZ· was found. Table 4 presentsa summary

of results. For Type 1, the result is as expected,96.5% reliability. For

Type III, the reliability is 50%; this can be expected,since the crop yield

function is symmetricaroundDWZ· , so that the model will concentrate

the densestportion of the probability (the mean) at the optimal yield.

Although one could designfor 50% reliability, this would neglectinforma-

tion about the varianceof DWZ which has beenshown above to be very

important in determiningexpectedyields.' ·For Type II. the reliability is

54%. In this case, the crop yield function is assymetricand defining

a priori a reliability which would reflect the optimal systemperformance

is impossible.

5. Conclusions

Theseresultsmake a strong argumentfor the use of stochasticpro-

gramming. Chanceconstraintprogramminghas beenusedwhenlittle or

no information about the benefit function is known. This analysis has

shown that this conventioncan lead to large lossesdue to the regret of

assumingthe wrong yield function since the chanceconstraintapproach
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Table 3. EconomicRegretDue to incorrectYield Function.

1. Drain Designbasedupon: Type I Yield Function

DWZ· =1.0 m
Reliabiltiy, a. =98 %
Depth, D =2.0 m
Spaci:ng,L =34.17m
Capital Cost =89.1 LE per feddan

II. EconomicRegretdue to actualyield function being

Type I
Type II

218.8LE per feddan
578.5LE per feddan

Table 4.StochasticProgrammingImplications for ChanceConstraintProgramming.

Crop Yield Function
Type I Type II Type III

2.00 1.46 1.43
43.17 21.95 20.57
89.14 138.23 147.43
8.93 60.09 57.21

98.07 198.32 204.64

Drain Depth,D(m)
Drain Spacing,L(m)
Capital Cost
ExpectedLoss
Total Cost
DWZ·Equivalent
Reliability}
0.%

98.5 54.0 50.0

Note: All costin LE per feddan.
DWZ· =1.0 for all Types.

1 this reliability is found by examining the probability density
function producedby the stochasticprogrammingresults and
determiningthe resulting reliability on the optimal dewatering
zoneDWZ·

assumesa form to the benefit function.

An alternative approach, but still using chance constraints, is to

require the systemoutput to be greaterthana lower limit and less than

an upper limit with a certainreliability, thus defining a feasible rangeof

values. However. this approachhas two problems. First, to decide upon
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the appropriateupper and lower boundsrequiresalmost as much infor-

mation as neededto define the entire benefit function. Second,due to

the irreducible uncertaintyin input parameters.it may be infeasible to

design a system in which the probability distributi.on of the ouput can

meet the desiredreliability for the design interval. Thus, the range of

reliability would haveto be changedto provide a feasiblesolution.

The material presentedin this paper reveals that the chance-

constraintapproach,outlined in Paper1 of this series,has problemsthat

under certain conditions cannotbe overcome. The stochasticprogram-

ming approachis not plaguedby theseproblems,but requiresmore infor-

mation and additional computation. The stochastic programming

approachalso provides for an explicit trade-off betweeneconomicbene-

fits and cost of drain design and allows for analysis of multiple crop

areas.

The analysishasshownthat chanceconstraintprogrammingis not as

robustas presentlyperceived. Drain designusing this formulationcan. in

certaincases,actually provide misleadingresults. The additional efforts

neededto gatherthe information necessaryto define the full yield func-

tion and the additional computationsnecessaryfor the stochasticpro-

grammingmodelarewell worth the effort.
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