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The main aim of this paper is to investigate those algorith- 

mic procedures which solve optimization problems whilst either 

estimating the unknown parameters of these problems or approxi- 

mating them by more simple problems. The problem of nonstation- 

ary optimization with time-varying functions and a set of opti- 

mal solutions (set of equilibriums) is considered. The proposed 

solution technique is based on the application of nonmonotonic 

optimization procedures. We derive the convergence of such 

procedures by studying the Hausdorf distance between a current 

approximate solution and the set of E-optimal solutions. The 

Lipschitz continuity of the Hausdorf distance between sets of 

E-optimal solutions upon the parameters of the problem is also 

discussed. 





SIMULTANEOUS NQNSTATIONARY OPTIMIZATION, 
ESTIMATION, AND APPROXIMATION PROCEDURES 

Yuri Ermoliev and A.A. Gaivoronski 

I. INTRODUCTION 

Most mathematical programming applications require the esti- 

mation of unknown parameters in the objective function and con- 

straints. In some cases, the tasks of optimization and estima- 

tion can be separated and optimization performed after estima- 

tion. However, it is often necessary to optimize and estimate 

simuZtaneousZy. For instance, optimization cannot be separated 

from estimation if the observation of unknown parameters depends 

on the current value of the control variables. In this situation 

we need algorithmic procedures which solve the optimization prob- 

lem while estimating the unknown parameters. It will be shown 

that development of such procedures leads to nonstationary opti- 

mization problems, in particular to so-called limit extremal 

problems (Ermoliev and Gaivoronski 1979; Gaivoronski 1979; 

Ermoliev 19 8 1 ) . 
The objective function f(x,s) and the feasible set Xs in 

nonstationary problems (Ermoliev and Nurminski 1973; Nurminski 

1977; Vertchenko 1977) depend on the iteration number s =0,1, ... 
It is necessary to create a sequence of approximate solutions 

S 03 {x }s=O, that tends, in some sense, to follow the time-path of 

the optimal solutions: for s -+ 03 



The ideas behind the simultaneous optimization and approxi- 

mation procedures are close to the idea of nonstationary optimi- 

zation described above. 

Many books and papers have been written on optimization 

and approximation problems. In some approaches the problem of 

approximation is examined using general optimization techniques; 

in this case the approximation problem is considered as a special 

optimization problem. In other approaches, optimization problems 

are characterized by using approximation ideas to simplify opti- 

mization methods. For instance, the methods of feasible direc- 

tions solve nonlinear programming problems while approximating 

them by linear programming problems. Such methods approximate 
0 nonlinear objective functions f (x) and constraints fi(x) , 

S i=l ,m , by linear functions at every current point x . The idea of 
0 optimization through approximation of "bad" functions f (x), 

0 0 fi(x) by a sequence of "good" functions f (x,s) + f (x), 

fi (x, s) + fi (x) in the entire feasibte set is discussed in Ermoliev 

and Nurminski (1 973) , Ermoliev (1976) , and Katkovnik and Khejsin (1 976) . 
This paper considers the case in which the approximation of 

0 the functions f (x), fi(x) occurs in the neighborhood Ds of every 

current p i n t  xS. At each iteration s, a certain domain D is 
0 

S 
determined within which the functions f (x) , fi (x) are approxi- 

0 mated by the more simple functions f (x,s) , fi (x, s) (the latter 

may be linear, quadratic, convex, etc., depending on the context). 

A direction of search and a new point x are determined using 
0 i f (x,s), f (x,s). A new domain Ds+l is then created and the 

iterations are continued. 

The main feature of this method is that a precise approxi- 
0 0 mation f (x,s), fi(x,s) of the functions f (x), fi(x) and a 

0 precise optimization of f (x,s) are unnecessary. It is suffi- 

cient simply to iteratively improve the approximation during the 

optimization process. Moreover, every iteration is based on 

information regarding the behavior of the objective function 

within the neighborhood of xS. This method is less likely to 



0 s top  a t  a  l o c a l  minimum of f  (x)  than methods based on approxi- 
S mations a t  po in ts  x  . 

11. SIMULTANEOUS OPTIMIZATION AND ESTIMATION PROCEDURES 

We s h a l l  f i r s t  consider  a  simple example--minimization of 

t he  d i f f e r e n t i a b l e  funct ion 

* n w*ere u E R ~  is  a vector  of unknown parmeters and x E R i s  a  vec- 
t o r  of control variables. 4t each i t e r a t i o n  s = 0 , 1 , .  . . , an observa- 

t ion hS is  ava i lab le  which has t h e  form of a  d i r e c t  observat ion 

of t h e  parameter vec tor ,  i , e . ,  

* 
~ h ' =  u . 

s The problem i s  t o  c rea te  a  sequence of con t ro l  va r iab les  {x 

which converges t o  t he  s e t  of optimal solutions 

Note t h a t  f ( x )  cannot be optimized d i r e c t l y  because of t h e  un- * 
known parameters u  . However, a t  i t e r a t i o n  s we could obta in  a * 
s t a t i s t i c a l  es t imate  us such t h a t  us + u with p robab i l i t y  1 

and a  sequence of  funct ions f  ( x , s )  = $ (x,uS) such t h a t  

wi th p robab i l i t y  1 f o r  s + w.  The funct ion f  (x,  s)  is  ava i lab le  

only a t  i t e r a t i o n  s. 

Consider t h e  fol lowing procedure: 

This procedure, together  wi th a  procedure f o r  ca l cu la t i ng  us, 

al lows us t o  ca r r y  ou t  t h e  opt imizat ion while simultaneously * 
est imat ing u . The p r i nc ipa l  d i f f i c u l t i e s  assoc ia ted wi th t h e  

convergence of procedure ( 1 )  a r e  connected wi th t he  choice of 



t he  step-size ps.  There i s  no guarantee t h a t  t he  new approximate 

so l u t i on  x w i l l  belong t o  t h e  domain of  t h e  smal le r  va lues of 

t h e  func t ions  f ( x ,  t) f o r  t > s + l  - (see Figure 1 ) . 
Convergence s im i l a r  t o  t h a t  of ( 2 )  invo lv ing nondescent 

procedures has been s tud ied  w i th in  t h e  framework of  spec ia l  

nonstat ionary op t im iza t ion  problems i n  which it i s  assumed t h a t  
00 

t he  sequence of  func t ions  { f  (x ,  s )  ~ i = ~  and sets {Xs}s=O converges 

t o  some degree. I t  was shown i n  Ermoliev and Nurminski (1973) 

t h a t  under n a t u r a l  assumptions on t h e  s tep -s i ze  sequence (such 
€a 

a s  ps  - > 0,  p , = = ~ )  f o r  func t ions  f ( x , s )  convex wi th  respec t  t o  
s = O  

x wi th t h e  proper ty  f ( x , s )  + £ ( X I ,  w e  have: 

l i m  f (xS, s)  = min f (x )  . 

Figure 1. 



I 11. GENERAL PROBLEM 

Consider t h e  problem o f  minimizing t h e  f u n c t i o n  

s u b j e c t  t o  

where x E R" i s  a v e c t o r  o f  c o n t r o l  ( d e c i s i o n )  v a r i a b l e s  and * 
u E U C - R~ i s  a v e c t o r  o f  unknown parameters .  Suppose t h a t  f o r  

0 1 s an  a r b i t r a r y  g iven  sequence o f  c o n t r o l  v a r i a b l e s  x , x  ,..., x ,... 
1 S it i s  p o s s i b l e  t o  observe an  1-dimensional sequence h o , h  . .. , h  , . . . 

such t h a t  

where t h e  f u n c t i o n  $ ( x , u )  i s  known. The problem i s  t o  c r e a t e  a 
S sequence o f  c o n t r o l  v a r i a b l e s  {x which minimizes t h e  func- 

t i o n  f ( x )  s u b j e c t  t o  g iven  c o n s t r a i n t s .  I n  more g e n e r a l  c a s e s  

t h e  v e c t o r  o f  unknown parameters  may depend on t i m e  ( i .e . ,  on 

t h e  i t e r a t i o n  index  s ) .  W e  a r e  t h e r e f o r e  g iven  a sequence o f  un- * 
known k-dimensional parameters  u E U c R ~ ,  s=0,1 ,  . . . I t  i s  

S - 
1 S p o s s i b l e  t o  observe an 1-dimensional  sequence h o t  h , . . . ,h  , . . . 

such t h a t  

S The requ i red  sequence {it has  t o  minimize t h e  f u n c t i o n s  * * 
$ (x ,us)  f o r  x  E X(us) i n  t h e  sense  t h a t  

f o r  s + m. 

I f  a  sequence o f  e s t i m a t e s  us i s  found such t h a t  



* * 
for s + a, then instead of functions $(x,us) and sets D(uS) it is 

possible to consider the sequence of available functions f(x,s)= 

$ (x,uS) , sets XS = D (us) and the problem of finding a sequence 

{xS} such that 

Before discussing a way of obtaining statistical estimates of 

which satisfy (6), let us consider the iterative procedures 

for creating xS such that it satisfies (7). 

IV. THE SET OF &-SOLUTIONS 

The aim of {xS} is to track the set of optimal solutions 

* * * 
Unfortunately the Hausdorf distance d[X ,Xs+l] between Xs and * s 
Xs+l, where 

d[A,Bl=max{sup in£ .IIx-yII , sup in£ I I X - ~ I I )  , 
xEA yEB xEB YEA 

s+l s may be large even for small Ilu - u  1 1 .  Therefore the distance * 
between the current control variable xS and Xs+l may increase * 
rapidly compared with the distance between xS and Xs. However, 

the Hausdorf distance between the sets of &-solutions X: and 
E 

Xs+l 

satisfies the Lipschitz condition with respect to llu s+l - u s I I  
under reasonable assumptions when E > O .  This fact was investigated 

and used in Ermoliev and Gaivoronski (1979) and Gaivoronski (1979) 

to study the convergence of procedures similar to (2). 



TO i l l u s t r a t e  t h e  b a s i c  idea  more c l e a r l y ,  cons ide r  t h e  * 
case  i n  which t h e  f e a s i b l e  set D(u ) does no t  depend on t h e  un- * 
known parameters u  . Denote t h e  f e a s i b l e  set a s  X and l e t  

THEOREM 1 .  Asswne thut 

(a )  X i s  a convex compact set;  

(b) @ ( X  , U )  i s  a convex continuous fmction with respect t o  x for a22 u E U 

and 

for a22 x E X I  U ,  v E U ,  where L i s  a constant. 

Then 

where 

i4=max { I 1  x - z  I 1  ( x  € X f z  E XI  

Proof. The set XE(u) is compact. Therefore t h e r e  a r e  z ' ,  z"  

such t h a t  (see Figure  2) : 

' d i thou t  l o s s  of g e n e r a l i t y  w e  could  assume t h a t :  

I l  z - ztlll = min { l l  z" - xll lx E X' (u )  I 

W e  nave 



Figure  2. 

where $X ( x ,u )  deno tes  a subg rad ien t  o f  t h e  f u n c t i o n  @ ( x t u )  w i t h  

r e s p e c t  t o  x. I t  i s  obv ious t h a t  a e x i s t s  such t h a t  

$,(z' !u) = X ( z "  - 2 ' )  f 

@ ( Z " ~ U )  - @ ( z l t u )  > A  ( I  z " - z l , I I  2 - t 

where X > O .  S ince  

€ = @ ( z ' t u )  - @ ( x ( u l ) t u )  

< ( A ( z "  - z ' )  t z '  - x ( u ) )  - 

< AM 11% z " - z ' 11 , - 

t h e n  

X > €/MI1  Z '  - Z "  I I  - 



n 

There fo re ,  f o r  g i ven  4, ( z  ' , u)  , 

Since  

$(.zl ' ,u) - $ ( z ' , u )  = @(z1I ,u )  - $ ( z " , v )  + @ ( z " , v )  - @ ( z 1 , u )  

< $ ( z l ' , v ) - ~ ( z ~ ' , ~ u ) + ~ I l u - v 1 I  f - 

t h e n  w e  w i l l  have 

$ ( z " , v )  - U  - > ( E / M ) ~ [ x ~ ( u ) , x ~ ( v ) I  - L I I  U - v I I  

~t i s  e a s y  t o  see t h a t  

S u b s t i t u t i n g  t h i s  e s t i m a t e  i n t o  t h e  p rev ious  i n e q u a l i t y  w e  

o b t a i n  t h e  desired r e s u l t .  

Th i s  theorem e n a b l e s  u s  t o  u s e  many of t h e  nondescent  pro-  

cedures  d i scussed  i n  Ermol iev (1976, 1981) t o  s o l v e  problem ( 7 ) ,  

and t o  prove t h e  convergence o f  t h e s e  procedures by  s tudy ing  t h e  
E benav io r  o f  t h e  d i s t a n c e  between xS and t h e  set XS. 

I t  shou ld  a l s o  be no ted  t h a t  t h i s  theorem c l a r i f i e s  t h e  

r e c e n t l y  d i scove red  L i p s c h i t z  c o n t i n u i t y  o f  t h e  set o f  €-sub- 

g r a d i e n t s  f o r  convex f u n c t i o n s  (Nurminski 1978; H i r i a r t -U r ru t y  

1980) .  Indeed,  suppose w e  have a  convex f u n c t i o n  q ( u ) .  The 



subdifferential is 

aq(u) =Arg min $(x,u) 
X 

* * 
where $(x,u) = q(u) + q (x) - (XIU ) I q (x) =min[q(u) - (x,u)lf 

u 
and min $(x,u) = O .  

X 

On the other hand, from the definition of the €-subdifferen- 

tial aEq(u) we have 

V. NQNSTATIONARY OPTIMIZATION PROCEDURES 

Consider only the case in which the feasible set of the prob- 

lem does not depend on unknown parameters and the operation of 

projection on the feasible set X is available. The nonstationary 

analog of the stochastic projection method has the form 

where the function $(x,u) is considered to be convex continuous 
h 

with respect to x; $X(~S  ,us) is a subgradient of $ (x,u) with 

respect to x; the step-size p nay depend on the sequence of 
s S1 S S preceding approximations (x ,x ,..,,x ) ;  and u E U, where U is 

a compact set. 

It should be noted that if $(x,u) is differentiable with 
S S respect to x, s ~ = $ ~ ( x  ,u ) ,  and X = R ~ ,  then method (9) 

corresponds to method (2) . 



THEOREM 2 .  Let the asswnptwns o f  Theorem 1 hold. Asswne also that  

(a )  II u  - us II - < 6s; BS/pS -+ 0 .  II as I1 -+ 0 with probability 1 

for s + .; 
w 

(b)  Ps > 0 . 1 ps = with pmbczbi l i t y  I ,  
s= 0 

s 
Then l im[$(xs tus)  -min { $ ( x t u  ) Ix E X I ]  = 0  

with pmbabil i ty  1 .  

Proof. L e t  us se t  an E > 0 and adopt t he  no ta t ion  

~ l l  constants  w i l l  be represented by the  l e t t e r  c .  

In view of Theorem 1 and requirement ( a ) ,  we have 

Let 



The f u r t h e r  e v a l u a t i o n  of w ~ + ~  y i e l d s  : 

where t h e  i n e q u a l i t y  

S -S S S S S ( i X ( x  ,us) , x - X  ) < mcx ,U  - @ c u  - E  
u 

I 

was used.  The re fo re ,  w e  w i l l  a l s o  have 

k-l r r  r r 2 
wk(ws-2 1 p r t $ ( x  ,u  ) - m ( u  I - E - C I I ~  I I - c ~ ~ / P ~ - c ~ ~ / ~ , I  

r=s 

From c o n d i t i o n  (10)  and t h e  mar t i nga le  convergence theorems 

it fo l l ows  t h a t  



wi th  p r o b a b i l i t y  1 f o r  s + a. From cond i t ion  (b )  w e  have t h a t  

w i tn  p r o b a b i l i t y  1 f o r  s + a .  Therefore 

where ys+O wi th  p r o b a b i l i t y  1 f o r  s + ~ .  

W e  s h a l l  now prove t h a t  w s +  0 with  p r o b a b i l i t y  1. 

Suppose t h a t  t h e r e  ex is t  s t  and A Y 0 such t h a t  ws > A  f o r  s > s t .  

Then, from t h e  cont inuous dependence of x E ( u )  on u E U and t h e  

compactness of U ,  i t fo l lows t h a t  t h e r e  ex is ts  an a > 0 such t h a t  

f o r  s > s t .  S u b s t i t u t i n g  t h i s  i n t o  t h e  prev ious i n e q u a l i t y  w e  

o b t a i n  

where 



From c o n d i t i o n  (b )  t h e  c r + O  w i th  p r o b a b i l i t y  1 f o r  r + m .  Then, 
03 

bear ing  i n  mind t n a t  1 p s = " ,  w e  o b t a i n  a c o n t r a d i c t i o n  when wk 
s=o 

i s  p o s i t i v e .  Choose an a r b i t r a r y  A > 0  and suppose t h a t  ws < A ,  
r 

b u t  t h a t  t h e r e  i s  a  number tr, sr  < tr < s ~ + ~ ,  such t h a t  wt  > 3A. 
r 

From ( I ? ) ,  it fo l lows  t h a t  f o r  k = s + l  

max {O , wS+, - w s 1  + O  

w i t h  p r o b a b i l i t y  1.  There fo re ,  f o r  s u f f i c i e n t l y  l a r g e  r t h e r e  

is  a  number r r  such t h a t  sr * r r  <tr ,  w < 2A, and ws A f o r  
' r 

T r < s < t  - - r *  Since  i n e q u a l i t y  (12)  ho lds  ( f o r  a  c e r t a i n  number a)  

i f  rr  - < s - <t r ,  t hen  from (11) f o r  k = t r  and s = r r ,  w e  o b t a i n  

I f  w e  now choose a  v a l u e  of r l a r g e  enough t h a t  yT < A ,  c L < l  
r 

f o r  L > r r ,  t hen  wt < 38, which c o n t r a d i c t s  t h e  assumpt ion t h a t  - d 

wt > 3A. ~ h e r e f o r g ,  ws + 0  w i th  p r o b a b i l i t y  1  f o r  s + m .  From 

t h r s  and from t h e  i n e q u a l i t y  

t h e  theorem i s  proved. 

It should  be noted t h a t  a lgor i thm ( 9 )  is  a l s o  a p p l i c a b l e  

when 11 us+ - us 11 and ps do n o t  approach zero.  

THEOREM 3. Assume that  instead of requirements ( a )  and ( b )  o f  

Theorem 2, the fottowing conditions are sa t i s f ied:  



IluS+l - u s  11 1 6 , ,  6 ,=  6 > 0 for s + m  3 

I I  as I I  + 0 with probability 1; 

P s  
= p > O ,  E > O  and 

2 
O < ~ = ~ ( P E - M K ) / M  21 

where 

l i m  E min 1 IIx-xS+' 11 lx € ~ : ~ ~ q / y  , 

where c i s  a constant. 
S w 

The above theorem demonstrates t h a t  t h e  sequence {x 

w i l l ,  on t h e  average,  be s u f f i c i e n t l y  c l o s e  t o  t h e  s e t  of  

E -so lu t i ons ,  provided t h a t  t h e  choice of  s tep-s ize  p and t h e  

d r i f t s  o f  t h e  us a r e  reasonab le .  W e  should no te  t h a t  t h i s  con- 

d i t i o n  may be s a t i s f i e d  by i nc reas ing  t h e  number of i t e r a t i o n s  

tak ing  p lace  w i th in  u n i t  t i m e .  

Gaivoronsky (1979) has  given a  number of o t h e r  a lgor i thms 

f o r  so l v ing  nons ta t i ona ry  op t im iza t ion  problems w i th  c o n s t r a i n t s  
of  a  genera l  form. However, even t h e  s imple a lgor i thms descr ibed  

above may se rve  a s  t h e  b a s i s  f o r  t h e  numerical s o l u t i o n  o f  many 

impor tant  c l a s s e s  of p r a c t i c a l  problems. Spec ia l  c l a s s e s  of 

nons t a t i o n a r y  op t im iza t i on  problems have been d iscussed by D U P ~ ;  

(1965) , Tsypkin (1971) ,  F u j i t a s  and Fukao (1972) , ~ o s a k i  (1974) , 
and Eremin (1979) .  



VI. ESTIMATION PROCEDURES 

Nonstationary optimization procedures similar to (9) allow 

us to carry out optimization and estimation simultaneously, if 

we nave a simple iterative scheme for calculating the estimates 
S u. which satisfy (6) , A useful method of creating an itera- 

tive estimation procedure is to rewrite the estimation problem 

as an optimization problem and then to use iterative optimiza- 

tion methods similar to (9) . 
For instance, in the simple case of section 11, if an 

S observation h of the random vector h is available at iteration 

s, such that 

* 
then the required vector u minimizes the function 

because u=Eh  satisfies the optimality conditions 

* 
If a priori  knowledge about the unknown u is introduced as u E U, 

then we could use the following stochastic projection method to 

minimize function (1 3.) (see, for instance, Ermoliev 1976, 1981) : 

0 1 S 
where 6s is the step-size, which may depend gn (u ,u , . . . ,u , 
and hS is the observation of h. If 6s > 0, 1 6s = 0 with proba- - 

CO s=o 
bility 1, I ~6: < m, and the set U is convex compact, then 

s=o 
* 

us + u with probability 1.  Ermoliev and ~aivoronski (1979) noted 

a number of advantages of estimates obkained via iterative opti- 

mization procedures (in addition to the opportunity for on-line 

calculations). Firstly, 6s may be chosen to be a function of 



0 1 ( u  , u  , . . . ,us)  i n  o r d e r  t o  decrease  t h e  va lue  of t h e  o b j e c t i v e  * 
f unc t i on .  Secondly, a pr ior i  knowledge abou t  t h e  unknown u may 

be taken  i n t o  account  i n  terms of c o n s t r a i n t s .  I n  t h i s  c a s e ,  a 

c u r r e n t  e s t i m a t e  us would have t h e  p rope r t y  us E U f o r  a l l  

s = 0,1 ,  . . . , whereas a conven t iona l  e s t i m a t e  would normal ly  

on ly  f u l f i l l  l i m  iiS E U f o r  s +a. Therefore  t h e  e s t i m a t e s  us 

a r e  g e n e r a l l y  b e t t e r  f o r  srnaZZ samptes. 

I n  t h e  more g e n e r a l  c a s e  when t h e  v e c t o r  of  obse rva t i ons  h 

s a t i s f i e s  t h e  c o n d i t i o n  

* 
t h e  t r u e  v e c t o r  u minimizes t h e  f u n c t i o n  

w i th  r e s p e c t  t o  u f o r  each f e a s i b l e  x ,  However, t h e r e  may be 

unnecessary  s o l u t i o n s .  S ince  

* 
t hen  f o r  t h e  s o l u t i o n  u = u  minimizing r ( x , u )  w i t h  r e s p e c t  t o  u 

t o  be unique it i s  necessa ry  t o  assume t h a t  t h e  equa t i ons  

* 
r e p r e s e n t  t h e  unique s o l u t i o n  u = u  . 

Th is  requ i rement  can o f t e n  be re laxed  a s  f o l l ows .  Consider 

t h e  sequence of  f u n c t i o n s  ( f o r  t h e  g iven  sequence o f  c o n t r o l  
0 1 S v a r i a b l e s  x , x  ,... x ,... ) :  

where t h e  p r o b a b i l i s t i c  measure Ps(dy)  i s  d i s t r i b u t e d  on a domain 

Ys and cen te red  a t  t h e  p o i n t  0 f o r  s + m .  For i n s t a n c e ,  Ys could  

be g iven  by 



and Ps(dy) i s  used t o  gene ra te  t h e  random v e c t o r  yS wi th  inde- 

pendent components d i s t r i b u t e d  uni formly over  t h e  i n t e r v a l  

[-As,As], where As i s  a  p o s i t i v e  number, and As + 0 f o r  s + m .  

* 
The t r ue  v e c t o r  u  minimizes t h e  func t i on  g ( u , s )  f o r  each 

s = 0 , 1 ,  ..., such t h a t  

Therefore t h e r e  may be a  unique s o l u t i o n  t o  t h e  problem of mini-  

mizing g ( u , s )  even i f  t h e  minimizat ion of r ( x S , u )  w i th  r e s p e c t  

t o  u  does. n o t  possess  t h i s  p roper ty .  

We could  use a  procedure s i m i l a r  t o  ( 9 )  t o  minimize g ( x , s ) .  

Assume t h a t  g ( u , s )  i s  a convex cont inuous func t i on  w i th  r e s p e c t  

t o  u  f o r  a l l  s; U i s  a  convex compact s e t .  

Consider t h e  procedure 

A 

where gU i s  a  subg rad ien t  of f unc t i on  g ( u t s )  . 
For example, we can cons ider  t h e  func t i on  

S S S 
where Oi ( '4)  a r e  d i f f e r e n t i a b l e  f unc t i ons  and hs = (h ,  , h2 , .  . . , h e )  

S 
i s  an observa t ion  o f  t h e  v e c t o r  h  a t  X = x  + y S  such t h a t :  



It is easy to see that 

THEOREM 4. (See Ermoliev and Gaivorwnski, 1979) .  Asswne that  

the above condition holds and that 

* * * 
where A, 2 0, y(u,u ) > 0 atnd y(u,u ) = O  only for u = u  ; the step-size - - 

0 1 
w 

S 
6s may dependon (x ,x ,..., x ) ,  and6s>0, - 1 As6s=a with 

s=o 
probability I ,  and also 

a 
2 1 E{~,II bS II +6S1 < a  , E l l  cS 11 < Const. 

s=O 

* 
Then us -r u with probability I .  

The proof of this theorem is similar to the proof of 

Theorem 2. We shall now comment on condition ( 1 5 ) .  

Consider the important case 

where A(x) is a matrix. Then 

where As is the smallest eigenvalue of the matrix 



* * 
Therefore, in this case, Y(u,u ) = Il u - U  11 . 

VII. SIMULTANEOUS OPTIMIZATION AND APPROXIMATION PROCEDURES 

Consider the problem of minimizing a differentiable func- 

tion f(x) in a set X. Suppose that a sequence of solution 
0 1 S approximations x ,x ,..., x ,..., is constructed according to the 

following rule: 

Let 

where rs is a number. Let Y(x,a) be convex functions with res- 

pect to x ,  parametrized by a parameter a E A, Let these func- 

tions approximate the function f(x) in the sense of minimizing 

the criteria 

where P (dx) is a Borell measure. If we assume that ps(dx) is 
S 

a probabilistic measure, we can then rewrite the above equation 

as 

where h =  (hl,h2, ..., h ) is a random vector. For simplicity, we 
n 

assume further that the components of h are independent and 

uniformly distributed over [ - T ~ , T ~ ] '  Therefore 



The choice of t h e  po in t  x  i s  based on t h e  requirement t h a t  
S 

approximation Y(x,a ) should be minimized: 

" S S  
wnere r i s  t h e  p ro jec t i on  opera tor  on X and YX(x , a  ) i s  a sub- X S S S grad ien t  of Y(x,a ) wi th  respec t  t o  x  a t  x  , a  . Moreover, t h e  

nex t  value of t h e  parameter a  i s  determined by 

where gS has t h e  proper ty  t h a t  

S 
For i ns tance ,  we can choose 5 t o  be def ined by: 

S S where = x + h and {hs} a r e  observat ions of h  = (h, ,h2. .  . . ,hn) 

hi E [-T 1 T s I  

Consider t h e  fo l lowing assumptions: 

( a )  Y(x,a) i s  a convex continuous func t ion  wi th  respec t  t o  x , a  

and d i f f e r e n t i a b l e  wi th  respec t  t o  a ;  f  (x )  i s  a d i f f e ren -  

t i a b l e  func t ion ;  

(b )  X , A  a r e  convex compact s e t s ;  

( c )  t he re  e x i s t  a  set  X' C X and an element z  E X' such t h a t  

(d )  f o r  any E > 0 t h e r e  e x i s t  A > 0 and T > 0 such t h a t  



f o r  a l l  a such t h a t  

THEOREM 5. Let the above asswnptions b Z d  and Zet the nonnegative 

pmmneters p , 6 T sat i s fy  the conditions : 

(i) 
s S 

t S s  m e  ( X o f a o f  . . . , x  ,a 1-meas&Ze functions; 

(ii) + I  P ~ / ~ ~ + O ,  - T 1 / T ~ ~ +  0 with pmbabiti ty I ;  

Then w i th  p r o b a b i l i t y  1: 

S S l i m  min ( f x ( x  ) , x - y ) = 0 
s 3 w  y a  

Let  X =  R ~ ,  A be a  convex compact set ,  and l e t  t h e  assumptions 

( a )  , (c) , (i) - ( i v )  ho ld .  Assume i n s t e a d  of ( d )  t h a t  : 

( d '  ) Sor any E > 0 t h e r e  e x i s t  A > 0 and r > 0 such t h a t :  

f o r  a  E A E ( s ) ,  x E X , ( s )  , Ts < T o  



THEOREM 6. Let the ass.wnptions (a)  -(el ,  (d '1, (i) - ( iv )  hold and 

asswne also that there i s  a compact set  K such that :  

S 
lim II fx(x ) Il = 0 a.c 
S"= 

~qote tnat requirement (17) is not too stringent for the applica- 

tions. It would be satisfied if, for example, we chose appro- 

priate functions Y(x,a). The requirement (iv) is satisfied if, 

for example, (17) holds and the random variables are bounded. 

The proof can be outlined as follows: 

1. First, as in Theorem 2, we prove that with probability 1: 

lim [g(aS,s) -min @(a,s)] = O  for s + m (19) 
a€A 

This can be done in the following way. Consider 

It can be proved that 

where c cm, E > 0, and yS is the Hausdorf distance between 

AE(s) and AE(s+l). The quantity ys can be estimated as follows: 



* 
where c < 03 i f  E > 0. Thus, according t o  (ii) , ys/6, + 0 .  

Then 

S S *  w(as+') - < 11 - 6 , ~  + a  - a  (s) 11, 2 + cyS + Y: - < ~ ( a  s 

I t  can be shown t h a t  

S s * S 
( O a k  ,s)  , a  - a  ( s ) )  - > C (  a.c .  

where c depends on E and c > 0 i f  E > 0 ,  and t h a t  

03 
S S * I 1 6 , ~  cS -@, (a  ,s) , a - a  ( s ) )  I < a 

s = O  

with p robab i l i t y  1 .  

Therefore : 

where B e + O  a.c .  f o r  L + w ,  c ,  c2  < m .  Since yS /6 ,+O,  we 

ob ta i n  



where u k + O  a .c .  f o r  k+a. 

Hence w e  can show t h a t  w (aS) + 0 a , c ,  f o r  s + a which imp l ies  

t h a t  (19) i s  t r u e .  

2 .  Now w e  can prove t h e  convergence r e s u l t s  (16) and (18) . 
Consider, f o r  i ns tance ,  t h e  r e s u l t  (1 8 )  , We have 

where v ( s )  + O  a .c . ,  h E [0 ,1 ] .  

Suppose t h q t  t h e r e  i s  an E > 0 and a number rn such t h a t  

11 f x  (xS)  1 1  > E f o r  s > m. Then from (d ) and (1  9 )  it f c l lows t h a t  

and f o r  s > r n  

From ( c )  and (iii), t h i s  c o n t r a d i c t s  t h e  assumption t h a t  

l l fx(xS) II > E *  
S 

There t h e r e f o r e  e x i s t  subsequences {x k~ such t h a t  



I t  i s  now easy  t o  ob ta in  t h e  r e s u l t  (18) from (1  xS - x  s+l II + o  
and ( 2 0 ) .  

These r e s u l t s  can b e  genera l i zed  f o r  problems wi th  non- 

d i f f e r e n t i a b l e  o b j e c t i v e  func t i ons  and c o n s t r a i n t s  of  a  genenal  

form. 
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