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PREFACE

During 1979-1981, erosion processes were the central theme
of the Environmental Problems of Agriculture task of the Resources
& Environment Area of IIASA. At present there are several ways
of approaching this problem. Some of them include consideration
of the physical processes which constitute the erosion process.
Soil erosion and pollution of water resources are very closely
connected to surface runoff from agricultural fields, therefore
mathematical models of surface runoff can calculate both negative

consequences. This is why the analysis of surface runoff is
important.

V. Svetlosanov
Task Leader
Land & Landcover Resources

Resources & Environment Area
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ABSTRACT

A mathematical model of surface runoff is presented which
is of use in building a model of erosion processes. The method
used for deriving the conceptual model of surface runoff is based
on the mathematical expression of the basic laws of movement of
water-—the equation of continuity and the equation of motion.
Both equations form a system of nonlinear partial differential
equations with two unknown functions expressing the depth and
velocity of the movement of water along the slope, in dependence
on their location on the slope, and time. The input variables
of the model are the intensity and direction of the impinging
raindrops, the intensity of infiltration and the physical charac-
teristics of the slope (gradient, length and properties of soil
surface). Extensive laboratory experiments have been carried
out to determine the functional dependence of tangential stress
on the depth and rate of runoff from different types of soil
surfaces.

Further, the conceptual model of surface runoff has been
simplified to a kinematic one by using a simple relation between
depth and rate of surface runoff instead of the equation of motion.
Two empirical parameters of this relation have been determined
by using data from the above mentioned laboratory experiments
during calibration of the kinematic model. The kinematic model
is recommended because of its simplicity with regard to simulation
of the surface runoff formation from individual slopes within the
watershed.

The model is a multipurpose one. It may be used either for
hydrological purposes (simulation of surface runoff characteris-
tics) or for soil conservation purposes. The model outputs are
surface characteristics (depth, velocity, rate). It is possible
by comparing the surface runoff velocity with the critical non-
scouring velocity for given field conditions to determine the
critical slope length which is the basis for planning efficient
soil conservation measures.
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ANALYSIS OF SURFACE RUNOFF

M. Holy, J. Vaska,
K. Vrdna and J. Mls

INTRODUCTION

The basic approach to the analysis of the conditions necessary
for efficient agriculture is to study the relations between soil,
water, vegetation, and the atmosphere. An important part of
such studies is the analysis of surface runoff, especially with
respect to the transport processes caused by flowing water.
These processes, namely transportation of substances detached
by erosion (soil particles, mineral fertilizers, pesticides,
etc.) cause soil degradation on one side and pollution of water
resources on the other. The consequences of soil erosion on
agricultural production are more serious, therefore, the
Resources and Environment Area of IIASA focused its attention”
on soil erosion problems, both on the regional and global scale.
One of the basic problems in this field is the analysis of

surface runoff.
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A number of solutions of these models have been offered

(Clarke, 1973). Their applicability depends mainly on how they are in

accordance with the natural laws of the movement of water or to
the extent and reliability of the data base used. For evaluation
of various hydrologic models for determination of the amount

and course of the surface runoff and erosion models using surface
runoff as one of the most important input data for further cal-
culations, it is useful to analyze the surface runoff from the
viewpoint of physical laws and evaluate whether the models used
for various purposes correspond to these unchangeable natural

laws.

1. " ANALYSIS OF SURFACE RUNOFF

The overland flow of water is based on the physical laws
of its movement. The laws on the conservation of matter and
momentum apply to water running off the slope. From these
relations, the equation of continuity and the equation of movement

arise.

1.1 Equation of Continuity

The first stage of the overland movement of water - sheet
surface runoff - may be studied in the Cartesian co-ordinate
system (Figure 1).

For mathematical expression of the basic relations we assume
that

- the surface of the slope is a plane forming angle a

- the length of the slope is unlimited

- the intensity of rainfall is even on the whole slope

and is only a function of time



Figure 1. Diagramillustrating Eguation of Continuity

- the infiltration rate of water into the soil is only
a function of time for given soil conditions

In Figure 1:

X is the coordinate axis in the direction of the surface runoff
(Cartesian coordinates were used)

Y - the coordinate axis perpendicular to the direction
of runoff

o - the gradient of the slope

h - the height of the surface runoff (it is the function

of position and time h (x,t))

ol
|

the average velocity of surface runoff in the direction

of the X-axis

r(t) the intensity of rainfall

i(t) - the intensity of infiltration.
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The flow velocity of water changes with the change of
x,y,t. If w is the vector of the velocity of water running

down the slope it applies that
-5
w = [u(x,y,t), vix,y,t)], (1)

where
u is the component of water velocity in the direction of X
v - the component of water velocity in the direction of Y;
analyzing the movement of water in the direction of X,
the component v may be neglected.

From the law on the conservation of mass, it follows that in
section <x,x + AX> the difference between the water flowing in
and flowing out equals the increment of its volume. The increment
is either positive or negative depending on which of the two
components, i.e. the inflow or the outflow, is the prevalent
factor.

The amount of water which flows into the considered section
at a time interval <t,t + At> may be expressed by the integral

t+dt  h(x,t)
[ Ju(x,y,E)dy]dE . (2)

t (o)

At the same time interval the runoff from the same section
is

t+At h(x+Ax,t)

[ Ju(x+Ax,y,E)dy]dE . (3)
t o



e

The amount of water in the section <x,xXx + Ax> will increase
by precipitation
t+At

JA x r(f) df (1)
t

and will be reduced by infiltration of water into the soil by

t+At
A x i () dt . (5)
t

The volume of water in the section <x,x + AX> in time t is

x+Ax
Jh (x,t) ax , (6)

X
and anologically in time t + At

X+AxX

h(xX,t + At) dx . (7)
X

According to the law on the conservation of matter the

volume of water in the section <x,x + Ax> is

t+At h(x,t) h (x+Ax,t)
{ |ulx,y,t)dy - |u(x+Ax,y,t)dy + Ax[r(t)- i(¥)]}dt =
t o (o)
X+A X _ -
= [[h(x,t+At) - h(x,t)]dx . (8)

X

If we introduce the mean profile velocity of the surface

runoff into further calculations

h(x: t)
1

a(x,t) = (%, t) u(x,y,t)dy ’ (9)
o



we may simplify equation (8) by

t+At
{h(x,E)u(x,t) - h(x+Ax,E)u(x+Ax,t) + Ax[r(t) - i(¥)1}dt =
O
x+Ax
= J[h(§,t + At) - h(x,t)]ldx . (10)
X

If we assume that h, u, v, r, i have continous derivatives
of the second order with respect to their corresponding variables,

it is possible to write

2
h(x+Ax,E) = h(x,t)+ %%(X,E)AX + % 3—%(9,E)Ax2 , (11)
ox”
- e 1 3%u, . =, .2
u(x+Ax,t) = u(x,t)+ —(x,t)Ax + = —= (0, t) Ax , (12)
P4 2 sz
- - 5h = 1 3%h - 2
hi(x, t+0t) = h(X,t)+ (%, t)At + + 2%, 0)0e2 (13)
3t 2 .2

where 0O are certain values from section <x,x + Ax> and interval

<t,t + At>.

Using equations (10), (11), (12), and (13) we may obtain

t+At _
< T \ou,. T =y Tvoh, = T -
Ax {[r(t) - 1i(8)- hix,t)5(x,t) = u(x,t)gp(x,t)+...]1dt =
t
x+Ax
_ oh = =
= At J[sg(x,t)+...]dx . (14)
X

If assumption of continuous derivatives of the second order
of the functions mentioned is valid, it exists in the interval

<t,t + At> such a value t1, and in the section <x,x + AXx> such



a value X414 that equation (14) may be written as

AxBELr (£) =5 (ty) = h(x,t)220x t)) = Blx,t) o (x,t)+ ...] =
= Ax AR (x,, )+ ...] . (15)

By dividing equation (15) by the expression A x At and using

the limit process for Ax - 0 and At + 0, the equation of continuity

is obtained

3(u - h)

b (x, 0 + g—l%(x,t) = r(t) - i(t) . (16)

1.2 Equation of Movement

The equation of movement of the surface water may be derived
from Newton's second law of motion studying the forces which act
on water in the elementary section of the investigated slope

(Figure 2).

Figure 2. Diagram for Equation of Motion



In Figure 2:

F, is the force expressing gravity of water in the
elementary section;

F, - the pressure force acting on water in the elementary
section at distance x + Ax;

Fy - the pressure force acting on water in the elementary
section at distance x;

F, - the friction force;

F5 - the force coming from water drops impinging on the
elementary section.

The acting forces may be expressed as follows:
F, sin o= Amg sin @ . (17)

where Am is the mass of water in the elementary section

x+Ax
Am = pJ h(x,t)dx , (18)

X

where p is the density of water

x+Ax
F,sina = p gsina h(x,t)dx , (19)
X
h (x+Ax, t)
F, = p(x+Ax,y,t)dy (20)

@)

where p is the total hydrostatic pressure of water, p(x,y,t).,

h(x,t)
Fy = pi(x,y,t)dy . (21)



Expressing the force F we consider that the inner friction

4
of water may be neglected and that the friction of water flowing
over the slope surface is the only force acting against its
movement. This force is in linear proportionality with the

area of friction.

Then
Fu = AX * T, (22)

where T is the function expressing tangential stress, t(h,u).
To determine the force F5 we may use the basic relation

for the force impulse (Chow, 1967; Chow and Ten, 1968):
Fet=m-=-yv . (23)

If the number of raindrops impinging at time interval At on the
section Ax is n, the mass of every raindrops is m and velocity of
the impingement of raindrops v* (Bisal, 1960; Laws, 1941), the time

effect of the force acting on the given section may be expressed as
Fg = At=n-m-.v . (24)
If the unit of volume contains ~P raindrops
*
n =n9At v Ax cos o , (25)
the intensity of impinging raindrops may be expressed as
m %
r = > Av cos a . (26)
From equations (24), (25), and (26) it follows that

Fys = Ax o r(t)v (v) . (27)
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This force acts in time t on section Ax of the surface in a
perpendicular direction.
If the forces F1, F2, F3, Fu,F5 are known, Newton's law

of motion

S (mua) =F , (28)

may be applied for the investigated case as

du _ . ,
AmaE = F1 sin o - F2 + F3 - Fu + F5 sin o . (29)

To get an equation of motion it is convenient to multiply

5%; and determine the limits of the left- and

right-side of the equation for Ax - 0. But first of all it is

equation (29%9) by

necessary to express the total pressure of water in the elementary
section. According to Chen Cheng Lung and Ven Te Chow (1968)

the total hydrostatic pressure is
%
P (X,Y,t) = pg[h(xlt) - Y] . (30)

To this, the pressure caused by the impinging raindrops
must be added - this pressure is
* % F5 cos o

p = — ' (31)
Ax

* **
P *+p = p(x,y,t) . (32)

Coming over to the limit for Ax -+ 0 [with (32) in
the expressions (20), (21) for F2,F3] we get - in a similar way,

as in (15), (16) - the equation of motion for the surface runoff

in the form
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hx,£)3R(x,t) + h(x, )8 (x,t)§a(x,t) =

. oh * oh
= gsin o h(x,t) - gcos a h(x,t)sg(x,t) - gcos a h (t)gi(x,t) -
7(h,u) *
- __5___ + r(t)v (t)sin o . (33)

In equation (33)

*
*
n* (g = &)V (&) (314)
g
2. A DETERMINISTIC MODEL OF SURFACE RUNOFF

From the equation of continuity (16) it follows by a

stationary case that
u(x)h(x) = (r - i)x ' (35)

and from this equation

h(x) = &£z 1x (36)

u(x)
If we introduce (36) for h(x) into the equation of motion
(33) we get a differential equation for a stationary case which

may be written

- - * -
ans gsin a(r-i)xu =~ gcos.a(r—i)qu - gcos o h (r.—i)u2 _
—_— = — ™ —
dx (r-i)xu3 - gcos oc(r—i)2 - gcos a h (r-t)xu
_iy 8, 8=3+B=-6 _ * ., -3
_ C(r-1i) x"u r v sina u . (37)
- * -
(r—i)xu3 - gcos a(r—i)2 - gcos ah (r-i)xu
T(h ) 5-8
assuming —— = Chu .

If we determine initial and boundary conditions and the

values C, B, S for this deterministic model we may obtain
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surface runoff value for any profile of the slope and the total

value of runoff in the lowest profile of the slope.

2.1 Initial and Boundary Conditions

Any consideration of initial conditions must proceed from
the fact that the investigated surface runoff starts in time t = 0.
At this point of time, precipitation starts acting on the slope
surface and surface runoff is formed. The unknown functions

have zero value for all x,

h(x,0) =0 ’ (38)

u(x,0) =0 . (39)

Determination of the boundary conditions depends on the
distance between the investigated section and the water divide
of the slope. For an arbitrary distance of this section from

the water divide Xq > x, it is necessary to determine

hix,,t) , (40)
ﬁ(xo,t) , (41)

in accordance with the conditions affecting the formation of

the surface runoff.

2.2 Determination of Values C,§,8
The values C,$,8 express the relation of tangential stress
and the depth and velocity of the water running down the slope.
Till now the influence of tangential stress in the course
of the sheet surface runoff has not been determined. Some
results gained in the laboratory (Karantounias, 1974:

Wakhlu, 1970) are difficult to accept for field conditions. The
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surface investigated under simulated runoff were artificial
(synthetics, glass, rubber, etc.,) and the relation between them and
soil surface was not fixed. The criterion of similarity of

small laboratory surfaces (mostly 1 m x 1 m) to natural soil
surface is not known.

It seems possible to use the results of the laboratory test
made by the Institute of Water and Land Reclamation at the Technical
University of Prague, where tests were carried out in a tilting
hydraulic flume (Holf, 1980; Holf et al., 1981) - 9 m in length,
1.5 m in width - on surfaces made by natural soils with various
characteristics (clay, loamy and sandy soils). The runoff was
simulated by water coming over a weir.

By a simulated runoff we may neglect the influence of
impinging raindrops. From equation (33) we may derive the

relation

T (h, 1)

gsino h(x,t) = (42)
P
T
If 5= v, we get
v(h,u) = g h(x,t) sin « . (43)

To express the dependence of von h and u, the expression

v(h,3) = ¢ h°G® , (44)

was used.

In this case, from equation (43) we get

gsina = C h (45)



-14-

Through measurements, obtained values C,§,8 are introduced

in Table 1.

Table 1. Values C,$,B obtained through measurements

S 0 I L
Clay Loamy Sandy
C 0.01395 0.01676 0.01596
S -0.03551 -0.30406 -0.66759
8 1.71434 1.85542 1.98857

Because the values of water discharge Q, and its height

h were measured it is possible to write equation (45) in the

form
g sin o = Cc 0 nY , (46)

where vy =6 - 1 - B.
From equation (46) a system of equations was obtained,

the solution of which gives the unknown values and therefore

also 1 for different soils.

3. A KINEMATIC MODEL OF SURFACE RUNOFF
The deterministic model of the surface runoff may be
expressed in a simpler way as it is by equations (16) and (33)

if we use the equation (42) as
T = pg hsin o , (47)

for a steady uniform flow of water without the influence of

impinging raindrops.
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If we take this equation into consideration with the basic

equation for tangential stress
52
T = £ QT ’ (48)

where ft is the coefficient of friction, we get

u=cC'Yhsina , (49)
cr =/29 (50)

where C' is the Chezy coefficient. It may be considered as well
as the friction coefficient f, as the function of Reynold's
number and of the roughness of soil surface. If C' is constant
we may write Cq = C'Vsina.

The expression for surface runoff is

gq=1u-*h . (51)

From equations (49) and (51) we get

which may be written as

g=ah . (53)

4
- (54)

where R is the Reynold's number,

h u
v

R = ’ (55)

where v is the kinematic viscosity of water.
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From equations (50) till (55) we get for the laminar flow

_ g sina | _
a = 55— i b =3 . (56)

For the turbulent flow, Manning's formula for determination

of the friction coefficient may be used

£, =0.9 gn?n /3, (57)

where n is Manning's coefficient.

Then we get

a = 1}?9 Y¥sin o; b = % . (58)

For natural soil surfaces, R.E. Norton (1938)
found out that b equals approximately 2. On the basis of
laboratory research with various surfaces and their configurations,
V.P. Singh (1975) recommended use of constant value b = 1.5.
Singh found the value a variable.

Equation (16) together with equation (53) makes it possible
to determine the unknown functions u,h. They represent another

model of surface runoff in the form

h(x,0)32(x,0) + G0, 0088 x,0) + Bix,e) = re) - 580)
(59)

b-1

u(x,t) - ah (x,t) =0 . (60)

This model may be classified as empirical-deterministic.
It represents a kinematic description of surface runoff.
M.H. Lighthill and G.B. Whitman (1955) who used a similar
model for determination of flood waves called it equations of

kinematic wave.
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Equations (16) and (33) representing the deterministic
model may be simplified by solving such surface runoff when
only inner and pressure forces are important, and the influence
of precipitation and infiltration are negligible. On the basis

of equations (16) and (33) we get

oh = =3u su

3t + UH + ha_X = 0, and (61)
du , =du dh X
5g t ugy + g cos 0z = g sin o - %H . (62)

These are called equations of a dynamic wave. They describe
the diffusion of longitudinal waves in shallow water and give a
picture not only of sheet surface runoff but of concentrated
runoff in shallow, broad streambeds as well.

Woolhiser and Liggett (1967) showed that for most types of
flow, the dynamic wave goes down and is negligihle in comparison
with the kinematic wave. The equations of kinematic wave offer
a sufficiently exact description of the problems of surface runoff

and are suitable for the investigation of surface runoff processes.

3.1 Calibration of the Kinematic Model of Surface Runoff

The kinematic model has two parameters, a and b, which
express the empirical part of the model. When using the model,
it is necessary to determine these values.

Laboratory tests in a tilting hydraulic flume (see Holy
et al., 1981) showed that parameter a depends onthe slope and
soil properties. The relation is exponential and may be

expressed:
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0.562

for clay soils a= 47,4971 (63)
for loamy soils a = 26.873 IO°613 (64)
for sandy soils a = 25.645 10'491 . (65)

All these are characterized by a high coefficient of
correlation nearing between 0.9 and 1.

The relation of parameter a and the slope I is represented
in Figure 3.

In analyzing the parameter b, it was possible to come to
the conclusion that it depends only on the properties of soils
and that it is possible to consider it as constant for soils with
similar properties.

Parameter b has the following values:

for clay soils b = 1.585
for loamy soils b= 1.726
for sandy soils b = 1.859 .

These values correspond with the results of V.P. Singh
(1975) who came to the conclusion that they vary between 1.0

and 3.0 and recommends use of the fixed wvalue 1.5.

4. CONCENTRATED SURFACE RUNOFF

The concentrated surface runoff in the individual elements
of the hydrographic network originates from the inflow of water
into the network from the respective water basin. We may assume
that function dq (s,t) is the surface runoff coming from both
sides of the elementary length of the streambed and the cross-
section of this streambed in which water movement in an arbitrary

point s in time t occurs is P(s,t).
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If we consider an elementary section of the streambed

<gs,s + As> where As > 0, the volume of water in the section
in time t is

s+As
* *
JP(s , ) ds . (66)

S

In time t + At where At > 0, the volume of water in the

elementary section is

s+As
* *
P(s ,t + At) ds . (67)

If £,n are rectangular coordinates on the level of the

cross-section of stream flow, the vector of point velocity in

(SI gl n) is

[us(s,i,n,t),ug(sli,n,t), un(S.E.n,t)] (68)

where

ug is the component of velocity in direction s

up - the component of velocity in direction §

u, - the component of velocity in direction n.

Let us define the mean velocity of the waterflow in the

streambed at time t by the relation

u(s,t) = 575%?) J us(s'E,n,t)dE;dn . (69)
P(s,t)

The discharge of water in the streambed in profile s in

time t is

Q(slt) = P (Slt) u (S,t) . (70)
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During the time interval <t,t + At> the volume

t+At
0 (s,t) att (71)
t
t+At
* %*
JQ (s+As,t )dt ’ (72)
t

through the section s + As flows out.
During the same time interval the volume
t+At s+As
X ¥ ¥k
J qg (s ,t )ds dt ' (73)
t S
comes from slopes into the same elementary section of the streambed.

Using formulas (66), (67), (71), (72) and (73) we may write

s+As
[p(s™,t+0t) - P(s',t)1ds* =
S
t+At s+As
-k * t T * %
J[Q(s,t ) - Q(s+As,t ) + Jq(s ,t )ds 1dt . (74)
(@] S

If we multiply equation (74) by Ké%? # 0 and come over to

the limit for As - 0, At - 0, and using the assumption that
functions P, Q have continuous partial derivatives and function
dg (s,t) is continuous, we get the relation

ap
at

29 (s,t) +

- (s,8) = qg (s,t) . (75)

This equation is a linear partial differential equation of
the first order for the unknown functions P and Q. It is

therefore not only sufficient to determine the course of the
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runoff, but also the differential equation formulating the rela-
tion between P and Q. Such an equation is the equation of motion
for water moving in a streambed. It is given by P.S. Eagleson

(1970) in the form

ELY) 1Y 3y ; - - 2y T

5t + U 5x * 9cos 03% = gsin © (1 d)py (76)
where U is the mean velocity of water
© - the gradient (slope) of the streambed
d - the width of the streambed.

If we consider the movement of water as uniform and steady,

equation (76) may be transformed into

4 .
T = pg 31%? sin @ , (77)

where E%%; equals approximately the hydraulic radius

Rh=v% ) (78)

Using equations (48) and (70) we get

0 = /2% gin.®P3/2 , (79)

which may be written in a simpler form

Q = a Pb .

The values of a, b are again parameters which have to
be determined for the investigated streambed. P.S. Eagleson
(1970) recommends use of b = 3/2. The value a is relatively
changeable and its value must be determined from the analysis

of experimental data.
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5. VERIFICATION OF THE DETERMINISTIC AND KINEMATIC

MODELS OF SURFACE RUNOFF
5.1 The Deterministic Model

In order to verify the deterministic model of surface
runoff (equation 37), the characteristics of surface runoff
were ascertained on an experimental plot of the Institute on
Water and Land Reclamation of the Civil Engineering Faculty at
the Technical University, Prague. The computed characteristics
of surface runoff were compared with the values measured on the
plot. An example is given below of the computation of surface

runoff characteristics for the input data:

- intensity of rainfall r 0.088 cm min_1

20 mins

- duration of rainfall T

0.036 cm minm1

- infiltration intensity i
- velocity of impingement

*

of raindrops v = 6.4 m s-1

- values for determination of friction (loamy soil)
C=1.676 - 10_2; B = 1.85542; & = -0.30406

- slope length L=20m

- slope gradient I = U4uf

The resulting measured soil wash in the given slope length
was 5.45 kgm-% where the erosion rills began to form at a distance
of 8-10m from the upper end of the slope.

For a numerical solution of equation (37) to begin with
the differential method of the fourth order (the Rung-Kutte
fourth order method) was used.

The problem was solved by a computer program using the FORTRAN

language (Appendix 1). The results of the solution are summed up

in Table 2 and graphically presented in Figure 4.
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of Surface Runoff accordina to:
the conceptual model

(A)
(B)

kinematic model

Results of Numerical Solution of Characteristics

Distance Depth of Surface| Runoff Velocity Flow Rate
from start Runoff
of slope
x (m) h (mm) ulems™ 1) g(cm sTh
A B A B A B
1.0 0.0890 0.094 10.917 9.22 0.087 0.087
2.0 0.121 0.140 14.363 12.30 0.174 0.173
3.0 0.155 0.178 16.894 14.60 0.262 0.260
4.0 0.184 0.210 18.968 16 .50 0.349 0.347
5.0 0.210 0.239 20.758 18.10 0.436 0.433
6.0 0.234 0.265 22,348 19.60 0.523 0.520
7.0 0.256 0.290 23.791 20.90 0.610 0.607
8.0 0.278 0.314 25.117 22.10 0.697 0.693
9.0 0.298 0.336 26.350 23.20 0.784 0.780
10.0 0.317 0.357 27.504 24,30 0.872 0.867
11.0 0.335 0.377 28.593 25.30 0.959 0.953
12.0 0.353 0.397 29.626 26.20 1.046 1.040
13.0 0.370 0.415 30.609 27.10 1.133 1.130l
14.0 0.387 0.434 31.549 28.00 1.220 1.210
15.0 0.403 0.451 32.450 28.80 1.308 1.300
16.0 0.419 0.468 33.317 29.60 1.395 1.390
17.0 0.434 0.485 34.153 30.40 1.482 1.470
18.0 0.449 0.502 34.961 31.10 1.569 1.560
19.0 0.463 0.517 35.742 31.80 1.656 1.650
20.0 0.478 0.533 36.500 32.50 1.743 1.730
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For loamy soils, an admissible maximum velocity of surface
runoff in respect to erosion processes is given at Vo, T 30 cm:a-1
(cited by Hol§, 1980). In the case examined, surface runoff
achieved this velocity at a distance of 12.4 m from the
upper end of the slope. At a distance of 8-10m the values of

the calculated velocity range between 25-27.5 cms-1. The cal-

3

culated value of the surface runoff (135.2 m ha—1) and the

3ha™y are very close. This indicates

measured value (130.7 m
a good applicability of the deterministic model of surface

runoff.

5.2 The Kinematic Model

The kinematic model of surface runoff expressed by equations
(59) and (60) allows the determination of the characteristics
of surface runoff of water from the slopes, i.e., the depth and
velocity of the surface runoff at an arbitrary point of slope
and at an arbitrary moment from the start of rainfall and it
allows the determination, at an arbitrary point of the slope,
of the runoff hydrogram, i.e., the chronological line of runoff,
which is closely linked with erosion processes.

The calculation of the runoff hydrogram is divided into
three time intervals. The first interval expresses the ascending
runoff line from the start of the runoff to the moment of the
attainment of maximum runoff, the second time interval determines
the constant value of the maximum runoff wave and the third
interval describes the descent of the runoff (Figure 5).

By substituting equation (6(0) with equation (59) we obtain
a partial differential equation for the determination of the
runoff hydrogram which may be written in the form

b-1 5h oh

a.b.h K + B_t

= r-1 . (80)
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Figure 5. Runoff Hydrogram
The boundary condition is
h(0,t) =0 for t ¢<0,«) ’ (81)
the initial condition is
h(x,0) =0 for xe<0,L> ’ (82)

L is the length of the slope.
Another precondition of
rainfall throughout its durat

which it applies

I
H

r(t) - i(t)

and

I
o

r(t) - i(t)

the solution is that effective

ion has constant intensity for

for te<0,t> (83)

for t > t, ' (84)

where t, is the moment of cessation of rainfall.
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Duration of the rainfall is such that it will allow forma-
tion of maximum surface runoff in all profiles of the slope which

may be expressed by the relation

1-b ,L, 1/b
ty >, 5 @

2 o (85)

An analytical solution of equation (80) with inclusion of

conditions (81) and (82) is given for

- the first time interval of the runoff hydrogram

(ascending line) by the relation

h(x,t) = ry ° t for t e<0,t1> (86)

- the second time interval of the runoff hydrogram

(runoff maximum) by the relation

ry * X 1/b
h(x,t) = (__f;_') for t €<ty ,ty> (87)
- the third time interval of the runoff hydrogram

(descending line) by the implicit function

2 hPx,e) + ab(t-tz)hb-1(x,t) - x=0 (88)
O

5)1/b
a r

for t € <ty,®) where t, = rolgg(
t, is the moment of rainfall cessation.
The auxiliary equations (85), (86), and (87) may be used
to determine the time course of the runoff line for an arbitrary
profile of the slope (runoff hydrogram).
The verification of the kinematic model was made by means
of a computer program written in BASIC language (Appendix 2) for

the same input data used for the computation of the deterministic

model.



~29-

The calculated characteristics of the surface runoff,
i.e., the depth and velocity of surface runoff dependent on the
distance from the water divide, are shown in Figure 4 and presented
in Table 2. The dependence is plotted for time t = 25 mins.
i.e., for the moment of the cessation of rainfall when maximum

runoff is initiated in all profiles of the slope.

5.3 Discussion
A comparison of the results of computation of the charac-
teristics of surface runoff applying the deterministic and
kinematic models showed good agreement of the computer values
in both cases (Table 2, Figure 4). An advantage of the kinematic
model is the simplicity of the computation, combined with adeaduate
accuracy of the results obtained.
Next to the research plot, the feasibility of results for
surface runoff from precipitation according to the given model
was assessed by comparing the data obtained using the model with
data obtained by a number of specialists from measurements of
surface runoff from different slopes in various field investigations.
Mircchulava (1970) sums up the results obtained by measure-
ments carried out by M.D. Koberskiy, M.K. Machavariyan,
N.I. Manilov, L. Sheklein, M.K. Daraseliy and A.P. Skaposhnikov
in different parts of the USSR. The data are given in Table 3.
The characteristics of surface runoff were determined by
a kinematic model for identical input. Table 3 shows that the
results obtained by computation of the characteristics of surface
runoff applying the kinematic model are relatively good and in

agreement with data obtained by field measurements.



Table 3. Comparison of Characteristics of Surface Runoff obtained in Field Measurements
with Values determined from Mathematical Model

Research Length Gradient Rainfall Rainfall Coeffi- Runoff Characteristics of Surface Runoff'
Pég? Intensity d?;iﬁion ;iigEfOf Field Measurements Kiagg:;ic
(m) (%) (cm min~ ) (1s™ Depth Velocity Depth Velocity
(mm) (m.s—1) (mm) (m.s~1)
1 20 33.33 0.16 30 0.03 0.016 0.10 0.16 0.15 0.1
2 4 31.11 0.10 60 0.12 0.008 0.08 0.10 0.16 0.08
3 10 22.22 0.17 20 0.01 0.004 0.03 0.14 0.07 0.05
4 10 22.22 0.17 20 0.01 0.003 0.03 0.10 0.06 0.05
5 4 20.00 0.05 60 0.20 0.007 0.06 0.12 0.10 0.07
6 50 15.55 0.10 58 0.04 0.003 0.02 0.12 0.03 0.11
7 13.33 0.10 60 0.25 0.017 0.17 0.10 0.21 0.08
8 13.33 0.05 60 0.20 0.007 0.06 0.12 0.12 0.06
9 20 12.06 0.01 179 0.11 0.005 0.05 0.10 0.10 0.05
10 4 6.66 0.10 60 0.46 0.030 0.25 0.12 0.38 0.08
11

40 6.66 0.05 60 0.17 0.057 0.48 0.12 0.55 0.10

_08_
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6. APPLICATION OF THE KINEMATIC MODEL IN A WATERSHED

In studying the geometry of a watershed we may come to the
conclusion that besides the slopes which may be approximated by
a plane we have the convergent slopes which may be best
approximated by part of a cone surface (Figure 6). Thev
are usually close to the watershed in its upper part.

Research of the surface runoff from a convergent slope was
carried out by Singh (1975) under laboratory conditions. 1Its
aim was to test the respective mathematical models of runoff,
especially the kinematic model based on equation (53) and on

equation of continuity in the form

_+§9.=r(t)-i(t)+ﬁﬂ— . (89)
=X

where L is the distance of the upper end of the convergent
slope from its middle part (Figure 6).

V.P. Singh (1975) obtained data on the characteristics
of surface runoff for 50 different geometric configurations of
convergent slopes. From these data he determined parameters
a, b. He came to the conclusion that parameter b is relatively
stable while parameter a is very sensitive to the characteristics
of rainfall and composition of the slope.

The values of parameter b fluctuated between 1 and 3, and
Singh (1975) recommended use of a fixed value b = 1.5 and
suggested the model be considered as a one-parameter model, with

a single parameter a.
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Figure 6. Convergent Slope

The mathematical model of the surface runoff from the
convergent slope expressed by equations (53) and (89) may be

written as a single partial differential equation

) b
b-13h _ ,; ah (90)

3h _
9x L-x !

3t + abh

with one unknown function f(x,t); the function g may be obtained

from equation (53).

For the solution of equation (90) a numerical scheme

h. . - h ah,

h. . - h, . . . .
i,3+1 i,J b-1 "i,j5 i-1,3 _ s i,J
it -o-abh.'j Tx rj lj + T=ihx (91)

was used.
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In Appendix 3, the BASIC language for solution of equation

(91), for example,

r(t)

5.10”(1+sin1—H§%) (cms™ ') for t e<0,180> (s)
- i(t) = <

O for £t > 180 (s)

was used. As input data, values a = 286.67, b = 1.6787, and

L = 23 m were used.
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APPENDIX 1

REAL K (4)
DIMENSION A(3), B(4), D(5), W(4),

F(S,Y) = (A1XSXY-A2xS-A3xY-AUxXSxxATxYxxBT+A5xYxY)/ (RxSxYxY—-

A2xSxS/Y-A3xS)

A(1) =5
A(2) =5
A(3) =1
W(1) = 1./6.
w(2) = 1./3.
W(3) = W(2)
W) = w(1)
B(1) = 3./8.

B(2) = 37./24.
B(3) = 59/24.
B(4) = 55./24.
G = 980.665

READ(1, 1)RD, VSAK, VK, SA, CT, AT, BT

FORMAT (7F10.6)

R = RD-VSAK

RE = RD/60

R = R/60

VK = VKx100.

READ(1,2)XP, ¥YP, H, DT, XK
FORMAT (5F10.4)
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XP = 100.xXP
DT = 100.xDT
XK = 100.xXK
T1 = XP+DT

WRITE (3,15)

FORMAT (///5X, 32HPRUBEH RYCHLOSTI ODTEKAJICI VODY////)
WRITE (3,17)

FORMAT (4X, UHX(M), u4X, 5HH(CM), 7X, 17HV(CM/S) Q(CM/S)/)
Q = RxXP

HL = Q/YP

TISX = XP/100.
WRITE(3,16)TISX, HL, YP, Q
A1 GXRXSA

CA = SQRT (1-SAXSA)

A2 = GxRxRxCA

A3 = RxCAxXRDxXVK

BT = BT-AT+2.

A4 = CTxRxxAT

A5 = RDxXVKXSA

2 (1) YP

DO 3 I = 1,4

X (1) XP+HXFLOAT (I- )

DO 4 J = 1,3

K91) F(X(J),2(J))

DO 51 =1,3

Y = Z2(J)+A(I)xK(I)xH
V = X(J)+A(I)xH
K(I+1) = F(V,Y)
Z2(J+1) = Z(J)

DO 6 I = 1,4

Z2(J+1) = Z(J+1)+W(I)xK(I)xH
CONTINUE

DO 7 I = 1,4

D(I) = F(X(I),Z(I))
V = X(4)

Y = Z(4)

S = 0.

DO 8 I = 1,4
S = S+D(I)xB(I)



63
64
65
66
67
68
69
70
71
72
73
74
75
76
717

Y Y+HxS

VvV = V+H

D(5) = F(V,Y)

DO 91 = 1,4

D(I) = D(I=1)
IF(V.LT.t1)GO TO 10

T1 = T1+DT
Q = RxV
HL = Q/Y

TISX = Vv/100.

WRITE (3,16)TISX, HL,
FORMAT (/3X, F5.1, 3X,
IF(T1.LE.XK)GO TO 10
STOP

END
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Y, Q
F6.3,

3X, Fi1.6,

3X,

F7.2)
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APPENDIX 2

DISP "R - I =";

INPUT R

PRINT "R-I="R"CM/MIN"
R=R/60

DISP "1=";

INPUT L

PRINT "L=L"M"

L=100xL

DISP "SKLON=";

INPUT I

PRINT "SKLON="I"%
A=Ixx0.61327333x26.8734796
B=1.7265808

DISP "T=";

INPUT T

PRINT "T="T"MIN"

T=60xT

IF T<(RxL/A)xx(1/B)/R THEN 140
DISP "X=";

INPUT X

PRINT "X="X"M"

WRITE (15,230)X

FORMAT 5/,3X,"X=",F4.0, "M",/
X 100xX

H (RxX/A)xx(1/B)
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280
290
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320
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420
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S = H/R

Q = AXxXHxxB

U = Q/H

M = INT(S/60)

WRITE (15,310) M,S-60xM,Q.H,U
FORMAT F6.Q,F3.Q,SE12.2

M = INT(T/60)

WRITE (15,310) M,T-60xM,Q.H,U

D = H/10

FOR J =1 TO 9

H = H-D

S = T+ (X-HxxBxA/R)/Hxx(B-1)xAxB)
Q = AxXHxxB

U = Q/H

M = INT(S/60)

WRITE (15,310) M,S-60xM,Q,H,U
NEXT J

GOTO 190

END



APPENDIX 3

10

20

30

40

50

60

70

80

90

100

110

1
0.00000
0.00000

0.00509
7.96142

0.00651
9.40494

0.00712
9.99419

0.00757
10.42390

0.00787
10.70047

0.00801
10.82476

0.00798
10.79815

0.00779
10.62294

0.00745
10.30256

0.00696
9.84173

0.00635
9.24661

DX (CM) = 20

3
0.00000
0.00000

0.00574
8.63708

0.01227
14.45840

0.01450
16.19448

0.01558
17.00977

0.01632
17.55309

0.01671
17.83749

0.01676
17.86889

0.016U46
17.65393

0.01584
17.20077

0.01493
16.51979

0.01375
15.62406
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DT (SEC) = 0.1

5
0.00000
0.00000

0.00575
8.64667

0.01326
15.24335

0.01982
20.02749

0.02179
21.35591

0.02298
22.13830

0.02366
22.58014

0.02383
22.69480

0.02352
22.49392

0.02275
21.99043

0.02156
21.19973

0.01999
20.14066

10
0.00000
0.00000

0.00579
8.683u48

0.01353
15.45502

0.02383
22.68840

0.03489
29.39365

0.03840
31.37207

0.04004
32.27364

0.04077
32.66946

0.04063
32.59403

0.03968
32.07498

0.03799
31.14131

0.03565
29.82588

15
0.00000
0.00000

0.00587
8.76609

0.01413
15.91677

0.02581
23.95635

0.04191
33.28670

0.05753
41.27270

0.06158
43.22388

0.06333
4u.05477

0.06366
44.21194

0.06269
43.75009

0.06052
42.71809

0.05731
41.16711

20
0.00000
0.00000

0.00622
9.12147

0.01672
17.84429

0.03415
28.97096

0.06068
42.79710

0.09744
59.02096

0.11789
67.16746

0.12269
69.01151

0.12434
69.64240

0.12334
69.25947

0.11994
67.95722

0.11444
65.82695



120

130

140

150

160

170

180

190

200

210

220

230

2u40

250

260

270

280

290

300

310

320

330

340

0.00563
8.52501

0.00484
7.68687

0.00399
6.74526

0.00313

'5.71883

0.00230
4.63791

0.00156
3.56049

0.00099
2.61456

0.00065
1.97658

0.00047
1.56899

0.00035
1.29358

0.00027
1.09750

0.00022
0.95172

0.00019
0.83945

0.00016
0.75052

0.00014
0.67843

0.00012
0.61884

0.00010
0.56880

0.00009
0.52619

0.00008
0.48949

0.00008
0.45755

0.00007
0.42951

0.00006
0.40469

0.00006
0.38257

0.01236
14.53007

0.01080
13.25880

0.00914
11.83773

0.00745
10.30449

0.00582
8.71413

0.00435
7.15305

0.00316
5.76430

0.00235
4.70772

0.00180
3.93196

0.00142
3.35135

0.00115
2.90703

0.00096
2.55941

0.00081
2.28181

0.00069
2.00598

0.00060
1.86923

0.00053
1.71256

0.00047
1.57945

0.00042
1.46507

0.00038
1.36582

0.00034
1.27893

0.00031
1.20227

0.00029
1.13416

0.00027
1.07326
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0.01811
18.83654

0.01600
17.31660

0.01374
15.61831

0.01144
13.79132

0.00921
11.90419

0.00718
10.05584

0.00550
8.39320

0.00427
7.06880

0.00339
6.04445

0.00275
5.24389

0.00228
4.60951

0.00192
4.09921

0.00164
3.68262

0.00141
3.33775

0.00124
3.04856

0.00109
2.80321

0.00098
2.59284

0.00088
2.41074

0.00079
2.25176

0.00072
2.11187

0.00066
1.98792

0.00061
1.87739

0.00056
1.77826

0.03277
28.16736

0.02947
26.21238

0.02591
24.01811

0.02224
21.65605

0.01865
19.21732

0.01533
16.82006

0.01247
14.61834

0.01020
12.76090

0.00846
11.23217

0.00710
9.97247

0.00603
8.92895

0.00518
8.05803

0.00450
7.32498

0.00395
6.70255

0.00350
6.16948

0.00312
5.70916

0.00280
5.30858

0.00253
4.95745

0.00230
4.64760

0.00211
4.37247

0.00193
4.12677

0.00178
3.90620

0.00165
3.70721

0.05323
39.15443

0.04848
36.74642

0.04328
34,02159

0.03787
31.07413

0.03251
28.01819

0.02747
24.,99281

0.02302
22.16666

0.01935
19.69915

0.01638
17.59786

0.01400
15.81613

0.01207
14.30419

0.01051
13.01641

0.00922
11.91374

0.00816
10.96376

0.00727
10.14008

0.00653
9.42130

0.00589
8.79012

0.00535
8.23255

0.00488
7.73720

0.00448
7.29479

0.00412
6.89767

0.00381
6.53956

0.00354
6.21520

0.10719
62.96568

0.09856
59.48163

0.08900
55.49867

0.07894
51.16033

0.06887
46.63375

0.05926
42.11301

0.05058
37.82096

0.04318
33.97097

0.03704
30.61464

0.03199
27.71572

0.02784
25.21812

0.02441
23.06369

0.02156
21.19909

0.01917
19.57807

0.01716
18.16163

0.01546
16.91735

0.01400
15.81847

0.01275
14.84291

0.01166
13.97248

0.01072
13.19213

0.00989
12.48935

0.00915
11.85373

0.00850
11.27655



350

360

370

380

390

400

410

0.00005
0.36274

0.00005
0.34486

0.00005
0.32866

0.00004
0.31390

0.00004
0.30042

0.00004
0.28804

0.00004
0.27664

0.00025
1.01849

0.00023
0.96899

0.00021
0.92403

0.00020
0.88303

0.00019
0.84549

0.00018
0.81098

0.00017
0.77917

-1~

0.00052
1.68889

0.00048
1.60793

0.00045
1.53426

0.00042
1.46695

0.00040
1.40523

0.00037
1.34843

0.00035
1.29599

0.00153
3.52688

0.00143
3.36278

0.00134
3.21287

0.00125
3.07542

0.00118
2.94899

0.00111
2.83233

0.00105
2.72436

0.00329
5.92024

0.00307
5.65097

0.00288
5.40431

0.00270
5.17760

0.00254
4.96859

0.00240
4.77533

0.00227
4.59616

0.00793
10.75044

0.007481
10.26919

0.00694
9.82751

0.00653
9.42088

0.00615
9.04543

0.00580
8.69781

0.00549
8.37513
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