
On the Problem of Designing
Matrix Generators

Lebedev, V.Y.

IIASA Collaborative Paper
September 1982

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33893536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lebedev, V.Y. (1982) On the Problem of Designing Matrix Generators. IIASA Collaborative Paper. Copyright ©

September 1982 by the author(s). http://pure.iiasa.ac.at/2065/ All rights reserved. Permission to make digital

or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the

full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists,

permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

N ~ T Fa1 QUOTATION
W I T I I ~ ~ J ? PERMLSSION
OF TH$ AUTHOR

On t h e problem o f des ign ing
m a t r i x . gene ra to r s

V.Yu. Lebedev

September 1 9 8 2
CP-82-53

CoZZaborative Papers r e p o r t work which h a s n o t been
performed s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r
App l ied Systems Ana l ys i s and which h a s r e c e i v e d on l y
l i m i t e d rev iew. V i e w s o r o p i n i o n s exp ressed h e r e i n
do n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e ,
i t s Nat i ona l Member Organ i za t i ons , o r o t h e r o r g a n i -
z a t i o n s s u p p o r t i n g t h e work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, A u s t r i a

On the problem of designing matrix generators

K Yu. Lebedev

Computing Center of the USSR Academy of Sciences, Moscow

1. INTRODUCI'ION

One of the main difficulties which arises when using a general purpose

linear programming (LP) package is the need to prepare a special code to

transform initially structured model data into a format appropriate for subse-

quent use by an LP solution system (for example, at IlASA we require an MPS-

type input file for use with the MINOS LP system). These codes are usually in

general purpose programming languages, are often rather complex, and are

generally quite difficult to implement. There is a lack of 'advanced software

capable of simplifying the preparation of information in the form required by

the LP package, and this is a problem especially for those who use linear models

in the solution of a wide variety of applied problems. In such cases it is highly

desirable to have a flexible and convenient interface between user and LP

software.

Here we describe a tool which saves time forthe analyst by making it possi-

ble to organize investigations with linear models in an interactive manner.

There are many programming systems which have been designed to over-

come the interface problem described above (see, for example [I] and [Z] for a

general discussion). Here we consider one more system of this type, which has

been designed and implemented at the Computing Center of the Academy of Sci-

ences of the USSR. Thls system is based on different principles to most of the

others; and we shall discuss these principles here as they are not difficult to

implement and lead to quite convenient universal systems.

2. ON APPROACHES TO THE DESIGN OF UTRM GENERATORS

There are various ways of designing matrix generating software which pro-

vides the user with a convenient general purpose means of describing the initial

data for LP models while the transformation of this description into the correct

input format for some solution package is performed automatically. One

approach is to start from the block structures of matrices in LP problems and

develop advanced techniques for the description and combination of these

blocks [3]. Another possibility is to use linear algebraic vector notation or even

the conventional scalar notation of mathematical formulas as a basis for the

input language of some matrix generator. In each case the generator would pro-

duce the same result - some record similar to an MPS fde. However, the ways in

which this record is created may be quite different.

The most immediate way is to generate the final file by translating the ini-

tial description of the problem in an interpretive manner. This is a traditional

method of organizing the generation process and it has two essential disadvan-

tages. Firstly, the higher the level of the input language, the greater the

difficulties in implementation, so that the development of a convenient general

p&pose generator proves to be very complicated. Secondly, interpretation usu-

ally leads to a reduction in efficiency and therefore interpreting generators

often work slowly. For these reasons we suggest another approach to the design

of matrix generators.

Suppose that for a given LP problem we have a routine capable of calculat-

ing the values of the constraining functions for given values of the variables and

another routine to calculate the (analytical) derivatives of these functions.

These routines may be implemented in some high-level general purpose pro-

gramming language and their structure may be closely connected to that of the

problem considered. This means, in particular, that the variables may be subdi-

vided into numerical arrays of different dimensions. The results obtained with

the second routine are therefore placed in certain positions within these arrays.

We can now design a multistep procedure for generating a compact (without

zeroes) record of the problem, carrying out the following calculations at each

step:

1) Set the value of all variables to zero.

2) Calculate the value of the next constraining function (these functions are

examined in turn). As a result, the value of the right-hand side of this con-

straint will be obtained. Put the value obtained and the index of the con-

straint under consideration into some intermediate file.

3) Calculate the derivative of the next constraint; by successively looking

through each array of variables find all nonzero coefficients of this con-

straint and put them (identified by the indices of the constraint and the

variable) into an intermediate file.

The intermediate file created by this procedure may easily be transformed into

an MPS file or something of a similar kind. The structure of the routine per-

forming this transformation has nothing to do with the structure of the LP prob-

lem at hand and there is therefore no need to redesign it for each new LP prob-

lem that arises.

This method for designing special matrix generating routines for individual

LP problems is quite efficient and relatively easy to automate. To be more pre-

cise, it is less difficult to translate the description of the LP problem in some

special high-level language into routines for calculating constraints and their

derivatives and to design an automatic compilation of the matrix generating

procedure than to devise a method for the immediate transformation of the

same description into an input file suitable for use by an LP package.

The savings in time and effort associated with this technology stem from

the fact that when translating the initial description of the problem into the

high-level general purpose programming language of the matrix generating rou-

tine, i t is not necessary to solve the complex programming problems that inevit-

ably arise if it is attempted to translate this description directly into a format

acceptable to an LP package. In fact we are simply taking advantage of the solu-

tion of this problem already found by those programmers who implemented the

general purpose language used as an intermediate object language. Thus the

whole cycle of matrix generation may be described as follows:

The approach to the design of matrix generating systems outlined above

has been implemented on a BESM-6 computer at the Computing Center of the

USSR Academy of Sciences. The resulting programming system is called MAG-

ISTR. ALGOL-60 has been chosen as the basic general purpose language for this

system, i.e., ALGOL-60 is used as an object language by the cross-compiler that

L

Initial problem
description in
special purpose
language

)

program in high-level
general purpose
language

L~ross-compiler for
translating initial
description into
matrix ginerati-

Input file for
LP package

L

Matrix generating
routine in high-level

purpose
language

. Y

Executive
code

translates the initial description of the LP problem into matrix generating rou-

tines, and these routines are therefore ALGOL-60 codes.

The cross-compiler itself has been implemented in ALGOL-60 with some

negligible assembly language impurities which are necessary to perform some

simple string processing. Conventional scalar notation of mathematical formu-

las has been chosen as the basis for the language used to describe LP problems.

There are two reasons for this choice. Firstly, t h s is the most flexible type

of language for describing mathematical problems. Secondly, this language is

very close.to some of the more widely used general-purpose calculation-oriented

programming languages such as FORTRAN and ALGOL.

The description of an LP problem in the input language of the MAGISTR sys-

tem is composed of three paragraphs.

The first paragraph contains a description of the parameters and variables

of the problem. All of these are data structures of ALGOL-60 type and therefore

this paragraph looks llke a chain of ALGOL declarations.

The next paragraph includes a description of the constraints and objective

function. Ths paragraph is actually quite similar to the conventional algebraic

record of a problem in scalar notation. To define the constraints of a given

problem we use sentences (in input language) which are exact analogues of

algebraically correct formulas defining linear combinations of variables. These

n
can be written, for example, using the concept of summation over an index (

i =l

and so on). It is then only necessary to change the summation notation by sim-

ple input language constructions (of whlch there is an exhaustive set) and to

rewrite the initial index expressions in ALGOL format.

The third paragraph consists of instructions that must be performed before

the main generating procedure can be initiated. These may include preliminary

data transformations, for example, 'read' operators. To arrange any cyclical

operation or summation over an index it is possible to use the same special

input language constructions as in the previous paragraph; instructions in

ALGOL-60 may also be given here.

Once we have routines for calculating constraints and their derivatives, it is

easy to compile a program for an approximate solution of the problem using any

penalty function technique; this compilation can also be done automatically. It

would be unreasonable to neglect such an opportunity for automation and

indeed compilation in the MAGlSTR system is now fully automatic.

Thus, with the aid of MAGlSTR a user may obtain a compact record of the

input data in a format similar to that of an MPS file and then solve the problem

with the aid of a general purpose LP package; he could also obtain an approxi-

mate solution of his problem using some specific penalty function algorithm. In

either case he provides the system with the same structural description of his

problem.

We have now been using MAGISTR for about three years, during which time

many widely different large-scale LP problems have been solved. These include

dynamic multisectoral balance optimization problems, static problems in the

optimal allocation of agricultural production, problems of water supply, and so

on. Our experience of the system leads us to conclude that the principles

behind the design of MAGISTR are sufficiently valid to give good results in prac-

tic e.

The system's input language can be learned by users quickly and without -

any significant difficulty, and at the same time provides them with a wide spec-

trum of convenient features for brief and natural problem descriptions. I t is

worth mentioning here that MAGISTR performs a syntax analysis of all specific

input language constructions. All other constructions are checked by the ALGOL

compiler and there is no difliculty in connecting an error detected in t h s way

with the text of the initial description of the problem. Consequently there are

no serious difficulties in debugging texts in MAGISTR input language.

The matrix generating technology implemented in the MAGISTR system

proved to be quite efficient: the generating process (including the compilation

from MAGISTR input language into ALGOL-60 and from ALGOL-60 into executive

code) rarely took more than 10 percent of the time necessary to find an optimal

solution.

The implementation of the MAGISTR system has taken about one man-year

of effort. We are now considering developing a new version of this system, in

which FORTRAN will be the intermediate object language and a new cross-

compiler will be implemented in PASCAL.

4. I L L U E T R A ~ EXAMPLE

In order to give the reader an opportunity to appreciate more fully the pos-

sibilities of the language in the MAGISTR system, we shall consider an example.

We shall compare the initial algebraic description of a given LP problem with the

equivalent description in MAGISTR language. Let the problem be Le ontief's

dynamic optimization model. The mathematical formulation of this problem is

as follows:

where

are the variables and the other symbols represent the parameters of our prob-

lem. We assume that N=10, T=10, L=5. The description of this problem in MAG-

ISTR input language is as follows

Ths is the declaration of the problem

l=N(lO),T(lO),L(5); declaration of integer scalar
parameters with simultaneous
initialization

4=a[l:N,l:N],c[l:ld], declaration of real vector
b[O:K,l:N, l:N],,p[O:T-11; parameters

l=x[O:T-l,l:N],y[O:T, l:N], declaration of variables
w[O:T-l],u[O:T-l,l:N];

~=BAL,CAP,GR[O;T-1, l:N]; declaration of array of constraints
4=t,i,j,k;. declaration of indices

This is the description of the constraints

1 ;
' I : = l N'IN[i]:=y[O,i]-yO[i]=;.

* This is the description of the objective function
*
=It: =O T-l'p[t]*w[t];.
*
* These are the instructions which should be executed
* before the main generating procedure starts
*

ACKNOWLEXIGEMENT

The author wishes to thank Dr. E. Nurminski for h s valuable criticism and

help in preparing this paper.

References

1 . J. Bisschop and A. Meeraus, "Toward Successful Modelling Applications in a

Strategic Planning Environment," in Large-Scale Linear Programming:

Proceedimgs of a IIASA Workshop, 2-6 June 1980, ed. G.B. Dantzig, M.A.H.

Dempster and M. Kallio,International Institute for Applied Systems Analysis,

Laxenburg, Austria (1 981) .

2. W. Orchard-Hays, "Problems of Symbology and Recent Experience," in

Large-Scale Linear Programming: Proceedings of a IIASA Workshop, 2-6

June 1980, ed. G.B. Dantzig, M.A.H. Dempster and M. Kallio,lnternational

Institute for Applied Systems Analysis, Laxenburg, Austria (1981) .

3. W. Orchard-Hays , "The Scope of Mathematical Programming Systems," pp.

27-102 in Design and Implementat ion of Optimization Sof tware , ed. H. J .

Greenberg,Sijthoff and Noordhoff (1978).

