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ABSTRACT 

This paper considers the techniques used to estimate the 
parameters of the large-scale model of interindustry interactions. 
Use of the ordinary least squares technique sometimes leads to 
overestimation of model validity. These questions are of great 
importance in forecasting ii the set of parameters is obtained by 
econometric techniques. Three examples illustrate the problem 
and show that the model should be represented as a system of 
simultaneous equations and therefore appropriate techniques 
have to be used for parameter estimation. 

The original Model of Interindustry Interactions (MII) was developed in the 

USSR some years ago, and has been used since 1974 to forecast the structure of 

the USSR economy 5-7 years ahead. The MII is based upon 18-sector input- 

output tables in constant prices dating back to 1950. The preparation of these 

tables and the Anal demand components are described (in Russian) in [2,3,4] 

and in [ I ]  given in English. An almost complete set of the equations and the esti- 

mates of the parameters are given in [1,2]. 

This aggregated model consists of about 120 econometric equations 

together with the balance equalities. The essence of the model is to replace the 

traditional input-output equation of the form: 



X ( i l j ) t  = PO + P l e X ( j ) t  + P2*X(i)t + Pa*X(k , l ) t  + ~ ( t )  
where all of the @ 's depend on i and j .  Here the term P2*X( i ) :  reflects the avai- 

lability of product i ;  the X ( i ) t  may be either set exogenously, or set equal to 

the demand for product i obtained by summing all intermediate flows and finai 

demand components. 

The term P3*X(k , l ) t  represents the influence of other important interin- 

dustry flows on X ( i , j ) : ,  and p ( t )  reflects the impact of other factors on X ( i , j ) :  

over time. 

An attempt is now being made to develop the same type of econometric 

model for 80 products. All of the post-1950 data used in the disaggregated 

model are also available in constant prices and in physical units and have been 

widely used in the development of the aggregated input-output tables. The 

time-series now cover 30 years and can therefore be used toestimate regres- 

sions with 4-5 parameters. 

Each product is distributed among 18 industries and among all com- 

ponents of final demand as in the aggregated version of MII.  This means that we 

have a system of about 300 equations and 100 equalities which we can use to 

estimate the output of each of the 18 industries. These equalities are 

expressed in terms of regression equations rather than as exact equalities. The 

system may also be used to estimate the production volume of each of the 80 

products studied. 

This system contains equations of three main types, which in their sim- 

plest form can be written as follows: 



where: 

t denotes time and is also used as an explanatory variable 

to absorb the influence of factors omitted from the regression; 

i and j represent the aggregated industries and may take values from 1 to 

18; 

s denotes the product of aggregated industry i or j; thus X(&) can be 

- measured either in value or in physical terms; 

a is used as an index for the ten components of final demand i.e., 

and thus the value of the lhal demand Y, is given by the equality: 

Thus the first set of equations is used to explain changes over time in both 

the interindustry flows and the components of h a 1  demand. There are about 

300 of these equations, which are designed to reflect the following features: 

1. The structure of the USSR economy moves in the same general direction 

tor long periods of time. Each stage of economic development may be associ- 

ated with a given relation between levels and rates of growth Fn difIerent indus- 

tries. There is therefore a c o ~ e c t i o n  between the levels of input-output 

coefacients and the rates of growth in a set of industries. 

2. The supply of a product influences the input-output coel3cients a (i,j): 

In the matrix row correspondmg to that product (industry), and the output of a 

product can serve as a proxy for its supply. Moreover, the necessary priority 

given to one industry in the distribution of a product will reduce the availability 

of that product and certain other goods to the rest of industry. This system of 

priorities is ditIerent in each stage of economic development. 



3. The interaction between intermediate flows (and components of final 

demand) usually reflects the level of their substitutability - for example, there 

is considerable interaction between the different types of materials used in 

machine building or between energy sources used for electricity generation. 

Substitution can be achieved in two ways: 

(a) New products replace traditional products for various economic and 

technological reasons; in t h s  case, the flows of new materials are on the right- 

hand side of our equation. In other words, the dynamics of these new products 

determine the changes in: the growth of traditional products in our model. 

(b) Sometimes there is a shortage of traditional goods in the economy and 

the rate of growth of new goods is stimulated by the total demand for materials 

according to the elasticity of substitution. In this case, a variation in the 

dynamics of traditional products generates changes in the rates of growth of 

new goods. For example, the amount of electricity used in the transportation 

sector must be considered in the equation for the coal and oil required in this 

sector of the economy. 

Supply factors influence not only intermediate deliveries but also final 

demands, such as personal consumption, investment, exports, and imports. 

The second set of equations may be used to determine the demand for 

each of the 80 products; there are therefore 80 equations in this group. 

The third set of equations is used to estimate the aggregated outp,ut of the 

18 industries. 

We use regressions (2) and (3) instead of precise balance equalities 

because certain small flows are not described by the traditional equations with 

a (i,, j) coemcients. 

Note that it is easy to solve system (1)-(3) if all equations are linear 



because all of the equations in the first set are expressed in terms of outputs. 

When, in forecasting, the value of X(i)T is given exogenously, say as ~ ' ( i ) ~ ,  

we may obtain the difference between the derived demand and this value ~ ' ( i ) ~ .  

However, the value x*(i)T is used in all equations (1) and (la) as a supply con- 

straint. If we start from a set of &a1 demands and a projection of xo(i)T, and 

find that X(i)T is greater than x*(i)T, then a plan with this level of final demand 

and this level of capacity expansion in product i will result in excessive output 

of i. 

The interdependence between the equations clearly causes problems in 

estimating parameters of (1) and (2) in both aggregated and disaggregated 

models. These parameters are usually estimated using the time-series data 

under the assumption that each equation for flows ~ ( i ,  j )  and ~ ( i  ,a) contains 

errors c(i,j):, c(i,a):: 

X(i, j) t  = F[ X(i)t, Xu):, X(k ,L), ,t ] + c(i,j): (4) 
or, in the linear form: 

x( i l j ) :  = @i*x(i)t + Pj'X(j): + @k,l*X(k,L)t +d*t + ~ ( i , j ) ~  (44 
Note that the intercept is omitted here and later. for simplicity. 

When these equations are combined into a set (model), there seems to be 

some implicit interdependence between some or all errors ~ ( i , j ) ~  and hence 

between flows X(i j)* and equations in the model yet each of equations contain 

only few variables on the right-hand side. This means that the estimates of the 

parameters in a separate equation of rorm (4) will depend on an error 

specitlcation for all equations. Examples of this type or situation are given in 

many textbooks on econometrics. It is also clear that if X(i,j): is explained by 

aome X(k,L): which includes an error term ~ ( k  ,L)t, then the slope coemcient 

@k,r in equation (4a) will also be affected by this value. We should therefore 

rewrite equations (1)-(3) in the following form: 



B*Y + G*X = E (5) 

i.e., as a system of simultaneous equations, with M dependent and K predeter- 

mined variables based on a sample of T observations. 

Here Y is a TCM matrix of dependent variables, and X is a T*K matrix of 

predetermined variables that do not appear as dependent variables in t h s  sys- 

tem. 

B is an M*M matrix of parameters for the dependent variables and G is an 

M*Kmatrix of parameters for the predetermined variables. 

The error term included in each equation leads to an A4 *K matrix ~ ( i , j )  in 

time space. 

We can therefore describe MII as a structural model; as this term is some- 

times used without a formal definition we shall adopt the defhition used in 

econometrics. 

An equation from the &st set can be rewritten in the f om: 

w (1): +Pi.e*ar (2): + . . + ~ i . i * z  ( l ) t+~i ,z+z(2)t  + . . = ~ ( l ) t  (6) 

i.e., replacing X( i , j )  by y ( i ) ;  for example, deliveries of ferrous metals for con- 

struction purposes X(1,14). might be explained by the output of the ferrous 

metals industry ~ ( l ) ,  the output of the construction industry X(14), and the flow 

of ferrous metals for machine building X(1,7): 

~ ( 1 , ~ 1 4 ) : + 8 1 ~ * ~ ( 1 . 7 ) t  + ~1.1*X(1):+~1,~*X(14)t =c(lm14)t 

Note that here ~ ( 1 )  and ~ ( 1 4 )  are considered as predetermined variables. 

While specifying the model, we usually include some apriori restrictions on 

the values and signs of the parameters, e.g., we do not include the outputs of 

other industries as predetermined demand variables in a model for X(1,14) and 

we would like PI2 to be negative. We also know that some /3(i,j) should be equal 

to zero, or to one, or to minus one for equalities. 



Much work has been devoted to the problem of estimatmg the parameters 

in such systems. It is well-known that applying an ordinary least squares tech- 

nique to a single equation of type (5) will lead to estimates of the parameters 

that are both biased and inconsistent. The presence of only one dependent 

variable from system (5) as an explanatory variable in equation (6) means that 

its error is included in all of the other explanatory variables. 

For simplicity, we will assume that there is only one exogenous variable 

z (1): In (5) and that the system consists of three equations. Let us write two of 

these equations, assuming that y (1): depends only on z ( 1): : 

~(1): + 7(111)*z(l)t = 4l)t ( 7, 

Y (2): + 8(2ll)+y(l)t + 7(211)*z(l)t = 42): (8) 
Therefore y (l)t can be represented by 'Q(l)c + ~(l):, where g(l)t does not con- 

tain the error term. Assuming that terms Q(1): and ~(1): have an equal 

influence on y (2)(, equation (8) can be rewritten in the form: 

I/ (2 ) t+8 (261 )+8 (1 ) t+~ (211 )Cz ( l ) t=&(2 ) t  -8(2,l)+c(l)t 

To obtain an unbiased estimate of /9(2,1) we should minimize the s u m  oi squared 

residuals for this equation with respect to the unknown level of the estimate to 

be found, namely 8(2,1), and with respect to values of ~(1)~. In this case the 

estimate of the parameter (3(2,1) measures the overall effect of Q(1): and its 

error E( 1): on y (2):. 

If we assume that the emor ~(1): does not influence y (2):, then the last 

term should be omitted from (a), which then becomes: 

Y (2): + 8(2,l)V(l)t + ~(2,1)+~(1): = 42): (ab) 

and we will obtain an unbiased and consistent estimate of 8(2,1) by minimizing 

the sum of squared residuals tor (Bb). The main problem here is that we do not 

always know Q(l): and ~(1): a priori. Dflerent approaches are used to estimate 

/3(2,1) under these conditions. 



Note that if there are no errors in the variables on the right-hand side of 

the equation, it is very easy to find unbiased estimates of p.  For example, in the 

simplest case 

& = B+Xt + e: 
if we use only the two points representing the minimum and maximum values 

of Xt , then the estimate 

will be unbiased, i.e., 

E [ ~ ] = B  
where E is the mathematical expectation, and 8 is an estimate of the parame- 

ter 8. 

Assuming that the value of 7(2,1)  is known to be ?@,I), equation (8) leads 

to: 

and the expectation of the estimate obtained, it ?(&I) = 1.0, is: 

where g9(,) is the variance of g ( l ) t  and c?c(l) is the variance of ~ ( 1 ) : .  Obviously 

the estimate of @(2,1) obtained using (10) does not converge to /3(2,1), yet T 

increases to infinity. 

The well-known method of instrumental variables used when errors are 

present in explanatory variables yields consistent but biased estimates of 

parameters. Firstly, 7 ( 2 , l )  is estimated from (7), fltting ~ ( 1 ) :  by the nonsto- 

chastic variable z ( l ) t ,  and then using these fitted values Q(1): as the new expla- 

natory variable in (8) to obtain a consistent estimate of 8(2,1)  through the 

expression: 



The expectation of peer is: 

It is obvious that this type of procedure with independent ~ ( 1 ) ~  and Q ( l ) t  

does not yleld an unbiased estimate of the parameter because: 

might not be equal to zero in every case, see [ 5 ] ,  section 5.4. 

We have given this example for the simplest recursive model to stress that 

the arrangement of the equations as a recursive model does not avoid the prob- 

lem of errors in variables, and use of the ordinary least squares technique is not 

acceptable. It should be emphasized that the problems arising from errors in 

explanatory variables and the interdependence of errors within a set of equa- 

tions are of great importance. 

Note that a model is sometimes considered to be a recursive when this is 

not strictly justified. This can be illustrated using the following simple set of 

three equations: 

v ( l ) t  + 7 1 , l ' d l ) t  = 4 1 ) t  

Bo.l% ( 1 ) :  + a/ ( 2 ) :  + 72,1'2:(l)t = ~ ( 2 ) :  ( 1 3 )  

Bs.e%'(z)t + v(3)t + Y S , I + Z ( ~ ) ~  = 4 3 ) :  
It is a pure simultaneous system and it could not be considered as the recursive 

one because y ( 1 ) :  is omitted from the third equation. To be recursive, the sys- 

tem should fulfill the following conditions: 



In this case, it is possible to estimate the parameters for each one equation in 

sequence by using fitted values of the dependent explanatory variables or pri- 

mary data. In system (13) exists the errors are independent; condition (14) is 

fullilled but not necessarily both (15)  and (16) .  Instead, we obtain the condition: 

For example, if we have the following errors ~ ( i ) ~  for system (13) 

and assuming y2,1= l 1  it can be shown that both ~ ( 1 ) :  and ~ ( 2 ) ~  are highly 

correlated with s(3) : ,  and yet 

where r [ i , j ]  is the coeElcient of correlation between the variables i and j .  

The model of interindustry interactions given in the form of a set of simul- 

taneous equations. It would be possible to rewrite it in reduced form but 

economists prefer to work with a structural form in which judgments can be 

made using the signs and values of the parameter estimates rather than the 

reduced form (18)  in which dependent variables are expressed only as functions 

of the predetermined variables. However, a reduced form is really used for 

forecasting. I t  is therefore necessary to estimate the parameters of the follow- 

ing set of equations: 

Y = r I * X + 7  (18)  

where 9 is the error term corresponding to the & term in the structural form. 

As there are' only nonstochastic variables on the rlght-hand side of ( 18 ) ,  the 



estimates of ll must be unbiased if the ordinary least-squares technique is 

used. These estimates cannot be interpreted by economists but they are used 

in forecasting because only the predetermined values of variables X are known 

before the model is applied. However, these estimates can also be found usmg 

the estimates of B and r through the following equation: 

R = - g - ' * f  
It is sometimes impossible to estimate B and r from known estimates of TI but 

we will not consider this problem any further. Some research workers prefer to 

estimate II from the last equation given above because all a p i o n  restrictions 

on the structural form are used in estimating B and I' - the elements 7tii+ 

obtained in this way should be more effective than those obtained by applying 

the ordinary least-squares technique directly to (18). 

All of this means that there is no unique way of obtaining the best esti- 

mates of n, B, and y. In every case the main problem is connected with the 

errors in the explanatory variables, and with their interdependence. 

We shall now consider some examples taken from the model of interindus- 

try interactions. 

Our &st example is related to the distribution of the output of the "ferrous 

metals" industry (repr~esented by index 1 in the following equations) between 

two major metal -consuming industries, namely "machine building" (index 7 

used below ) and "construction" (index 14). The system of equations is as follows 

(omitting the time index for simplicity): 

2 (117)=81.1*z (1.1 + ~1,1~(7)+~l.z*z(217)+~(1~7) (19) 

z (1,14)=8~.1*~(1) + Bz,r*z(1,7) +yz.s*z (14)+~(1,14) (20) 

=(I)= z(1,7) +z(1,14) +z (1 ,2 )  +&(I> (21) 

z ( l , C ) =  74,4*z (C ) + ~ ( 1 l C )  (22) 

where z (2,?) is the intermediate flow of nonferrous metals used by the "machine 

buildmg" industry and z ( l , E )  represents deliveries of ferrous metals to all 



industries except "machine building" ( ~ ( l , ? ) )  and "construction" (z(1,14)). 

z (z) is used as an explanatory variable for these other deliveries. 

Here only z (?), z (14), z (2,?), and z (z) should be considered as predeter- 

mined variables. If the flow z (1,z) is expressed using (21) instead of (22): 

z ( l , z )  = z(1) - z(1,7) - z(1,14) + & ( l , z )  (z la)  

then z ( I ) ,  not z (z) will be a predetermined variable. The system should then 

be reformulated, replacing some @ for y and vice versa.  The goodness of fit of 

z ( l , z )  should be estimated in both systems. Thus the system of equations 

(19), (20), and (21a) represents a simultaneous model of a recursive form 

because z(1,7) is not influenced by z (1,14) and z ( l . x ) ,  and z(1,14) is a function 

of z(1,7), and z (1,x) absorbs errors e(1,7) and &(1,14). The ordinary least- 

squares technique OLS would give a biased estimate of the very important 

parameter which reflects the influence of supply constraints on changes in 

the intermediate flows. This recursive system may therefore be summarized as 

follows: 

z ( l , 7 )=  ~l . l 'z(1)  + Y ~ , z * ~ ( ~ ) + Y I , ,  *z(2,7)+~(1,7) 

z (1,14)=@2,1*2 ( lev)  +yz,i*z (l)+72,3*z (14)+e(1114) (24) 

z( l ,x)  = - z (1,7) - z (1~14) + z(1)  + E ( I , ~ )  

This system does not c~n ta i n  any feedback between variables (or errors) 

and could be estimated by two techniques: firstly, by assuming that the 

errors in z ( 1 , 7 ) ~  are insigniticant, and secondly, by dividing z(1,7), into two 

parts accord~ng to (8). Assuming that the errors are insignificant, we have 

estimated 8ae1 by OLS and found it to be quite small (-0.5) and insignificant 

(standard error of the estimate is 0.35). The second technique described above 

IS called the two-stage least-squares method (ZSLS) and yields Pzml = -2.0 

with the same standard error. The results of fltting are given in Table 1 ,  where 

the numbers in parentheses are the standard errors of the estimates. 



Table 1 .  The parameter estimates and the goodness of fit for model (24). R2 
is the coefficient of determination, and DW is the Durbin-Watson statistic. 

Technique 72.1 72.3 R2 DW 

OLS -0.4856 0.1759 0.3157 0.990 1.31 
(0.346) (0.108) (0.125) 

2SLS -1.9935 0.7852 0.1798 0.997 1.73 
(0.342) (0.128) (0.058) 

The table shows that 2SLS estimates are more efacient (they-have lugher 

t-statistics) than those obtained by using OLS. All  of the estimates change 

significantly when we remove the so-called errors from z (1,7): : 

e ( l a 7 ) t  = z(187): - ? i , ~ * z ( l ) t  - ' 1 . g  (7)t - ?(1.4)'z(217)t 
where p and y are estimated by using OLS. Note that one important assumption 

was made: ~ ( 1 ) ~  does not include any error but there may be a correlation 

between ~ ( 1 ) :  and both &(1,7): and ~ ( 1 , 1 4 ) :  over the sample. If there is a posi- 

tive correlation between ~ ( 1 ) :  and the other errors,  then large .errors w i l l  be 

obtained for z ( l , C ) :  on applying 2SLS to the last equation of system (24) .  

Moreover, &(1,7)( will also afXect the estimate of y ~ , ~ ,  leading to a large increase 

in the estimate on the second step (the 2SLS estimate is very u h  compared to 

the OLS estimate, as shown in the table). Note that the steady increase of 

z ( 1 , 7 )  over time is dtted quite well, R~ = 0.998 and DW statistic = 1.6. We can 

safely assume that the small changes in the annual steady increase of z ( 1 , 7 )  do 

not influence either 6(1 ,14) :  or its variance, represented by &(1,14),  . The esti- 

mate of @s.l can be written as follows: 

-0.4856 = -1.9935% + [1.0 - h]+p,  

where is a slope coefacient representing the impact of &(1,7): on z (1,14): .  If 

h = 0.5, then the estimate of @, should be positive (+1.0) .  Because in 2SLS 

~ ( 1 ~ 7 ) :  acts only through z (1) :  , which is positively correlated with z (1 ,14) : ,  the 

estimate of ysSl is a mixture of both impacts !i?(l): and of the error term ~ ( 1 ) .  



The impact of small changes in ~ ( 1 ) ~  around the trend is possibly larger than 

the effect of a steady increase in the supply of ferrous metals 

When forecasting, we should use the estimates obtained by 2SLS if there is 

no a p7h-L assumption that the rate of growth of ~ ( 1 ) ;  will differ sigruficantly 

from the past trends. 

Our second example is related to the set of equations describing the growth 

of the "transportation" industry. In the model of interindustry interactions, out- 

put of this industry is estimated by using the following equation: 

instead of an equality because not all flows are included in the sum.  Here each 

flow z (16,j) can be fitted by the regressions for separate flows in physical units 

z(16,j.); these flows are then aggregated using the equation: 

where a ( 1 6 , j ) ~ p ~ ~  are values taken from the 1972 input-output table to 

transform the values of intermediate transportation flows from physical units to 

monetary terms. Because only the main intermediate flows are estimated by 

regressions and the values of a( l6 , j )  change over time, regression (25) is used 

to fit the output of this industry rather than using the equality: 

18 
~ ( 1 6 ) :  = C ~ ( l 6 . j ) ~  

1=1 

We have fltted all of the flows z(16.j)  quite accurately, the variance of the 

residuals of the regressions being less than 57. in every case. We can therefore 

use (25) with the appropriate goodness of fit: 

h(l6); = d + 1.18*x z ( l6 , j ) ;  
f 

(254  

with R'= 0.999 and DW = 1.0. Obviously, the 18% underestimation of the output 

of the transportation sector (7=1.18) is not very large, and so this equation 



could be used in forecasting in the disaggregated version of MII. However, we 

have fltted ~ ( 1 6 ) ~  using the actual values of the flows instead of their fitted 

values 4(16,j):. In forecasting we can And only the fitted values from the 

corresponding equations for z(16,jS):, and so it is necessary to derive the esti- 

mates of (25) with the fitted values 5!(16,j)t from the reduced form: 

Th~s is basically the same as estimating R~ for the equality using a reduced 

form in a system of simultaneous equations. We have not imposed any restric- 

tions on the interrelationship between errors in the regressions for z (16,j,), but 

there are about 15 equations for aggregated flows ~ ( 1 6 , j ) ~  and so the sum of the 

18 = 
errors ( c(16,j8)t ) should not be very large and we ahould be able to rely 

on the goodness of fit obtained. However, it sometimes happens that the param- 

eter estimates in (25a) are unreasonable: 

with R ~ =  0.858 and DW = 0.7. It seems strange that the estimate of the slope 

coefBcient y increases by 20% with an unexpected decline in R ~ .  The average 

error of regression (as a percentage of the mean value of z(l6)) has also risen; 

from 1.57, to 15%. This means that the residuals in the set of equations are very 

highly correlated and that their sum is far from zero tor each value of t ,  despite 

the fact that z(16,j)t were fltted so well by their own explanatory variables. 

This situation is illustrated in Figure 1. 

Our f k d  example is concerned with the allocation of the electricity indim- 

try output, as treated in the disaggregated model. There is some question of 

whether aggregated or disaggregated flows should be used to fit the total output 

ot the electricity generating industry (represented by index 8 ) .  We divided 



electricity consumption within each industry into three parts: 

z ( 8 ,  j  z ( 8 , j z ) ,  and z ( 8 ,  j 3 ) .  Here the first term represents the electricity used 

for driving mechanisms, the second, the electricity. used for technological 

processes, and the t h rd ,  the electricity used for lighting and for other purposes. 

We therefore have the equality for each industry j :  

and for each component we could find appropriate Linear equations with 

explanatory variables, and flt their values quite well. Each of the electricity 

flows depends on certain characteristic variables, e.g., heating and bghting is 

connected with the length of time worked by the industry, the electricity used 

for driving mechanisms depends on the equipment used and its eEIciency, and 

technological demand is quite closely related to the output of the industry, or to 

the amount of primary materials consumed. We can then obtain the total 

demand of each industry by summing the three flows, as before. We need to 

estimate the goodness of flt only for z(8, j ) ,  not for each flow separately; prob- 

lems similar to those discussed in the example on "transportation" can also 

arise. However, on testing the equations we found that the equalities are 

tulfllled quite adequately. For example, the values of for the oil-refbung 

industry are 0.993, 0.998 and 0.989 for the three flows, respectively, and for 

z (8,j) is 0.998. This is true for all industries, and so these sets of equations can 

be used in the model directly. 

Sometimes dividing the flows yields better results for an aggregated flow 

than estimating an equation for the aggregated flow directly. As the model 

of interindustry interactions consists of some weakly separable blocks then 

appropriate techniques can be chosen for each case, accordmg to the quality of 

the data and the associated restrictions. 



Some examples in which the 2SLS technique is used to obtain estimates for 

the ferrous metals industry are given in [6]. 

For forecasting, we defimtely need only the reduced form if the model is 

based on the standard input-output techmque: i.e., is designed to calculate the 

demand for industries according to the exogenous estimates of total final 

demand and its components Y ( ~ , u ) ~ .  Th~s model can also be used to solve 

another problem - to find out whether the exogenous estimates of industrial out- 

puts balance with one another. In this case x* (~)T  is given and equalities (2) 

and (3) are needed only to estimate the difference between the derived demand 

X(i)T and those estimates x*(~)T. We replace X(i)T in each equation of (I) by 

the exogenous values 

X(i,j)T = DO + DI*X(j)T + Dz*X*(i)?' + @3*X(k#l)T + P(T)  
and the impact will appear in the derived demand on solving the system both 

with and without given Y(a)T. Thus we need estimates of goodness of fit for all 

of the regressions (1)-(3) in a reduced form. Unfortunately, not all standard 

procedures-can be used to obtain R~ values for equaltties, and this can lead to 

the overestimation of model quality in forecasting. 
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Figure 1. Scatter diagrams for sums of the real and fitted values and for 

the output values of the transportation sector. 
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