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PREFACE

Deterministic models are traditional in the investigations
conducted in ecological studies. 1In some cases, they are suf-
ficient for dealing with the problems which arise, but in others
they cannot even describe certain phenomena which occur in
natural systems. The application of pure stochastic methods
leads to extraordinary mathematical difficulties and in many
cases is almost impossible. A compromise is needed, especially
for asymptotic cases. 1In this paper, some possible methods are
put forward for describing the phenomena, which are elusive when
a purely deterministic approach is used.
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ABSTRACT

This paper describes some possible applications of
stochastic methods which may be used in ecological studies.
The role of stochastic methods in investigations of the dynamics
of ecosystems is gaining in importance. It is a new trend which
has arisen in ecological studies, related to the development of
methods for the control of the environment. Stochastic methods
are very useful for investigating the stability of ecosystems
and the criteria of stability of natural systems, especially
where the influence of permanent small-scale random disturbances
have been noticed. Some criteria have been suggested and exam-
ples of use of these criteria are given in this paper. It must
also be noted that the complex problems of predicting and con-
trolling processes in natural systems must be solved by mathe-
matical tools which permit analysis of anthropogenic factors
without in-situ experimentation.
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SOME APPLICATIONS OF STOCHASTIC METHODS IN
INVESTIGATIONS ON THE DYNAMICS OF ECOSYSTEMS

V.A. Svetlosanov

INTRODUCTION

The problem of interaction between man and the environment
has gained in importance among the present scientific and tech-
nological problems. The depletion of natural resources, pollu-
tion of the atmosphere, soil, seas, and oceans, upsetting the
biological balance--these and other factors create problems
which have to be urgently solved. It is evident that the prob-
lems arising are complex, and their solution calls for joint
efforts by specialists from many countries and scientists in
different fields of research. The main task when studying the
dynamic processes of the environment is to predict the effect
of today's factors on its future state. Quantitative prediction
necessitates dynamic mathematical modelling. This paper considers
the use of stochastic models of ecosystems, especially in cases
where different variants of the system's development depend on

many parameters, including man's activity.

DETERMINISTIC AND STOCHASTIC APPROACHES

All currently used models of environmental processes can
be classified into four groups: (1) static deterministic,
(2) static stochastic, (3) dynamic deterministic, and (4) dynamic

stochastic.
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The majority of mathematical models are static and belong
to the first two groups. Many processes in ecology are dynamic
and the development of the third and fourth group of models is
becoming useful. Since most of the ecological processes are
stochastic, the fourth group of models--dynamic stochastic
models--is of particular importance. The first three groups
may be regarded as auxiliary in the development of models for

studying ecological processes.

Any regular dynamic process is characterized by random
deviations. Each process differs from the other. However, in
certain cases, one can ignore fortuitous elements, leaving only
the major factors affecting a process, i.e., a deterministic
dynamic model of a phenomenon is provided for its analysis.
Such models reveal the basic regularity inherent in the phenom-
enon and permit prediction (on the average) of the system's
development, proceeding from the initial conditions. The
progress of science makes it possible to increase the number
of factors, enabling a more accurate prognosis. Theoretically,
prediction in each problem can be made more accurate by the
gradual introduction of new groups of factors: from the essen-
tial to the insignificant stage. Practical experience rules
out such an approach, for it unduly complicates a problem and
renders analysis of the effect produced by the factors involved
in prediction more difficult. By applying systems analysis for
solving this problem it is possible to distinguish between
primary factors which determine the dynamics of a process on
the average and secondary factors which are regarded as "dis-
turbances". When a given process is examined in depth, there
is always a moment when the investigator must not only identify
its basic regularities, but also analyze possible deviations
from them. This is where dynamic stochastic methods must play

a decisive role.

STABILITY OF ECOSYSTEMS

In recent years, a great deal of attention has been given
to the problem of stability of ecosystems. Holling (1973)

advanced the idea, that natural ecosystems possess two



characteristics, resilience and stability and gave them quali-
tative definitions. He pointed out that ecosystems can have
several equilibrium positions and under disturbances can go
from one position to another, and gave some concrete ecological

examples of such situations.

A special question arises here: how can one calculate the
system's transition from one position of equilibrium to another?
The answer to this question is connected with the stability
ecosystem. Stability may be quantitatively defined by introduc-
ing the criteria of ecosystem stability. Stability is one of
the fundamental concepts as regards the development of complex
natural systems. This has become a topical problem in view of
the tremendous impact of man on ecosystems. Research in this
direction enables one to set forth stability criteria for eco-
systems affected by man and to determine the maximum permissible
loads on them. The use of stochastic dynamic models must con-

tribute to the correct solution of a given problem.

Studies on the stability of natural systems may be divided
into two main categories. The first category includes modeling
of natural systems and determination of the stability of such
model systems to various disturbances. The second category
involves attempts to find a characteristic in an ecosystem that
would be responsible for the stability of the system as a whole.
Such a characteristic is generally assumed to be a function of
variables that can be measured easily. Measurements of the
characteristics of various natural systems produce a number of

comparisons which reveal their relative stability.

Perhaps Mac-Arthur (1975) was the first who tried to confront
the stability of natural system with the number of relationships
inside the system. In order to describe the stability s of the

association, he suggested the following eutrophy formula:

p; log p; ' (1)

0
1]
]
~3

i=1

where p; is the relative number of the species.
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The general idea of this formula is that the more relationship
there is inside the system, the more stable it becomes. This
formula gives a chance to calculate very quickly the measure of
stability of the associations. But this is a simplified approach;
it does not consider the structure of the systems, the type of
disturbances and their quantitative wvalues. All these charac-
teristics are however responsible for the stability of the

associations.

Another approach is possible, which is a synthesis of the
first two. It consists of constructing a mathematical model
and studying the effects of disturbances on the dynamics of
development of a given system. As a result, in some cases, the
investigator knows which factors and which functional relation-
ships are responsible for the stability of the system under
consideration. This approach has been developed to assess the
effect of small random disturbances on the stability of natural

ecosystems.

The above mentioned first category presupposes the existence
of a mathematical model describing the dynamics of natural systems.
The models may be deterministic and stochastic, but the use of
purely stochastic models involves serious mathematical difficul-
ties. In some cases, the effect of influences can be determined
only by means of deterministic models. Let us consider such a
case as in the classical studies concerning the stability of
solutions of ordinary differential equations applied to small
step unit disturbances. Liapunov's (1950) method permits examina-
tion of the stability without solving the equations describing
a model, by resorting only to the coefficients of the model
equations. Please note that a step unit disturbance is nothing
but a particular case of the possible disturbances affecting a

natural system.

POSSIBLE DISTURBANCES IN NATURAL SYSTEMS AND SOME ESTIMATION
OF THEIR INFLUENCES ON THE STABILITY OF THE LOGISTIC CURVE

It was mentioned earlier that especially the stability of

the ecosystems depends on the disturbances affecting them. Among
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all the possible disturbances, we pay attention to the following
Six groups:

1. Step unit short-duration low-amplitude pulses

2. Step unit short-duration high-amplitude pulses

3. Periodic and nonperiodic pulses of different amplitudes

4. Permanent small-scale random disturbances

5 Permanent large-scale random disturbances

6 Disturbances affecting the parameters of natural

systems (structural changes in the system).

Take an ecological example with the consideration of the distur-
bances influencing the system. The logistic curve (or the
Ferchulst curve), which describes the growth of the number of
population species N, is well known in ecology. The logistic
curve is very convenient for analysis because it is simple and

the results are obtained in an analytic form.

This logistic curve (Figure 1):

N = a/B
1+ [o/BN_ - 11e” %

t 4 (2)
represents the solution of the differential equation:

> 2

N = oN - BN , (3)

where o is a coefficient characterizing the difference between
birth and death of the species and B is a coefficient of intra-

specific competition.

This system has two stable positions of equilibrium--
N1 = o/B and N, = 0/biologically stable/. As can be seen from
Figure 1, in the course of time, the curve approaches the

asymptotic stable equilibrium position, N, = a/B.

Suppose the number of species N is near to the position of
equilibrium Ny, = a/B, it is easy to see that this population
system is stable to the first group of disturbances. The step
unit short-duration low-amplitude pulse causes the system to
deviate from the equilibrium position, but the system will
return to the position of equilibrium (Figure 2). It is obvious

that the disturbance of the second group can destroy the system
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Figure 1. Logistic Curve of Population Growth
(the Ferchulst curve)



Figure 2. The Reaction of the Logistic Curve to the
Step Unit Short Duration Low Amplitude Disturbances



which is described by the Ferchulst curve, if the numerical
value of the disturbances exceeds o/f. The Monte Carlo method
can be used to evaluate the results of disturbances from the

third group.

Of special interest is the consideration of the result of
permanent small-scale disturbances (Group 4) because this type
of disturbances very often exists in real systems. Later on,
we consider the mechanism of the evaluation of ecosystems
stability to this kind of disturbances, but now we give only
the result of the stability calculation of the Ferchulst curve
to the disturbances which can be described as "white noise". In
this case, the measure of stability of the logistic curve to
this type of disturbances depends on the combination of the
coefficients o« and B and equals gi. Considering different

82
populations with different coefficients o and B one can see that
the system is more stable than for the higher combination gi.
B2
MEASURE OF STABILITY FOR THE PERMANENT SMALL-SCALE
RANDOM DISTURBANCES OF THE "WHITE NOISE" TYPE

Let us now consider a method for describing the dynamics
of natural systems taking due account of permanent small-scale
random disturbances (Group 4). We shall assume that the random
disturbances are small in a statistical sense, as compared to
deterministic components. We believe that in real natural systems,
in many cases, there are such disturbances. Let a system have
several stable equilibrium positions; if we had applied a deter-
ministic approach, the natural system would, during that time,
have come closer to one of the equilibrium positions and stayed
there indefinitely. Let the dynamics of the natural system com-

ponents be described by the equation:

X = b(x) ’ (4)

where x is a vector, if the logistic curve X = N, b(x) = b(N)
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Suppose the system has different states of equilibrium,
and if equation (4) describes the evolution of the natural
system precisely, then the system would come to one of the
states of equilibrium and be there for an indefinite period of
time. But, in fact, the natural system is under the effect of
irregular random disturbances. These disturbances may be de-
scribed by random processes. Assuming that the random process
is the "white noise" type (Wt), then the dynamics of the natural
system will be described by equation:

€

%5 = b(x%) + ew (5)

t I
where ¢ is a parameter which characterizes the small distur-

bances as compared with the vector b(x), W_--Winer process.

t
Such a stochastic approach gives a chance to observe some
phenomena which are natural in the systems and which cannot be
described by the deterministic approach. Using the model (5),
it is possible to calculate the quantitative characteristics of

the above mentioned pheonomena.

Assume the system is near the stable position of equilibrium
O1 and is affected by random disturbances. Note that H1 is the
sphere of attraction of the point 01. The stability of the system
near the point O, may be characterized by the average time which
the system needs to leave the sphere of attraction H1. For
concrete realization, the time it takes for the system to leave
the stable position is a random value. Let us note it as T1€.
In order to find the expected value at the time of residence of
the system MXTnE' it is possible to formulate the task for
function n®(x) = Mxrne. This task is very complicated and the
analytical decision is very difficult and in many cases impossible,
since the stability of the stable position depends on the initial
point. It is possible to simplify the task and in the case of
a small value € it is natural to introduce a dominant term of
the expected value at the time of residence of the system
(Mxrne), (Vventzel and Freidlin, 1979) in the n-th surrounded

region of the stable equilibrium position:
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C
€ n
MxTn ~ exp 3 . (6)
2¢

As we can see from equation (6), the time of residence of the
system to be in the n-th region of the stable equilibrium posi-
tion depends on the funtion Cn. Therefore, it is proposed to
use Cn as a measure of stability for the permanent small-scale
random disturbances. The numerical values of Cn depend on the

type of functions b(x) and on the n-th equilibrium position.

It is easy to find constants Cn when the b(x) field is one-
dimensional. According to Ventzel and Freidlin (1979) the
function Cn is closely connected with the quasi-potential U (x)
of the field b(x) '

C_. =14 x U(xn+ (7)

n 1)

where x is the position of equilibrium where the system will

n+1
be after a certain period of time,

where quasi-potential

X

U(x) = - J b(x)dx . (8)
o

In the initial position of equilibrium (x1) this quasi-potential
is equal to zero (Ventzel and Freidlin, 1979). This enables

calculation of B the constant of integration
i
0= Ulxy) = - of b(x,)dx +B . (9)

In the case of the multidimensional size of the field b (x) the
more difficult problem of the calculation of the constants Cn
must be solved. 1In this case, the values Cn are the minimum
of the functional T which is defined as follows:
T2 n 2
T = J 3E40x%y - bx)]17dt (10)

T4

where Xy is the i-th component of the vector x,
(T2-T1) - period of time when the system goes from one posi-

tion of equilibrium to another.



-11-

The knowledge of the values of Cn makes it possible to calculate
the probabilities of transition from the neighborhood of one
stable position to another. Note that the transition from the
neighborhood of one stable position to another is impossible to

calculate with a purely deterministic approach.

CONCRETE EVALUATION OF STABILITY CRITERIA FOR
PERMANENT SMALL-SCALE RANDOM DISTURBANCES

3

We stated earlier that the wvalue 97 characterizes the
B

criteria of the stability of the permanent small-scale distur-
bances for the logistic curve. Now we shall give the calculation

of this wvalue.

The number of population growth species N which is subject
by random process of the "white noise" type (Wt) will be described
by equation

(€) (€) €)%,
N = aN - BN + Wt . (11)

In this case, the transition from one position of equilibrium
(N1 = o/B) to another position where the population is zero, is
possible. Figure 3 shows one possible realization of the process.
Now let us calculate constant C1--a measure of stability, using

the equations (4)-(9).

For this purpose, as mentioned earlier, first of all one
must find U(N)--the quasi-potential of the field aN-BN2

N 2 2
U(N) = J (~aN+BN?)dN = - o+ B+ B : (12)
o
In the equilibrium position of the system (N1 = %), the quasi-

potential of the field must be equal to zero (Equation 9)

From here we can find the meaning of constant B

B = 2 . (13)
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Figure 3.

Possible Realization Process of the Death of
the Natural System's Component
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The above mentioned constant C,; may be found, when the second posi-

tion of equilibrium of the system (N, = 0) is considered (Eq.7):
2 u3
C, = U4 x U(0) = = « == . (14)
1 3 B2

Therefore, the dominant term gives the following analytical
expression for mathematical expectation (Freidlin and Svetlosanov,
1976),

C 3

€ 1 _ Q.
M T" ~ exp—s = engi_—__— . (15)

2¢ -382

It is easy to see, when ¢ is small, the value mentioned

below is great:
lim M 1% > = . (16)

The measure of stability of the equilibrium position is a3/82,

SO0 we can see that tihe greater the value a3/82, the higher the
stability of the system described by the logistic curve (Freidlin
and Svetlosanov, 1976). This example shows how the small distur-
bances can "swing" and even destroy the system which looks very
stable for an indefinite time, without consideration of the
disturbances. Note that the effect of the "death" of this com-
ponent of the natural system is impossible to find using the

deterministic approach.

Consider now the results of studying the stability of
Haefele's (1975) mathematical model under the effect of random
disturbances of the "white noise" type (Svetlosanov, 1977).
Haefele has proposed a deterministic model representing the
relationship between population growth and the energy potential
per population unit. The model is described by the following

system of differential equations:

172 3 og 4 Ke2 (17)

Qa| Q
cHd
]
1=
>
(1)
|
=
Q
(0]
|
®
O
+

Qi Q.
19
Il
o
o
|
=
o
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Here, p is the population and e is the energy potential per
population unit. Figure y represents the development of the
system in a phase plane. Separatrices divide the phase plane
into four parts. If evolution started in one of the four parts,
it will always be confined within that part. 1If it starts in
Part IT or III, the community will become extinct after a certain
period of time. In order to exist, the community must stay in

Part I or IV.

Consider the evolution of a given dynamic system, taking
into account the effect of small random disturbances of the
"white noise" type. The system will be described by the system

of differential equations:

2

de _ 1/2 _ 3 _ Ke y
d_t = uAe uce ed + ——p +€Wt
(18)
dp _ - ;
3t Sp Ke+€Wt .

Under the effect of a random disturbance, the system may shift from
one point of the phase plane to another along different paths, but
there is always curve Et along which the shift is most probable.

The curve shape, mathematical expectation, as well as the probability
of shift transition from one point of the phase plane to another
during time interval T = T, - T,, can be derived (according to

equation 10) while calculating the minirum of functional:

Tp

2
. 2
T(Et) = J [{e - uAeAI/2 + uCe3 + e§ - E%— +
T4
. 2 ,
+ (p - &p + Ke)?ldt . (19)

The main term of probability transition P takes the form:

min I(Et)
P~ exp {- ____—Tf_——} . (20)
2¢
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Calculation of the minimum of functional T(Et) gives the same
constant C which is a measure of stability of the system to
random disturbances. The calculations of initial values

8
e, = 10, Py = 2.2.10
have given min 1(§) = 4.77 with other initial conditions e, =

and final values er = 21.9, Pg = 2.74.108

15, p, = 3.10% and the same final conditions, t(£) = 12.49.
Let us note that the final conditions were the values of the

saddle-point. The time horizon was taken equal to 103 years.

Let us consider from this point of view the problem of
soil degradation. Degradation and instability are often closely
correlated. Suppose we have the differential equations which
describe the process of soil degradation; first of all, we are
to clarify the type of disturbances which influence the soil.
If the random process is a "white noise" type, we can use the
above mentioned methodology to calculate the criteria of stability
of agroecosystems. Knowing this, we can calculate the "life-time"
of agroecosystems and evaluate the extent of soil degradation.
In the case of other different types of disturbances, we can
use (it depends on the situation) Liapunov's method or the
Monte Carlo method to calculate whether the system is stable or
not. So far, no analytical criteria have been determined for
disturbances of Groups 3, 5 and 6. Calculations can be carried

out using the Monte Carlo method.

The use of stochastic dynamic methods is not restricted to
studies of natural system stability. They were used, for example,
to predict the boundary configurations of forests invading the
Steppes. The interrelations between forest and steppe are quite
complex. An analysis in the Streletsky sector of the Kursk
Steppe has revealed steady encroachment of forests upon the
steppes. The statistical probability of emergence of a new
tree depends on the distance between trees. The use of this
relation in the Monte Carlo method has enabled the boundary
configuration of the forest to be predicted fifty years ahead
(Andreev et al., 1976).
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CONCLUSIONS

Stochastic methods can afford to evaluate some effects in
natural systems which are impossible to find by using only a
purely deterministic approach. A stochastic approach may be
actively used in studying the present actual problem--the
stability of natural systems, especially with an idea of obtaining
the criteria of system stability.

As the problems of soil degradation and agroecosystem
stability are very closely connected to each other, stochastic
dynamic models should be used to analyze them.
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