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ABSTRACT 

We present a summary of the basic results on differential 

inclusions and viability theory. A comprehensive exposition of 

these two theories is the purpose of the book on the same subject 

by the authors. 
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DIFFERENTIAL INCLUSIONS AND VIABILITY 
THEORY 

J.-P. Aubin 
A. Cellina 

INTRODUCTION 

There is a great variety of motivations that led mathemati- 

cians to study dynamical systems having velocities not uniquely 

determined by the state of the system, but depending loosely upon 

it, i.e., to replace differential equations 

by differential inclusions 

when F is the set-valued map that associates to the state of the 

system the set of feasible velocities. 

A great impetus to study differential inclusions came from 

the development of Control Theory, i.e., of dynamical systems 

"controlled by parameters u(t) (the "controls"). Indeed, if we 

introduce the set-valued map 



then solutions to the differential equations ( * )  are solutions 

to the "differential inclusion" 

in which the controls do not appear explicitly. 

Systems Theory provides systems of the form 

d 
X' (t) = A(x(~)) (D(x(t)) + C(x(t)) ; "(0) = Xo 

in which the velocity of the state of the system depends not only 

upon the state x(t) of the system at time t, but also on v a r i a -  

t i o n s  o f  o b s e r v a t i o n s  B(x(t)) of the state. These are obviously 

instances of differential inclusions. 

Also, differential inclusions provide a mathematical tool 

for studying differential equations 

with d i s c o n t i n u o u s  right-hand side, by embedding f(t,x) into a 

set-valued map F(t,x) which, as a set-valued map, enjoys enough 

regularity to have trajectories closely related to the trajec- 

tories of the original differential equation. 

But, besides this array of mathematical and physical motiva- 

tions, social and biological sciences should provide many in- 

stances of differential inclusions. Indeed, if deterministic 

models are quite convenient for describing systems that arise 

in physics, mechanics, engineering and even, in microeconomics, 

their use for explaining the evolution of what we shall call 

"macrosystems" does not take in account the u n c e r t a i n t y  (which, 

in particular, involves the impossibility of a comprehensive de- 

scription of the dynamics of the system), the absence of c o n t r o Z s  

(or the ignorance of the laws relating the controls and the states 

of the system) and the v a r i e t y  of available dynamics. These are 

reasons why usual dynamical systems, or even controlled dynamical 

systems, may not be suitable for describing the evolution of states 



of systems derived from economics, social and biological sciences. 

We may expect the set of trajectories of differential in- 

clusions to be rather large: hence an important class of problems 

consists naturally in devising mechanisms for selecting special 

trajectories. 

A first class of such mechanisms is provided by Optimal 

Control Theory: it consists in selecting trajectories that op- 

timize a given criterion, a functional on the space of all such 

trajectories. 

This implicitly requires that: 

1 )  there exists a decision maker who "controls1' the system 

2) that such a decision maker has a perfect knowledge of the 

future (which is involved in the definition of the criterion) 

3) the optimal trajectories are chosen once and for all at 

the origin of the period of time. 

These requirements are not satisfied by the "macrosystems" 

that evolve according to the laws of Darwinian evolution. 

Such macrosystems appear to have neither aims nor targets 

nor desire to optimize some criterion. But they face a minimal 

requirement, called viability, which is to remain "alive" in the 

sense of satisfying given binding constraints. 

For that, they use a policy, opportunism, that enables the 

system to conserve viable trajectories that its lack of determinism 

-- the availability of several feasible velocities -- allows to 

find. 

This provides a mathematical metaphor of this deep intuition 

of Democritus, "Everything that exists in the universe is due to 

chance and necessity". 

This second class of mechanisms is the object of Viability 

Theory. In particular, we shall apply Viability Theory in the 

framework of Control Theory for regulating systems through feed- 

back controls, and we shall illustrate this by an application to 

decentralization by price regulation in the framework of economics. 



The r e s u l t s  p resen ted  below a s  w e l l  a s  t h e  b i b l i o g r a p h i c a l  

r e f e r e n c e s  appear  i n  a  comprehensive form i n  t h e  monograph 

" D i f f e r e n t i a l  I n c l u s i o n s " ,  Spr inger -Ver lag,  New York, 1983, by 

t h e  au tho rs .  

1. THE PEANO AND NAGUMO THEOREMS FOR DIFFERENTIAL EQUATIONS 

Throughout a l l  t h i s  e x p o s i t i o n ,  X deno tes  a  f i n i t e  dimen- 

s i o n a l  space ,  t h e  s t a t e  space,  and K c X  t h e  s u b s e t  o f  f e a s i b l e  

s t a t e s .  W e  assume t h a t  K i s  locally compact; t h i s  cove rs  two 

p a r t i c u l a r  cases: K i s  open and K i s  closed. 

The dynamics of  t h e  system a r e  d e s c r i b e d  by a ( s i ng le - va lued )  

map f  from K t o  X ,  which w e  assume t o  be continuous and bounded. 

For every  i n i t i a l  s t a t e  x o E K ,  w e  cons ide r  t h e  i n i t i a l  v a l u e  

problem 

W e  say  t h a t  a  s o l u t i o n  i s  viable i f  

For t h i s  problem t o  have v i a b l e  s o l u t i o n s  f o r  every  i n i t i a l  

state i n  K t  w e  need some cons i s tency  between t h e  dynamics f  and 

t h e  v i a b i l i t y  set K. 

I n  o r d e r  t o  e x p r e s s  it, w e  i n t r o d u c e  t h e  fo l low ing  concept  

o f  con t i ngen t  cone TK(x)  t o  K a t  x E K ,  which i s  t h e  t angen t  space  

when K i s  a  smooth mani fo ld ,  t h e  t angen t  cone o f  convex a n a l y s i s  

when K is convex, and which is  t h e  whole space a t  each i n t e r i o r  

p o i n t .  

D e f i n i t i o n  1  

W e  say t h a t  t h e  s u b s e t  

i s  t h e  "contingent c o n e N  t o  K a t  x.  



I n  o t h e r  words, v E T (x )  i f  and on ly  i f  K 

VE > 0, Va > 0, ~ U E V  + EB, 3 h € ] O , a ]  such t h a t  
(2 

x + h u E K  . 

o r  i f  and on ly  if 

dK (x+hv) 
( 3  l i m  i n f  = 0 

h+O+ h  

o r  aga in ,  i f  and on ly  i f  t h e r e  e x i s t  sequences of  s t r i c t l y  pos i -  

t i v e  numbers hn and of e lements un€X s a t i s f y i n g  

( 4 )  i) I i - m  un = V ,  ii) l i m  hn = 0, iii) vn - > 0, x  + hnun E K 
n+a n+m 

I t  i s  q u i t e  obvious t h a t  TK(x)  i s  a closed cone and t h a t  t h e  

con t ingent  cone t o  t h e  c l o s u r e  of K co inc ides  w i th  it. 

When K i s  a convex subse t  and x  belongs t o  K t  then 

and it i s  a c losed convex cone. 

A r a t h e r  comprehensive c a l c u l u s  of  t h e  con t ingent  cones has 

been developed. 

Theorem I (Peano-Nagumo). L e t  K C X  be l o c a l l y  compact and 

f :K+X be cont inuous.  The necessary and sufficient condition 

for the existence of a local viable solution of the differ- 

e n t i a l  equat ion  x '  = f ( x )  f o r  every  i n i t i a l  s t a t e  i n  K i s  

(6)  VxEK , € T ~ ( x )  . 

When K i s  open, T (x )  i s  equal  t o  X and t h e  above reduces t o  
K 

Peano's Theorem. 

When K i s  a smooth mani fo ld,  cond i t i on  ( 6 )  expresses  t h e  f a c t  

t h a t  f  i s  a vector field. 

When K i s  c losed,  then  cond i t ion  (6 )  i s  no longer  t r i v i a l :  

The above reduces t o  Nagumo's theorem. 
When K is closed and f is bounded, we obtain the existence of a 

global viable solution. 



Remark : 

If we drop the boundedness assumption, we obtain only the 

existence of a local solution. 

2. THE CASE OF DIFFERENTIAL INCLUSIONS 

From now on, we describe the dynamics of the system by a 

set-valued map F from K to X. 

For every initial state xO€K,  we consider the initial value 

problem for the differential inclusion 

We say also that a solution is v i a b l e  if 

For an ordinary differential equation x' = f(x), it is clear what 

is meant by a solution. The continuity of f allows us to define 

a solution as a continuously differentiable function on some 

interval. 

For differential inclusions the problem is not so easy. For 

instance, let F be constant, equal to I-1,+1) and let us consider 

the set of solutions through 0 at t = 0. There are only two C 1 

solutions, namely x, (t) = t and x2 (t) = -t , and we feel that we 

should accept more functions as solutions, allowing the derivative 

not to exist, for instance on a finite number of points, or on a 

countable set, or on a set of measure zero. We shall accept ab-  

s o l u t e l y  c o n t i n u o u s  f u n c t i o n s  as an adequate class of solutions. 

The conditions to be imposed on the set-valued mapping F in 

order to have solutions are of two kinds: regularity conditions 

on the map (i.e. the various kinds of continuity or semi-continuity) 

and conditions of topological or geometric type (compactness, 

convexity) on the images of points. Various combinations are 

possible: we would not expect to obtain solutions under weak 

assumptions of both types, while it should be quite easy to prove 

existence under strong assumptions of both types. In general, 

the intermediate cases will be more interesting. 



We choose to study the following compromises 

a) F is upper semicontinuous 

b) the values of F are compact and convex 

and 

a) F is continuous 

b) the values of F are compact, but not necessarily convex. 

The case of Lipschitzean maps F bridges those two classes of 

differential inclusions, because the Relaxation Theorem states 

that, in this case, the set of trajectories of the differential 

inclusion 

is dense in the set of trajectories of the differential inclusion 

x' (t) EG F(x(t)) (:= closed convex hull of F(x(t))) . 

The simplest approach to the existence problem for a differ- 

ential inclusion would be to reduce it to the corresponding prob- 

lem for an ordinary differential equation. To begin with, we 

would like to know whether there exists a differential equation 

in some sense concealed into the differential inclusion, i.e., 

whether there exists a continuous function f(0) such that for 

every x in some domain, f (x) E F (x) . Unfortunately, continuous 

selections do not exist other than under very restrictive assumptions. 

Here, we begin by the first. class of problems, when F satisfies 

the following assumption 

F is upper semicontinuous and bounded with nonempty 

compact convex values. 

(A map is called upper semicontinuous if for each x o E K  and for 

each neighborhood V of F(xo), there exists a neighborhood U of xo 

such that, for all X E U ,  F(x) c V .  It is continuous if moreover, 

for every open set W intersecting F(xo), there exists a neighbor- 

hood U1 of xo such that, for all x E U 1 ,  F(x) f l u  # g.) 



Theorem 1 (Viability Theorem). Let K C X  be locally compact 

and F satisfy assumption A. The necessary and sufficient con- 

dition for the existence of a viable solution of the differential 

inclusion x' EF(x) for every initial state in K is 

Let us denote by T(xo) the set of viable solutions to the 

initial value problem (1 ) . 
We summarize the main qualitative properties of the trajec- 

tories in the two following statements. 

Theorem 2. We posit assumptions of Theorem 1. The map 

xO + T(x ) is upper semicontinuous with compact values from K to 0 
the space B(O,m,X) := {x EC(O,W:X) 1x1 EL~(O,-;X) 1 1  when C(O,m,X) 

is supplied with the topology of uniform convergence on compact 

intervals and LW(0,m:~) is supplied with the weak-star topology. 
A 

The attainable set AT(xO) is defined by 

Theorem 3. We posit the assumptions of Theorem 1.  The maps 

xO+AT(x ) are upper semicontinuous with compact connected values 0 
from K to X. They have the fixed point property: if AT maps a 

convex subset of K into itself, it has a fixed point. A 

When K is convex and compact, the assumptions of the Viabil- 

ity Theorem imply the existence of an equilibrium (or a stationary 

solution or rest point) of the dynamical system, i.e., a solution 
- 
x E K  to the inclusion 

Theorem 4. Let K C X  be compact convex and F satisfy assump- 

tion (A). We posit the following tangential condition: 

(3 VxEK  , F (XI TX(x) # g 



Then 

a) There exists an equilibrium x €  K of F. 

b) Vh > 0, VxOEK,  there exists a sequence of elements 
0 x n € K  such that x = xo and 

Remark 

We can regard the sequence of elements xn E K  as a viable 

discrete trajectory of the dynamical system. The finite-differ- 

ence system is called the "implicit" finite difference scheme 

of the differential inclusion. 

Example 

Let X = Rn be the space of states of the system we wish to 

describe and Y = Rm be the space of "observations". We denote 

by g :X + Y  the "observation map" of the system and by C : Y + X  

the "feedback map". 

In this model, we assume that the evolution law is 

In other words, we assume that the velocity depends not only upon 

the state of the system but also upon the variations of observa- 

tions of the state. 

We assume that 

r i) C E  L(Y,X) is continuous and linear 

1 ii) g : X + Y  is continuously differentiable on an 

1 open subset fi containing K. 

We set 

So, the system can be written 



Corollary 1 

Assume that K C X  = Rn is a closed subset, F is an upper 

semicontinuous set-valued map from K into X with nonempty closed 
1 convex values. Let C E L (Y, X) and g E C (Q, Y) . We suppose that 

there exists c > 0 such that, 

(11) VxEX, sv€F(x) +CVg(x)v suchthat vETK(x)ncB . 

Then, for any initial state x o E K ,  there exists a viable solution 

to the differential inclusion (7). A 

Application: Regularization of differential equations 

with discontinuous right-hand side. 

In order to provide existence for solutions of differential 

equations 

when f : Rn +Rn is not continuous, the easiest way is to consider 

the smallest upper semicontinuous convex valued map F where graph 

contains the graph of f. When f is locally bounded, this set- 

valued map F is defined by 

It is clear that 

ii) the map x + F (x) . is upper sernicontinuous 
with convex values 

liii) whenever f is continuous at x, F(x) = if (x) 1 .  

Certainly, any solution to the differential equation (12) is a 

solution to the differential inclusion 



We stress the point that whenever f is continuous at x(t), then 

a solution to the differential inclusion (15) satisfies the 

equation x' (t) = f(x(t)). 

In order to obtain this result, we do not need property (14) 

i) at points when f is not continuous. We can look for "smaller" 

set-valued maps $ which still satisfy properties (14) ii) and 

iii) so that differential inclusions 

yield trajectories x ( - 1  satisfying the equation x' (t) = f (x (t) ) 

whenever f is continuous at x(t). 

We describe one such map $. 

Proposition 1 

Let f be a single-valued map from an open subset RCR"  to 

Rn which is locally bounded. We set 

(17) 
- $(x) := fl co f ( ( (x+~B) flfi)\N) . 

E>O meas(N) = 0 

Then 

I i) the map x + 4 (x) is upper semicontinuous 
with nonempty convex values 

(18) 

ii) whenever f is continuous at x, 4 (x) = {f (x) I .  

Assume moreover that f is measurable on R. Then 

(19) iii) f(x) belongs to F(x) at almost every x in R. 

When F is continuous, but with nonconvex values, we have a 

similar but weaker viability theorem, an adaptation using a con- 

struction of Filippov. 



Theorem 5. Let K C X  be closed and F be a bounded continuous 

map from K to the nonempty compact subsets of X satisfying 

For every initial state, there exists a viable trajectory of the 

differential inclusion x' E F (x) . A 

3 .  THE RELAXATION THEOREM 

The Relaxation Theorem plays a fundamental role in the quali- 

tative theory of differential equations, and concerns the rela- 

tions between the set of solutions of the two problems x' EF(X) 

and x' EG (F(x)). Certainly solutions of the first are also 

solutions of the second: we wish to study, however, to what 

extent the operation of convexifying the right-hand side really 

introduces new solutions. In other words, under what conditions 

will the set of solutions to the differential inclusion 

be dense in the set of solutions of the "convexified" differential 

inclusion 

This problem is particularly relevant in control theory; solutions 

to the convexified problem are often called relaxed solutions, 

and the problem we have mentioned, the problem of relaxation. We 

shall prove that the relaxation property holds when F is Lip- 

schitzean with compact values, while it does not necessarily hold 

when F is only continuous. 

In the theory of control, one encounters the following prob- 

lem. It is given an affine differential equation, 

a set of controls U, a compact convex subset of R", an initial 



condition and a time interval [O,T]. One considers the attain- 

able set AT at time T, the images at T of all solutions issued 

at t = 0 from 6 using all controls u(*) , measurable on [O,T] , 
such that u(t) E U  a.e. on [O,Tl. 

The question can then be raised as to whether it would be 

possible to have the same attainable set economizing on the set 

of controls, hence to have the same results with controls that 

are much simpler to build. It is a famous result (the Bang-Bang 

principle) that one can actually reduce the set U to extr(U), 

the set of its extremal points, even when this set is not closed. 

For a differential inclusion one focuses on the set of solu- 

tions through an initial point. Since for a nonconvex right-hand 

side this set is, in general, not closed (even if its section at 

any given time might be), we should consider the problem of the 

possible equivalence of the closure of the set of solutions of 

a nonconvex problem with the set of solutions of the convexified 

one. In other words one can look at the set of solutions of a 

nonconvexified problem and ask for conditions to insure the 

equivalence of its closure with the set of solutions of the con- 

vexified. A second way of looking at the question, more related 

. to the Bang-Bang principle, would be to begin with a differential 

inclusion x' EF(x) with compact convex values and to ask for a 

subset of F(x) in order essentially to retain the solutions of 

the original problem. This second question is by far more dif- 

ficult and so far has no complete answer. 

We begin by presenting an inequality for a Lipschitzean 

differential inclusion, an analog of Gronwall's inequality: 

given an almost solution y, we shall state the existence of at 

least one solution x satisfying the desired inequality (other 

solutions with the same initial data need not, obviously, satisfy 

any reasonable inequality). Hence the following is also an 

existence result. 

Theorem 1 .  Let there be given an interval I := [a,bl, an 

absolutely continuous function y : I + Rn, a positive constant t3, 

and call Q the subset of I x Rn defined by (t,x) E Q  if t € 1  and 

Ilx-y(t)II - < 8 .  Assume that F, from Q into the nonempty and closed 

subsets of Rn, is continuous and satisfies the Lipschitz conditions 



where B i s  t h e  u n i t  b a l l .  

Assume moreover t h a t  

wi th  E L ' ( I )  . S e t  

and l e t  J := [atw]  be a  nonempty i n t e r v a l  such t h a t  t E J  imp l ies  

c ( t )  5 B .  Then t h e r e  e x i s t s  a  s o l u t i o n  x ( - )  on J t o  t h e  problem 

such t h a t  

and 

L e t  x O t y O  two i n i t i a l  po in t s .  ( x o  - y o l  = 8 < b  and t a k e  - 
p  = 0 i n  t h e  preceding theorem. Then t o  any s o l u t i o n  y ( * )  such 

t h a t  y ( 0 )  = yo w e  can a s s o c i a t e  a  s o l u t i o n  x ( * )  such t h a t  

t I, k  (s) d s  
x ( 0 )  = xO and l x ( t )  - y ( t )  1 - < x o  - y o \  e . Hence we 

have t h e  fo l lowing 

Coro l la rv  1 

The map T from Rn t o  nonempty subse ts  of  c (1,~")  t h a t  as-  
I 

s o c i a t e s  t o  an i n i t i a l  po in t  t h e  set of s o l u t i o n s  on I i ssued 

rI k (s)  d s  
from t h a t  p o i n t ,  is  L ipsch i tzean wi th  cons tan t  e  

A 



Here is the R e l a x a t i o n  Theorem. 

Theorem 2 f ~ i l i ~ ~ o v - ~ a s e w s k i ) .  Let F, from Q := {x E Rnl 

I I x  - cO1l - < b} into the compact subsets of Rn, be Lipschitzean. 

Set I := [-T,+T] and let x : I + Q  be a solution to 

such that, for t E 1 ,  llx(t) - cO1l - < b. Then for every positive 

E, there exists y : I +Q, a solution to 

such that for t E I ,  Ily(t) - x(t)ll - < E. 
A 

4. THE TIME DEPENDENT AND STATE DEPENDENT VIABILITY THEOREMS 

We shall study now time dependent differential inclusions 

We shall look for time-dependent viable trajectories, i.e., tra- 

jectories x(-) defined on [O,T[ and satisfying: 

where t + K(t) is a set-valued map from [O,a[ to X. 

In order to state the necessary and sufficient condition 

of viability, we need to define the concept of c o n t i n g e n t  d e r i -  

v a t i v e  of the set-valued map t +K(t). 

We adapt to the case of a set-valued map the intuitive defi- 

nition of a derivative of a function in terms of the tangent to 

its graph. 

L e t  F be a  s t r i c t  s e t - v a l u e d  map from K C X  to Y and (xO,yO) 

belong to the graph of F. 

We d e n o t e  by DF(xOtyO) t h e  s e t - v a l u e d  map from x t o  Y whose 

g raph  i s  t h e  c o n t i n g e n t  cone  T graph(F) ( X ~ ~ Y ~ )  t o  t h e  graph o f  

a t  (xO,yO). 
m 



I n  o t h e r  words 

( 3 )  v O  E DF ( x O ,  yo )  (u0 )  if and o n l y  if 
( U ~  ' V ~ )  Tgraph (F)  ( x0 , yo )  

D e f i n i t i o n  1 

W e  s h a l l  s a y  t h a t  t h e  se t -va lued  map DF(xO,yO)  from X t o  Y 

i s  t h e  " c o n t i n g e n t  d e r i v a t i v e "  of  F  a t  x O  EK and yo E F ( x O ) .  
L 

W e  p o i n t  o u t  t h a t  

The c o n t i n g e n t  d e r i v a t i v e s  a l l o w  t h e  f i -e r i va t i ve  o f  restric- 

t i o n s  o f  f u n c t i o n s  t o  s u b s e t s  w i t h  empty i n t e r i o r .  I f  F  i s  a  

map from X t o  Y ,  w e  d e n o t e  by F I ~  i t s  r e s t r i c t i o n  t o  K d e f i n e d  

by 

[ F ( x )  when X E K  

L e t  F  b e  a  con t i nuous l y  d i f f e r e n t i a b l e  s i ng le - va lued  map on 

a  neighborhood of K and F I ~  b e  i t s  r e s t r i c t i o n  t o  K .  Then 

{VF ( xO)  uO 1 when uo E  TK ( xO)  

(5 VxOEK , D F I K ( x o ) ( u o )  = 

when uo p TK (x0 

W e  g i v e  an  a n a l y t i c a l  c h a r a c t e r i z a t i o n  o f  D F ( x O , y O ) ,  which 

j u s t i f i e s  t h a t  t h e  above d e f i n i t i o n  is a  r e a s o n a b l e  c a n d i d a t e  f o r  

c a p t u r i n g  t h e  i d e a  of  a  d e r i v a t i v e  a s  a  ( s u i t a b l e )  l i m i t  o f  d i f -  

f e r e n t i a l  q u o t i e n t s .  

I vO E DF ( xo , yO)  (u0 )  i f  and o n l y  if 

( 6 )  
F  (xO + hu) - 

h  -t O+ h  
u -f uo 



Natura l l y ,  a  reasonab le  c a l c u l u s  ( inc lud ing  cha in  r u l e  formulas) 

i s  a v a i l a b l e .  

We come back t o  t h e  t i m e  dependen t  V i a b i l i t y  Theorem. 

Theorem 1 .  Let  K be a  set-valued map from [ O f - [  t o  a  H i l b e r t  

space X with  c losed graph and F be a  bounded upper semicontinuous 

map from graph ( K )  t o  R x X  wi th  nonempty compact convex va lues .  

We p o s i t  t h e  cond i t ion :  

Then f o r  a l l  to > 0  and f o r  a l l  x o ~ K ( t O ) ,  t h e r e  e x i s t s  a  v i a b l e  

t r a j e c t o r y  on [to , - [  of t h e  d i f f e r e n t i a l  i n c l u s i o n  (1 ) . A 

W e  cons ider  now t h e  state-dependent case ,  where t h e  v i a b i l -  

i t y  set depends upon t h e  s t a t e .  

L e t  P be a  set -va lued map s a t i s f y i n g  

i) Vx EK , x  E P  (x)  ( r e f l e x i v i t y )  

(8) 

ii) Vx E  K , Vy E  P (x )  , w e  have P (y )  C P (x )  ( t r a n s i t i v i t y )  

Then t h e  map P d e f i n e s  a  p reorder  4 by : yB x  i f  y  belongs t o  P (x )  . 
W e  s h a l l  say t h a t  a  s o l u t i o n  of t h e  i n i t i a l  va lue  problem 

i s  monotone i f  and on ly  i f  

o r ,  equ iva len t l y ,  

The t y p i c a l  example of a  p reorder  i s  t h e  one de f ined  by m 

rea l -va lued func t i ons  V : K + R  ( j  = l , . . . , m ) :  
j 



VxEK , P ( x ) : =  { y ~ ~ ~ ~ j = l , . . . , m ,  V j ( y ) i V j ( x ) }  . 

For t h i s  p reo rde r ,  a  t r a j e c t o r y  x ( * )  is  monotone i f  and on ly  i f  

(13)  V j =  1  ,..., m ,  v s , t ~ [ O , T [ ,  s > t ,  t hen  V . ( x ( s ) )  < ~ . ( x ( t ) ) .  - 3 - 3 

( I n  t h i s  c a s e ,  t h e  f u n c t i o n s  V p l a y  t h e  r o l e  o f  Liapunov func- 
j  

t i o n s .  ) 

Theorem 2. L e t  K be a  l o c a l l y  compact s u b s e t  of X I  F be a  

bounded upper semicont inuous map from K t o  X wi th  compact convex 

v a l u e s  and P : K + K  be  a  cont inuous map. 

W e  p o s i t  t h e  fo l low ing  t a n g e n t i a l  cond i t i on :  

Then t h e r e  e x i s t s  a  monotone s o l u t i o n  f o r  every  i n i t i a l  s t a t e .  
A 

5. REGULATION OF CONTROLLED SYSTEMS THROUGH VIABILITY 

Le t  u s  t r a n s l a t e  t h e  V i a b i l i t y  Theorem i n  t h e  language of  

Cont ro l  Theory. The dynamics o f  t h e  system a r e  desc r i bed  by a  

map 

where U i s  t h e  " c o n t r o l  s e t " .  The s t a t e  of t h e  system evo lves  

accord ing  t o  t h e  d i f f e r e n t i a l  equa t ion  

The r e g u l a t i o n  problem can be expressed i n  t h e  fo l lowing 

way : 

a )  Does t h e r e  e x i s t  a  f u n c t i o n  t + u ( t )  (open loop c o n t r o l )  

such t h a t  t h e  d i f f e r e n t i a l  equa t ion  ( 2 )  h a s  v i a b l e  t r a j e c t o r i e s ?  



b) Does there exist a continuous single-valued function u 
-" 

from K to U (closed loop control or feedback control) such that 

the differential equation 

has viable trajectories? 

- - 
c) Does there exist an equilibrium (x,u) E K  X U ,  a solution 

to the nonlinear equation 

We introduce the feedback map C defined by 

We shall assume that: 

r i) U is compact 

(6) 

ii) f : K x U + Y  is continuous 

so that the set-valued map F defined by 

is continuous with compact values. 

We summarize in the following statement the consequences of 

the Viability Theorem. 

Theorem I .  Let K be a closed subset of X, U be a compact set 

and f : K x U + X  be a continuous map. 

We assume that: 



and that there exists a bounded set Q such that 

(9) Vx EK,  f (x,U) := {f(x,u) lU E U  is convex and contained in Q. 

Then 

r Vx0€K , there exists a measurable function u(*) and 

(10) 
a viable trajectory of the differentiable equation (2) 

which are related by 

(11) for almost all t - > 0 , u(t) ~C(x(t1.l . 

If we assume moreover that K is convex and compact, we infer the 
- - 

existence of an equilibrium (x,u) E K x U .  
A 

When 

i) U is convex 

(1 2) 

ii) Vx E K  , u+f(x,u) is affine , 

the sets f(x,U) are obviously convex. For this case we can obtain 

the existence of a continuous feedback control u yielding viable - 
trajectories. 

Theorem 2. Let K and U be convex compact of finite dimensional 

vector spaces, f be a continuous map from K X U  to X which is af- 

fine with respect to u. 

We assume that there exists y > 0 such that 

The conclusions of Theorem 1 hold true and there exists a contin- 

uous feedback control u :K + U  yielding viable trajectories of the - 
differential equation (3) . 

A 



6. DECENTRALIZED REGULATION THROUGH VIABILITY 

We apply the Viability Theorem for giving a possible ex- 

planation to the role of price systems in decentralizing the 

behavior of different consumers, in the sense that the knowledge 

of the price system allows each consumer to make his choice 

without knowing the global state of the economy and, in partic- 

ular, without knowing (necessarily) the choices of his fellow 

consumers. 

There is no doubt that Adam Smith is at the origin, two 

centuries ago, of what we now call decentralization, i.e., the 

ability for a complex system moved by different actions in pur- 

suit of different objectives to achieve an allocation of scarce 

resources. 

We are going to propose a dynamical model that keeps the 

essential ideas underlying Adam Smith's proposals. For this, 

we slightly modify the usual definition of a consumer and regard 

a p r i c e  system not as the state of a dynamical system whose evo- 

lution law is known, but a s  a  c o n t r o l  which evolves as a function 

of the consumptions according to a feedback law. 

To take in account the dynamical nature of the behavior of 

a consumer i, we describe it as an automaton di which associates 

to each price system p and his own consumption xi its rate of 

change di (xi,p) .   here fore, when the price p(t) evolves, the 
consumption xi(t) of consumer i evolves according to the differ- 

ential equation 

So, a viability problem arises: does  t h e r e  e x i s t  a  p r i c e  
n 

f u n c t i o n  p(t) such t h a t  t h e  sum C x. (t) o f  t h e  consumpt ions  remains  i=l 1 
a v a i l a b t e ?  In other words, do the trajectories xi(=) of the n 

coupled differential equations satisfy the viability condition 

Vt > 0 , 1 xi(t)€M , whereMis  the setof - i= 1 available resources. 



We also have a concept of equilibrium: It is a sequence 
- - 

(xl,...,xn,F) of n consumptions xi and of a price system 6 such 

that 

It remains to check that there are sufficient conditions which 

have an economic interpretation. We shall prove that equilibria 

and viable trajectories do exist if the instantaneous demand 

functions di satisfy the "instantaneous Watras taw" 

This is a budgetary rule that requires that at each instant, 

the value of the rate of change of each consumer is not positive, 

i.e., that each consumer does not spend more than he earns in a n  

instantaneous exchange of goods. This law does not involve the 

subset M of available resources. 

Theorem I .  We posit the following assumptions on the instan- 

taneous demand function di : Li x S*J +R' which sets the variation 

in consumer's i demand when the price is p and its consumption 

R R 
i) V i = 1, ..., n , the function di : Li x S + R  

(5) 
is continuous 

lii) V x E L i ,  V p E S ,  di(x,p)ETL (x) 
i 

and 

(6) vxELi  , p+di(x,p) is affine . 

Let us assume moreover 

(7) 
R M = Mo - R+ is closed and convex, where Mo is compact 



t h a t  

(8 V i = l , . . . , n  , Li i s  c losed ,  convex and bounded below. 

and t h a t  

I f  t h e  i ns tan taneous  Walras laws ho ld  t r u e ,  then 
- - 

a )  t h e r e  e x i s t s  an equ i l i b r i um (2, ,% ,... , xn1p ) .  

b )  For every  i n i t i a l  a l l o c a t i o n  xo EK, t h e r e  e x i s t  n  a b s o l u t e l y  

cont inuous f u n c t i o n s  x i ( - )  : [O,m[ +R'  and a  measurable f u n c t i o n  

p ( * )  : [0,m[ + S' s o l u t i o n s  t o  t h e  d i f f e r e n t i a l  system which s a t i s -  

f y  t h e  v i a b i l i t y  c o n d i t i o n s  

and t h e  budget  c o n s t r a i n t  

n  
For a lmost  a l l  t - > 0  , ( p ( t ) ,  1 x i ( t ) )  - < 0  

i= 1  

c)  The p r i c e  p ( t )  p l a y s  t h e  r o l e  of a  feedback c o n t r o l :  

(12)  f o r  a lmost  a l l  t - > 0  , p  (t)  E  C (x l  ( t) . . . . ,xn ( t) ) - 
A 

7.  LIAPUNOV FUNCTIONS 

W e  s h a l l  i n v e s t i g a t e  whether d i f f e r e n t i a l  i n c l u s i o n s  

do have t r a j e c t o r i e s  s a t i s f y i n g  t h e  p rope r t y  



where 

i) V is a function from K := Dom F to R+ 

(3) 
ii) W is a function from Graph (F) to R+ 

Trajectories x(*) of differential inclusion (1) satisfying 

(2) will be called "monotone trajectories" (with respect to V 

and W). 

We shall answer the following questions: 

1. What are the necessary and sufficient conditions' linking 

F, V and W for the differential inclusion (1) to have monotone 

trajectories with respect to V and 4? 

2. Do these necessary and sufficient conditions imply the 

existence of pairs (x, ,v,) E graph (F) satisfying W (x,,v,) = O? 

Observe that if the values W(x,v) are strictly positive whenever 

v is different from 0, then such an x, is an equilibrium. 

3. Are the cluster points x, and v, of the functions t +x(t) 

and t + x' (t) , when t + m, solutions to the equation W(x, ,v,) = O? 

4. The set-valued map F and the function W from graph (F) to 

R+ being given, can we construct a function V such that these 

necessary and sufficient conditions are satisfied? 

For answering these questions positively, we have to intro- 

duce the concept of upper contingent derivative of a proper func- 

tion V from X to R U {+m) at a point x in a direction uo: 0 

V(xo +hu) - V(xo) 
(4 D+V(X~) (uo) := lim inf 

h + 0, h 
u + u 0 

We remark the following facts: 

a) When V is ~gteaux-differentiable, D+V(x) coincides with the 

gradient VV (x) : 

( 5 )  D+V(x)(u) = (VV(X),U) for all U E X  . 



b) When V is convex, the upper contingent derivative is 

related to the derivative from the right by the formula 

(6 D+V (x) (u,) = lim inf DV (x) (u) 
u -f UO 

They coincide when the latter is lower semicontinuous. 

c) When V is locally Lipschitz, the upper contingent deriva- 

tive coincides with a Dini derivative: 

V(x+huo) - V(x) 
(7) D+v(x)(u~) = lim in£ 

h -f 0, h 

The same is true when V is defined on a right open interval of 

R containing x 0 ' 

d) When V is Gateaux-differentiable on a neighborhood of a 

subset K, then 

(VV(x),u) w h e n u ~ ~ ~ ( x )  

( 8 )  D+(vI~) (XI (u) = 

when u $2 TK(x) 

This means that the upper contingent derivative of the restric- 

tion of a function to a subset K is the restriction of its gradient 

to the contingent cone. 

The main justification for the introduction of the upper 

contingent derivatives is the following characterization: 

Theorem 2. Assume that F is a bounded upper semicontinuous 

map from a locally compact subset K of X to the convex compact 

subsets of X, V is a continuous function from K to R+ and W is a 

lower semicontinuous function from Graph (F) to R+, convex with 

respect to the second argument. A necessary and sufficient con- 

dition for the differential inclusion (1)  to have monotone tra- 

jectories with respect to V and W is that: 



(9) vx E K , 3~ EF (x) such that D+V(x) (v) + W(xtv) L 0 

We shall say that a function V from K to R+ satisfying the 

above condition is a Liapunov f u n c t i o n  for  F w i t h  r e s p e c t  t o  W. 

Indeed, we recognize that when K is open, V is differentiable 

and F is single-valued, this condition is nothing other than the 

usual property 

used in Liapunov's method for studying the stability of solutions 

to differential equations. We also point out that condition (9) 

implies the existence of a pair (x,,v,) €graph (F) satisfying 

W(x*,v*) = 0. 

The next problem we investigate is the construction of 

Liapunov functions. Let T(x) denote the set of trajectories of 

the differential inclusion (1) starting at x. 

We define the function VF by 

We begin by pointing out the following remark. 

Proposition 1 

Let V : Dom (F) - R+ and W : graph (F) - R+ be nonnegative 

functions. 

(12) If there exists a monotone trajectory x ( - )  E T(xo) 

with respect to V and W, then 

(1 3 )  If ~ ~ E T ( x ~ )  is a monotone trajectory with respect to 

V and W and if VF(xO) is finite, it achieves the minimum of F 



( 1 4 )  Conversely, if TE T (xo) achieves the minimum of 

x + ' W X  x r d on T(xo) , then it is a monotone trajectory 

with respect to VF and W and furthermore 

Remark 

Equality (15) is the " p r i n c i p l e  o f  o p t i r n a l i t y " .  It states 

that if x is a solution to the differential inclusion x' EF(x), 

x(0) = xO that minimizes on T(xo) the functional x -+ 1: W(x(r), 

xt(~))dr , then its restriction to [ t ,~ [  minimizes the functional 
00 

x + W(x (r) ,xt (r) )dr over the set of solutions to the differen- 

tial inclusion x' E F (x) , x(t) = x(t). 

We then state a result whose origin can be traced back to 

Carathgodory, Jacobi and Hamilton: If for all initial state x 

there exists a trajectory x(*) ET(x) that minimizes the above 

functional, then VF is a Liapunov function for F with respect 

to W. 

Proposition 2 

Let F be a bounded upper semicontinuous map with compact 

convex images and W :graph (F) +R+ be a nonnegative lower semi- 

continuous function that is convex with respect to v. If the 

minimum in V (x0) is achieved for xO EK, VF satisfies not only F 
the Liapunov condition, but the following generalization of 

Hamilton-Jacobi-Carathgodory equation: 

such that 

We recognize this fact when VF is a smooth function, since equa- 

tion (16) can be written 



We translate these results into the time dependent case. 

Let F be a set-valued map from R+ xX to X, the domain of 

which is the graph of a set-valued map t +K(t) from R+ to X. 

We introduce a nonnegative function W defined on the graph of F. 

We denote by T(totxo) the set of solutions x(*) E C(tO,m;x) 

of the differential inclusions 

We introduce 

Theorem 2. Let F be a bounded upper semicontinuous map from 

the closed graph of a set-valued map K(*) : R+ + X  to the compact 

convex subsets of X, satisfying 

Let W:graph (F) +R+ be a nonnegative lower semicontinuous func- 

tion which is convex with respect to the last argument. If for 

all (t0,x0) €graph (K) the function VF(tO,xO) is finite, it is 

the smallest nonnegative lower semicontinuous Liapunov function 

for F with respect to W: it satisfies 

3v0 EF(tO,xO) such that D+VF(tO,xO) (vo) + W(tO t~OtvO)  = 0 . 

The optimal trajectories x( ) satisfy 

We list now some properties of monotone trajectories with respect 

to functions V and W. 

[a) t+V(x(t)) is non increasing 



W e  show a l s o  t h a t  t h e  c l u s t e r  p o i n t s  x* and v* o f  t h e  func- 

t i o n s  x  ( 0  ) and x '  ( 0  ) when t + s o l v e  t h e  equa t i on  

(x,,v,) €Graph (F) and W(x,,v,) = 0 . 

But w e  have t o  be  c a r e f u l ,  because X I ( - )  i s  n o t  d e f i n e d  every-  

where. So, w e  have t o  make p r e c i s e  t h e  n o t i o n  o f  "a lmost  c l u s t e r  

p o i n t "  o f  a  measurab le  f unc t i on .  

W e  s i n g l e  o u t  two impor tant  i n s t a n c e s :  

Condi t ion  (20)  s t a t e s  t h a t  t h e  leng th  Ilx' ( T )  l l d ~  of  t h e  t r a j e c t o r y  6 i s  f i n i t e  and t h a t  x ( t )  has a  L i m i t  when t which i s  an equ i -  

l i b r ium of F. 

b )  W(x,v) := @ ( V ( x ) )  whe re@:  [O,m[+R i s  a  bounded con t inuous  

f unc t i on .  L e t  w be a  s o l u t i o n  t o  t h e  d i f f e r e n t i a l  equa t ion :  

Then monotone t r a j e c t o r i e s  do en joy  t h e  e s t i m a t e  

V ( x ( t ) )  - < w ( t )  f o r  a l l  t - > 0 . 

8. DIFFERENTIAL INCLUSIONS WITH MEMORY 

D i f f e r e n t i a l  i n c l u s i o n s  exp ress  t h a t  a t  eve ry  i n s t a n t  t h e  

v e l o c i t y  o f  t h e  system depends upon i t s  s t a t e  a t  t h i s  ve ry  i n s t a n t .  

D i f f e r e n t i a l  i n c l u s i o n s  wi th  memory, o r ,  a s  t hey  a r e  a l s o  c a l l e d ,  

f u n c t i o n a l  d i f f e r e n t i a l  i ncZus ions ,  exp ress  t h a t  t h e  v e l o c i t y  

depends n o t  on l y  on t h e  s t a t e  o f  t h e  system a t  t h i s  i n s t a n t ,  b u t  

depends upon t h e  h i s t o r y  o f  t h e  t r a j e c t o r y  u n t i l  t h i s  i n s t a n t .  

To f o rma l i ze  t h i s  concep t ,  w e  i n t r oduce  t h e  Frgche t  space C ( - w , O ; X )  

of con t inuous  f u n c t i o n s  from 1-w,O[ t o  X supp l i ed  w i t h  t h e  topo logy 

of  uni form convergence on compact i n t e r v a l s .  

W e  "embed" t h e  " p a s t  h i s t o r y "  of a  t r a j e c t o r y  x ( * )  o f  

C ( - ~ , + = J ; x )  i n  t h i s  space C (-a, 0;X) by a s s o c i a t i n g  w i t h  it t h e  



function T(t)x of C(-a,O;X) defined by 

( 1  YTE]-~ ,O]  T(t)x (T) := x(t+~) . 

Hence a differential inclusion with memory describes the 

dependence of the velocity x' (t) upon the history T (t)x of x ( 0 )  

up to time t through a set-valued map F from a subset L! C R  x 

C(-m,T;X) to X. 

Solving a differential inclusion with memory is the problem 

of finding an absolutely continuous function x ( 0 )  E C (-m,T;X) 

saitsfying 

This class of problems covers many examples: 

a) differential-difference inclusions, associated to a 

set-valued map G from a subset of R x xP to X, defined by 

belong to this class since we can define the set-valued map F by 

The functions ri (t) ( 1  - < i - < p) are called the d e l a y  functions. 

b) Volterra inclusions, which are inclusions of the form 

where k maps R xR xX to X and where G is a set-valued map from 

R xX to X are also differential inclusions with memory. Indeed, 

we define F from R x C(-m,O;R) by 



c) D i f f e r e n t i a l  T r a j e c t o r y  process ing  i n c l u s i o n s .  A "trajec- 

tory-processor" is a family of maps P(t) from C(-~,+w;x) to a 

Hilbert space Y satisfying the property 

(5) ~ ( s )  = $(s) for all s - < t , then P(t)(P = P(t)$ . 

Differential Trajectory processing inclusions are problems of 

the form 

(6) X I  (t) E~( t ,~ ( t )x )  

where G maps R x Y to X. 

Initial-value problems for differential inclusions with 

memory are problems of the form 

[ i) for almost all t 2 0 , x t  (t) EF(t,T(t)x) 

(7) I ii) T(O)x= (Po where (P is given in C(-m,O;X) . 0 

Theorems about differential inclusions whose right-hand 

side is upper semicontinuous with compact convex images can be 

extended to differential inclusions with memory. 

We choose, for instance, to state and prove the time depen- 

dent Viability Theorem. 

Theorem I .  Let K be a set-valued map with closed graph from 

[O,m[ to X. We set 

Let F be a bounded semicontinuous map from graph K to the compact 

convex subsets of X. 

We assume that 

(9) Yt - > 0 , V(P such that v(t) EK(t), F(t,v) nDK(t, (P(t)) (1)  # %  . 

Then, for all cp0~K(O), there exists a solution to the differential 

inclusion with memory 



f o r  a lmost  a l l  t - > 0 , x t ( t )  E F ( t , T ( t ) x )  

( 1  0) 

T ( 0 ) x  = cPg 

which i s  v i a b l e  i n  t h e  sense t h a t  

( 1  1 )  V t > O  - , x ( t ) E K ( t )  . 

Remark 

A s  i n  t h e  case  of d i f f e r e n t i a l  i n c l u s i o n ,  w e  can prove t h a t  

cond i t ion  ( 9 )  i s  necessary .  


