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Knowledge-based decision support applications differ from those typ- 
ical of artificial intelligence expert systems in their open-ended, evolu- 
tionary character and need to coordinate with other systems resources, 
such as organizational databases and quantitative analysis routines. 
While knowledge representation machinery is becoming available, the 
corresponding formalization of managerial/administrative knowledge 
needed for DSS application is still lacking. 

This entails problems of an epistomological nature, identifying the 
foundational concepts of business. An abstract framework based on for- 
mal languages and denotational semantics is proposed, and ontological 
issues are identified. 

Keywords: decision support systems, knowledge representation, 
knowledge-based systems, applied epistomology, denota- 
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EPISTOMOLOGICAL ASPEmS OF KNOWLEDGE-BASED 
DECISION SUPPORT SYSTEMS 

Ronald M. Lee 

I. INTRODUcrION 
The influence of artificial intelligence (AT) in decision support sys- 

tems research has now become an identifiable trend. This draws mainly 
from AI work in knowledge representation and expert systems. The book 
by Bonczek, Holsapple and Whnston (1981) provides a good background 
reference. 

The question arises as to the difference between a 'knowledge-based' 
DSS which uses AI type knowledge representations and an AI expert sys- 
tem using similar mechanisms. The basic distinction is in the system's 
objectives. An expert system seeks to replicate, hence replace the abili- 
ties of a human expert in specific problem domain. A knowledge-based 
DSS on the other hand seeks to assist a human (manager) by taking over 
the more structured parts of a larger, only partially formalizable, prob- 
lem domain. 

It is here that the basic concerns of this paper arise. Expert systems 
typically involve a closed-world assumption; the problem domain is cir- 
cumscribed, and the system's performance is confined within those boun- 
daries. In DSS contexts, on the other hand, the world is open. A 
knowledge-based DSS must be adaptable and extendable to meet the 
evolving needs of the user and changing conditions in the environment. 

The author wishes to acknowledge useful interactions with Helder Coelho, Steven Kimbrough, 
and Amilcar Sarnadas on these topics. 



More importantly, it is clear that DSS's oriented towards individual 
users are only a special case of the much broader problem of aiding 
organizational decision processes. This raises the important problem of 
interactions between knowledge representations, an aspect largely 
ignored in AI. 

Why is this a problem? The reason is that knowledge representation 
schemes, e.g., semantic net formalisms, various forms of predicate cal- 
culus, have been designed to be general puvose,  be applicable in any 
variety of subject areas. Thus, each new effort a t  knowledge base con- 
struction must essentially start  from scratch, and the semantic elements 
chosen tend to be ad hoc, specific to the immediate problem a t  hand. 
Consequently, efforts to extend or modify the knowledge-base for changes 
in the problem scope or definition, and attempts to interface the 
knowledge-base to other knowle dge-bases, databases, etc. are usually 
frustrated by semantic incompatibilities. (Similar criticisms apply to the 
design of databases, leading to the semantic difficulties of database 
translation.) 

On the other hand, the contention here is that managerial applica- 
tions do have certain commonalities (they must or business schools would 
have nothing to teach), and that  these commonalities, properly formal- 
ized, can guide and discipline the design of knowledge bases in 
managerial domains. The issue becomes one of epistemology - seeking 
the basic semantic foundations upon which managerial knowledge can be 
constructed. 

In the sections to follow, the potential role and character of a 
knowledge-base in a DSS is discussed. The use of knowledge bases in DSS 
applications poses two types of problems not typically in artificial intelli- 
gence contexts: one, a broader, open-ended and evolving problem 
domain; and two, interactions with other system resources (databases, 
quantitative routines). In order to focus on the theoretical issues 
involved, an abstracted view of a DSS as a formal language is proposed. 
This highlights the fundamental role of a uniform semantic foundation 
(ontology) for the various DSS components. Using this perspective, vari- 
ous issues in philosophical semantics are described as they apply to 
managerial DSS applications. 

11. STRUCTURE OF A KNOWLEDGE-BASED DSS 
Sprague (1980) characterizes a DSS as having two basic types of 

problem oriented resources: 

1 ,  databases -which contain facts about the environment 

2. models -which enable inferences to be made. 

Practically speaking, the models are almost always quantitative algo- 
rithms, typically providing optimization or statistical inferences. 

A knowledge- based DSS adds an additional component, the so-called 
'knowledge-base.' The formalisms employed fall roughly into two general 
categories: semantic net and predicate logic formalisms. The pros an.d 
cons of each are much debated, the general objectives are similar: the 
declarative representation of (mainly) qualitative knowledge. 



Databases, of course, contain both qualitative and quantitative data. 
Where as operations research models may provide inferences on the 
quantitative data, a knowledge base provides structures of inference of a 
qualitative sort. 

The more important aspect is that these are declarat ive ,  as opposed 
to p ~ o c e d u r a l ,  structures. That is, the problem-oriented information is 
represented as independent, axiomatic rules which are searched heuristi- 
cally. While this is computationally less efficient, it is correspondingly 
more flexible in that a complex network of potential inference paths is 
represented. I t  is this aspect which warrants the comparison to human 
knowledge, capable of being applied in various directions and forms, 
rather than limited to a single deductive path as are normal (procedural) 
computer programs. 

However, declarative representations are computationally practical 
only for a limited number of primitive qualities. 

Quantities, regarded as qualities mapped onto a linear (ordinal, 
interval, ratio) scale represent large families of qualities. Thus, 
represented as declarative axioms, arithmetic becomes terribly cumber- 
some computationally. This is why such declarative languages as PROLOG 
have so much difficulty incorporating arithmetic operations and, 
correspondingly, why quantitative inference is nearly always represented 
procedurally. 

The potential of a knowledge base in a DSS is to provide a unifying 
framework of higher level abstractions of the qualitative facts in data- 
bases as well as incorporating the specialized inferences of quantitative 
models where appropriate. The knowledge base would thus provide an 
conceptual map of the user's problem domain allowing flexible and adap- 
tive integration of system resources. 

On the other hand, while artificial intelligence research is providing 
the mechanisms for building knowledge bases, the successful application 
of these tools depends on a formal understanding of managerial problem 
domains. This is so far lacking. The need is for an applied epistomology 
of the knowledge typical in business environments. 

m. DSS AS A FORMAL LANGUAGE 
The issue here for DSS, as we see it, is to find a representational per- 

spective that somehow avoids computational preoccupations and focuses 
on the conceptual organization of the DSS in modeling managerial prob- 
lem domains. 

A useful approach is that used in logic for comparing and evaluating 
logical representations (e.g., van Fraasen 1971). This is to regard each as 
an instance of a formal language,  consisting of: 

a. s y n t a z  comprising 

i. a vocabulary  of elementary symbols 
ii. formation rules whi.ch define well formed expressions in. the 

language . 



b, transformation rules -which define truth preserving substitu- 
tions between expressions 

c. semantics indicating what the symbols and expressions of the 
language denote. 

Thus, various logics are compared based on differences in their syn- 
tax, inferential power (transformations), and semantics. A similar con- 
cept of formal languages is also familiar in theoretical computer science. 
Turing's concept of abstract automata is as a recognizer of formal 
languages of varying degrees of syntactic complexity. This view is almost 
entirely syntactic however. (See, e.g., Hopcroft and Ullman 1974). 

When semantics is discussed with respect to computer languages, 
what is usually intended is computational semantics: the machine opera- 
tions and data structures corresponding to  each high level expression. 
(In human terms, this would be analogous to the neurophysiological 
representation of our spoken sentences.) 

Logicians and linguists are on the other hand concerned with denota- 
tional semantics, the objects o r  sets of objects which symbolic expres- 
sions signify in the real world. I t  is this latter concept of semantics which 
is of concern here. 

Earlier we categorized the internal resources of a knowledge-based 
DSS as: 

- databases of quantitative and qualitative facts 
- procedural routines for quantitative inference 
- declarative structures for qualitative inferencing 

In principle, these various components should each contribute to 
aiding the user's understanding of a certain problem domain. But how do 
these components interact? A way of examining the problem abstractly 
is to regard them as various interacting formal languages, or indeed as 
different aspects of a single formal language. 

Clearly the syntactic compatibility of these aspects will be impor- 
tant, though this is mainly an engineering problem. The deeper problems 
are semantic: how the symbolic expressions of the various DSS com- 
ponents refer to the phenomena in the user problem domain. 

IY. MODELS OF FORMAL LANGUAGES 
While we normally consider the semantics of a language to be some- 

thing fixed, it is clear that the association of an arbitrary symbol to the 
object it signifies is a matter of convention ("a rose by any 'other name 
would smell as sweet"). In the perspective of formal languages, this con- 
vention is made explicit in the concept of a model, which is an assignment 
of interpretations to the basic symbols of the language. Note that this 
use of the term 'model' is slightly different than the colloquial usage in 
the DSS Literature. Most of what are there called 'models' would here be 
called an algorithm that is, they are procedures for performing a 
sequence of deductions. For instance, a multiple regression routine, in 
itself, would be an algorithm. However, when an interpretation is given to 



its terms, e.g., as sales, advertising costs, disposable income, i t  is then a 
model in the formal language sense; i.e., it models or is an abstraction 
from some real world situation. 

This usage also differs from that in database management, e.g., the 
relational or network models. In the formal language sense these would 
only be models when used to describe some actual organizational environ- 
ment. 

Despite the confusion it may create in terminology, we believe that 
this formal sense of the term 'model' represents a central issue for DSS 
research: that is, t o  deve lop  a theory  which defines f ami l i e s  of m o d e l s  
( in terpre ta t ions  of f o rma l  languages)  c o m m o n  t o  a d m i n k t r a t i u e  contex ts  
a n d  t h e i r  v a r i a t i o n s  in spec i f ic  s i tua t i ons .  

The contributing discipliries of DSS - e.g., database management, 
operations research, statistics, artificial intelligence, logic, etc. -can be 
viewed as offering various types of uninterpreted formal languages. 
These are normally interpreted in specific, isolated situations, for 
instance, a database design for a bank, an OR model of traffic flows, a 
regression forecast of sales in a particular market area. Modeling (the 
interpretation of these formal languages) is not itself formalized in these 
disciplines and remains the art of the technic a1 analyst. 

The contention here is that while the phenomena of managerial 
environments varies widely from one situation to another, there are 
nonetheless commonalities which can be organized to guide and discip- 
line the modeling process. Ths organization would no doubt take the 
form of similarity hierarchies where situations are compared a t  varying 
levels of abstraction. Strong evidence for this possibility is the long suc- 
cess of the practice of accounting in providing abstract measures of busi- 
ness activity; e.g., the comparability of financial statements. Accounting 
however is mainly concerned with measurement, based on monetary 
valuation, and leaves the underlying phenomena to be informally under- 
stood (for instance, few accountants can give a formal definition of an 
"asset") whereas it is these latter aspects that are the focus here. 

V. ONTOLOGY 
Ontology refers to the nature of the primitive entities whch the 

expressions of a (formal) language denote; i. e., what basic conceptual 
constructs are used to define the sets of the objects which form a model 
of the language. 

The purpose of an ontology is to c la r i f y ,  through reduction of infor- 
mal description to a smaller set of more sharply defined terms. The 
inferences made in the language can only be as s o h d  as the underlying 
ontology. (This is a phil.osophica1 version of 'Garbage-In-Garbage-Out). 

An ontology can only clarify i f  the sets it comprises (the denotations 
of the language) are clearly understood and whose elements are clearly 
distinguishable by the users of the formal language. Thus the adequacy of 
an ontology is a matter of consensus;  but it is a con.sensus that must be 
carefully scrutinized, si-nce the value of further definitions and inferences 
in the language depends on the soundness of t h s  foundation. 



Since sets consist of discrete individual elements, the central issue 
in most ontological debates is the identification of individuals. That is, 
what are the sorts of things (individuals) which form the sets our con- 
cepts refer to? An intuitive test for the consensual recognition of indivi- 
duals is whether the parties involved agree that two individuals are the 
same. 

Discrete physical objects, for instance, seldom give rise to confusion, 
and it is noteworthy that most operations research models apply to onto- 
logies of this type; e.g., involving employees, machines, or physical inven- 
tories. 

Transformations on physical individuals can however give rise to 
potential confusions (which gives some insights to the difficulties in 
dynamic modeling). A delightful example (Brachman, personal conversa- 
tion) is that of a wooden boat and we replace one of its planks with a new 
one. Is the modified boat the same individual as the original? Most peo- 
ple would agree. Suppose we continued to systematically replace planks 
in the boat with new planks until all parts of the boat were now replaced. 
Is this individual the same as the original? Some, though perhaps not all 
would agree. Now, suppose we collected the planks we removed and con- 
structed another boat in the design of the original boat. Is it now the 
same as the original? 

Austin (1970) summarized the matter by observing that similarity is 
a property of nature whereas sameness is a matter of linguistic usage. 
The boundaries of individuation, in short, depend on the consensus of the 
user group or population. 

Time spans -e.g., days, weeks, months, years -tend also to be rela- 
tively unproblematic in ordinary situations. Few people disagree about 
the temporal boundaries of 7 December, 1941, for example, despite the 
minor problems created by different time zones. (Among theore tical 
physicists, however, the ontology of time is quite different and more open 
to dispute.) 

The ordinary language use of "same" has another, apparently 
separate sense. "I drive the same car as John," may mean that there is 
one individual vehicle that we share, or that we drive the same type of 
car. These are sometimes distinguished as sameness of individuals vs 
sameness of type. In a logical notation, the latter involves a predicate 
variable, i. e., 

3 X  drive(me,X) & drive (john,X) 

(Here and throughout, constants are lower case, variables upper case.) 
As we move out of the domain of discrete physical objects, individua- 

tion becomes less clear. For example, in a hospital if a doctor declares 
that patient Smith has the same disease as patient Jones, it is apparently 
meant that the two diseases are of the same type, e.g., that the bacteria 
are of the same species. On the other hand, it may mean that the two 
diseases are from the same bacterial pool. The difference matters where 



contagion is of concern. Again it depends on the needs of the user group. 

Abstract objects are notoriously difficult to individuate, essentially 
because there are no lowest level 'atoms' (molecules, cells, etc.) to which 
one can take recourse. For instance, to say that X independently had the 
same idea as Y, or that X plagarized or stole Y's idea is extremely difficult 
to pin down; is this sameness of individuals or sameness of type? 

Strawson (1959) asserts that the only reliable basis for individuation 
is to locate the individual in a spatial temporal framework. In this way, 
ideas might be identified to the mental activities of a certain person 
throughout a certain period in time. 

These aspects of individuation are of central importance to the 
development of knowledge-based DSS since, in most cases, these have 
ambitions to include expertise beyond the ontologically safe domains of 
discrete physical objects. 

YI. ONTOLOGY FOR QUANTTI'ATIYE MODELS 
Pure mathematics usually adapts some abstract set of numbers in 

their ontology, e.g., the integers, real numbers, rational numbers, etc. 
Applied mathematics, on the other hand, usually includes a broader 
ontology, namely that the numbers involved are measures of some scal- 
able properties. The type of scale involved, e.g., ordinal, interval, ratio, 
determines the algebraic flexibility of the inferencing. Typically left 
implicit or informally described, are the individual objects to which these 
measures are applied. As observed earlier, these are typically straight- 
forward from an ontological standpoint, so little confusion arises. 

However, when measures are applied to less obvious phenomena, the 
summary statistics generated from these measures can become quite 
ambiguous to the people using them. This has become a serious problem 
in accounting where monetary valuations are applied to a wide range of 
disparate phenomena (with subsequent allocations, prorations, amortiza- 
tions, price level adjustments, etc. applied to them) so that the final 
results are only vaguely meaningful. For example, an occasional student 
exercise in financial accounting is to revise a company's net income 100% 
entirely through adjustments conforming to Generally Accepted Account- 
ing Principles. Knowledge-Based DSS's applied to such domains would be 
prone to similar di.fficulties. The suggestion is to expand the ontology to 
explicitly recognize the types of underlying entities being measured. 

W. ONTOLOGY FOR DATABASES 
In the arclutecture for a knowledge-based DSS presented earlier, 

current facts about the environment are recorded in (one or more) data- 
bases. Since these provide the basis for higher level inferences, the 
ontology they assume plays a fundamental role. 

Codd's (1970) Relational Data Model ('model' in the database sense) 
is often regarded as a useful, mathematically abstracted prototype of 
database systems. The relations involved are tup1.e~ of elements drawn 
from sets of data items (in relational terminology called domains), such 



as single characters, character strings, integer numbers, floating point 
numbers, etc. The operation of these systems depends only on the sym- 
bolic shape of these items, not on their significance to the users of the 
system. This is similar to the use/mention distinction in natural language 
semantics. E.g., the teacher's question 

Can you spell "can"? 

first uses the word "can," then mentions it (as was done again in this sen- 
tence). Database designs present a syntax of data but no denotational 
semantics. Hence, databases have no explicit real world ontology. How- 
ever, they often, implicitly, reflect a certain ontology in the definition of 
relations. For instance, a database 

EMPLOYEE(E-NAME,EMP-ID,AGE, .. .) 
DEPARTMENT(D-NAME, DEPT-ID,LOCATION, . . .) 

WORKS-FOR(EMP-ID, DEPT-ID) 

implicitly recognizes employees and departments as individuals, with 
"WORKS-FOR" as a two place predicate relating them. The existential 
implication is that for each tuple in the EMPLOYEE relation there is an 
actual employee in the company, and for each tuple in the DEPARTMENT 
relation there is a department in the company. Such existential presup- 
positions of certain database relations are the basis of Chen's Entity- 
Relationship Model (1976). 

WI. GRANULAR AND LIQUID OBJECTS. MASS OBJECTS AND PROBUMS OF 
INDMDUALIZATION 

The world, according to Quine (1960), consists of middle size objects. 
Problems of individuation arise when we consider granular objects, such 
as corn, wheat and liquid objects, e.g., water, oil, etc. The problem is the 
same in both cases: to discretize these objects and assign names to 
them, it is impractical to go to their lowest level elements (grains or 
molecules). 

While this poses a difficult theoretical problem (logics over continu- 
ous domains, paradoxes arising from axioms of choice), in commercial 
practice, the problem is typically avoided through the simple device of a 
conta iner .  That is, these substances are normally conveyed in a (middle 
sized) container which is easily individuated and named. The contents of 
the container become properties of (predicates applied to) the container. 
Emptying one container into another involves changes of properties of the 
two containers (see temporal aspects, below). 

Note that whether something is to be treated as a granular sub- 
stance or as discretely identifiable objects depends on the interests of 
the potential users of the language. For instance, rock and gravel com- 
panies would no doubt regard stones beneath a certain diameter as 
granular. A rock collector, on the other hand, would regard them as indi- 
vidually identifiable specimens. 



Mass objects are an intermediate class sharing properties of discrete 
individuals and liquid objects. Examples are planks of lumber, bars of 
steel, etc. These can be divided into increasingly smaller units of the 
same substance. These can of course be treated as individual objects. 
Divisions of the object cause the destruction of the original and the crea- 
tion of two new individuals. Alternatively, these are often regarded in a 
way similar to liquid objects, where the container is some specified inven- 
tory location, section of a warehouse, etc. In this case, e.g., lumber is 
treated as so many board feet without regard for how many individual 
pieces the inventory contains. The choice, again, depends on the 
intended usage of the formal language. 

M. AN ONTOLOGY INCLUDING TIME 
Time, which is so central in commercial environments has, oddly 

enough, had relatively little development in the concept of formal, espe- 
cially logical, languages. Principle works on temporal logic are by Prior 
(1967) and Rescher and Urguhart (1 971). 

The implicit conception of time in commercial environments seems 
to be a continuous dimension of time points. This would normally cause 
the same logical problems as liquid objects except that the reference to 
time is inevitably with reference to t ime s p a n s ,  which have a similar onto- 
logical status as containers to liquids. 

Examples of individual time spans are: 
The year: 1984 
The month: January, 1981 
The day: 7 December, 1941 
The minute: 11:59 a.m., 2 July, 1982, Central European Time 

An ontology of time might alternatively assume a time line of 
discrete units of some minimal size. Such is the perspective in digital 
watches and computer clocks. Time, taken as discrete or continuous, is 
regarded as linearly ordered. This is the basis for concepts of change and 
of precedence in changes. By including time in the ontology, the truth of 
a predicate becomes dependent on time. This amounts to adding a tem- 
poral sort to the language and adding a time place to each predicate. 

X. POSSIBLE WORLDS SEMANTICS 
No doubt the most seductive yet controversial concept introduced in 

ontological theories this century is that of a possible wor ld .  Intuitively 
speaking, a possible world is like a formalized gedanken experiment: it is 
an imaginary locus to which truth values can be attached. The world we 
know is a priviledged possible world: the actual world. 

Debate over possible worlds centers on whether the concept can be 
consensually understood sufficiently well by the users of a formal 
language whose semantics depend on it. (In this regard it is like the utile 
in economics: theoretically very useful but ontologically rather question- 
able). 



A principal motivation for the concept of possible world is to give a 
denotational semantics to generic concepts. We would like to consider 
the denotation of a predicate as the set of things of which it is true. How- 
ever, those things existing in the actual world are typically not enough. 
This denotation in many cases must be extended to possible worlds as 
well. 

For example, consider the denotation of the concept: person?* Is the 
property of personhood equivalent to elementhood in the set of all people 
currently alive? or the set of all people who have ever lived? or the set of 
all people who ever lived or will live? Normally, even this last set is con- 
sidered incomplete, for it refers only to actually existing persons in the 
past or future. The essence of the concept person (called its intension) is 
however the denotation (or e z t m i o n )  of human individuals in all times in 
all possible worlds. 

Further, of perhaps more practical consequence, the concept of pos- 
sible worlds permits the formal definition of concepts of action and 
responsibility. Various conceptions of action are possible, depending on 
the purpose of the formalization. One, due to von Wright, distinguishes 
action from a simple change in state in that it is brought about by some 
(human, organizational) agent. This contains an implicit counter-factual: 
that if it were not for the agent's intercession, the change would not have 
taken place. Thus, while a concept of change can be described in terms 
of transitions in states of the actual world from one time to the next, a 
concept of action requires the notion of another, possible world to 
express the state of affairs were it not for the agent's intercession. Thus, 
by asserting someone responsible for a particular state of affairs, we 
allude to some alternative state that would exist had that person's influ- 
ence not been present. 

XI. PREDICTIONS, PLANS AND PROMISES 
In discourse relating to administration, finance and commerce, it is 

only statements concerning the past and present that are considered fac- 
tual. For instance, that company X sold company Y a piece of equipment 
Z on date D, is either true or false if D is in the past. However, if D is a 
date in the future, the statement is not regarded as either true or false, 
but rather one of conjecture or speculation. 

Three principal types of conjectures or attitudes in these contexts 
are predictions, plans and promises. In their semantic formulation, each 
of these makes an assertion about some possible world in the future, with 
the additional claim that the actual world will eventually match this possi- 
ble world. 

A prediction is simply a description of such a future possible world 
with the assertion that the course of events in the actual world will even- 
tually lead to this state. 

technically: den(M persono)  = ? 



A p l a n  is a prediction augmented with intentions of action. The 
assertion is that the future possible world described in the plan would not 
normally come about, except for the intended actions of the planner. 

A p r o m i s e  is a plan augmented with a c o m m i t m e n t  to another party. 
Implicit in the notion of commitment is some penalty for not carrying out 
the plan. This penalty may be a vague moral reproach, some type of legal 
recourse or perhaps definite consequences such as foreclosure or siezure 
of assets. 

A promise is the act of incurring an obligat ion.  Obligation is one of 
several operators in a so-called deontic logic (von Wright 1968). Others 
are permission and prohibition. Each involves two parties and an action. 
Symbolically, 

obliged(X,Y,A) = X is obliged to Y to do A. 
permits(X,Y,A) = X permits Y to do A. 
prohibits(X,Y,A) = X prohibits Y to do A. 

These are inter-definable: to be permitted to do something is to not be 
prohibited from doing it and vice versa; to be obliged to do something is 
to not be permitted not to do it and vice versa. 

A con t rac t  is a relationship of mutual obligation. A cont ingent  obliga- 
t i on  is one where the obligation depends on the occurrence of some 
event. A familiar example is insurance. 

Interestingly, the deontic relationships of obligation, permission and 
prohibition are, in commercial contexts, often reified to the status of 
objects .  Examples of deontic objects based on obligation, are notes, vari- 
ous types of bonds, and with a real but less delinitely described obliga- 
tion, the various types of preferred and common stock. Insurance poli- 
cies are examples of contingent obligations. Examples of deontic objects 
based on permission are licenses, easements, etc. whereas examples of 
deontic objects based on prohibitions are: copyrights and patents. 

A formal device to accomplish this reification to objecthood is the 
intension operator, A, due to Montague (best explained in Dowty (1981)). 
(Thls is essentially a lambda abstraction on time/possible world pairs, 
serving to make intensions extensional. In our case this operator would 
be applied to deontic expressions.) 

These deontic objects constitute as s e t s ,  that is they are o w n e d ,  by 
one of the parties involved. For instance a bank owns its notes outstand- 
ing; investors own their stocks and bonds. Likewise insurance policies, 
licenses, copyrights and patents are owned. In the case of promissory 
objects (deontic objects based on obligation), the object represents a 
c l a i m  on a s s e t s  to the other party. 



W .  CONCLUDING REMARKS 
In the foregoing we have argued that an important theoretical prob- 

lem for knowledge-based DSS in organizations involves the epistomology 
of management: identifying the foundational concepts of managerial 
knowledge. In this paper we sketched an approach using denotational 
semantics, and suggested several basic types of individuals: physical 
objects, numbers, time and possible worlds. We stressed that these basic 
entities are not to be considered as 'essential' in that no other bases are 
possible. Rather as Goodman (19'78) points out in Ways o j  Wo~ldmaking ,  
all such conceptual systems are a matter of consensus and utility to its 
user population. However, this does not mean that no generally useful 
conceptual foundations are possible for managerial domains. Indeed, the 
widely accepted terminology of accounting provides informal evidence 
that this is possible. For more detailed discussion of these issues, see Lee 
(1981a). 
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