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A FORMULA FOR THE LEVEL SETS OF 
EPI-LIMITS AND SOME APPLICATIONS 

Roger J-B. Wets 

We give a formula for the level sets of the limit function 

of a sequence of epi-convergent functions. The result is used 

to characterize the elements of a sequence whose epi-limit is 

in£-compact. Finally, we examine the implications of these re- 

sults for the convergence of the infima and the solution (mini- 

mizing) sets. We restrict ourselves to the case when the func- 

tions are defined on R ~ .  However, the presentation is such that, 

either with the Mosco topology for epi-convergence in the reflex- 

ive Banach case, or with the De Giorgio topologies in the more 

general case, the arguments remain similar to those used here. 

We start with a quick review of epi-convergence which at the 

same time allow us to introduce some notations. 

Suppose IS'C R" , v = 1 . . . } is a sequence of sets. 

Its Zinrits in fer ior  and superior are the sets 

v lim in£ sV = {x = lim x 1 xV€ sV for all v = l ,  ...I 
v+'Q v+'Q 

and 



l i m  sup  S" = {x = limk,,xk 1 xk E svk , k  = 1 , .  . . f o r  some {vk l  c N I  . 
v+OD 

Thus, l i m  i n f  sv i s  t h e  set of  l i m i t  p o i n t s  o f  a l l  p o s s i b l e  
v+03 v  v  

sequences {x ,v=1, .  . . w i t h  x E svl and l i m  sup  sV i s  t h e  set of  
v+=' 

a l l  t h e  c l u s t e r  p o i n t s  o f  such sequences.  C l e a r l y ,  w e  always 

have t h a t  

l i m  i n f  sv C l i m  sup  sV . 
v+OJ v-tw 

The sequence i s  s a i d  t o  have a  l i m i t ,  denoted by l i m  sv, i f  t h e  
v+w 

i n c l u s i o n  can  be  r e p l a c e d  by an  e q u a l i t y .  

v  n  Let  { f  , v = l , . . . }  be a  sequence of f u n c t i o n s  d e f i n e d  on R 

and w i t h  va lues  i n  R, t h e  extended r e a l s .  The epi-limits inferior 

and superior a r e  t h e  f u n c t i o n s  ( l i e f v )  and (Is f v )  whose ep ig raphs  e 
a r e  r e s p e c t i v e l y  t h e  l i m i t s  s u p e r i o r  and i n f e r i o r  o f  t h e  sequence 

o f  sets { e p i  f v , v = l  , . . .I where e p i  g  deno tes  t h e  epigraph o f  t h e  

f u n c t i o n  g: 

Simply from t h e  d e f i n i t i o n ,  and t h e  above i n c l u s i o n  it f o l l ows  

t h a t  

v  
The sequence { f  , v=l , . . . has  an epi-limit, denoted by lmefv, i f  

e q u a l i t y  ho lds ,  and t h e n  



We then also say that the sequence epi-converges to lmefv, and we 
v 

write fv+e (lmef ) . 
Thus a function f is the epi-limit of a sequence 

{fV,v=1, ... 1 if 

Using the definitions, it is not difficult to see that the second 

inequality will be satisfied, if for every x E Rn 

Vk 
( ie for any subsequence of functions {f ,k=l...} 

k and any sequence {x ,k=l,...) converging to x, we have 

v k( k lim inf f x ) > f (x) , - 
k+-a 

and the first inequality, if for every x E Rn 

(11,) there exists a sequence {xV, v = 1,. . . ) converging 

to x such that 

lim sup fv (xv) - < f (x) . 
V+Oo 

v For any decreasing sequence of subsets {S , v = 1,. . . I  of Rn 

we have that limv+_Sv exists and is given by the formula 

n Similarly, if the { fv : R + ii , v = 1,. . . ) is an increasing sequence 

of functions, i.e., fv - i fvfl, then the epi-limit exists and is 

given by 

v 
lmef (x) = lim v+=' cl fV (x) 

where cl g is the lower semicontinuous closure of g, or equivalently 

cl g is the function such that epi cl g = c l  epi g. 



The n e x t  theorem g i v e s  a  c h a r a c t e r i z a t i o n  o f  t h e  l e v e l  sets 

o f  t h e  l i m i t  f u n c t i o n  i n  t e r m s  o f  t h e  l e v e l  sets o f  t h e  f u n c t i o n s  

f v .  For a  E R,  t h e  a-level se t  o f  a  f u n c t i o n  g  i s  t h e  set  de f i ned  

by 

I n  g e n e r a l ,  i f  f  = l imv+_ fv ,  it does n o t  imply t h a t  l e v  f  = 
a  

l i r n  
V+OD 

l e v a f v .  Simply t h i n k  o f  t h e  dec reas ing  c o l l e c t i o n  o f  

f u n c t i o n s  

t h a t  epi -converge t o  f  0. The l e v o f v  = I0 1 f o r  a l l  v ,  and t h u s  

l i r n  V l e v o f  = {01 b u t  l e v  f  = R .  I t  i s  even p o s s i b l e  f o r  t h e  v+_ 0  
V f v  t o  epi -converge t o  f  b u t  f o r  some a  E R, l imv,, l e v  f  may 

V 
a  

n o t  even e x i s t  which means t h a t  l i g+&nf  l e v  f  i s  s t r i c t l y  
v a  

inc luded  i n  l i r n  sup  l e v  f v .  Again t a k e  f  ( x )  = v-'x2 f o r  a l l  v+, a  
even v ,  and f v  0  f o r  a l l  odd i n d i c e s  v .  Then t h e  f v  ep i -  

converge t o  f  E O .  C l e a r l y  

V 
l e v o f  = I 0 1  i f  v i s  odd 

= R i f  v i s  even 

V and t h u s  l i g+&nf  l e v o f  = I 0  1 # R = l i g+gup  l e v o f  . 

1 . THEOREM Suppose I f V  = R~ + E, v = 1  , . . . 1 is a sequence of m e -  

tions. Then for a l l  a  E R ,  

(2 lima1+a l i m  v+m sup  ( l e v a l  f v )  c l e v a  ( l i e f v )  

l e v a ( l s e f v )  C l i m  l i m  i n f  ( l e v a l  f v )  a l + a  v+_ 



PROOF. Let  Tat = l i m  sup lev,, f V  and T = l i m  a '+  a Ta 
. Since  t h e  

V+W 

l e v e l  sets (of  any f u n c t i o n )  a r e  dec reas ing  a s  a t C a ,  it fo l lows  

t h a t  t h e  T a t  are dec reas ing  as a ' l a  and t h u s  

t h e  sets T u l  be ing  c losed ,  a s  fo l lows d i r e c t l y  from t h e  d e f i n i -  

t i o n  o f  l i m i t  s u p e r i o r .  I t  fo l lows  t h a t  x E T i f  and on ly  i f  

x E Tat  f o r  a l l  a ' > u .  The i n c l u s i o n  ( 2 )  i s  t r i v i a l l y  s a t i s f i e d  

i f  T is  empty. Hencefor th ,  l e t  u s  assume t h a t  T i s  nonempty. 

I f  x E T,, ,  t h e  d e f i n i t i o n  o f  l i m i t  s u p e r i o r  f o r  sequences o f  

sets i m p l i e s  t h a t  t h e r e  n e c e s s a r i l y  e x i s t s  a subsequence o f  func- 

Vk k r i o n s  { f  , k = l ,  . . . I  and a sequence Ex , k = l , . . . )  converging t o  

x such t h a t  f o r  a l l  k = 1, ... 

o r  e q u i v a l e n t l y  such t h a t  f o r  a l l  k = 1 ,  ... 

k 
V 
k (x  , a ' )  E e p i  f  

V v 
Since  e p i  ( l i e f  ) = l i m  sup e p i  f  it fo l lows  t h a t  ( x , a l )  

V+rn 

- - x vk  , a ' )  E e p i  ( l i e f v )  and t h u s  x E l e v a l  ( l i e f v ) .  Hence 

i f  x E Ta t  f o r  a l l  a '  > a  it fo l lows  t h a t  x E lev,, ( l i e f v )  f o r  a l l  

a '  > a  which i m p l i e s  t h a t  x E l e v  (li f V )  s i n c e  f o r  any f u n c t i o n  g a e 
l e v  g = 17 l e v a ,  g. a a'>a 

V s = i s  L e t  S a l = l i m  i n f  l e v a , £  and S = l i m , l C a a ,  Again 
V+Oo 

V t h e  i n c l u s i o n  ( 3 )  i s  t r i v i a l  i f  l ev , ( l se f  ) =%,  t h e r e  on l y  re- 

mains t o  cons ide r  t h e  c a s e  when l e v  (Is f v )  is  nonempty. I f  a e 
x E l e v a ( l s  f V )  it i m p l i e s  t h a t  t h e r e  e x i s t  ( xv ,aV)  converging t o  

e 
( x , a )  such t h a t  



v since by definition epi(1s f ) = lirn in£ epi fv. Since e V+=J 
v V a = lim a , to any a' > a  there corresponds v' such that a <a '  

V+Oo - 
for all v - > v' . This implies that xv E lev,, fv for all v - > v' 

and consequently x E S a" The above holds for every a' > a  from 

which it follows that x E S. This yields the inclusion (3). 

v 4. COROLLARY. Suppose { f ; f , v = 1 , . . . ) i s  a col lect ion of  functions 

defined on R", with values i n  the extended reals E, and such that f = lmefv. 

Then for a l l  a E R 

= lim lim in£ (leval fv) . 
a'+a v+a 

v PROOF. Since f = lm f = li fv = Is fV, it follows from the e e e 
Theorem that 

v 
lima I +a lim v+a sup (lev,, f ) c lev a f C lim,, +a lim v+O0 in£ (leval f ') 

The relations (5) now simply follow from the fact that for any a', 

liq+&,nf (leva, fv) c l i~+gup (leva, fv) . 
Equipped with his formulas, we now turn to the characteriza- 

v 
tion of the elements of a sequence of functions If ,v = 1, . . . I  
whose epi-limit (exists and) is in£-compact. The first couple 

of propositions are proved in [I]. 

6 .  PROPOSITION. Suppose { sV , v = 1 . . . ) i s  a consequence of  subsets of  

R". Then lirn sup sV = O f  or equivalently lirn sV = O f  i f  and only i f  
V+Oo V+O3 

t o  any bounded set D there corresponds an index vD such that 

sV n D = 0 for a l l  v > vD . - 

n 
7 .  PROPOSITION. Suppose S and { sV , v = 1 , . . . ) are subsets of R with 

S closed. Then 



-7- 

S C lim in£ sV i f  and only i f  for a22 E > 0 ,  lirn S\ so sV =,%, V'=' v+m 

and 

S 3 lirn sup sV i f  and only i f  for a l l  E > 0, lifna~v\~OS =%.  v+m 

where 

EOD denotes the (open) €-enlargement of the set  D, i . e .  

The next proposition improves somewhat a result of [2] 

concerning the convergence of connected sets. 

8. PROPOSITIOLJ. Suppose {sV,v = 1,. . . 1 i s  a sequence of connected sub- 

sets  of  R" such that liv+gup sV i s  bounded. Then there ex is ts  v' such 

that for v > v', the se ts  sV arc uniformly bounded. - 

v PROOF. Let S= l im sup S . For all E > O f  we have that v+=' 

From Proposition 7, it follows lirnV+=' (sV\ EO S) = 0. In view of 

Proposition 6, tnis implies that for any f3 > E, 

for all v sufficiently; recall that S is bounded by assumption 

and thus so is B" S. Hence for v sufficiently large sV C EO s 
since otherwise the sets sV would have to be disconnected since 

v we could write sV = (S 17 EO S) U (sV\ f3O S) with f3 > E. 0 

n 9. THEOREM. Suppose { fV : R + H, v = 1 , . . . 1 i s  a sequence of lower 

semicontinuous functions with connected level sets  and such that the epi- 

l im i t  in fer ior  lief i s  inf-compact. Then the functions $ are unifomLy 

inf-compact, i n  the sense that for a l l  ci there ex is ts  vci such that for a22 
v 

v - > va , the level sets  levcl£ are uniformly compact. 



PROOF. We first note that for all a E R, we have 

lirn sup lev c lirn lirn sup lev fv . 
V+W a v+03 a' a' +a 

The inclusion is certainly true if lirn sup lev fV is empty. 
V+W a 

Otherwise x E lirn sup lev fV implies that there exists a sub- v+== " k  sequence {v k  =l ,  . . . I  and {x ,k=l,...) a sequence converging k' 
to x such that xk E levafvk for all a' > a. Hence x E lirn a'Ja 

lig+gup lev fv which completes the proof of the inclusion. a  ' 

We now combine the above with (2) to obtain 

By assumption for all a, lev (liefv) is compact. A straight- a 
forward application of Proposition 8 completes the proof, recall- 

ing that for all v the lev fv are closed since the functions f v 
a 

are lower semicontinuous. 

1 0. COROLLARY. Suppose {fV : iin -+ R,  v = 1 , . . . ) i s  a sequence of lower 

semicontinuous functions with connected level sets, that epi-converges t o  f. 

Then f i s  inf-compact i f  and only i f  the fV are uniformly inf-compact. 

PROOF. If the fV epi-converge to f, then liefv = f and thus the 

only if part follows from the Theorem. The if part follows from 

( 5 ) .  The uniform in£-compactness of the fV implies that the 
v {sat =lig+&nf leva.£ ,at >a)  form a decreasing sequence of 

compact sets as a'Ja and thus lev f= l imalJaSal  is compact. a 

1 1 . COROLLARY. Suppose { f : R" + ?it v = 1 , . . . i s  a sequence of tower 

semicontinuous convex functions that epi-converges to the (necessarily 

lower semicontinuous and convexl function f. Then f i s  inf-compact i f  and 
v only i f  the f are uniformly inf-compact. 

PROOF. The level sets of convex functions are convex and thus 

connected. 



Inf-compactness is usually used to prove the existence of a 

minimum. It is well-known that a number of weaker conditions 

can actually be used to arrive at existence. An easy generaliza- 

tion is quasi-inf-compactness. A function f is quasi-inf-compact if 

there exists a E R such that lev f is nonempty and for all B <a ,  a - 
lev f is compact. The argument that shows that in£-compact 

B 
functions have a minimum can also be used in the context of quasi- 

in£-compact functions. It is not difficult to see how Theorem 9 

can be generalized to the case when liefV is quasi-in£-compact. 

All of this, just to point out that the subsequent results about 

convergence of infima are not necessarily the sharpest one could 

possibly o~ta in by relying on the preceding arguments and results. 

Thus the next propositions are meant to be illustrative (rather 

than exhaustive) . 
v 12. PROPOSITION. Suppose If : R~ + v = 1 , . . . 1 is a sequence of 

functions waiformZy inf-compact that epi-converges to f. Then 

PROOF. The inequality 

lim sup (in£ fv) <in£ f v+== - 

is well-known as it follows directly from epi-convergence in 

particular condition (ii,). To see this let us assume (without 
k loss of generality) that in£ f < = =  and that {x ,k=l,...) is a 

n k sequence in R such that lirn f(x ) =in£ f. From (ii ) it follows 
k+m e 

kv that to every xk there corresponds a sequence {x , v = 1,. . . I  
converging to xk such that for all k 

k lim sup fv(xkV) < f(x ) v+== - 

Since in£ fV - < fV (xkV), for all k it follows that 

k lim sup (in£ fv) < f (x ) v+w - 



Taking l i m i t s  on bo th  s i d e s ,  w i t h  r e s p e c t  t o  k y i e l d s  t h e  d e s i r e d  

r e l a t i o n .  

There remains t o  show t h a t  

l i r n  i n £  v-fm 

There i s  noth ing  t o  prove i f  i n £  f = - ,  s o  w e  s h a l l  on l y  d e a l  

w i t h  t h e  c a s e  when i n £  W e  r e s t r i c t  o u r  a t t e n t i o n  t o  t h e  

subsequence o f  i n d i c e s  f o r  which t h e  i n £  f v  converge t o  

l i m  i n £  ( i n £  f v ) ,  say  
V'O0 

v 
l i r n  ( i n £  f  k, = l i v+&nf  ( i n £  f v )  . 
k+m 

vk Now, t h e  £ a r e  in£-compact and t h u s  t h e i r  i n f ima a r e  a t t a i n e d .  
k 

L e t  {y , k = 1 ,  . . . I  be  a sequence o f  p o i n t s  such t h a t  f o r  a l l  k t  
Vk k f vk  (yk)  = i n £  f  . The sequence {y , k = 1 ,.. . } i s  bounded. To 

see t h i s  f i r s t  obse rve  t h a t  l i m  sup ( i n £  f v )  < i n £  f  i m p l i e s  t h a t  
v'm - 

f o r  any 6 > 0 

k Vk f o r  k s u f f i c i e n t l y  l a r g e .  Thus f o r  t h o s e  k t  y E lev6+inf f f  . 
The uni form in£-compactness o f  t h e  f V  i m p l i e s  t h a t  t h e  compact 

sets l e v  k 6+inf f  f v  a r e  un i formly  bounded. Hence t h e  {y , k = 1 , . . . I  
admi t  a c l u s t e r  p o i n t ,  say  y.  I t  now fo l lows  from epi-conver- 

gence,  i n  p a r t i c u l a r  c o n d i t i o n  (ii ) ,  and t h e  above t h a t  
e 

l i m  ( i n f  f v k )  = l i m  f v k ( y k )  2 f  ( y )  > i n f  f  , v-f - 
k-fm 

which comple tes  t h e  p roo f .  

A s  c o r o l l a r y  t o  t h i s  p r o p o s i t i o n ,  w e  o b t a i n  a companion t o  

Theorem 7 o f  [ 3 ]  and Theorem 1.7 o f  [ 4 ]  which w e r e  d e r i v e d  v i a  

comple te ly  d i f f e r e n t  means. 



1 3. COROLLARY. Suppose { fw : R" -+ , v = 1 , . . . I  i s  a sequence of lower 

semicontinuous convex functions that epi-converge to the (necessarily lower 

semicontinuous and convex) function f. Moreover suppose that either the 

{f , v = 1,. . . 1 are uniformly inf-compact or f i s  inf-compact. Then 

PROOF. When the fv are convex, the inf-compactness of f yields 

the uniform inf-compactness of the fv as follows from Corollary 1 1 .  

We are thus in the setting which allows us to apply the Proposition. 

U 

The assumptions of Proposition 12 are not strong enough to 

allow us to conclude that the solution sets argmin fw converge 

to argmin f. Indeed consider the situation when the fv are 

defined as follows: 

if x E [-1,1] , 

otherwise. 

The fv epi-converge to the function 

L+ otherwise, 

and satisfy all the hypotheses of Proposition 12, even those of 

Corollary 13, and indeed the infima converge. But the solution 

sets, argmin fv = {O) for all w do not converge to argmin f = [-I, 1 I . 
v The same situation prevails even if the inf f converge to inf f 

from above. For example, let 

and for all x E R, 

fw (XI =rf (XI if v is odd 

=bax [v-'x2,f(x)] if v is even. 



V Then the f epi-converge to f, the infima converge but 

V lirn in£ argmin f = { O )  
V'03 

lirn sup argmin fV = [ -  1,1] = argmin f v+O3 

and thus the limit does not exist. 

There does not appear to exist easily verifiable conditions 

that will guarantee the convergence of the argmin sets. We 

always have the following, cf. [4] for example. 

14. PROPOSITION. Suppose { fv : R" -+ R , v = 1 , . . . ) is a sequence of , 

functions that epi-converges to f. Then 

(1 5) lim sup argmin fV C argmin f. v+O3 

The preceding example has shown that in general, even in 

very "regular" situations, one cannot expect the inclusion 

argmin f C lirn inf argmin fV 
V'== 

to hold. The simple example that follows has all of the follow- 

ing properties: the functions fV are convex, uniformly in£- 

compact, in£ fV converges to in£ f from above and for all a E R 

lim in£ levafv = lim sup leva£ v v+O3 v+=' 

And nonetheless we still do not have that argmin f is the limit 

of the argmin fv. Again let f (x) = max [0, 1 x 1-1 1 and for all v 

- 1  2 fv(x) =max [v x , f (x)] 

It thus appears that the search for characterizations of the 

points that minimize f, should be mostly in terms of formula (15). 

In particular one should seek conditions which guarantee that 



V 
lim sup argmin f is nonempty. Sufficient conditions are provided 

v-tm 

by the assumptions of Proposition 12 (or Corollary 13) as can be 

gathered from its proof. Formulas (5) however suggest another 
v direction, namely to replace argmin f by E-argmin fv = 

{x E Rn 1 fv (x) - < in£ f '+E I .  Indeed this allows us to obtain arg- 
V min f as an inferior limit of the E-argmin f . The proposition 

below is essentially proven in [ 5 ] .  

16. PROPOSITION. Suppose {fv :Rn -t R ,  v = 1 ,  ... ) i s  a sequence o f  

functions that epi-converge t o  f, and in£ f i s  f in i te .  Then 

i f  and only i f  

argmin f= l im lim in£ E-argmin f &SO v-tm V ' 

= lim lim sup E-argmin f ESO v+m v 
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