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A FORMULA FOR THE LEVEL SETS OF
EPI-LIMITS AND SOME APPLICATIONS

Roger J-B. Wets

We give a formula for the level sets of the limit function
of a sequence of epi-convergent functions. The result is used
to characterize the elements of a sequence whose epi-limit is
inf-compact. Finally, we examine the implications of these re-
sults for the convergence of the infima and the solution (mini-
mizing) sets. We restrict ourselves to the case when the func-
tions are defined on R". However, the presentation is such that,
either with the Mosco topology for epi-convergence in the reflex-
ive Banach case, or with the De Giorgio topologies in the more
general case, the arguments remain similar to those used here.

We start with a quick review of epi-convergence which at the

same time allow us to introduce some notations.
Suppose {scr® , v=1,...} is a sequence of sets.
Its limits inferior and superior are the sets

lim inf s ={x=1lim x’|x’€s’ for all v=1,...}
Ve V>0

and



lim sup 8" ={x =lim xk| xX
VR

Vk =
Koo e s™,k=1,... for some {vk}C N}.

Thus, lim inf s¥ is the set of limit points of all possible
AVE -}

. v
sequences {x’,v=1,... with x’ €8’} and lim sup s’ is the set of
V>

all the cluster points of such sequences. Clearly, we always
have that

lim inf S’ C lim sup sV .
V> ) -+co

The sequence is said to have a 1limit, denoted by lim SV, if the

->
inclusion can be replaced by an equality. Ve

Let {fv,v=1,...} be a sequence of functions defined on rR"
and with values in R, the extended reals. The epi-limits inferior

and superior are the functions (liefv) and (lsefv) whose epigraphs
are respectively the limits superior and inferior of the sequence
of sets {epi £¥,v=1,...} where epl g denotes the epigraph of the

function g:
epi g={(x,a)|g(x) <a} .

Simply from the definition, and the above inclusion it follows
that

11 £Y < 1s £ .
e e
The sequence {fv,v=1,...} has an epi-limit, denoted by lmefv, if

equality holds, and then

V_qs eV v
lmef -—llef -—lsef .
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We then also say that the sequence epi-converges to lmefv, and we
ite £'> (lm_£")
write o (1mg .

Thus a function f is the epi-limit of a sequence
{£¥,v=1,...} if

1s fY < f <1i fY,
e - —_ e

Using the definitions, it is not difficult to see that the second

inequality will be satisfied, if for every x € rR"

v
(i) for any subsequence of functions {f k,k==1...}
e k .
and any sequence {x ,k=1,...} converging to x, we have
v
lim inf £ 5 (x%) > £(x),
Ko -
and the first inequality, if for every x € R™
(iie) there exists a sequence {x",v=1,...} converging
to x such that
lim sup £°(x") < £(x).
Voo -
For any decreasing sequence of subsets {Sv,vr=1,...} of R"

we have that limv+wsv exists and is given by the formula

. v v
= N

llmv+wS V;1 cl S
Similarly, if the {£V:R® >R, v=1,...} is an increasing sequence
of functions, i.e., fv_gfv+1, then the epi-limit exists and is
given by

v 1 v
lmef (x)-—llmv+w cl £ (%)

where cl g is the Llower semicontinuous closure of g, or equivalently
cl g is the function such that epi cl g=cl epi g.



The next theorem gives a characterization of the level sets

of the limit function in terms of the level sets of the functions

£Y. For o € R, the o-level set of a function g is the set defined

by

levag=={(x,a)|g(x)_ia}.

In general, if f==limv+mfv, it does not imply that levaf=

limv+m levafv. Simply think of the decreasing collection of

functions

f\)(x)=\)-1x2 , V=T1,...

0fv=={0} for all v, and thus

lim\)_mo levofv=={0} but lev0f==R. It is even possible for the

£Y to epi-converge to f but for some o € R, limv+m levafv may

not even exist which means that li@+%nf lev £’ is strictly

that epi-converge to £ =0. The lev

included in li@+gup levafv. Again take fv(x)==v_1x2 for all
even v, and £¥ =0 for all odd indices v. Then the £V epi-

converge to £f=0. Clearly

levofv = {0} if v is odd

=R if v is even

. v o_ s v
and thus ll@+%nf levof —-{0}#I{—11%+gup lev,f

1. THEOREM Suppose {fv =R" > R, v=1,...} is a sequence of func-

tions. Then for all o € R,

. \Y] . vV
i -
(2) llma.+a ll@+gup (leva,f ) leva(llef )
and
v . . . V]
(3) leva(lsef y C llma.+a ll§+%nf(leva,f )
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-1 v R .
PROOF. Let Td,-—11@+gup leva,f and T llmahka Ta' Since the
level sets (of any function) are decreasing as o'Ya, it follows

that the T+ are decreasing as o'‘Ya and thus

T==lima.+a Ta' = 0 7.,

the sets Ta, being closed, as follows directly from the defini-
tion of limit superior. It follows that x € T if and only if
X € Tu, for all o'>a. The inclusion (2) is trivially satisfied
if T is empty. Henceforth, let us assume that T is nonempty.
If x € Ta,, the definition of limit superior for sequences of

sets implies that there necessarily exists a subsequence of func-

v
tions (£ k, k=1,...} and a sequence {xk,k==1,...} converging to

x such that for all k=1,...

k Y

x € lev ,f k
a

or equivalently such that for all k=1,...

v
(x%,a') € epi £ K.
V vk
Since epi (lief )==li$+gup epli f it follows that (x,a')
v
o4 k . . =V PR
= llmk+m(x ,a') € epi (llef ) and thus x € leva,(llef ). Hence

if x € Ta' for all o' >a it follows that x € leva,(liefv) for all

o' >a which implies that x € leva(liefv) since for any function g

levag =cﬂgaleva'g'
S v o . .
Let Sa' ll@+%nf leva,f and S"llma'+asa'._a“;asa" Again

the inclusion (3) is trivial if leva(lsefv)==ﬂ, there only re-
mains to consider the case when leva(lsefv) is nonempty. If

V, , . .
X € leva(lsef ) it implies that there exist (xv,av) converging to
(x,0) such that

(x¥,0") € epi £¥



since by definition epi(lsefv) = lig*%nf epi £V, since

a = li§+wav, to any o' > o there corresponds v' such that av_ia'
for all v>v'. This implies that x’ € leva,fv for all v >v'
and conseqguently x € Sa" The above holds for every a' >a from

which it follows that x € S. This yields the inclusion (3). O

4. COROLLARY. Suppose {f;fv,v =1,...} 78 a collection of functions
defined on R, with values in the extended reals R, and such that f = lnkafv.
Then for all o € R

— 71 ; v
(5) levaf-llma. ll@+gup (leva,f )

ya

a4 S v
_llma'¢a ll§+%nf (leva,f ) .

PROOF. Since f = lmefv = liefv = 1ser, it follows from the
Theorem that
lim

. v . L v
ll§+§up (leva,f ) C levaf C lim_, ll@+énf (leva,f )

a'va a'va
The relations (5) now simply follow from the fact that for any a',

lim inf (lev .fv) C lim sup (lev ,fv). O

Equipped with his formulas, we now turn to the characteriza-
tion of the elements of a sequence of functions {fv,v =1,...}
whose epi-limit (exists and) is inf-compact. The first couple

of propositions are proved in [1].

6. PROPOSITION. Suppose {Sv,v =1...} 78 a consequence of subsets of
sV = g, if and only <if

to any bounded set D there corresponds an index Vp such that

R™. Then lir\r)1+§oup sV =g, or equivalently lim\)_mo

s Np=g for all V>vy .
7. PROPOSITION. Suppose S and {s¥,v=1,...} are subsets of R with
S closed. Then
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s C lirg+}onf sV if and only if for all €>0, lir\r)1+oos\ e’sV =g,
and
S D lir\51+§oup sV if and only if for all € >0, lir\r)1+oosv\ s =¢g.
where
£°D denotes the (open) e-enlargement of the set D, Z.e.

&€D={x € R* |dist (x,D) <¢}

The next proposition improves somewhat a result of [2]

concerning the convergence of connected sets.

8. PROPOSITION. Suppose {sV,v=1,...}is a sequence of connected sub-
sets of R™ such that lir\r)1+°%up sY is bounded. Then there exists v' such

that for v > V', the sets s’ are wiformly bounded.

PROOF. Let §=lim sup sV. For all e >0, we have that

sV =(s"\e’°s) U (g¥Y Nne°g) .

From Proposition 7, it follows lim\)_m(Sv\ e®S) =@. In view of

Proposition 6, this implies that for any B > g,

(sV\e’°s) N g°s =g

for all v sufficiently; recall that S is bounded by assumption
and thus so is B°S. Hence for v sufficiently large s¥ c e°s
since otherwise the sets SY would have to be disconnected since
we could write sV =(s¥ N e°s) U (s¥\g°S) with B>¢e. O

9. THEOREM. Suppose {fY:R® >+ R, v=1,...} is a sequence of Lower
semicontinuous functions with comnected level sets and such that the epi-
limit inferior liefv is inf-compact. Then the functions f\) are uniformly
nf-compact, in the sense that for all a there exists Vo such that for all

V2V, s the level sets levafv are wniformly compact.



PROOF. We first note that for all o € R, we have

. . , v
ll@+gup levu C(j}f; llg+gup leva,f .

The inclusion is certainly true if lig+§up levafv is empty.
Otherwise x € li@+gup levafv implies that there exists a sub-
sequence {vk,k==1,...} and {xk,k==1,...} a sequence converging

v
to x such that xk € levaf k for all «' >a. Hence x € limu.¢u

li@+§up leva.fv which completes the proof of the inclusion.

We now combine the above with (2) to obtain

. v .2V
ll@+gup levaf C leva(llef ) .

By assumption for all o, leva(liefv) is compact. A straight-
forward application of Proposition 8 completes the proof, recall-
ing that for all v the levafv are closed since the functions f"
are lower semicontinuous. O

10. COROLLARY. Suppose {£¥ : R" » R, v=1,...} is a sequence of lower
semicontinuous functions with cownnected level sets, that epi-converges to f.

Then £ is inf-compact if and only If the £Y are uniformly inf-compact.

PROOF. If the £’ epi-converge to f, then liefv==f and thus the
only if part follows from the Theorem. The if part follows from
(5). The uniform inf-compactness of the £Y implies that the
{Su,==li@+%nf leva.fv,a' >a} form a decreasing sequence of

compact sets as a'+Yo and thus levuf==lima,+asa. is compact. U

11. COROLLARY. Suppose {f’ : R"

semicontinuous convex functions that epi-converges to the (necessarily

+~ R,v=1,...} 2s a sequence of lower

Llower semicontinuous and convex) function f£. Then £ <s inf-compact if and

only <f the £ are uniformly inf-compact.

PROOF. The level sets of convex functions are convex and thus

connected. U



Inf-compactness is usually used to prove the existence of a
minimum. It is well-known that a number of weaker conditions
can actually be used to arrive at existence. An easy generaliza-
tion is quasi-inf-compactness. A function £ is quasi-inf-compact if
there exists a € R such that levaf is nonempty and for all B <a,
leva is compact. The argument that shows that inf-compact
functions have a minimum can also be used in the context of quasi-
inf-compact functions. It is not difficult to see how Theorem 9
can be generalized to the case when liefv is quasi-inf-compact.
All of this, just to point out that the subsequent results about
convergence of infima are not necessarily the sharpest one could
possibly obtain by relying on the preceding arguments and results.
Thus the next propositions are meant to be illustrative (rather
than exhaustive).
12. PROPOSITION. Suppose (£’ : R®

functions wniformly inf-compact that epi-converges to f£. Then

+ R, v=1,...} is a sequence of

C Vy _ .
(13) %ig(lnf f°) =inf £.
PROOF. The inequality

lig,gup (inf £') <inf f

is well-known as it follows directly from epi-convergence in

particular condition (iie). To see this let us assume (without

loss of generality) that inf f <« and that {xk,k==1,...} is a

sequence in R" such that }im f(xk)==inf f. From (iie) it follows
Koo

that to every xk there corresponds a sequence {xkv,v =1,...}

converging to xk such that for all k

. v, .k k
lip, gup £ (x v)_gf(x )

Since inf fv_ifv (ka), for all k it follows that

. . k
ll@+§up (inf fv)_if(x )
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Taking limits on both sides, with respect to k yields the desired

relation.

There remains to show that
1lim inf (inf £Y) >inf £
\)—)C!) J—

There is nothing to prove if inf f =-«, so we shall only deal
with the case when inf f >-«, We restrict our attention to the
subsequence of indices for which the inf £Y converge to
L . v
llg+énf (inf £7), say
v

lim (inf £ ) =1lig inf (inf £Y) .
k>

v

Now, the f k are inf-compact and thus their infima are attained.

Let {yk ,k=1,...} be a sequence of points such that for all k,
v v

f k(yk)==inf £ k. The sequence {yk ,k=1,...} is bounded. To

see this first observe that li@+gup (inf fv)_iinf f implies that
for any 6 >0

\Y) \Y)
£ X(y®) =inf £ ¥<inf £+

£k
. _ v §+inf f :
The uniform inf-compactness of the f implies that the compact
\Y .
sets lev6+inf ff are uniformly bounded. Hence the {yk yk=1,...}
admit a cluster point, say y. It now follows from epi-conver-

gence, in particular condition (iie), and the above that

for k sufficiently large. Thus for those k, yk € lev

\Y) \Y)
lim (inf £ %) =1im £ X(%) > £(y) >inf £ ,
Yo Koo _— -

which completes the proof. O

As corollary to this proposition, we obtain a companion to
Theorem 7 of [3] and Theorem 1.7 of [U4] which were derived via

completely different means.
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13. COROLLARY. Suppose {£’ :R™” > R,v=1,...} i a sequence of lower

semicontinuous convex functions that epi-converge to the (necessarily lower
semicontinuous and convex) function f. Moreover suppose that either the

{fv ,V=1,...} are wniformly inf-compact or £ is inf-compact. Then

lim (inf £Y) =inf £ .
\)+00

PROOF. When the £Y are convex, the inf-compactness of f yields

the uniform inf-compactness of the £f¥ as follows from Corollary 11.
We are thus in the setting which allows us to apply the Proposition.
a

The assumptions of Proposition 12 are not strong enough to
allow us to conclude that the solution sets argmin £V converge
to argmin f. Indeed consider the situation when the £Y are

defined as follows:

x) = v-1[|x| -1] if x € [-1,1]1 ,

+ otherwise.
The £ epi-converge to the function

f(x) =10 if x € [-1,1]

+ o otherwise,

and satisfy all the hypotheses of Proposition 12, even those of
Corollary 13, and indeed the infima converge. But the solution
sets, argmin £V = {0} for all v do not converge to argmin f = [-1,1].
The same situation prevails even if the inf fvﬂéonverge to inf £

from above. For example, let
f(x) =max [0 , |x]| -1]
and for all x € R,

fv(x)==f(x) if v is odd

1

=lmax [v xz,f(x)] if v is even.
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Then the £’ epi-converge to f, the infima converge but

{0}

lim inf argmin £V
V>0

li@+§up argmin £Y [-1,1] =argmin £

and thus the limit does not exist.

There does not appear to exist easily verifiable conditions
that will guarantee the convergence of the argmin sets. We

always have the following,'cf. [4] for example.

14. PROPOSITION. Suppose {f’ :R® > R,v=1,...}17sa sequence of .
functions that epi-converges to f. Then
(15) li@+§up argmin £¥ C argmin f.

The preceding example has shown that in general, even in

very "regular" situations, one cannot expect the inclusion

. . . . vV
argmin £ C ll@+%nf argmin £

to hold. The simple example that follows has all of the follow-
ing properties: the functions £Y are convex, uniformly inf-

compact, inf £V converges to inf f from above and for all o € R

lim inf lev £’ =1lim sup lev £V .

And nonetheless we still do not have that argmin f is the limit

of the argmin £". Again let f(x) =max [0,|x|-1] and for all v

fv(x)==max [\)—1x2 y T(x)] .

It thus appears that the search for characterizations of the
points that minimize f, should be mostly in terms of formula (15).

In particular one should seek conditions which guarantee that
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li@+gup argmin £ is nonempty. Sufficient conditions are provided
by the assumptions of Proposition 12 (or Corollary 13) as can be
gathered from its proof. Formulas (5) however suggest another
direction, namely to replace argmin £V by e-argmin £Y =

{x e Rnlfv(x)_iinf fv+€}. Indeed this allows us to obtain arg-
min f as an inferior limit of the e-argmin £Y. The proposition

below is essentially proven in [5].

n

16. PROPOSITION. Suppose {f’ :R" + R, v=1,...}1s a sequence of

functions that epi-converge to £, and inf £ is finite. Then
li@+m(inf fv)==inf f
if and only if

argmin f==llg+0 ll@*%nf g-argmin fv ’

=ll?+o 11@+§up g-argmin fv .
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