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PREFACE

Analysis concerned with problems of the rational use of
natural resources almost invariably deals with uncertainties with
regard to the future behaviour of the system in question and with
multiple objectives reflecting conflicting goals of the users of
the resources. Uncertainty means that the information available
is not sufficient to unambiguously predict the future of the sys-
tem, and the multiplicity of the objectives, on the other hand,
calls for establishing rational trade-offs among them. The ra-
tionality of the trade-offs is quite often of subjective nature
and cannot be formally incorporated into mathematical models sup-
porting the analysis, and the information with regard to the fu-
ture may vary with time. Then the challenge to the analyst 1is to
elaborate a mathematical and computer implemented system that can
be used to perform the analysis recognizing both the above aspects
of real world problems.

These were the issues addressed during the summer study
"Real-Time Forecast versus Real-Time Management of Hydrosystems,"
organized by the Resources and Environment Area of IIASA in 1981,
The general line of research was the elaboration of new approaches
to analyzing reservoir regulation problems and to estimating the
value of the information reducing the uncertainties. Computation-
ally, the research was based on the hydrosystem of Lake Como,
Northern Italy. This paper is concerned with the properties of
periodic stochastic linear reservoirs which can be of considerable
help in understanding the behaviour of regulated lakes or storage
reservoirs. The analysis demonstrating the approach was carried
out for lakes Maggiore, Como, and Iseo in Northern Italy.

Janusz Kindler

Chairman }
Resources & Environment Area
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ABSTRACT

Very simple properties of stochastic linear reservoirs are
derived for the case of cyclostationary stochastic inflows and
seasonally varying operating rules. Although real reservoirs
are fairly non-linear, these properties have proved to be helpful
in understanding the seasonal pattern of releases and the long-

term variations occurring in some of the regulated lakes of
Northern Italy.
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SOME REMARKS ON PERIODIC
STOCHASTIC LINEAR RESERVOIRS

Sergio Rinaldi

1. INTRODUCTION

The theory of linear stochastic reservoirs has long since
been developed and has been proved to be quite powerful for inter-
preting the real behavior of complex hydrosystems. Important
contributions can be found in Moran (1959), and in numerous
technical papers, (see for example, Kaczmarek 1963; Lloyd 1963,1377;
Klemes 1974; Phatarfod 1976; Troutman 1978; and Anis et al., 1979).
Some of these contributions consider the case of periodic (sea-
sonally varying) stochastic inflows, but do not deal (with the
exception of Lloyd 1977) with the most general case characterized
by periodically varying operating rules. On the contrary, in
this paper we explicitly consider stochastic periodic linear
reservoirs and derive a few and very simple properties of such
reservoirs. Some of these properties are later used for inter-
preting the seasonal and long-term variations of the operating

rules of three regulated lakes in Northern Italy.



2. THE LINEAR PERIODIC RESERVOIR
Let us consider a linear reservoir described by the following

difference equation

Se41 T St i T T o (1)

where S¢ is storage at the beginning of period t, and it and r,
are inflow and release during period t. Moreover, let
the inflow be a cyclostationary stochastic process

with given mean ui, variance Ct, and lag-1 correlation pt, i.e.,

i
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and assume that nhighor order auto-correlations are negiicible.
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The process is called cyclostationary since

Cl=cl
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where T is the number of considered periods in one year.

Finally, let us suppose that the operating rule is linear and

periodic, i.e.,

with
0< o, <1 , (3)

and ay periodic. Thus, from equations (1) and (2), we obtain



the followingbdifference equation for the storage capacity Sy

S = (1—0Lt)st + 1

t+1 t '

and from equation (3) it follows that Sq > 0 and it =20, t=20,1,...

£ =0, t=1,2,...

Equation (4) can be re-written in terms of mean values as

imply s

ui+1 = (1-at)ui + ui , (5)
so that
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and the first term is zero because s depends upon i and

t=1 t=-27
the lag-2 auto-correlation of the inflows 1as been assumed to be

negligible. Thus, in conclusion

S

_ 2_s i i
41 = (1—at) Ct + [1+2(1-at)pt]C . (6)
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3. SOME SIMPLE REMARKS

Equations (5) and (6) show that the mean and variance of
the stochastic process {st} can easily be computed by solving
two linear difference equations with periodic parameters and

periodic forcing terms. The most interesting solution of equations



(5), and (6) is, of course, the periodic solution, because it is
the one needed to describe the storage and the release of the
reservoir as cyclostationary stochastic processes. Closed-form
expressions of the periodic solution of equations (5) and (6)
are not too simple, but numerical solutions can easily be ob-
tained. In fact, the eigenvalues of equations (5) and (6)

)2 respectively] are both smaller than one, and

[(1-a,) and (1-a

t t

this implies that the periodic solution is unique and that all
solutions of equations (5) and (6) asymptotically tend (for

t—-») to the periodic one. This fact allows one to simply inte-
grate equations (5) and (6), (note that the two equations are de-
coupled), starting from any initial condition, until the conver-
gence to the periodic solution has been obtained. Obviously,
this procedure for finding ui and Ci is much more simple and
effective than any Monte-Carlo approach.

Equations (5) and (6) also constitute the basis for trans-
forming many stochastic optimal management reservoir problems
into an "equivalent" deterministic problem. To illustrate this,
assume that the objective function J of the stochastic optimal
control problem is specified in terms of mean and variance of

storage and/or release during the year, i.e.,

S

t'C

T S r
J = E ‘pt(utr Utr C ) y (7)

r
t
and suppose that one is interested in finding the operating rules,

(i.e., the values of o t=20,1,...,T-1), which minimize the

tl
objective J under the constraint that the distributions of the
storage capacity at the beginning and at the end of the year

are the same. This implies that the optimal solution must satisfy



equations (5) and (6) with the periodicity constraint

Thus, the problem is reduced to a "deterministic" periodic

optimal control problem: equations (5) and (6) are the state
2_s

. . . r _ s r _ . _
equations; equation (7) with ut = atut and Ct atCt is the ob
jective function:; Oy r t =20,1,...,T-1, are the control variables
subject to constraint (3) (or any other equivalent constraint);

and equation (8) is the periodicity constraint imposed on the
state variables. Such a problem can be solved by the Maximum
Principle or by any other equivalent technique, such as Dynamic
Programming; it is worthwhile to note that a certain number of
specific results are available for periodic optimal control
problems (see Guardabassi et al., 1974 for a survey).

From equations (5) and (6) one can easily derive lower and

upper bounds for the mean and variance of the storage s In

£

fact, by recursively using equation (5), one obtains
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min = 1<t<T %t MAX ~ 1<t<T “t .



Similarly, equation (6) gives rise to the expression
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By introducing the function
Vla,p) = z==[1+20(1-a)] (9)

the preceding results can be summarized as follows

i ui
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MAX min
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. . . i i i
In the case of stationary stochastic inflows, (umin = Hyax = M v
i . 1 Al i i i .
Cmin = CMAX = C, Onin = °max = ° ), and constant operating rules,
(amin = Oyax = o), equations (10) and (11) degenerate to the well-
known expressions
S S ul
Ut= M =T ’ (12)
S S U (o oi) i ’
= = Y% D
Ct C az C ’ (13)

which show that higher values of o imply lower values of u° and

cs (the function Lp(a,ol)/a2 decreases with o [see equation (9)1).

It might be worthwhile noticing that equations (10) and (11)
can be given a particularly meaningful interpretation. In fact,
the lower bounds of ui and Ci are the values of us and CS of a

stochastic reservoir characterized by stationary inflows with

i i i i i i
= H_ . ’ c™ = C_. ’ O_Omin

nin nin , and by a constant

linear operating rule with o = o while, on the contrary, the

MAX'’
upper bounds are the values of us and C° of another reservoir with
i_ i i i i i

W= myax 0 € =C P F

and o = a_. .
MAX

DMAX ! min

In other words, the behayior of any periodic stochastic linear
reservoir can be bound by the behavior of two time-invariant
stochastic linear reservoirs; one obtained by freezing mean,
variance, and correlation of the inflows at their minimum
seasonal values and discharging at maximum rate, and the other
by freezing mean, variance, and correlation of the inflows at
their maximum seasonal values and discharging at minimum rate.

Expressions similar to equations (10) and (11) can be

i) of the release r, from

) and variance (C £

derived for mean (ui

the reservoir. 1In fact, since:
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from equations (10) and (11), we immediately obtain

“min i r _ "MAax i (14)

S uin SML S T Muax

Gyax WiD & in
o . 2 i i < f o O 2 o i Cj_ ' (15)
(miny ® vlayayr Prin)Chpin < Cp S (aMAX) vl Puax) Cmax
“MAX min

Equations (14) and (15) clearly point out that large seasonal

variations of the operating rule (i.e., high values of ao

MAX/umin)

could generate large variations in the seasonal pattern of releases.
Obviously, this might happen particularly when the variations

of o, are suitably tuned with the variations of ut, C and

i
t y
pi. Conversely, one might use the possibility of varying o to

reduce overly large seasonal variations of ui and/or Ci as

pointed out in the following.

Let us now discuss the sensitivity of the periodic solution
of equations (5) and (6) to a change of the operating rule during
any time period t, say t=0. Obviously, this can be done by direct
comparison of the solutions of equations (5) and (6) for the
nominal values {ao, 51,..., ET_1} of the parameters and for the

gr Cqree-s aT_1} with ao#ao. Nevertheless,

general and simple conclusions can be drawn if the analysis is

perturbed values {a

carried out for small variations of the parameters. In such a
case, we are indeed only interested in determining the derivatives
dui and dci of the periodic solution of equations (5) and (6).

duo duo



. s _ s S _ .S
For this, express He = ut(ao) and Ct = Ct(ao) and let
—s _  S,— =S _ S,
ue = uglag) ' Ce = Cilay) '
be the periodic solution of equations (5) and (6), corresponding

to the nominal wvalue (EO) of the parameter. Thus, from equation

(5), it follows that

S S
T_‘l = (1-0.) ?ﬁ - ES (16)
da, - 0 duo =aO
0 70 0 70
au? du
t+1 _ — t _ _
da = (1-(lt) ﬁ— t = 1,2,...,T 1 . (17)
0 = 0| _=
0 70 0 70

Since these equations are linear difference equations of the form

= g - u (18)

Yitq t Yt t

with 0 <Bt< 1 and u, 2 0, the periodic solution is non-positive,

i.e.,

t 0

<

o7
Q

o
Q| ©
o
"
(¥}
=)

0 70

Moreover, from equation (17) it follows that

s
dut

dao =
070

is non-increasing with t.

In conclusion, a small positive perturbation of the parameter
oy generates a decrease of the mean value (ui) of the storage

in all the periods of the year, and this decrease is higher for
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the periods immediately after the time at which the perturbation
occurred.

Similarly, from equation (6), we obtain

s S
i (1-&')2239- - 2[(1-3.,)T+p Ct)
do L - o) Joy | T 2 0 Po~o ’
0~ %0 %=
S S
dcC dc
t+1 | _ _— 2t - _
do‘o —11 at)-dd_o _ t=1,2,...,T7-1 ’
0~ %0 0~ %0
which are again of the form (18), with 0 < Bt < 1 and U, =z 0.
S
Therefore, the same conclusion as above can be drawn for dCt ’
da
0

which is indeed negative for all values of t, with t in

absolute value.

4,  THE ANALYSIS OF THREE REGULATED LAKES

The above sensitivity properties are quite important for
understanding some of the basic features of real-time reservoir
operation. In real-world terms, the opesrating rule is often
seasonally varied in order to satisfy periodically varying demands
and reduce the potential of floods; indeed, in many cases the
"gain" o of the operating rule is particularly high during the
flood season or, more precisely, during those periods charac-
terized by high mean and variance of the inflows.

A detailed analysis has been carried out on three lakes in
Northern Italy, (Maggiore, Como, and Iseo), and is now briefly
reported. Daily data for the three lakes were available for dif-
ferent periods (at least 15 years), and it was possible to verify
that the "total decadic inflows" were cyclostationary weekly corre-

lated stochastic processes (see for example, Ambrosino et al., 1979).
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The major discrepancy with the preceding analysis is that the
operating rule of such lakes is non-linear. In fact, an agreement
between all counterparts interested in the operation of the lake
states that the manager of the lake can fix the discharge only
when the storage is between a minimum value s and a maximum value

s. On the contrary, if S, =8 the release must be equal or

smaller than the inflow (so that s > g), and if s, 2 s the

t+1 t

release must be equal to the maximum possible release, i.e.,

r, = N(s

£ ) where N(s) represents the "open gates" stage-discharge

t

function. 1In practice, the manager uses a periodically varying

operating rule

r, = R(t, s.) ’ (19)

which can be identified by suitably fitting in the space (s, r)
the daily pairs (St’ rt) of all the days t of the same decade.

Figure 1 shows how the pairs ( r display for a particular

Stl t)

decade: for s < S < s' and for S¢ > s, the points are on the
open-gates stage-discharge curve, for s' < S < s" the release
is approximately constant and equal to the agricultural demand
d characterizing that decade, while for s" < st < s, the points
clearly indicate that the operating rule is increasing and con-
vex with respect to Sg- For all the three lakes, the operating
policy (19) has been identified among the class of piecewise
linear functions by a special best-fitting technique, and the
results are in good agreement with the analysis carried out in
the preceding section. The seasonal variations of the slope

of the operating rule just before the maximum storage s have

been found particularly significant since they are perfectly in

phase with the seasonal variations of ué and Gé. Figure 2 shows
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Figure 1. Daily values of storage (st) and release (rt) for a

given decade and for a certain number of years.
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Figure 2a. The plots of (ﬁi + Gt) and &t for the three lakes.
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Figure 2b. The plots of (ﬁé + 3i) and A_ for the three lakes.
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Lake Iseo
Figure 2c. The plots of (ﬁt +<3t) and St for the three lakes.



-15-

(in suitable units), the yearly graph of that slope (called &_)

t

and the estimates, (ﬁt + 8t

t) (mean plus standard deviations) or

the inflows for the three lakes. The correlation between the
two graphs is 0.70 for Lake Maggiore, 0.65 for Lake Como, and
0.89 for Lake Iseo.
Moreover, a trend analysis was carried out for Lake Como
to detect the reaction of the manager to the progressive sinking
of the town, which, since 1965, has been the cause of higher
and higher flood damages. From the sensitivity analysis carried
out in the preceding section, one should expect that progressively

higher values of &, might have compensated the sinking process by

t

lowering the mean and variance of the storage. From the same
analysis, one should also expect that the long-term trends of

&t should be more detectable during the flooding season. Indeed,

the identification of the operating policy, R(t, st) and of the

slope 4, carried out for different periods allowed an a posteriori

t
conclusion that the manager did exactly what the theory suggests.

Figure 3 shows the graph of &, (measured in suitable units) during

t
the snowmelt flooding season for the three periods indicated in
the figure. The increase of &t is very relevant but not sur-
prising if one takes into account that the main square of Como

has sunk almost one meter during the last 15-20 years.

5. CONCLUDING REMARKS

The results obtained in this paper show that the analysis
of the very simple linear periodic reservoir can be of help in
understanding the behavior of real reservoirs or regulated lakes.
The remarks developed in the paper are based on the assumption

that high order correlations of the inflows are negligible, and that
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Figure 3. The long-term variations of &t in Lake Como.
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the operating rule is linear. The main properties of such a
stochastic reservoir are the following. First, mean and var-
iance of the storage capacity satisfy linear difference equations
which have a unique periodic solution. Second, this periodic
solution can easily be obtained numerically, because the dif-
ference equations are asymptotically stable. Third, almost any
stochastic optimal formulation of real-time management problems
of such reservoirs can be transformed into an equivalent deter-
ministic formulation which calls for the periodic optimal con-
trol theory. Fourth, the mean and variance of the storage of

the reservoir can be given very simple lower and upper bounds
which can be interpreted as mean and variance of two time-
invariant linear reservoirs. Finally, a simple sensitivity
analysis shows that reductions of mean and variance of the
storage in any period of the year can be achieved by strenthening
the operating rule in the preceding periods. Practitioners are
probably aware of all, or at least some, of these facts, which
are anyway simple extensions of well-known results of time-

invariant linear stochastic reservoir theory.
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