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ORDINAL MULTIVARIATE ANALYSIS

Peter Nijkamp and Piet Rietveld

1. I d
. 1)

ntro ｵ ｣ ｴ ｾ ｯ ｮ

The essentialfeature of multivariate methods is that they aim at

reducing the complexity of phenomenain which many variables or attributes

are involved. Given this general feature , it is no surprise to see that these

methods have been applied in various fields of research,such as economics,

geography,medicine, biology, etc. (cf. Kendall [1975]).

The starting point of multivariate analysis is normally the data matrix

x

x = 0.1)

where I denotesthe number of membersobservedand J the number of vari-

abies observed;

member.

x .. denotesthe value of the j-th variable for the i-th
｝ ｾ

..
In the majority of multivariate methods it is assumedthat the variables

are measuredon a cardinal (interval or ratio) scale. This means that it is

meaningful to apply numerical operationsto these variables such as summation,

subtractionand multiplication (see Rietveld [1980] for a more accuratedefini-

tion of a cardinal scale of measurement). However, in many fields of research

the assumptionof cardinal measurabilitycannot be maintained. For example,

when the data are not accurateenough, when variablesare involved which can

only be measured in a qualitative way (e.g., beauty of landscape),or when

latent variablesare to be dealt with.

It is important, therefore, to consider the questionwhether it is possible

to develop multivariate methods which are not basedon the assumptionof

cardinal measurability. This has of course important implications for econo-

metric model-building, since the treatmentof soft data has always formed a

bottleneck for estimatingeconomic models. Soft econometricsis a recently

developedapproachto overcome the problem of soft data.

This paper will be devoted to the developmentof some methods for ordinal-

1) The authors are indebted to Franz Palm for his valuable comments
concerningSubsection2.2.

- 1 -



- 2 -

ly measurabledata and its implications for regional statisticaland

econometricanalyses. A variable j is ordinally measurablewhen for a

seriesof observationsit is possible to indicate the rank order of the

observations,but not the differencesbetween the observations. For example,

when the rank order of five observations- where the smallest value receives

rank 1, the one but smallest receives rank 2, etc. - is: 2, 3, 1, 5, 4, it

may be concludedthat the first observationis smaller than the fourth one,

but not that the difference betweenthe first and the fourth one is larger

than the difference between the first and the third one.

It is important to note that several techniquescan be applied to perform

a multivariate analysisof ordinal data without the necessityto develop methods

for ordinal data.

1. The simplest way of achieving a short ｾ ｩ ｲ ｣ ｵ ｩ ｴ is to interpret ordinal data

as if they were cardinal. Obviously, in this way more information is

extractedfrom the data then is actually containedin them. Kendall [1970],

p. 125, indicates that sometimessuch an approachmay yield satisfactory

results. However, since it is basedon a questionableassumption, it

cannot serve as a general device for dealing with ordinal data.

2. Another way of avoiding the necessityto develop ordinal multivariate

methods is the use of order statisticsto asstgncardinal values to the

observations (cf. Rietveld [1980]). A necessarystep in this approach

is the determinationof the probability distribution from which the

observationsare drawn. This can only be done on a priori grounds which

makes the results arbitrary. The arbitrarinesscan be removed to a certain

extent by repeatingthe cardinalizationof data for different probability

distributions. Obviously, the disadvantageof this approachis that it

gives rise to extensivecomputional work.

3. The third approachof cardinalizationconsistsof applying multidimensional

scaling procedures(cf. Nijkamp [1979,1980]). These procedureshave been

devised to transform the ordinal matrix X with dimensions J x I into a

cardinal matrix Y with dimensions K x I where K < J Thus, multi-

dimensional scaling proceduresare a means to transform ordinal data about

many variables into cardinal data about less variables which reflect as

accuratelyas possible the configuration of the original data. Although

multidimensionalscaling as such is a sound procedure, its use in the

presentcontext may give rise to difficulties. For example, the variables

derived are sometimesdifficult to interpret, which means that the results·

of the ensuingmultivariate analysis may be less meaningful or require at

least an additional analysis.
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We conclude that it is meaningful to start a study on ordinal multi-

variate methods. In the field of (regional) economics this subject has-been

neglectedup to now, although in other disciplines, especially sociology,

substantialwork has been done on the subject. Given the exploratory charac-

ter of this paper, we will focus on the main ideas and pay less attention to

statisticalaspectsor the feasibility of numerical procedures.

We will deal with the following methods :

Section 2: multiple regressionanalysis (and related subjectssuch as

interdependenceanalysis and discriminant analysis).

Section 3: clustering and classification.

Section 4: principal componentanalysis (and related subjectssuch as

canonicalcorrelationsand partial least squares).

2. ｾ ｵ ｬ ｴ ｩ ｰ ｬ ･ RegressionAnalysis

2.1. Introduction

Consider the following relationshipsbetween y - the variable to be

explained - and K explanatoryvariables xl' .. ,xK

y = (2.1)

In this section we consider the question: 'given that I observationsare

available of the variables y and xl' •..• xK - measuredon an ordinal

scale is it possible to estimatethe values of the Bk (k = O. 1•...• K)

or to draw conclusionsabout the extent to which the variables ｾ contribute

to the explanationof y '.

There are severalways to approachthis question. In subsections 2.2-

2.4 we will deal respectivelywith a logit formulation. an approachbasedon

multiple rank correlationcoefficients and a multiple regressionprocedureunder

constraints.

2.2. Logit Analysis

In this subsectionwe will show how a logit analysis. basedon data

about pairwise comparisonsof observationscan be used to determinethe relative

importanceof the explanatoryvariables. Considerall pairs of observations

(i. i' ; i * i') which will be numberedas n = 1•...• N. where N = I (I - 1).

We introduce new variables wand zk (k =1, ...•K) which are relatedto

y and x
k

(k = 1••..•K) in the following way
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when for the pair (i,i') y. > y., then w = 1
ｾ ｾ n

when for the pair (i,i') y. < y., , then w = a
ｾ ｾ n (2.2)

when for the pair (i,i') x
ki > xki ' , then zkn = 1

when for the pair (i,i' ) x
ki < xki ' , then zkn = a

These variables can be summarizedin a column vector w with N elementsand-
an N x K matrix z:

wi 11
, . , zKl

w = Z = (2.3)-

w
N iN

, . . , zKN

Every row of Z consistsof a seriesof zeros and ones. A certain

combinationof zeros and ones will be called a re&ime

There are in principle L = 2
K

different regimes. Let

with a certain regime

number of rows of regime

(1 = 1, ... , L).1

F
l

denote the number

1. Let Fal and F
11

denote the

such that the correspondingvalue ofzin1

zof rows in

w is equal to a and 1, respectively. Then we have by definition:
n

= Fa + Fn
and r F. = N

1 1

A numerical example may clarify the meaning of the symbols defined above.

Assume that I = 4 and K = 2 and that the observationsof the y and

are :

1 4 3

3 1 1
Y = ｾＱ = ｾＲ =

4 3 2

2 2 4

(2.4)

When the pairs of observationsare consideredin the following order:

(1,2), (1,3), (1,4), (2,1), (2,3), ... , (4,3), we arrive at the following

results for wand Z:
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0 1 1

0 1 1

0 1 0

1 0 0

0 0 0
I

1 0 0

1 0 0 (2.5)

1 1 1

1 1 0

1 0 1

0 1 1

0 0 1

The ensuing frequenciesfor the various regimes are summarizedin Table 1

regime 1

1 = 1 1 = 2 1 = 3 1 = 4

(0,0) ( 1,0) (0,1) 0,1)...

F
11

3 1 1 1

F01
1 1 1 3

F
l

4 2 2 4

Table 1. Frequenciesfor various regimes of explanatoryvariables.

The information containedin Table 1 can be used for a standardlogit

analysis in the following way (cf. Theil [1971a,b] and Upton [1978]). Let

Pl denote the propability that w assumesthe value 1 when regime 1 holds.

A regime 1 is describedby a (K x 1) vector ｾ ｬ consistingof 1 and 0

elements. Then the usual assumptionin this type of problems is that Pl

dependson the structureof regime 1 in the following way:

p
ln (_1_)

1-p
1

(2.6)



- 6 -

The right hand side of (2.6) shows an additive structurewith dummy

variables. If desired, interaction effects between the variables k and k'

can be included by adding parameters 0kk' (k * k') when both and

are equal to 1 (cf. Theil (1971a]). The expression In (Pl/ (1 - Pl» at the

left hand side of (2.6) is termed the logit of Pl. Its main feature is that

it tranaforms in a monotone increasingway Pl falling in the (0,1]

interval to a variable ranging from - ｾ to ｾ For a further discussion

of the specificationof (2.6) and its relationshipswith the entropy concept

we refer to Theil [1971a].

Equation (2.6) does not contain an error term. The reason is that in

the left hand side no observedvariable is included. When we want to estimate

the parameters Yk , we have to replace the probabilities Pl by the

observedrelative frequencies f l = F
11

/ Fl' In that case there is a

clear reasonto include an error term, since the relative frequencies f
l

may

differ form the probabilities p . Thus the relationship to be estimatedis:
1

where is the error term.

(2.7)

Theil (1971a] shows that a weighted least squaresmethod is appropriate

to estimate the parameterswhen it may be assumedthat the relative frequencies

f 1 are based on independentrandom samplesof size F
l

from binomial distri-

butions with probability Pl of success. In that case it can be shown that the

large sample expectationand varianceof £1 are 0 and 1 / (Fl (f l ) (l-f
l
»,

respectively. Consequently,weighted least squares(a special caseof

generalizedleast squares)can be applied, the weights being proportional to

This means that regimes for which f
l

= 1 or 0 do not playa role in the

estimationof the y. We also see that the larger Fl ( the number of

observationsin a regime), the heavier the weight of that regime in the determi-

nation of the parameters.

An important difficulty inherent in the estimationof (2.7) in the

context of ordinal data analysis is that Theil's assumptionthat the f l 's

are basedon independentrandom samplesof size F
l

is not valid. The

frequencies F
1l

refer to pairs of observationswhich are derived from the

original set of observationsin a systematicway. For our numerical example

is this clearly displayed by Table 1, where we find that f 1 + f 4 = 1
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= 1.

We conclude that the £1 in (2.7) cannot be assumedto be distributed

independently. Therefore, a generalizedleast squaresestimationof (2.7)

is adequate. The obvious difficulty is that the covariancematrix V is not

known and that it seemsto be impossible to describe V by means of a small

number Qf parameters,as is sometimesdone in time seriesregressions. How

can one proceed in this situation? Three directions can be chosen.

1. The simplest way is to ignore the problem and to apply ordinary least

squares. In that case the estimatedparametersare unbiased,but the

varianceswill be higher comparedto the results of generalizedleast

squares(cf. Theil [197lb]).

2. Another way is the use of iterative procedures. For example: start with an

estimationby meansof ordinary least squares. Use the resulting estimated

errors to constructan estimatedcovariancematrix V and apply generalized

least squaresbasedon V, and so forth.

3. A third approachaims at directly approximatingthe covariancestructure

as follows=of the
,

£1 s

Consider the set of I original observations. This set can be used to

generate I sets of I - 1 observations,each set containing the I

original observationsbut one. For each set the values of f l and

In (f
l

/ (l-f l » can be determined. The seriesof I values for the

logits can be used to calculatethe covariancematrix of the logits. This

matrix can be used as an approximationof V so that generalizedleast

squarescan be employed.

It is clarifying to pay some attention to the number of observations

and parametersin specification (2.7). The number of parametersin (2.7) is

equal to K + 1 The maximum number of observations(regimes)is equal to 2K .

ｔｨｩｾ means that when the actual number of observationsis equal to the

maximum possiblenumber, the number of degreesof freedom increasesrapidly

with increasing K. However, there are severalreasonswhy the actual number

of regimes in the estimation is smaller than 2K . Especially when I is not

so large, for some regimes FOl or Fll (or both) may be equal to zero and

- as shown above - such a regime cannot be used to estimatethe parameters.
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Another reduction in the number of observationsis due to the interde-

pendenciesbetween the F
Ol

and F11 . We will analyze these interdependencies

by means of the concept of 'complementaryregimes'. A regime l ' is a

complementof a regime 1 when the sum of m
-1

and E!l' is a vector .!.'

exclusively consistingof unit elements:

= t (2.8)

In our numerical example the complementof regime 1 is 4 and of regime

2 is 3. It follows from the definition of FOl and F11 that for

complementaryregimes we have:

F01 = F11' F11 = F01' and Fl = Fl , ,and therefore: f l = 1-fl ,

Consequentlyfor each pair of complementaryregimes holds the following condi-

tion:

f, ,
+ In l.

1-f
l

, = o (2.9)

Combining (2.9) with (2.7) yields for all ｣ ｯ ｭ ｰ ｬ ･ ｭ ｾ ｮ ｴ ｡ ｲ ｹ pairs:

f
l

In 1-f
1

f
l

,
+ In 1-f

l
, = = o (2.10)

We may conclude, therefore, that for all complementarypairs (1,1') and (m,m')

we have:

= e:
m

(2.11)

Consequently,when in (2.7) the relative frequency f is given for the regimes

1, l' and m, the value of f, does not add any useful information for the
m

determinationof the parameters Yk . This means that when there are L

regimes (L even) , only the frequenciesof ｾ L + 1 regimes contain useful

information on the parameters(the set of ｾ L + 1 regimes containsonly one

pair of complementaryregimes). In our numerical example we have K = 2 and

hence the number of parametersis equal to 3

The number of effective observationsis ｾ 2
K

+ 1 = 3.

In such a case, in general, the parameterscan be determined,while the esti-

mated errors are zero. Indeed, we can derive that

Y = -Y = -y = In 3o 1 2

e: = e: = e: = 0123 and
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At ｾｨ･ end of the presentationof this approach,we may conclude that,

although some estimation problems still remain, an ordinal analogonhas been

developedfor mUltiple regressionwhich does justice to the ordinal character

of the data.

What is the essentiallynew idea of this approach?A close examination

shows that the approachconsistsof two building stones: 1) a method to trans-

form the ｾ ｲ ､ ｩ ｮ ｡ ｬ data matrix X and the vector y in a vector of relative

frequencies f
1

, •.. , f
L

by means of pairwise comparisons;and 2) an estimation

procedurebasedon specification (2.6). The main elementsof the. building stones

have been developedby Kendall [1970] and Theil [1971a], respectively. The novel-

ty of the method developedhere is thus the combination of the two building

stones.

For another logit type treatmentof ordinal regression- not being based

on pairwise comparisons- we refer to McCullagh [1980].

2.3 Ordinal Analogue of Multiple Regression

The approachdiscussedin this subsectionis basedon structural simil-

arities betweenproduct-momentcorrelation coefficients and rank correlation

coefficients. We will first show the nature of thesesimilarities.

The ordinary product-momentcorrelationcoefficient for cardinal data

u. and v. reads:
1 1

E (u. - u)(v. - V)
1· 1 1

r = Ｍ［ＺＺＺＺｾ］］ｾ］］］］］
IE Cu. - U)2 E (v. - V)2
i 1 i 1

(2.12)

where ｾ and v are the mean values of the u. and v. respectively.
1 1

We also present the regressioncoefficient b following from the estima-

tion of the relationship:

v. = a + b u.
1 VU 1

The best linear unbiasedestimaterof breads:

bvu

ｾ (u. - u)(v. - v)
= 1 1 1

E (u. - u)2
. 1
1

(2.13)
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We turn now to some correlationcoefficients proposedfor ordinary data.

Kendall [1970] proposesto use the method of paired comparisonsin the

following way. Consider all ｾ 1(1 - l} pairs of observations(i, if) of two

ordinal measuredvariables x and y. Let S+ be the number of pairs for which

x and yare concordant, i.e., the number of pairs for which {x. > x., and
1 1

y. > y,,} or {x. < x., and y. < y,,}, Let S- be the number of pairs for
1 1 1 1 1 1

which {x. > x., and y. > y.,} or {x. < x., and y. > y.,l. Let T and T
1 1 1 1 1 1 1 1 x y

be the number of ties in x and y, respectively. When no ties appear,

Kendall's coefficient of rank correlation is defined as the number of con-

cordant pairs minus the number of discordantpairs divided by the total

number of pairs:

"[ = (2.14)

When ties are present, the following correction is applied:

(2.15)

Finally, for the latter case, Somers [1962] provides an alternativemeasure

which will appear to be of importance:

S+ - S
d ］ＭｾＭＭｾＭ

yx S+ + S + T
Y

(2.16)

For these three measuresit can be proved that the extreme values are -1

and +1, respectively.

At first sight there is not much similarity between theseordinal

measuresand the measuresfor cardinal data mentioned above: the ordinal

measuresbeing basedon counting frequenciesof discordantand concordant

pairs, and the cardinal measuresbeing basedon measuringdistanceswith

respect to the mean. It can be shown, however, that the same structure is

underlying the ordinal and the cardinal measures(cf., Hawkes [1971] and

Ploch [1974]).

The first step to prove the similarity is to rewrite (2.12) and (2.13)

such that the mean values ｾ and v disappear. It is not difficult to show

that
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.!. I: - 2 1
I: I: (u. - 2(u. - u) = 2"12 u.)I . 1 i j 1 J1

.!.I: (U. - U)(V. - V) 1
I: I: (U. - U.)(V. - v.)= 2"y2I . 1 1 i j 1 J 1 J1

Accordingly, when we set u.. = u. - u. and v .. = v. - v., (2.12) and (2.13)
1J 1 J 1J 1 J

can be rewritten as:

I: u .. v ..
r = Ｍ［［ＺＺＺＺＺＺ［［Ｑ］ｊｾｾＱｊＺＺＺＺｾ

If. u2 .. IE v 2 ..
1J 1J

I: u .. v ..
b =__..;;;;1""J,=",""-,1J=..
vu 2I: u .,

1J

(2.12')

(2.13')

In (2.12') and (2.13') the sum extendsover all possiblepairs.

The second step is that we introduce the following operation for the

ordinal data. For all pairs i,j:

x .. .: 1 if x . > x.
1J 1 J

x .. .: 0 if x. = x.
1J 1 J

x .. = -1 if x. < x.
1J 1 J

The variable y .. can be defined in the sameway. Thus we arrive at two
1J

vectors consistingof N2 elementsbeing equal to 1, 0, or -1. The term

(s+ - S-) can be expressedin terms of x .. and y .. in a straightfowardway:
1J 1J

S+ - S =! I: x .. y ... Given this result it is not difficult to see that:
1J 1J

and

I: x .. y ..
T
b

= 1J 1J

ｾ x2 .. I: 2y ..
1J 1J

(2.15')

d =yx

I: x .. y ..
1J 1J

IE x 2..
1J

(2.16')
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When we compare (2.12') and (2.13') with (2.15') and (2.16') we conclude

that although the correlation coefficients are basedon different concepts,

they give rise to completely identical analytical expressions.

Hawkes [1971] and Ploch [1974] argue that these similarities are a

sufficient base to develop coefficients for partial and multiple correlation

with ordinal data along the same lines as with cardinal data. Obviously,

this would be a very convenientresult. Can such an approachbe justified?

There is at least one argument in favor of it. Kendall [1970] has shown

that when one developsa partial correlation coefficient for ordinal data,

basedon T, (assuming that no ties occur) one may arrive at a formulation

which is completely similar to the formulation of the partial product

moment correlationcoefficient:

(2.17)

where x
mk

• l denotes the partial correlationbetweenm and k, given 1.

Although Quade [1974] indicates that there are severalways to conceptualize

a partial correlationcoefficient for ordinal data, not all of them leading

to relationshipssuch as (2.17), this is obviously an indication that in

some casesordinal partial correlationcoefficients may be dealt with in

the same way as their cardinal counterparts.

Further similarity resultsbetweenordinal and cardinal measuresin the

multivariate casehave not been found, however, which means that the

approachof deriving regressioncoefficients by means of ordinal correlation

coefficients is only partially justified. For some empirical applications

we refer to Ploch [1974]. Namboodiri, Carter, and Blalock [1975] and

Blalock [1976] give a more thorough discussionof the above approach.

2.4. Multiple 'RegressIon.underConstraints

In this subsectionwe will approach (2.1), where y and xl' ... , ｾ

are ordinal, in the following way. Let cy , CX
1

' ... , ｣ｾ be the unknown

cardinal values correspondingto the ordinal variables. Thus, when Y3 > Y ,
- 4

then cY3 ｾ cY4 ' etc. Accordingly we arrive at a seriesof 1-1 inequalities

for the cy. :
1

cy. > cy. >
1 - 1
1 2

(2.18)

where i
l

is the index of the largest observation, i
2

indicates the one but

largest observation,etc. Similar seriesof inequalitiescan be developedfor

the explanatoryvariables.
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The information that there is a lineair relationshipbetween y and the

ｾ can be used to determine the cardinal values correspondingto y and the

ｾ As a first step in the analysiswe consider the following mathematical

programmingproblem:

min! L (cYi - 130 - a1cxli -
2... - 13K ｣ｾｩＩ

cyi' x ki' Bk
i

Subject to cy. > cy. > > cy. = 1 (2. 19)
1.

1
1.

2 - 1.
1

cx1 · > cx1 · > > cx1 · = 1
• J1 J2 - J I

｣ｾｬ > cXKl > > ｣ｾｬ = 1
1 2 I

Obviously, in (2.19) the cardinal values of y and ｾ and the values of the

parameters 13k are determinedsimultaneously. It is a programmingproblem

with (K + 1) (I + 1) variables and (K + 1) I ｣ｯｮｳｴｲ｡ｩｮｴｳｾ The variables cy

and ｣ ｾ have been standardizedby imposing that the smallest value is equal

to one.

It is not difficult to see that (2.19) as it ｳ ｾ ｡ ｮ ､ ｳ here attains it minimum

when all cardinal values are equal to 1 and when L 13k = 1. This result - that

all variables show one large tie - is less meaningful; it is an indication that

(2.19) has been designedto serve too many ends on the basisof too little infor-

mation. When more restrictionscan be imposed on the problem, better outcomes

may be expected,however.

A first way of improving the result ariseswhen for some of the variables

in (2.1) the cardinal values are known beforehand. For example, when all ex-

planatory variables are cardinally measured(i.e. the ｣ ｾ ｩ are known before-

hand), (2.19) can be transformedinto the following quadratic programmingproblem:

(2.20)

subject to > cy. = 1
1.

1

Nievergelt [1971] arrives at essentiallythe same formulation when he tries to

estimate the weights 13k of a utility function, where the xk's are the argu-

ments of the utility function and where a seriesof I alternativeshas been

placed in order of attractivity.
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Another source of additional information to improve the results of (2.19)

can be obtained when the explanatoryvariables can be distinguishedin various

classes. For example, Nijkamp [1980] classifies the explanatoryvariablesof

regional income in an economic profile and a socio-geographicalprofile. Multi-

dimensionalscaling methods are then used for each profile to derive cardinal

values for one or severalvariables representingthe profiles. This cardinal

ｩ ｮ ｦ ｯ ｲ ｭ ｡ ｴ ｩ ｯ ｾ can then be used for an ordinary multiple regressionprocedurewhen

y is measuredon a cardinal scale. When y is measuredon an ordinal scale,

formulation (2.20) can be used.

This approachis obviously a two-step procedure: first the number of ordi-

nal variables is replacedby a smaller number of cardinal variables. Then the

derived cardinal values are used to estimate the weights ek . In our opinion

it is worthwile to consider the possibility of integrating the two ste?s. This

would mean that in the derivation of cardinal variables by means of multidimen-

sional scaling, also information is used concerningthe place of these variables

in a larger causal structure. The integration can be formulated in the following

way. Let the K variablesbe divided in L profiles (L < K). Assume that

per profile 1 only one cardinal variable will be ､ ･ ｴ ･ ｲ ｾ ｩ ｮ ･ ､ Ｎ This variable

will be denotedby zl' A short-handdescriptionof a multidimensionalscaling

procedure is the following:

min!

zli
(2.21)

Here stress (zll' ... , zlI) is a measureof the discordancebetween the ordinal

data and the zli and (zll' ... , zlI) E Al denotes the transformationrelation-

ships from ordinal to cardinal data used in multidimensionalscaling. For the

ease of notation the multidimensionalscaling variables referring to the variable

y will be denotedby an index o. Then the integration we are aiming at can

be reachedby solving:

min!

L
+ ｾ Al stress(zll' ... , zlI)

1=0
(2.22)

subject to 1 = 0,1, •.• , L

The outcome of (2.22) dependson the weights ｾ and ｾ ｏ Ｌ ａ ｬ Ｇ ... , AL attached

to the various terms of the objective function.. It is not difficult to see
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that the two-step procedurementionedabove is a special case of (2.22). It

implies that first (2.22) is solved with ｾ = 0 and subsequentlywith the

values for the zli obtainedin the first step, so that Ao = A1 = ... = A
L

= 0 •

2.5. InterdependenceAnalysis

Interdependenceanalysis is a method aiming at selectinga set of variables

from a larger data set such that the selectedvariables representthe original

data set as good as possible (see Kendall [1975] and Blommesteinet al [1980]).

This method is basedon mUltiple regression,since the criterion in the selection

procedureis the multiple correlationcoefficient betweeneach of the discarded

variables (the variables to be explained) and the selectedvariables (the expla-

natory variables). We conclude, therefore, that as soon as one of the approaches

to ordinal mUltiple regressiondealt with in subsections2.2 - 2.4 is feasible,

also ordinal interdependenceanalysis is feasible.

2.6. Discriminant Analysis

The aim of discriminant analysis is the determinationof a decision rule

so that individuals can be assignedto certain predeterminedclasseson the

basis of their characteristicsso that the probabi11tyof misclassificationis

as small as possible. Let the characteristicsof the individuals be denotedby

Xl' ..• , xK and assumethat there are only two classes. Then a frequently

used form of the decisionrule is (assumingthat the variables are measuredon

a cardinal scale):

if ｾ ｾ ｫ xki > c , assign x to class A

(2.23)

if L ｾｫ ｾ . < c, assign x to class B
k 1<1 -

and the characteristics,
ifor which

belongs.

From this formulation of a decision rule it is clear that there is a large simi-

larity betweenregressionanalysis and discriminant analysis. For example,

Kendall [1975, p. 94] considerslinear regressionwith a nominally measured

regressand y as identical to discriminant analysis.

When the scale of measurementof the ｾ is ordinal, a decision rule can

be conceptualizedin the following way. It can no longer refer to ｾ individual,
and thereforewe proposereferring it to a pair of individuals (i,i ). It indi-

cates to which class (A or B) individual i has to be assigned,given' the charac-,
teristics for which individual i is larger than i,

i is smaller than i and given the class to which alternative
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This formulation of a decision rule enablesone to employ the logit

function (2.7) for ordinal discriminant analysis. The only necessaryadapt-

ation is that on the right hand side of (2.7) a dummy variable has to be added

indicating whether or not alternative i' belongs to class A. It is not dif-

ficult to determine the referencevalue c as introduced in (2.23). This value

is in ordinal discriminant analysis equal to zero, since In p/(l-p) =a implies:

p = .50

It is interestingto note finally that also in discriminant analyseswith

discreteexplanatoryvariables similar specificationsof the decision rule are

used (cf. Goldstein and Dillon [1978]).

3. Clustering

Consider the following ordinal data matrix:

x =

J1'

(3.1)

where I is the number of individuals and J the number of variables. The

main aim of clustering is the derivation of sets of "similar" individuals or

variables. Some authors use the term clustering only in connectionwith indivi-

duals and employ the term classification in connectionwith variables.

We will only use the term clustering; when misunderstandingsmight arise we will

indicate whether we mean clusteringof individuals or clustering of variables.

It is interestingto note that clustering implies the transformationof numerical

data to data measuredon a nominal scale.

There are many types of clusteringmethods (see Hartigan [1975]). Clustering

methods can be distinguishedamong others according to:

- the similarity criterion

- the objective function (e.g. the objective may be: maximize the similarity

within clusters,minimize the similarity betweenclusters,or employ some

mixed objective)

- the way in which clustersare combined (hierarchicalversus non-hierarchical).

In this paper we will only deal with the first mentioned feature: the similarity

criterion.

When the aim is a clustering of originally measuredvariables, it is not difficult

to find a similarity criterion. Kendall's rank correlationcoefficient defined
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in (2.13) is a good indicator of the interdependencebetweentwo variables,

which is closely related to the notion of similarity between two variables.

When a cluster C consist of more than two variables,an adequatesimilarity

index (basedon the rank correlationcoefficient) is:

s (C) = min
j,j'EC

T •• ,
] ,J

Thus, s(C) indicates the minimum correlation betweenall pairs of variables

in cluster C

Large difficulties arise when the aim is a clusteringof individuals

given ordinal data. This is clearly exemplified by the following data matrix,

describing the outcomesfor four individuals according to two variables:

x =
2

4

3

2

( 3.3)

It is tempting to state that in (3.3) the first anc second individual are

better candidatesto form a cluster than the 2-nd and 3-rd individual,

since

2
L (x'l - x· 2 )
, ] ]
]

(3.4)

However, if we would know that the underlying cardinal values were

y = t:
60 65

100 90

100]

10

(3.5)

a cluster betweenthe 2-nd and 3-rd individual should be preferred. Obviously,

the root of this problem is a mis ｾ ｩ ｮ ｴ ･ ｲ ｰ ｲ ･ ｴ ｡ ｴ ｩ ｯ ｮ of the ordinal data matrix X.

In ｾ presentsection we will ｳ ｾ that it is yet possible to draw certain

conclusionsabout clusteringsbasedon ordinal data, although in most cases

the conclusionswill not be strong.
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Considera pair of individuals (i, m). Let s ( i, m) denote the similarity

between i and m Then the following statementis in accordancewith an

ordinal Tlatrix X = ＨｾｬＧ ｾＲ ' ... , ｾｉＩ

if x. < x < x
Ｍｾ -m -n

than s(i,m) > s(i,n) and
(3.6)

s (m, n) > s ( i, n )

Thus we arrive at an ordinal similarity measure.

It is not difficult to prove that this measurehas the following properties:

if s(l,n) > s(k,r)

V (i,m), O,n), (k,r)

s(i,m) ｾ s(i,m) V (i,m)

if s(i,m) > s(l,n) and

then s(i,m) > s(k,r)

reflexivity

transitivity

It cannot be proved that this measureis complete, however. Completeness

would mean that for all combinationsof pairs (i,m), (l,n) either s(i,m) >

s(l,m) or s(i,m) < s(l,n); in other words, it would imply that it is

possible to indicate for all combinationsof pairs which of either pair is

most similar.

We will illustrate the similarity measure s(i,m) by means of the

matrix X in (3.3). An incomparablecombinationof pairs will be denoted

by u. In Table 2 we representthe results of a combination-wisecomparison

of the similarity index for all pairs of individuals.

O,n)
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1,2) = u u u u u

(1,3) u = > u u u

(1,4) u < = u u <- -
( 2,3) u u u = > u

( 2,4) u u u < = <- -
(3,4) u u > u > =

Table 2. Results of a combination-wisecomparisonof the similarity
index s (.,.) for the pair of alternatives (i,m) and the
pair °,n)
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The table clearly shows that most of the combinationsare incomparable.

We illustrate its oeaning for the clusteringproblem by means of the second

row. This row implies that a necessarycondition for a cornmon membershipby

individuals 1 and 4 of the same cluster is, that also individual 3 is

a memberof that cluster. Thus, the information containedin this row implies

is not consistentC = {l,4}
2

andthat a clustering such as Cl = {2,3}

with the ordinal data matrix X.

It appears,however, that in general several clusteringsexist which are in

accordancewith the information of the type of Table 2. For example, when we

consider the ways in which two clusterscan be formed which are consistentwith

Table 2, we arrive at:

l. C
l = {l,2} C2 = {3,4}

2. Cl = {l} C2 = {2,3,4} (3.7)

3. C1 = {2} C2 = {l,3,4}

4. Cl = {4} C2 = {1,2,3}

We conclude that we need an additional criterion to reduce the number of
m

feasible clusterings. One positive way is to use the median x as a

referencepoint. For example, when J = 2, we arrive at four clusters:

Cl = {x x > xm}- -

C2 = ｻｾ x < xm}-
(3.8)

ｻ ｾ I
m m

C3 = xl > xl x2 < x
2

}-

C = ｻｾ I
m

ｸｾｽxl < xl , x2 >4 -

When (3.8) is applied to (3.3) we find:

C = C = <P C3 = {l,2} C4 = {3,4}
1 2

which is one of the feasible clusters in (3.7) .
It is not difficult to show that a clusteringalong these lines is always

in accordancewith the information containedin Table 2 (and hence with (3.6n ,
irrespectiveof the number of variables J, the number of individuals I , or

the number of referencepoints used (e.g., in addition to the median one may

also use the quartile positions). The proof reads as follows:
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A generalway to describean arbitrary cluster in this situation is:

where xr and xS are vectors with referencevalues.

Conditi;n (3.6) says that when x. < x < x and when individuals i and
-1. - 4Il - -n

n are in the same cluster, also individual m should be in that cluster.

This condition is satisfied by (3.9), since when x. E Crs and x E Crs
-1. -n

(3.9) implies that also x E C
rs

.
4Il

We may conclude that given an ordinal data matrix X, the clusteringof

variables is not essentiallydifferent from a situation with cardinal data.

The clusteringof individuals is more difficult with an ordinal X, however.

We proved that a consistentclustering can be achievedby using reference

points (such as the median). Of course, the clustering results dependon the

referencepoints used.

4. Principal Components

The aim of principal componentsanalysis is the representationof J

variables by a smaller number of variables (called components)with a high

degreeof accuracy. When the data matrix X

as follows. We describe X as a seriesof J

is cardinal, this can be achieved
, ,

row vectors : ｾＱＧ ... , ｾ

Then the first component£' has to be determinedsuch that the difference

betweaneach ｸ ｾ and a. £ is as small as possible. The factor a. is a
J J J

scaling factor to allow for the fact that the J variables can be measuredin

different dimensions. Thus the first component £ can be found by solving:

min
a., p.

J 1.

I: I:
i j

(x .. - a. p.)
1.J J 1.

2
(4.1)

This means that the matrix X consistingof I J parametersis approximated

by the matrix ｾ £' basedon I + J parameters.

The secondcomponent can be found by repeatingthis procedurefor the data

matrix consistingof the errors remainingafter the first step. In general,

component n is basedon the errors remaining after step n - 1
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Is it possible to extract componentswhen X is ordinal? We will

discussseveralproposalsall dealing with the extractionof ｾ component.

1. Kendall [1970] proposesto base the componenton the I sums of the

elementsin the columns of X. Thus, first one calculates :

s. = t x ..
1. j J1.

i = 1, ... , I (4.2)

individuals are ranked according to theI s. .
1.

For example, when s.' is the largest among the s.
1. 1.

then Pi' is set equal to I, etc. Kendall proves that this procedureyields

the maximum averagecorrelation (of the Spearmantype) betweenthe rankings

Subsequentlythe

in X and the component. Thus by means of this procedurewe maximize:

(4.3)1 ｾ P.-
J j J

where p. is
J

variable j

the Spearmantype correlationbetweenthe componentand

This component is very easy to compute, and Kendall [1975]

shows an application of it for an analysisof crop productivity in various

countries. He reports that there was a striking agreementbetweenthe first

principal componentbasedon cardinal data and the componentbasedon (4.2)

for ordinal values being in accordancewith the cardinal ones.

ｾ ･ ｴ Ｌ there is a weak point in this approach. It can be illustrated by

means of the following data matrix :

X =
2

3

4

1

(4.4)

In this case the column sums are all equal, which means that the component

consistsof equal outcomesfor all individuals. This is a strangeresult when

we realize that in (4.1) the scaling factor a. may be positive as well as nega-
J

tive. Following the lines of (4.1) we should conclude that in (4.4),

(1 2 4 3) or (4 3 1 2) would be perfect components,since they do not

give rise to any remaining errors.

In more general terms this objection against (4.2) can be formulated as

follows:
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criterion (4.3) is not meaningful since it ignores the possibility of negative

correlations. Better criteria would thereforebe:

1 r: Ip ·1max
J j ]

or:

max!
1 t R,2-
J ] ]

(4.5.a)

(4.5.b)

It is not difficult to see that these criteria - when applied to (4.4) -

yield the desiredoutcomes. It is important to note, however, that there is no

straightforwardway to determine the solution of (4.5.a) or (4.5.b), as

was the case with (4.2) .

2. Another approachdiscussedby Kendall [1970] will be illustratedby

the following X matrix :

x =
2

3

3

3

1

2
ｾｬ4 _

(4.6)

It is basedon the number of variableswith outcome I, 1-1, etc. obtained

by each individual. For example, individual 4 will receive rank 4 since it

includes two outcomes 4 in its column. Individual 1 will receive rank 3 since

it has the other outcome 4 Further, the second individual gets rank 2

since it has two values equal to 3 and rank 1 is for individual 3

Kendall dismissesthis approach,however, since it is not self-consistent.

This can be seen when the same procedureis followed, but now starting with the

value 1. It is easy to see that a ｲ｡ｮｫｯｾ､･ｲ is achievedwhich is different from

theorderwhenwe start with value 4 This is obviously an unattractiveproperty.

3. Another approach,suggestedby Ehrenberg [1952], is to base a component

on the number of variablesaccording to which individual i is ranked higher

than i' . It is interestingto note the similarity betweenthis idea and the

principle of majority voting betweenpairs of alternatives. Indeed, the problem of

deriving a common component from a seriesof rankings is very similar to the

problem of finding a social welfare function basedon a seriesof preference

relationships. Arrow [1951] has shown that such an aggregationof preferences

is only possibleunder rather restrictive assumptions.

A well-known illustration of the difficulties in this respect is basedon

the following ranking of three alternatives i by three persons j :
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ｾ
2 3l

x = 1 2; (4.7)

3 1j

When majority voting is used to select an alternativefrom the pair (1,2) ,

alternative 2 will be chosen. Voting betweenalternatives2 and 3 leads to

the selectionof alternative 3. Voting betweenalternatives1 and 3 leads to

the selectionof alternative 1. The aggregatedpreferencerelation obtained

in this way is intransitive (cf. Section 3) which is obviously unsatisfactory.

We conclude that this third approachwill give rise to the same problems

as in social welfare theory. Up to now there has not been much progressin

solving these problems. Therefore, this approachis not very promising.

4. The last approachis related to the proposalsin (4.5), but in stead

of Spearman'scorrelation it uses Kendall's correlation.

Thus the component has to be determinedsuch that a maximum is attainedfor

one of the two following criteria:

1 L IT-I
J j ]

or:

1 L ｔｾJ j ]

(4.8.a)

(4.8.b.)

At the end of this section we will also pay some attention to canonical

correlation and partial least squares,since thesemethods are closely related

to principal componentanalysis (cf. Kendall [1975] and Wold [1979] ).

The aim of canonicalcorrelationanalysis is the determinationof components

from two data sets Xl and X2 such that the correlationsbetweenthe

componentsare as high as possible. Partial least squarescan be conceived

of as a generalizationof canonicalcorrelationanalysis since it deals with

the analysis of correlationsbetweencomponentsderived from more than two

data sets.

We will illustrate for canonicalcorrelationanalysis how it can be

carried out when Xl and X
2

are ordinal. Let the number of variables in

Xl and X
2

be J 1 and J
2

respectively. Then the' components £1 and £2
are the solution of
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1 T I'j I
1 r IT. I 1'1,21max

J 1
+

J 2 J2 +
1 1 J2

or

1 L 2 1 L , 2 2
max ,. + + 't'1,2J h J1 J 2 j2 j2

(4.9.a)

(4.9.b)

In these formulations,

components 1 and 2

't' denotesKendall's correlationcoefficient between1,2

denote Kendall's correlationcoefficient betweenFurther, T. and T.
J1 J2

｣ ｯ ｾ ｰ ｯ ｮ ･ ｮ ｴ 1 and variable jl for 1 = 1,2 , respectively.

In (4.9), an equal weight is given to the correlations internal to an and

the external correlationsbetweenthe Xl's.

Finally, a discussionof distancepropertiesof multivariate techniques

(inter alia in the caseof qualitative variates) can be found in Gower (1966).

5. Conclusion

We conclude that it is in principle possible to develop multivariate

methods for ordinal data which are related to correspondingmethods for

cardinal data without making mis-interpretation｣ ｯ ｾ ｣ ･ ｲ ｮ ｩ ｮ ｧ the character

of ordinal data. The methods developedin this paper are to a certain extent

provisional since they have not been discussedin an exhaustiveway. For

example, in further elaborationsmore attention has to be paid to

statistical tests related to the methods

computationalaspects

the occurrenceof ties

the possibility that part of the variablesare ordinal and others are

cardinal.

An important question concerningthe newly developedmethods is whether

they give rise to outcomeswhich differ much from the outcomesof methods based

on cardinal data. In a subsequentseriesof applicationswe will therefore

follow the schemeof Fig. 1.



a. cardinal data

-25-

cardinal
multivariate
methods

....
statementsabout
the structureof
the data

b. cardinal data ....
ordinal

ordinal data .... multivariate
methods

statements
.... about the

structure
of the data.

Fig. 1. Input-output schemesfor multivariate methods.

In thesecaseswe will make use of an ordinal data matrix of which the

correspondingcardinal values are known. Thus we will be able to compare

the specificity of the outcomesof ordinal and cardinal methods.

This comparisonis important for severalfields of researchor decision-

making where ordinal data are already used as a source of information (e.g.

certain multiobjective decision methods). We ｣ｯｮ｣ｾｵ､･ that the subject of

this paper may have important side-effectson various numerical methods.
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