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A GLOBALLY CONVERGENT QUADRATIC APPROXIMATION FOR 
INEQUALITY CONSTRAINED MINIMAX PROBLEMS 

1. INTRODUCTION 

In this paper we present an implementable algorithm for 

solving optimization problems of the following type: minimize 

f (x) , subject to f (x) G 0, where x E R~ and f and f are real- 

valued functions that are the pointwise maxima of two families 

of continuously differentiable functions. 

Our algorithm combines, extends and modifies ideas contained 

in Wierzbicki [1978], Pschenichnyi and Danilin [19751 and 

Huard [1968]. Its derivation is based on the application of 

quadratic approximation methods to the improvement function used 

in the modified method of centers. In fact, when an initial 

approximation to the solution is feasible, the algorithm works 

as a feasible direction method [~o lak 19711 and the objective 

function fo need not be evaluated at infeasible points. When 

the initial approximation is infeasible, the algorithm decreases 

constraint violation at each iteration and its accumulation points 



are stationary [Demianov, Malozemov 19721 if some regularity 

assumption on the gradients of constra'ints functions outside the 

feasible set holds. However, we do not require that the 

optimization problem be normal [Clarke 19761, which is necessary 

for convergence of quadratic approximation methods using exact 

penalty functions iHan 1977; Conn, Pietnykowski 19771 . The 

algorithm may use variable metric techniques to speed up 

convergence as in [~ierzbicki 19781; this point is a subject of 

on-going research. 

A further modification of the ideas presented in this paper 

has lead to a new implementable algorithm [Kiwiel forthcoming] 

for solving problems of a more general nature, when fo and f 

are semismooth [ ~ i f f l i n  19791 . 
Our algorithm has search direction finding subproblems that 

are quadratic programming problems involving convex combinations 

of problem function gradients with a linear form in the sub- 

problem objective related to complimentary slackness 

[Wierzbicki 19781. These subproblems are discussed in para. 3. 

The algorithm is defined in para. 4 and in para. 5 we show 

stationarity of the algorithms accumulation points. In para. 6 

we present conditions under which the algorithm converges linearly. 

The scalar product of x = (xl,...,xN) and Y = ( Y ~ ~ - - = ~ Y ~ )  
.1 

N 1.4 

in R , defined by 1 xiyi is denoted <x,y> and the Euclidean 
i=l 

norm of x, defined by 1 < x,x > 1 is denoted I x I . If A is 

an N x N symmetric positive definite matrix, <Ax,y> is denoted 

<xt Y'* 
2 and ) x l A  denotes <Ax,x>. If h = R~ + R' is twicely 

continuously differentiable, h ' (x) denotes its gradient at 

x€RN , and h" (x) its hessian. 



2. PROBLEM STATEMENT 

Consider the following optimization problem: 

(2.1) min fo (x) s.t. f (x) 'c 0 

where 

and fOt i  : R~ + R  i = l...,n , fi : R~ + R i = I ,  ..., m are 

continously differentiable; n,m < +a. 

The necessary conditions of optimality for some to be a 

solution of (2.1) are as follows [Clarke 19761: there exists a 

collection of numbers ncm satisfying: 

Note that f + ( i )  = 0 since is feasible. Consider also an 

auxilliary problem: 

(2.7) min f (x) . 

If x is its solution, then there exist numbers satisfying: 



3. DIRECTION FINDING PROBLEM 

The algorithm presented in the next section uses search 

directions generated as follows. Let X E  RN and 6 > 0 be given. 

Introduce two activity sets: 

Let A be an N x N symmetric positive definite matrix. Then 

the following problem with respect to variables B E R1 and p E RN: 

(3.2) 
2 min { B  + ; IpIA) 

satisfies Slater's condition [Pschenicnyi and Danilin 1975:259] 

its solutions B(x) and p(x) exist and are uniquely determined by 

the following set of conditions: 

(3.3) p (x) = 0-A-' ( 1 A i f O f i  (XI + 1 li+nf (x) 
iE%(x, 6) iEIc (x, 6) 



where {hi} satisfy: 

(3.6) 1 hi + 1 'i+n = I  , 
iEI0 (x, 6) iEIc (x, 6) 

Note that when I0 (x, 6) is empty, the direction p (x) is 

computed as in Pshenichnyi's method of linearization for solving 

the problem (2.7) if A = I is used [Pschenicnyi and Danilin 19751; 

when A approximates t h e  Hessian of t h e  Lagrange func t ion  f o r  (2.71, p(x )  is 

equal to the direction obtained in the quadratic approximation 

method for (2.7) [Wierzbicki 19781. In general, (3.2) may be 

viewed as a quadratic approximation problem for the function 

(3.9) c(xf) = max If0(xt) - fo(x) ,f (x) 1 . 

4. ALGORITHM 

0 
Step 0. Choose a starting point x e R N ,  an N x N symmetric 

positive definite matrix Ao(e.g., A. = I), a final accuracy 



parameter E an activity bound 6 > 0, a desired rate of f t  - 

convergence parameter Y E  [0,1), line search parameters ~.E(0,1) 
1 

and 0 < ml < m2 < 1. Choose initial values of a convergence 

variable q" 2 - 6. 

Set k = 0 

Step 1. k k Compute pk = p (x ) and B~ = B (x ) solving (3.2) 

k with A = Ak and 6 = 6 . 
Step 2. 1f gk 2 -Eft  stop. 

Step 3. Let an improvement function be given by 

(3.1) 
k 

Ok(x) = max {fo(x)-f0(x ).f(x)} . 

k k  k k If Ck(x + p ) < Ok(x ) and Bk 2 y n  . set ak = 1 and go to Step 5. 

(Direct prediction) . 
Step 4. Compute a step-size coefficient ak . 0 satisfying 

one of the following conditions: 

Step 4i. ak = 2-'k where ik is the first number i = 0.1.. . 
for which: 

(Armigo' s ,rule) . 
k k k  k k k) k k k  Step 4ii. $k (X  ) + m2a B C Ok (X + a p g O k ( x  + m l a  B 

(Goldstein's rule) . The line search of [Wierzbicki 19781 is 

recornmentded for the exception of this step. 

k k k  -k k Step 4iii. $k(x + a  p ) < Ok(xh+ a p ) for some zk > 0 

satisfying either of the above requirements (approximate or 

exact minimization) . 
Step 5. Set x k k  k+l = xk + a p choose new symmetric positive 

definite Ak+, and 6 k+l 2 5 , set n k k  k+l = max { q  .B 1. Replace 



k by k + 1 and go to Step 1. 

A few comments on the implementation of the algorithm are 

presented below. In order to compute p(x) and B(x) it is more 

efficient to solve the dual of (3.21, viz. 

m i n  t i ( C  hifi , (XI + 1 hi+nf; (XI + 2 

iE I. (x, 6) i€Ic (~'6) 

rf {hi} solves (4.2) , let 

- 1 
  hen p(x) = A d(x) by (3.3) and 0 (x) is determined by (3.4) with 

2 2 I P  (x) l A  = Id (x) l A m l .  Thus we see that it may be easier to work 

with H = A-1 rather than with A. 

In this paper we do not consider the important questions 

of the choice of {Ak) (or 1 ~ ~ 1 ) .  Our global convergence analysis 

requires this sequence to be uniformly positive definite and 

bounded. However, in order to obtain fast local convergence 

results we conjecture, by analogy to [Wierzbicki 39781, that 

k A should approximate the Hessian of the Lagrange function for 

( 2 . 1  Therefore, some quasi-Newton updating formula [Han 19771 

could be used, based on data 



where {A:+') denotes the solution of (4.2) with x = xk. We leave 

that question open for future research. 

The value of 6k controls the size of the direction finding 

problem (3.2) and - 6 establishes a threshold for determining 

the functions probably active at the solution. Note that if 
0  0 t o  

x is infeasible, i.e., f (x ) = f (x ) > 0, the algorithm reduces 

to the quadratic approximation method for minimizing the constraint 

k i i violation f (x) until f (x ) Q since I (x ,6 ) = @ for 
0 

i = 0  . k - .  This suggests the following strategy for 

changing 6: 

(3.7) gk+l = max {6,5-} - t 

with 5 being a scaling parameter. 

The existence of a finite ik in Step 4i follows from the 

results of the next section. Under an additional assumption 

k k that the function qk(a) = Qk(x f a p  ) is bounded from below for 

a > 0, finite termination of the line search of [Wierzbicki 19781 

(which is based on geometric expansion, contraction and bisection) 

may be easily proved, thus providing a method for Step 4ii. 

A nice feature of the algorithm is that it decreases 

constraint violation at each iteration. To see this, note that 



due to the line search rules 

Since B~ < 0 at Step 4 owing to (3.4). Observe that if some x k 

k is feasible, ff (x ) = 0 and (4.8) imply that all consecutive 

points are feasible. 

5. CONVERGENCE 

In this section we analyze convergence of the proposed 

algorithm. Since we do not assume that the initial xo is feasible, 

it is not suprising that we have to impose additional assumptions 

on the gradients of the constraint functions outside the feasible 

set. Namely, consider the following assumption: 

0 ( A l )  If x E R~ is such that f (x ) 2 f (x) > 0, then x is not 

stationary for (2.7) , i.e., there are no {xi]: satisfying 

(2.8) - (2.10) with x = x. 

We think that (All is a natural requirement for the problem 

computing a feasible point to be well-posed. Note, however, 

that we do not assume that the original problem (2.1) is normal. 

Naturally, convergence results assume E = 0. We first f 

consider the case when the algorithm terminates. 

Proposition 5.1 

If the algorithm stops at iteration k, then xk is either 

feasible and stationary for (2.1) or infeasible and stationary 

for (2.7). If (AT) holds, then xk is feasible. 

k 
Proof. Since 0 = E < B~ < 0, (3.4) and (3.3) imply that p = 0, f 



k  k  k k  k  k  hence d = Akp = 0. S ince  f o I i ( x  ) G f o b  ) , f i ( x  ) < f + ( x  ) ,  

( 3 . 4 )  imp l i es  

k  k  
Now, i f  x  is f e a s i b l e .  f + ( x  ) = 0. I f  f + ( x k )  > 0,  then  

k k  
k+l  = 0 i E I O  (X  . 6  ) . Noting t h a t  (5 .1)  imp l i es  t h a t  A i  

k + l )  s a t i s f y  e i t h e r  (2.3) - (2 .6)  o r  (2 .8 )  - ( 2 .10 ) ,  w e  s e e  t h a t  {Ai 

which ends t h e  p roo f .  

From now on w e  assume t h a t  t h e  a lgo r i t hm does  n o t  s t o p .  

W e  s h a l l  a l s o  assume t h a t  1 ~ ~ )  a r e  un i formly  p o s i t i v e  d e f i n i t e  

and bounded, i . e . ,  t h a t  t h e r e  e x i s t  two c o n s t a n t s  yl and y 2 ,  

0 < y1  C y2 :  

(5.3)  
2 N y1 1x1 / x12  G y 2 ( x 1 2  f o r  a l l  k and a l l  x € R  . 

Ak 

THEOREM 5.2 

k  Every accumulat ion p o i n t  of  {x 1 is e i t h e r  f e a s i b l e  and 

s t a t i o n a r y  f o r  ( 2 . 1 ) ,  o r  i n f e a s i b l e  and s t a t i o n a r y  f o r  ( 2 . 7 ) .  

k  
I f  (Al)  ho lds ,  t h e n  any accumulat ion p o i n t  o f  Ex 1 is  f e a s i b l e .  

I n  p a r t i c u l a r ,  i f  xo i s  f e a s i b l e ,  t h e n  eve ry  accumulat ion p o i n t  

i s  f e a s i b l e .  



k Proof: L e t  be some accumulat ion p o i n t  of  Ix 1 ,  i .e . ,  

xk + ; k ~  k l  . Since  B~ < 0 by t h e  r u l e s  of  the a lgo r i t hm,  w e  

s h a l l  cons ide r  two c a s e s ,  depending on whether l i m  sup { ~ ~ ; k ~ k ~  1 

equa ls  ze ro  o r  n o t ,  

A)  Suppose t h a t  O~ + 0 f o r  k  E  K 2 c K 1 .  Then l p k  1 + 0  f o r  
Ak 

k e K 2  by (3.4) hence pk + 0 k E K 2 ,  s i n c e  l p k 1 2  < I l p k 1 2  by 
Y1 Ak 

k  k k  ( 5 . 3 ) .  A s  d  = A p  , 1  k 2  
5 -  ( d  I by ( 5 . 3 ) ,  hence d k + O  

1 - 
kEK2.  A s  {A;} s a t i s f y  (3 .5)  and ( 3 . 6 ) ,  we may i n t roduce  a d d i t i o n a l  

k  X i  = 0 t o  g e t  

Using (5 .5)  and pass ing  t o  f u r t h e r  subsequences,  i f  

k+l  + Xi k ~  K2 w i t h  necessary ,  we may w r i t e  t h a t  A i  



Since fot i ,  fit are continuously differentiable, we may pass to 

to the limit in (5.4) through (5.7) with k E K 2  and get 

Next the argument proceeds exactly as in the proof of 

Proposition 1. 

B) Now suppose that there exists - B(:) < 0 such that 

gk - B(;), k € k l  . By (5.4),(5.5) and the coninuity of problem 

k function gradients, d are uniformly bounded for k E K 1 ,  and thus 

k p , k ~ K 1 ,  are uniformly bounded by (5.3). Combining this 

with the continuous differentiability of the problem functions 

[St Appendix 111, para. 3, Note 21, we infer that for almost all 

k~ K1 the following expansions are valid: 

where o(a)/a + 0 when a J 0. 

By (5.12) and (3.2). if i . E I  (xktak) then for almost all 0 



k k  
S imi la r  arguments show t h a t  f o r  ~ E I  (x  , 6  ) and almost a l l  

C 

k k  
Using (5.12) and 3 1 ) ,  we  see t h a t  f o r  i 4 1 ~ ( x  , E  ) 

k k 
(5.15) f o  ( x k + a p k )  C f  ( x )  + f + ( x )  - 6 ( 1 )  , , i o 

and t h a t  f o r  i q  l , (xk ,gk)  

f o r  almost a l l  k E K 1 ,  where o (a)  + 0 a s  a I 0. 

L e t  K = max { ~ ~ , m ~ } :  (5.13) through (5.16) imply t h a t  t he re  

e x i s t s  a number a(:) > 0 such t h a t  f o r  almost a l l  ~ E K ~  - 

k k  k k  k k 
f o r  a l l  a €  [ 0 , a ( ~ ) ] .  - Since @k(x +ap ) = max {f0(x +ap ) - fo(x ) , f ( x  1 1  

k k and Ok(x ) = f + ( x  , t h e  l i n e  search r u l e s  of Step 4 t oge the r  

wi th  (5 .17 ) ,  (5.18) imply t h a t  



f o r  a lmos t  a l l  k E K 1  Here w e  have used  t h e  f a c t  t h a t  ak  = 1 a t  

S t e p  3 may be  a c c e p t e d  f o r  k E K 1  o n l y  f i n i t e l y  o f t e n ;  o t h e r w i s e  

n k  k+l  = B 5 ynk w i t h  y  E  (O,1)  , t a k i n g  p l a c e  i n f i n i t e l y  o f t e n  

k  would c o n t r a d i c t  B ~ ( x )  > 0 f o r  k E  K ( n o t e  t h a t  n k+ l  5 n k  
1  

by c o n s t r u c t i o n ) .  

W e  s h a l l  now c o n s i d e r  two cases: 

k  
B1) Suppose t h a t  f ( x  Q 0 f o r  some k.  Then due t o  l i n e  s e a r c h  

+ k  r u l e s  f  ( x )  = 0 f o r  a lmos t  a l l  k ,  and f o r  t h e s e  k € K 1  (5.19)  

g i v e s  

+ k  Not ing t h a t  f  (x ) = 0 and t h e  l i n e  s e a r c h  r u l e s  g i v e  

k  and u s i n g  t h e  c o n t i n u i t y  o f  f  w e  shou ld  have f o  (x  ) + f o  (x) . k  E K1 , 

which c o n t r a d i c t s  (5.21 ) , s i n c e  ~a - ( x )  B (x )  < 0.  - 
k  

B2) I f  f ( x  ) > 0 f o r  a l l  k ,  t h e n  t h e  above argument o f  B1 w i t h  

f o  s u b s t i t u t e d  by f  and (5.19)  by (5.20)  a l s o  l e a d s  t o  c o n t r a -  

d i c t i o n ,  t h u s  end ing  t h e  p roo f .  

Remark 5.3:  S i n c e  Bk < 0 a t  S t e p  4 ,  t h e  above argument  l e a d i n g  

t o  (5.17)  and (5 .18)  may be  r e p e a t e d  t o  show t h e  e x i s t e n c e  o f  

some - ak > 0 such t h a t  

k  k k $ k ( ~  + a p )  G O ~ ( X  + a 5 s k  f o r  a E [ . ~ , a ~ ]  - , 



which proves finite termination of Step 4i. Similar approach 

may be used for proving finite termination of the line search 

of [Wierzbicki 19781 used at Step 4ii. 

6. RATE OF CONVERGENCE 

In this section we shall show that under favorable conditions 

our algorithm converges atleastF-linearly (see [Pironneau and 

Polak 19721). Since our analysis generalizes the results of 

Pironneau and Polak, we constantly refer to [Pironneau and 

Polak 19721 providing here essential modifications only. 

Throughout this section, the functions {foli} and Ifi} 

are assumed to be convex and twice continuously differentiable. 

We shall consider the problem (2.1) and our algorithm under the 

following hypotheses. 

+ 0 
(6.1)~ssumptions. ~f f (x)  = 0, let B =  ~ X E # : ~ ~ ( X ) ~ ~ ~ ( X ~ ) , ~ + ( X )  = 01 . 

If f (x) > 0 , 

let B = {xE 3RN: f Lx) f (xa 11. We shall assume that 

i) B is compact 

ii) f is strictly convex in B (e.g., fo f i  0 i = 1;n are strictly 

convex in B). 

iii) C' = {xEJRN:f(x) < O }  is not empty. 

It follows that there exists a unique 2 E JRN solving (2.1 ) . 
k Since (6. liii) implies (Al) of para. 5 and {x 1 c B by construction, 

the results ef para. 5 show that xk + 2. Let A(;) denote the 
h 

set of Lagrange multipliers of (2.1 ) at k, i .e., > E A (2) if it 

satisfies (2.3 - 6) . It is easy to prove (of [13, Lemma B. 1 1 1  ) 

that 



W e  s h a l l  a l s o  assume t h a t  t h e r e  e x i s t  c o n s t r a i n t s  E > 0 

and mOE(O, l )  such t h a t  

(6.3) moly - x12 G ( ~ - x , L U ( ~ , i )  ( y - x ) )  f o r  a l l  x , ~ E B ( ~ , E )  

and X E N ( A ( ~ ) , E )  , 

where t h e  Lagrangian L  f o r  (2.1)  i s  d e f i n e d  by 

S ince  t h e  m u l t i p l i e r s  { i k l r n  remain i n  a compact set and 

xk + 2 ,  a c l o s e r  i n s p e c t i o n  of  t h e  proof  of Theorem 5.2 shows 

t h a t  

(6.5)  A k  E N  ( A  (x) , E) f o r  a lmos t  a l l  k  , 

W e  assume t h a t  t h e  a l go r i t hm c o n s t r u c t s  an  i n f i n i t e  sequence 

k  {x 1 w i t h  y = 0, i .e . ,  t h a t  no d i r e c t  p r e d i c t i o n  s t e p s  are t aken .  

W e  s h a l l  star t  by e s t i m a t i n g  

LEMMA 6.1 

There e x i s t s  a c o n s t a n t  - a > 0  such  t h a t  

(6.8)  g k  < - f o r  a l l  k. 



P r o o f .  L e t  M = max ill fo  " ( x )~~ , /~ f t ! ( x ) / ~ : x~B ; i =1  ,... n;j=l ,  ..., m}. Since , i I 

where e o t i  k k 
= x + aOr ip  and ao,iEIO,a], by (3 .2)  and (5 .3)  w e  

g e t  f o r  a E  [0 ,1 ]  and i ~ I ~ ( x ~ , 6 ~ )  

k k  
I n  t h e  same manner we have f o r  a 5  [0,11 and i € I c ( x  , 6  ) 

Now l e t  k  = max i l f o , i ( x )  1 ,  I f !  ( x )  1 :  X E B ;  i =  1 ,..., n;  j = 1. ..., m}. 
3 

By (3.1) and (5.3) t 0 g e t h e r w i t h 6 ~ 2 6  - and (3 .4 ) .  i f  i e 1 ~ ( x ~ , 6 ~ )  

then  

k k  I n  t h e  same way w e  prove f o r  i q 1  (x , 6  ) t h a t  
C 

By  d e f i n i t i o n  o f  4 and t h e  above e s t i n a t e s ,  
k 

k k k m k  (x  + up ) mk(xk) + K ~ B  f o r  a E, where 



By the rules of Step 4 of the algorithm, if ak is accepted 

k at Step 4i or Step 4ii, then ak 2 - a /2; by the same token 

k k k k  k ak Z - a /2 at Step 4iii. Therefore mk(x + a p ) = Ok(x ) + 
k k  min 1 - s 6 /2. Since Bk + 0, (6.9) implies that there exists 

k a constant - a > 0 such that a < min { ~ ~ , r n ~ )  - a /2 and 

k+ 1 
@ k ( ~  ) 2 @k(xk) + %Bk, which ends the proof. 

Proceeding as in [Pironneau and Polak 19721, let 

k k (6.10) o(x ) = m i n  {o:fo .(XI -fo(x ) -ugOf i = l f  ..., nif. (x) -u<0 ,i=l,..., m; 
1 1 

XEB) . 

The following proposition is a trvial extension of 

[Pironneau and Polak 1972, Lemma 2.71. 

LEMMA 6.2 

Let by any solution of the dual of (6. lo), i .e., 

of 

Then any accumulation point of {G~)- belongs to the set A ( ; ) ,  
m+n 0 

and 1;; = 1 for all k. 
i=l 

Following [Pironneau and Polak 3972, Theorem 2.111, we obtain 

k n -k k m -k (6.12) o(x ) = min { 1 ~ ~ l f ~ , ~ ( x )  - f o b  )I + 1 ~ ~ + ~ f ~ ( x ) }  . 
x E  B i=l i= 1 

Upon replacing x by fi in (6.12) and noting that f (2) g 0, we 

obtain 



Next, from Lemma 6.2 and (6.2) we deduce that 

11 

lim inf 1 it Z - A' > o , 
k + w  i=l 

which implies that, given any T E  (0,1), there exists a k (r) 0 

such that 

n 
(6.14) 1 Z - A (1 - r) for all k 2 ko (r) . 

i=l 

Combining (6.14) with (6.13) we now obtain 

Generalizing [Pironneau and Polak 1972, Theorem 3.161, we 

get 

LEMMA 6.3 

0 Assume (with no loss of generality) that m yZO. Then 

(6.16) k Y2 k 1 k 2  o x  ) f 3  +flp ) 1 for almost all k. 
m Ak 

Proof: From [~ironneau and Polak 1972, (3.23) 1 we obtain that 

that for almost k. 

k n k m mtn 
(6.17) G 0: ) = mx {inf { I  vi[fOIi(~)- f0(x I +  1 ~~+~f~(y)} :  1 v = 1 )  

v> 0 y ~ ~ ( G , ~ )  i=l i=l i= 1 i 



There fo re  f o r  a lmost  k  

Expanding f o  (y )  - f o f  k  k  
(x  ) and f i  (y) - f .  ( x  ) t o  second o r d e r  

l i 1 

terms and making u s e  o f  (6 .3)  and ( 6 . 5 ) ,  w e  o b t a i n  t h a t  f o r  a lmos t  

a l l  k  

By d e l e t i n g  t h e c o n s t r a i n t  y € B ( i , ~ )  i n  (6.19) and us ing  (4.3)  and 

(5.3)  , w e  o b t a i n  

S ince  y2/m0 1 by assumpt ion and t h e  f i r s t  two t e r m s  i n  (6.20) 

a r e  nonpos i t i ve ,  (3.4)  and (6.20) imply (6 .17) ,  which proves 

t h e  lemma. 

W e  a r e  now ready t o  s t a t e  t h e  main convergence r e s u l t .  



THEOREM 6.4 

k  
Suppose t h a t  f  ( x  ) C 0  f o r  some k .  Then g i v e n  any  r E ( 0 , 1 ) ,  

+ k  
P r o o f :  By t h e  r u l e s  o f  t h e  a l g o r i t h m ,  w e  have  f  ( x  ) = 0  f o r  a l l  

k  k  
k ,  which i n  t u r n  i m p l i e s  Qk(x ) = f C ( x  ) = 0  f o r  t h o s e  k. From 

k  (6 .7 )  w e  now o b t a i n  o = Qk (xk+' ) , Lemma 6.1 i m p l i e s  

From (6.15)  and (6.16)  w e  o b t a i n  

f o r  almost a l l  k .  F i n a l l y ,  f rom (6 .22)  and (6 .23)  

f o r  almost a l l  k .  Rear rang ing  ( 6 . 2 4 ) ,  w e  o b t a i n  ( 6 . 2 1 ) ,  which 

comp le tes  o u r  p r o o f .  

COROLLARY 6.5 

k  k  Suppose t h a t  f ( x  ) C 0  f o r  some k ,  t h e n  i x  IkzO converges  
h 

t o  x l i n e a r l y .  

P r o o f :  L e t  X E  A ( ; ) .  Accord ing t o  t h e  T a y l o r  e x p a n s i o n  fo rmu la ,  

k  f o r  any  xk t h e r e  e x i s t  a 0 ( x  ) E  ( 0 , l )  s u c h  t h a t  



k  w i t h  5 = 0 (xk) xk + [ I  - 0 ( x  ) ] 2. Since  1 s a t i s f i e s  (2.3)  th rough 

(2.6)  and xk -+ 2, (6.3)  and (6.25) g i v e  

There fo re ,  f o r  a lmos t  a l l  k  

and ou r  t h e s i s  f o l l ows  from (6.21 ) and (6.27) , t h u s  end ing  t h e  

p roo f .  

Remark 6.6: I f  t h e  i n i t i a l  p o i n t  xo is f e a s i b l e ,  we may modify 

t h e  a lgo r i t hm t o  o b t a i n  a  f e a s i b l e  d i r e c t i o n  method g e n e r a l i z i n g  

[Pi ronneau and Polak 19731. It s u f f i c e s  t o  re -de f ine  t h e  

k improvement f u n c t i o n  $ by p u t t i n g  $k (x) = f 0  (x) - f  (X ) and k  

t hen  t o  i nc lude  a n  a d d i t i o n a l  s t e p - s i z e  requ i rement  t h a t  

f (xk" ) < 0  i n  t h e  a l g o r i t h m t  s d e s c r i p t i o n .  One may e a s i l y  

check t h a t  a l l  r e s u l t s  of t h i s  paper  remain v a l i d  f o r  t h i s  

mod i f i ca t i on ;  i n  p a r t i c u l a r  - l i n e a r  convergence i s  r e t a i n e d .  



REFERENCES 

Clarke, F.H. 1976. A new approach to Lagrange multipliers. 
Math. Oper. Res. 1:165-174. 

Conn, A.R., and T. Pietnykowski. 1977. A penalty function 
method converging directly to a constrained optimum. 
SIAM Journal on Num. Analysis 14:348-378. 

Demianov, V.F., and V.N. Malozemov. 197.2, Vvedenie v ~inimaks. 
Moskua: Nauka (in ~ussian). 

Han, S.P. 1977. A globally convergent method for mathematical 
programming. JOTA 22:297-309. 

Huard, P. 1968. Programmation matematique convexe. Rev. Fr. 
Inform. Rech. Operation. 7:43-59. 

Kiwiel, K.C. 1979. Algorithms for Non-Smooth Optimization and 
their Applications. Ph.D. thesis, Technical University 
of Warsaw, Warsaw, Poland. Forthcoming. 

Mifflin, R. 1979. An algorithm for constrained optimization 
with semismooth functions. Mathematics of Operations 
Research 2:191-207. 

Pironneau, O., and E. Polak. 1972. On the rate of convergence 
of certain methods of centers. Mathematical Programming 
2:230-257. 

Pironneau O., and E. Polak. 1973. Rate of convergence of a 
class of methods of feasible directions. SIAM Journal 
on Numerical Analysis. 10 (1 ) : 161-1 74. 



Polak, E. 1971. Computational Methods in Optimization. A 
Unified Approach. New York and London: Academic Press. 

Pschenicnyi, B.N., and Yu. M. Danilin. 1975. Cislennyie Metodi 
v Ekstremalnih Zadacah. Moskua: Nauka (in Russian). 

Wierzbicki, A.P. 1978. Lagrangian Functions and Nondifferentiable 
Optimization. WP-78-63 International Institute for Applied 
Systems Analysis, Laxenburg, Austria. 


