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A GLOBALLY CONVERGENT QUADRATIC APPROXIMATION FOR
INEQUALITY CONSTRAINED MINIMAX PROBLEMS

K. Kiwiel

1. INTRODUCTION

In this paper we present an implementable algorithm for
solving optimization problems of the following type: minimize
fo(x), subject to f(x) < 0, where x€ERN and fo and f are real-
valued functions that are the pointwise maxima of two families

of continuously differentiable functions.

Our algorithm combines, extends and modifies ideas contained
in Wierzbicki [1978], Pschenichnyi and Danilin [1975] and
Huard [1968]. 1Its derivation is based on the application of
quadratic approximation methods to the improvement function used
in the modified method of centers. In fact, when an initial
approximation to the solution is feasible, the algorithm works
as a feasible direction method [Polak 1971] and the objective
function fo need not be evaluated at infeasible points. When
the initial approximation is infeasible, the algorithm decreases

constraint violation at each iteration and its accumulation points



are stationary [Demianov, Malozemoyv 1972] if some regularity
assumption on the gradients of constraints functions outside the
feasible set holds. However, we do not require that the
optimization problem be normal [Clarke 197€], which is necessary
for convergence of quadratic approximation methods using exact
penalty functions {Han 1977; Conn, Pietnykowski 1977} . The
algorithm may use variable metric techniques to speed up
convergence as in [Wierzbicki 19781]; this point is a subject of
on-going research.

A further modification of the ideas presented in this paper
has lead to a new implementable algorithm [Kiwiel forthcoming]
for solving problems cf a more general nature, when f0 and f

are semismooth [ Mifflin 1979].

Our algorithm has search direction finding subproblems that
are quadratic programming problems involving convex combinations
of problem function gradients with a linear form in the sub-
problem objective related to complimentary slackness
[Wierzbicki 1978] . These subproblems are discussed in para. 3.

The algorithm is defined in para. 4 and in para. 5 we show
stationarity of the algorithms accumulation points. 1In para. 6
we present conditions under which the algorithm converges linearly.

The scalar product of x = (x1,...,xN) and y = (y1,...,yN)

N

in RN, defined by ) XYy is denoted <x,y> and the Euclidean
i=1 1

norm of x, defined by | < x,x > ?| is denoted | x |. If A is

an N x- N symmetric positive definite matrix, <AX,y> is denoted

<X,y>, and | x Ii denotes <Ax,x>. If h = RN - R' is twicely
continuously differentiable, h' (x) denotes its agradient at
N

X€R , and h" (x) its hessian.




2. PROBLEM STATEMENT

Consider the following optimization problem:

(2.1) min fo(x) s.t. f(x) X0 ,
where
(2.2) f,(x) = max £.,.(x) , f£(x) =max f£.,(x) , 1 =1.m or
0 s _ 0’1 . ’
1=1..,n i=1,m i=1,...m
N , N .
and fO’i : R R i1i=1,...,n , fi : R =R i=1,...,m are

continously differentiable; n,m < +,

The necessary conditions of optimality for some X to be a

solution of (2.1) are as follows [Clarke 1976]: there exists a

collection of numbers {Ai}?:T satisfying:
m+n .
< { = . =
(2.3) A, S0 i=T;n+m F =1,
i=1
n _ ? R ,
(2.4) .2 Aifoll(x) ) Ai+nfi(x) =0 ,
i=1 i=1
(2.5) Ai[fo,l(x)-fo(x)] =0 1i=1;n ,
(2.6) AL [E (X)) -£ ()] =0 i=1
. jentf; (X X = i=1m .
Note that f+(§) = 0 since x is feasible. Consider also an

auxilliary problem:
(2.7) min £ (x) .

If x is its solution, then there exist numbers {:i}T=1 satisfying:




m
(2.8) X, =20 1i= 1;m, i£1xi =1 ,
m - - -— -—
(2.9) i£1xifi<x) =0 , JNfix) =0
(2.10) Xi[fi(i)—f(x)] = 0

3. DIRECTION FINDING PROBLEM
The algorithm presented in the next section uses search
directions generated as follows. Let xEERN and § > 0 be given.

Introduce two activity sets:

{i:f i(x)-fo(x)>f+(x)—6, 1<i <n} ,

(3.1) Io(x,é) 0

I (x,8) = {i:f (x)> ft(x) -8, 1<i<m} .

Let A be an N x N symmetric positive definite matrix. Then

the following problem with respect to variables BGER1 and pGERN:

(3.2) min {8+ }|p|2}
£, (X)) - £5(x) - £H(x) + (£, 4(x),P> < B i€I,(x,6)

£ 0 - £7(x) + (£, (0),p) <8 i€I_(x,6)

satisfies Slater's condition [Pschenicnyi and Danilin 1975:259]

its solutions B(x) and p(x) exist and are uniquely determined by

the following set of conditions:

-1
(3.3) p(x) = ~-A" (] AEL (X)) + ) A £ (x))
i€r(x,6) * 0t i€1_(x,6) 01



(3.4)  -B00 = pG |2+ T A [E 0 -f, (0 + £l +
+
Mg £7 00 - £, 001

ﬂEIc(x,é)
where {Ai} satisfy:

> i > i
(3.5) xi 0 1€IO(X,6) xim 0 1eIc(x,<5) ’

(3.6) ) A, + Y Ao, =1 ,
i€1 (x,6) 1 i€T_(x,6) 1+n

(3.7) xi[fo’i(x) - f,(x) - £t (%) + <f0,i(x),p(x)> - B(x)] =0

iEIO(x,G) ’

(3.8) A, [f. (x) - £ (x) + C£,'(x),p(x)) - B(x)] =0

iEIc(x,cS)

Note that when Io(x,é) is empty, the direction p(x) is
computed as in Pshenichnyi's method of linearization for solving
the problem (2.7) if A = I is used [Pschenicnyi and Danilin 1975];
when A approximates the Hessian of the Lagrange function for (2.7), p(x) is
equal to the direction obtained in the quadratic approximation
method for (2.7) [Wierzbicki 1978]. 1In general, (3.2) may be

viewed as a quadratic approximation problem for the function

(3.9) z(x') = max {fo(x') - fo(x),f(x)}

4. ALGORITHM
Step 0. Choose a starting point xoeIIN, an N x N symmetric

positive definite matrix Ao(e.g., A0 = I), a final accuracy
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parameter ¢ an activity bound § > 0, a desired rate of

£
convergence parameter ye [0,1), line search parameters €i€(0,1)
and 0 < m, <m, < 1. Choose initial values of a convergence
variable no >34,

‘Set k =0

Step 1. Compute pk = p(xk) and Bk = B(xk) solving (3.2)
with A = A_and § = 65,

Step 2. If Bk = -€¢s Stop.

Step 3. Let an improvement function be given by
(3.1) ¢, (x) = max {£_(x) - £ (x5, £} .

k 0 0

If ¢k(xk-+pk) < ¢k(xk) and Bk = Ynk, set ak = 1 and go to Step 5.
(Direct prediction).
Step &. Compute a step-size coefficient ak > 0 satisfying

one of the following conditions:

Step 4i. ak = 27 where ik is the first number i = 0,1...

for which:

-1 -1

k k

(x* + 2 p) < ¢k(xk) + g2 B .

2%
(Armigo's .rule).
Step 4ii. ¢ (xk) + m akBk < ¢ (xk-bakpk) < ¢ (xk) + m akBk '
k 2 k k 1
(Goldstein's rule). The line search of [Wierzbicki 19781 is

recommentded for the exception of this step.

Step 4iii. ¢k(xk-+akpk) < ¢k(xh-+akpk) for some Ek >0

satisfying either of the above requirements (approximate or

exact minimization).

Step 5. Set xk+1 = xk + akpk, choose new symmetric positive

definite A and %1 > § , set nk+1 = max {nk,Bk}. Replace

k+1



k by k + 1 and go to Step 1.

A few comments on the implementation of the algorithm are
presented below. In order to compute p(x) and B(x) it is more

efficient to solve the dual of (3.2), viz.

2
min {}|) Afx o (%) + 7 Ao Fr () 5o +
ﬁEIO(x,é) i70,1 €1 (x,6) itn"i A
C
) A £, () €. . (%) +] A, (£ (0 - £, (%))
€1, x,6)" ° 01 er_(x,6) " i

(4.2) )\i/OlGIO(x,(S) )\i+n/OlEIc(x'6) ’

A, + ) Ay =1
€106, 6) 1 €T _(x,6) 1tn

If {Ai} solves (4.2), let

f£i(x)) .

(4.3) d(x) = =(} MEL D)+ T 5?i+n !

1 O'l .
ier (x,57 i€T_(x,

Then p(x) = A'd(x) by (3.3) and B8(x) is determined by (3.4) with
}p(x)]i = Id(x)|§_1. Thus we see that it may be easier to work

with H = A~1 rather than with A.

In this paper we do not consider the important questions
of the choice of {Ak} (or {Hk}). Our global convergence analysis
requires this sequence to be uniformly positive definite and
bounded. However, in order to obtain fast local convergence
results we conjecture, by analogy to [Wierzbicki 1978], that
Ak should approximate the Hessian of the Lagrange function for

(2.1). Therefore, some quasi-Newton updating formula [Han 1977]

could be used, based on data




(3.5) Sk+1 - xk+1 _ xk ,

(3.6) R L At 2 I P S P T
i€r1, ‘ '
S S T S TR
iEIcki [fi(X ) fi(x )l o,

where {AE+1} denotes the solution of (4.2) with x = xk. We leave

that question open for future research.

The value of Sk controls the size of the direction finding
problem (3.2) and § establishes a threshold for determining
the functions probably active at the solution. Note that if

+,.0

0
X 1is infeasible, i.e., f(xo) = f (x') > 0, the algorithm reduces

to the quadratic approximation method for minimizing the constraint
violation f(x) until f£(x5) < 8%, since I_(x,8%) = g for
i=20,1,...,k=-1. This suggests the following strategy for

changing ¢§:

(3.7) s%*1 = nax {8,5v/~-n Ty,

with ¢ being a scaling parameter.

The existence of a finite ik in Step 4i follows from the

results of the next section. Under an additional assumption

k-l-apk) is bounded from below for

that the function wk(a) = ¢k(x
oo > 0, finite termination of the line search of [Wierzbicki 1978]
(which is based on geometric expansion, contraction and bisection)

may be easily proved, thus providing a method for Step 4ii.

A nice feature of the algorithm is that it decreases

constraint violation at each iteration. To see this, note that



due to the line search rules

+ +1 +
@.8) PG < ) < 6 = e
Since Bk < 0 at Step 4 owing to (3.4). Observe that if some xk
is feasible, f+(xk) = 0 and (4.8) imply that all consecutive

points are feasible.

5. CONVERGENCE

In this section we analyze convergence of the proposed
algorithm. Since we do not assume that the initial x0 is feasible,
it is not suprising that we have to impose additional assumptions
on the gradients of the constraint functions outside the feasible

set. Namely, consider the following assumption:

(A1) If xeR" is such that f£(x°) > £(x) > 0, then x is not
stationary for (2.7), i.e., there are no {Xi}T satisfying

(2.8) - (2.10) with x = x.

We think that (A1) is a natural requirement for the problem
computing a feasible point to be well-posed. Note, however,

that we do not assume that the original problem (2.1) is normal.

Naturally, convergence results assume € = 0. We first

consider the case when the algorithm terminates.

Proposition 5.1

If the algorithm stops at iteration k, then xk is either
feasible and stationary for (2.1) or infeasible and stationary

for (2.7). If (A1) holds, then xX is feasible.

Proof. Since 0 = €e < Bk <0, (3.4) and (3.3) imply that pk =0,
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kK _ , .k _ : k, < k k +,.k
hence d” = A p~ = 0. Since fo,i(x ) < fo(x ), £, (x7) < £ (x),
(3.4) implies
k+1 k k +, Kk _ . k .k
(5.1) Ai [fo(x )-foli(x ) +E (x)] =0 lezlo(x (' 87)
_ k+1, .+, k k., _ . k .k
(5.2) Ai+n[f (x )-fi(x )l =0 1€EIC(x S .

Now, if xk is feasible, f+(xk) = 0. If f+(xk) > 0, then

(5.1) implies that 25" = 0 iEIo(xk,Gk). Noting that

k+1 k

k. Mi+nfi (X

ok K+1
0 =d" = z A i+n—i

iexo(xk,ak) -

k
£q ;(x0) + ) a

0 iGIc(x ,§ )

we see that {A§+1} satisfy either (2.3) - (2.6) or (2.8) - (2.10),

which ends the proof.
From now on we assume that the algorithm does not stop.
We shall also assume that {Ak} are uniformly positive definite
and bounded, i.e., that there exist two constants Y4 and YZ’
< .
0 < Yy S Yy

(5.3) vilx1? < [x|2 <y, lx|? for all k and a11 x€r" .

THEOREM 5.2

Every accumulation point of {xk} is either feasible and
stationary for (2.1), or infeasible and stationary for (2.7}).
If (A1) holds, then any accumulation point of {xk} is feasible.
In particular, if x0 is feasible, then every accumulation point

is feasible.



-1

Proof: Let X be some accumulation point of {xk}, i.e.,

k

x = x kek Since Bk < 0 by the rules of the algorithm, we

].
shall consider two cases, depending on whether lim sup {Bk;kek1}

equals zero or not,

A) Suppose that 8% > 0 for k € K,cK,. Then kali -+ 0 for
k
keK, by (3.4) hence pk* 0 k€K,, since 'kalz <1 | k|2 by
2 2 Y4 Ak
(5.3). As dk = Akpkr iPkli 1 Id | by (5.3), hence ak - o
k

kGEKZ. As {x } satisfy (3.5) and (3.6), we may introduce additional
XE = (0 to get

n m
kK _ k+1 'k k+1.', k
(5.4) -a" =) S TR +_Z Ainfs (X
i=1 i=1
m+n
(5.5) M >0 sy men TS 20,
1 i=1
k+1 k k +,.k 'k, _k kK, _
(5.6) iU () = o (xT) - £ (x7) + (fg L (x7),p) - B =
i=1;n .
(k1 +,.k 'k, _k k, _
(5.7) N{enlf; (X)-f(X)+<fi(x),p> - 871 =0

i=1;m .

Using (5.5) and passing to further subsequences, if

necessary, we may write that Xk+1 - Xi kekK, with
(5.8) X, >0 i=1; m+nand J X, =1 .
i DRl

i=1
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0.i’ fi’ are continuously differentiable, we may pass to
[4

to the limit in (5.4) through (5.7) with kEEK2 and get

Since £

m .
(5.9) X.£, (X) + ) X, f.(X) =0 ,

li 33

i=1 i“o,1 i=1 i+n"1i

— - - + P _ . _ .
(5.10) Ai[fo’i(x) - fo(x) - £ (x)] =0 i=1n ,

- - + - . _ .
(5.11) Miapglf;x) - £7(x)] =0 i=1;m .

Next the argument proceeds exactly as in the proof of

Proposition 1.

B) Now suppose that there exists E(i) < 0 such that
Bk < ﬁ(i), kek1 . By (5.4),(5.5) and the coninuity of problem
function gradients, dk are uniformly bounded for kEEK1, and thus
pk,kEEK1, are uniformly bounded by (5.3). Combining thig

with the continuous differentiability of the problem functions
[5, Appendix III, para. 3, Note 2], we infer that for almost all

k€ K, the following expansions are valid:

1

k k k k, _k
(5.12) £q,1 (X + ap ) = £y )+ a(fo'i(x ),p ) + of(a)

£+ ap®) = £, 65+ ate, 68,09 + ol

where o(a)/a = 0 when a { 0.

By (5.12) and (3.2), if iGEIO(xk,ak) then for almost all

k e K
€%
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(5.13) £y ;6 +op®) < £ o)+ alB-£y L 68 +E ) +ET DT + 0@

S £, + £ + af + 0

Similar arguments show that for ieEIc(xk,dk) and almost all

kGEK1

(5.14) fi(xk+apk) < et x5) + agX + 0(a) .

Using (5.12) and (3.1), we see that for i¢I,(x",¢")

(5.15) f, i(xk+apk) <f0(xk) + 55 - sy

and that for i(ﬁIc(xk,ék)

(5.16) £, (x*+op*) < £5(x") - 5 + o(a)

for almost all k€5K1, where o(a) > 0 as a { 0.

Let « = max {61,m2}7 (5.13) through (5.16) imply that there

exists a number a(x) > 0 such that for almost all k €K,

(5.17) £, ;S +ap®) <5 65 + 765 4 ag® 1= 15,

[
]
—
3

(5.18) £, (x*+ap®) < £ (M) + cep &

for all ae [0,a(X)]. Since ¢k(xk+apk), = max {fo(xk+apk) - fo(_xk),f(xk)}
and ¢k(xk) = f+(xk), the line search rules of Step 4 together

with (5.17), (5.18) imply that

k

(5.19) £4(x"+ o p") < £, + 565+ aBBRIS2
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(5.20)  £(xF+a5p5) < £7(x5) + xa(RBZI/2

for almost all k<EK1. Here we have used the fact that ak = 1 at

Step 3 may be accepted for k €K
K+
nk 1 k

1 only finitely often; otherwise

= ynk with vy € (0,1), taking place infinitely often
k+1

= B

k

would contradict 8% < B(X) > 0 for k€K, (note that n > n

1

by construction).

We shall now consider two cases:

B1) Suppose that f(xk) < 0 for some k. Then due to line search

rules f+(xk) = 0 for almost all k, and for these ke;K1 (5.19)
gives
(5.21) £, < £, + @B
Noting that f+(xk) = 0 and the line search rules give
£, (") - £ M) <o M) <o, () =0,

and using the continuity of fO’ we should have fo(xk) - fo(;:),kezK1 ’
which contradicts (5.21), since ka(x)B(x) < 0.

B2) 1If f(xk) > 0 for all k, then the above argument of B1 with

fo substituted by f and (5.19) by (5.20) also leads to contra-
diction, thus ending the proof.

Remark 5.3: Since Bk < 0 at Step 4, the above argument leadiné

to (5.17) and (5.18) may be repeated to show the existence of

some gk > 0 such that

¢k(xk+apk) < (bk (xk) + aetsk for a € [_O,C_x_k] ’
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which proves finite termination of Step 4i. Similar approach
may be used for proving finite termination of the line search

of [Wierzbicki 1978] used at Step 4ii.

6. RATE OF CONVERGENCE

In this section we shall show that under favorable conditions
our algorithm converges at least F-linearly (see [Pironneau and
Polak 1972]). Since our analysis generalizes the results of
Pironneau and Polak, we constantly refer to [Pironneau and

Polak 1972] providing here essential modifications only.

Throughout this section, the functions {f } and {fi}

0,1
are assumed to be convex and twice continuously differentiable.
We shall consider the problem (2.1) and our algorithm under the

following hypotheses.

(6.1) Assumptions. If £1(x°) = 0, let B = {(x€ R : £,00 < £,(x), £ () = 0}

Iffx) >0 ,

let B = {xe RN: £(x) < £(°1}. We shall assume that
i) B is compact
ii) f0 is strictly convex in B (e.g., f0 i i = 1;n are strictly
4

convex in B).

iii) ¢' = {xe RY: £(x) <0} is not empty.

It follows that there exists a unique §€]RN solving (2.1).
Since (6.1iii) implies (A1) of para. 5 and {xk} C B by construction,
the results of para. 5 show that xk - x. Let A(Q) denote the
set of Lagrange multipliers of (2.1) at §, i.e., ;GEA(Q) if it
satisfies (2.3 - 6). It is easy to prove (of [13, Lemma B.11])

that
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n
(6.2) A°= min {]

A.iAEAX) >0 .
i=1 1

We shall also assume that there exist constraints e > 0

and m°€(0,1) such that

(6.3) n |y - x[z < (y-Qx,L"(x,X)(y-x)) for all x,yGEB(ﬁ,e)
and AEN(A(X),e) |,

where the Lagrangian L for (2.1) is defined by

(6.4) L(x,\) i ienfi

0
I e~
—

m
i A.foli(x) +_Z AL F.(x) .
i i=1

Since the multipliers {>\k}°o remain in a compact set and

xk -+ X, a closer inspection of the proof of Theorem 5.2 shows
that

(6.5) AkGEN(A(Q),E) for almost all k ,

(6.6) gk >0 .

We assume that the algorithm constructs an infinite sequence
{xk} with vy = 0, i.e., that no direct prediction steps are taken.

We shall start by estimating

k k+1

(6.7) 6 = ¢, (X - ¢k(xk) )

LEMMA 6.1

There exists a constant a > 0 such that

k

(6.8) S for all k.



-17-
Proof. Let M =max {|| £, 'i'(x)H,Hf'j'(x)H:xeB;i=1,...n;j=1,...,m}. Since
14

k. k. _ .,k k . ..k kK -
fO,i(x +op) = fo(x ) + afp ’fO,i(X ) + alp £, L(6

k
0,1 ) - fO,i(x "o

Oli

k k
where eO,i = x + aO,ip and o, iE[0,0.], by (3.2) and (5.3) we

get for ae [0,1] and ieIO(xk,cSk)

k k < k k k k +, k 2 k2
fO'i(x +ap ) \fo,i(x ) + a[B —fo,i(x )+f0(x Y+f (x))] +aLp|
k + . k k 2 k2

Sfyx) + £ (x) +aB +aLp |, /1y
k .k

In the same manner we have for a€ [0,1] and iEIc(X  S)

2

AL

fi(xk-+apk) < 7 () + agk + alepkl
k

Now let k = max {[fo i(x)l,lfi(x)l:xeB;i=1,...,n;j=1,...,m}.
(4

By (3.1) and (5.3) together with X > § and (3.4), if i¢10(xk,5k)

then

k k, _ k k < k +, .k
fO,i(x +op ) = fO,i(x ) +alp ’fO,i(eo,i))\‘fO(X ) + £ (xX7) -8

+ o K\fB A/y1 .

In the same way we prove for ifﬁIc(xk,ﬁk) that
£+ ap®) < £ - 5o+ arERAAT

By definition of ¢k and the above estimates,

k

¢k(x -+apk) < ¢k(xk) + KaBk for o < a, where

(6.9) o = min {1,8/ V-8 (KA + /~8K) 1, (1 = <) v, /M)
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By the rules of Step 4 of the algorithm, if ak is accepted
at Step 4i or Step U4ii, then o* > ak/Z- by the same token
~k k c .. k k
@ & o /2 at Step U4iii. Therefore ¢k(x +a’p) = ¢k(x ) +
min {Evm1} ngk/Z. Since 8 =+ 0, (6.9) implies that there exists
a constant a > 0 such that a < min {si,m1}g#/2 and

k+1

¢y (X ) 2 ¢k(x ) + aB which ends the proof.

Proceeding as in [Pironneau and Polak 1972], let
(6.10) 0&) —mumhjf &) Qﬂgﬂ—o<0,i=1“.”nﬁiM)—o<O,i=1“.”m;
xEB} .

The following proposition is a trvial extension of

[Pironneau and Polak 1972, Lemma 2.7].

LEMMA 6.2
Let oe RMM by any solution of the dual of (6.10), i.e.,
of
m+n n
(6.11) TIB;O{IS:,IJ; {(1-121 u)o +lz1ul[f0'i(x) - £, )1 +1§ w01 .

XEB

Then any accumulation point of {u } belongs to the set A(i),
mtn_,
and } u; = 1 for all k.
i=1
Following [Pironneau and Polak 19272, Theorem 2.11], we obtain

m
(6.12) o(x*) = min { Z ul[f (x)-fo(xk)] +1 1_lli<+n

fi(x)} .
XEB i=1 i=1

Upon replacing x by X in (6.12) and noting that f(x) < 0, we

obtain
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n ”~
(6.13) o (x5) <.£ G]i‘[,fo(x) -fo(,xk)] i

i=1

Next, from Lemma 6.2 and (6.2) we deduce that

k 0

n
lim inf J uy 21" >0

k > = i=1
which implies that, given any 1€ (0,1), there exists a ko(r)

such that

(6.14) af > 2%(1-1) for all k > ko (T)

1

e~

i
Combining (6.14) with (6.13) we now obtain
(6.15)  o(x) 2 2% -0 ) - £, .

Generalizing [Pironneau and Polak 1972, Theorem 3.16], we

get
LEMMA 6.3

Assume (with no loss of generality) that n® < Y5q+ Then

y
" (6.16) o(x*) > 2 185+ 2|p¥|2 1 for almost all k.

m k

Proof: From [Pironneau and Polak 1972, (3.23)] we obtain that

that for almost k.

n m

- k
{; v.[foli(y)— fo(x )+i£1

(6.17)  o() = max {inf _ .

v2 0 yEB(X,€) i=1

mHn
Vignfi @ F: ]V
i=1

1}
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Therefore for almost k

n
(6.18) O(Xk) 2 inf {Z )\1;+1[f0 1( )..f (x ]+Z )\k+1[f (x ) - f+(xk)]
YEB(X,E) i=1 ’
T k+1 k+1 X
+i£1xi [£5,1 ) £ (X )] ’rlz N (£; @) - £, (D1}

Expanding £, .(y) - £ (x ) and £, (y) - f.(xk) to second order
0,1 0,1 i

terms and making use of (6.3) and (6.5), we obtain that for almost

all k
n
(6.19) o) >inf _ {] A]:H (£, , (%) - £, - £5 (9] +E A’:I;[fl(x - £ (1
yEB(x,e)l- r1 i=1
m
+<Z xk“ £, :!L(xk)+z A];I;fi(x ),y -X >+_ Oy =K%}
i=1 ! i=1

By deleting theconstraintyEEB(ﬁ,e) in (6.19) and using (4.3) and

(5.3), we obtain

(6.20) o6& > 1 X 1g, 6 £, 089 - £ 01 +] xfi;[fl(m-f ()1
i=1 i=1
2 1K)
an’ Pk

Since yz/m0 2 1 by assumption and the first two terms in (6.20)

are nonpositive, (3.4) and (6.20) imply (6.17), which proves
the lemma.

We are now ready to state the main convergence result.
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THEOREM 6.4

Suppose that f(xk) < 0 for some k. Then given any 1€ (0,1),

amy ¥ (1-2)
2

N - £ R < [1-

k A
(6.21) fo( [fo(x ) - fo(x)]

Proof: By the rules of the algorithm, we have f+(xk) = 0 for all

k, which in turn implies ¢k(xk) = f+(xk) = 0 for those k. From

k+1

(6.7) we now obtain ok = ¢k(x ), Lemma 6.1 implies

k+1

K1) - fo(xk) < ¢k(xk+1 k < gk

(6.22) £4 ) = o° <o .

From (6.15) and (6.16) we obtain

0

AT (1-1)
k < M0k < To= A X
(6.23) B Y, o(x™) —Yz [fo(x) fo(x )yl

for almost all k. Finally, from (6.22) and (6.23)

2% (1-1)

m
Xk+1) k) < 0

(6.24) £.(

o [£, (%) - £,(x)1

- f,.(x
0 Yo
for almost all k. Rearranging (6.24), we obtain (6.21), which

completes our proof.

COROLLARY 6.5

[}

Suppose that f(xk) < 0 for some k, then {xk}k=0 converges

to x linearly.

Proof: Let X EA(X). According to the Taylor expansion formula,

for any xk there exist a e(xk)e(0,1) such that
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(6.25) ) Tilfg, ¢ o - £, ;@] +.2 Ry [F; 6 =€, G =
i=1 i=1

k A
(¥ - X lef

A 1 k A n-— k ~
L ' (%) +2 xl LD+ (X=X, (i;xifoli(g))(x -3,

0,1 121

with ¢ = e(xk)xk + [1 -e(xk)]§. Since X satisfies (2.3) through

(2.6) and xk -+ x, (6.3) and (6.25) give

m

+,.k + A 0, .k 2,2
(6.26) l§1x (£, (x* ) - £ (x)] + Z M+n [£7(x7) = £ (x)] 2 =[x = x|
Therefore, for almost all k
2§x
(6.27) x5 -~ %]?% < -’m—[f () - £,01
0

and our thesis follows from (6.21) and (6.27), thus ending the
proof.

Remark 6.6: If the initial point x0 is feasible, we may modify
the algorithm to obtain a feasible direction method generalizing
[Pironneau and Polak 1973]. It suffices to re-define the
improvement function ¢k by putting ¢k(x) = fo(x) - fo(xk) and
then to include an additional step-size requirement that

f(xk+1

) <0 in the algorithm's description. One may easily
check that all results of this paper remain wvalid for this

modification; in particular - linear convergence is retained.
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