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A VARIABLEMETRIC METHOD O F  CENTERS FOR NONSMOOTH 
M I N I M 1  ZATION 

K.C. Kiwiel 

INTRODUCTION 

We consider  t he  problem of minimizing f on S = {x E xN: h (x )  G 0 I 
where f :S + IR and h:IRN + IR a r e  l o c a l l y  L ipsch i tz  continuous 

funct ions.  We present  an implementable modif icat ion of an 

algor i thm constructed by Lemarechal (1978) and f u r t he r  extended 

by M i f f l i n  (1979) and show t h a t  t h e  a lgor i thm's  accumulation 

po in ts  a r e  s ta t i ona ry  i f  f o  and h a r e  weakly upper semismooth 

The method is a f e a s i b l e  po in t  descent  method which combines 

a genera l i za t ion  of t h e  method of cen te rs  with quadra t ic  approx- 

imation of some Lagrangian funct ion i n  t h e  s p i r i t  of (Lemarechal 

1978). A sisapl i f ied va r i an t  of t h e  algor i thm may be i n t e rp re ted  

a s  an app l i ca t ion  of Shor 's  va r iab le  metr ic  techniques (Shor 1979) 

t o  Wolfe's method of conjugate subgradients (Wolfe 1975) . Our 

vers ion d i f f e r s  from Lemarechal's and M i f f l i n t s  algor i thms 

(Lemarechal 1978; X i f f l i n  1979),  because of i t s  r u l e s  f o r  updating 

of t h e  search d i r ec t i on  f ind ing subproblem. More s p e c i f i c a l l y ,  

our vers ion does no t  requ i re  unl imited s torage of g rad ien t  

informat ion, cont rary  t o  (Lemarechal 1978; M i f f l i n  1979). 
Instead,  i t s  s torage requirements a r e  f l e x i b l e  and may be con t ro l l ed  

by a user .  To t h i s  end we in t roduce r u l e s  f o r  reduct ion o r  

aggregat ion of  g rad ien t  informat ion, which necess i t a te  new tech- 

niques of convergence ana lys is .  We a l s o  g ive  r u l e s  f o r  va r iab le  



metric updat ing.  , Pre l im inary  numerical r e s u l t s  s e e m  t o  v a l i d a t e  

t h e  approach presented  i n  t h i s  paper.  

The a lgor i thm r e q u i r e s  a f e a s i b l e  s t a r t i n g  p o i n t ,  i .e . ,  an 
0 x E S ,  bu t  f need n o t  be de f i ned  f o r  X ~ S ,  which i s  impor tant  

i n  some a p p l i c a t i o n s .  

I n  sec .  2 w e  g i v e  d e f i n i t i o n s  and pre l im inary  r e s u l t s .  

The a lgor i thm i s  de f ined  i n  sec .  3 and in .  sec .  4 w e  d i s c u s s  

d e t a i l s  of  i t s  implernenta.tions and how it compares w i th  t h e  

methods o f  (Lemarechal 1978; M i f f l i n  1979) .  I n  sec. 5 w e  

pro.ve s t a t i o n a r i t y  o f  i t s  accumulat ion p o i n t s .  Numerical 

r e s u l t s  a r e  p resen ted  i n  sec .  6 .  

2. DEFINITIONS AND PRELIMINARY RESULTS 

Throughout t h e  paper w e  most ly adhere t o  t h e  now s tandard  

n o t a t i o n  i n  ( M i f f l i n  1979; Clarke 1976; C la rke  1975) .  The 
N s c a l a r  product  of u = ( u l , .  . . ,uN) and v = (v l  , . . . , vN)  i n  lR , 

N 
de f ined  by 1 uivi is denoted by ( u , v )  and t h e  Euc l idean norm o f  

i= 1 1 

u, de f ined  by ( u , u ) ' ,  i s  denoted l u l .  B ( x , E )  = {x '€lRN: 1x1 - X I  < €1  
i s  an open b a l l  w i th  c e n t r e  x and r a d i u s  E .  A convex h i l l  of a set 

W c lRN i s  denoted conv(W) . For any symmetric p o s i t i v e  d e f i n i t e  

N x N matrix A, ( . , .)A denotes  t h e  s c a l a r  product  induced by A, 
N 1 

i .e . ,  ( u , v ) ~  = ( A u , v )  f o r  u , v ~ R , a n d  lu lA = ( u . u ) i .  A* denotes 

t h e  a d j o i n t  o f  A and I t h e  i d e n t i t y  matrix. hmin(A) and Xmax(A) 

denote t h e  minimal and t h e  m a x i m a l  e igenva lues  o f  A, r e s p e c t i v e l y .  

N For any set W c IR and a symmetric p o s i t i v e  d e f i n i t e  mat r i x  

A, t h e r e  i s  a unique p o i n t  w i n  t h e  c l o s u r e  of  conv ( W )  having 

minimum I I A 
-norm; it w i l l  be denoted by NrAW.  Algebraically, 

t h e  p o i n t  w i s  c h a r a c t e r i z e d  by t h e  r e l a t i o n  

f o r  a l l  ~ E W .  ( " f w ) A  l w l A  

L e t  F : lRn+ IR be a l o c a l l y  L i p s c h i t z  functt ion (Clarke 1976; 

Clarke 1975) i .e., f o r  each  bounded s u b s e t  B C lRN t h e r e  exists  

a cons tan t  L such t h a t   IF(^) - F ( z )  ( G ~ l y  - z l  f o r  a l l  ~ , Z E B .  



The generalized gradient of Fat x (Clarke 1976; Clarke 1975) aF (x) , 
is the convex hull of the set of limits of sequences of the form 

k k {VF (x ) : xk + x and F is differentiable at x 1. The point-to-set 

mapping aF is uppersemicontinuous and locally bounded (Clarke 1976; 

Clarke 1975). 

As in (Mifflin 1979; Mifflin 1977), we say a point Z E S  is 

stationary for f on S if 0 E M(;) where 

because 0 EM(;) is a necessary condition for G E  S to minimize f 

on S. The point-to-set mapping M is uppersemicontinuous and 

locally bounded (Mifflin 1979; Mifflin 1977). 

In order to implement the algorithm, we suppose that we have 

subroutines that can evaluate functions gf (x) E af (x) for x E S 
N and gh (x) E ah (x) for x E IR . 

N Associated with f, h, gf and gh let a:s x IR + lR+ be a non- 

negative-valued function 

where h+ (x) = max {h (x) ,O 1. a is a measure of deviation from 

linearity. Note that it differs substantially from its counter- 

part introduced in (Mifflin 1979). 

Associated with the sequence of points generated by the 
k - algorithm {x lk-O - let 

(2.4) k 9 k ( ~ )  = max {f(x) -f(x ) ,h(x)1 



be t h e  d i s tance  funct ion of t h e  modified method of cen t res  

(Pironneau and Polak 1972), a n d . l e t  

be an a lgor i thmic mapping. 

3 .  THE ALGORITHM - 
Let ma, mc, mL, mk, cO,  K be f i xed  pos i t i ve  parameters 

sa t i s f y i ng  mL < m .  < 1 .  Let i denote t h e  maximum number of 
g 

grad ients  t h a t  t h e  algor i thm i s  allowed t o  s t o r e  i n  a s e t  G - 
f o r  d i r ec t i on  f ind ing;  M > 1 .  L e t  i denote t h e  maximum number 

UP 
of va r iab le  metr ic  updatings. 

0 Suppose i n i t i a l l y  t h a t  x E S  and l e t  A. be a pos i t i ve  d e f i n i t e  
0 0 -1 N x N matr ix.  L e t  p0 = g f ( x  ) and do = -Ho; , where Ho = 

0 0 A. ' 
Note t h a t  p EM, (x ) . W e  suppose t h a t  g,(x ) # 0 ,  and hence 

0 0 2 V -I 0 - 
V = - I P  l h o  < 0; otherwise x" would be s ta t i ona ry .  Se t  r = r 

and choose an est imated s h i f t  i n  x a t  t h e  f i r s t  i t e r a t i o n  so > 0 .  
0 Set  G O  = fl, A0 = 8, a o  = 0 and M = 0 .  Set  k = 0 and proceed 
g 

according t o  t h e i n s t r u c t i o n s g i v e n  below. 

Step 1 ( l i n e  sea rch ) .  By a l i n e  search procedure discussed 
k below, f i n d  two s teps i zes  tl and ti such t h a t  0 4 t: tR and 

such t h a t  t h e  two corresponding po in ts  def ined by 

s a t i s f y  

k k  k k  Yi = xk + t Ld  and yk = xk + tRd 



and 

and 

(3 .4)  
k k  k k  k  k  k  

-a (yL lyR)  + ( g (yR) , d  ) 3 mRV wi th  g  (yR) E Mk ( Y ~ )  

Step  2. 1 f  tt = 0, set s k+ 1 
= sk and K k+ l  = K ~ / Z ;  o the rw ise ,  

i . e . ,  i f  

t; > 0 ,  set s k+l - k k  k+l - - IYL - x 1 and K = K  . 

S e t  x  k+ l  = yk and a k+ 1 = a k  + t R l d  k k  1 . 

- 
Step  3. (Bundle augmenta t ion) .  I f  = M d e l e t e  one element 

k  4  g t k  j k 
g  (yg) from G (e. g. , t h e  o l d e s t  one) and a  (x , yR) from A , re- 

k k  p l a c i n g  M by Mg - 1 .  
4 

S e t  G 
k k  k+ l  = G u ig (yR}  and A = A k u { a ( x  k+l  ,yR k ) }  and 

Update t h e  e lements  o f  A 
k+ 1 s o  t h a t  i f  a  (xk, ya) corresponds t o  

j k+l j g (y,) , t h e n  it i s  s u b s t i t u t e d  by a  ( x  ,yR) accord ing  t o  (2 .3 )  . 
S e t  ci k+ 1 

k+l  equa l  t o  t h e  mean va lue  o f  t h e  e lements  of  A . 
P 

S t e p  4. (Rese t t i ng  t es t s ) .  I f  e i t h e r  o f  t h e  two tests g iven  

below 



is satisfied, go to Step 8. 

k+ 1 Step 5 (Direction finding). Solve for (d,v) = (dk+',v )EmN+' 

the kt' quadratic programming subproblem: 

minimize 

subject to 

j k+l (3.7b) -a (xk+l tyj) + (g (y;) ,d) G v for M k+l elements. g ( yR)€~  
g 

and 

Set X k+l equal to the dual variables of the subproblem (3.7) 

(see set- 4) and 

Step 6 (Resetting tests). If either of the two tests given below 

is satisfied, go to Step 8. 

Step 7. Update A,, as discussed below, to get a positive definite 
- - I 

Ak+lt Set Hk+l - Ak+l and 



and 

Replace k by k+l and go t o  Step 1. 

Step 8 (Rese t t i ng ) .  I f  t h e  number of  updat ings of  Ak s i nce  i t s  

l a s t  r e i n i t i a l i z a t i o n  exceeds fi 
UP 

r e i n i t i a l i z e  t h e  va r i ab l e  

metric by s e t t i n g  A,- = I .  Solve f o r  (dkcl .vk+') t h e  subproblem 
A 

- 
(3.6a) and (3 .6b) .  and set p k+ 1 = - A d  k+ 1 . I f  l p k + ' l  < c O  and 
Gk+l - (xk"). t h e n s t o p .  I f  I p  kk+l 1 > E ~ .  set a k+l  = 0 and - Mk+l . 
update Ak t o  g e t  a p o s i t i v e  d e f i n i t e  A k c l .  Compute d K+l and 

v k+ 1 by (3 .10 ) .  w i th  X = 0 (see sec. 4 ) .  rep lace  k by k + 1 
P 

go t o  Step 1.  I f  1 pk+l 1 < E and M 2 1 . then d e l e t e  t h e  o l d e s t  0 Y 
element of G k+l  and t h e  corresponding element of A and rep lace  
Mk+ 1 k I f  Mk+' = 0 ,  then set G 

k+l - 
g by Mg - 9 

- Mk+ (xk+' ) and 

Mk+ 1 = 1 . Repeat Step 8 from t h e  beginning. 
g 

4.  REMARKS ON THE ALGORITHM 

A complete ana l ys i s  of t h e  d i r e c t i o n  f ind ing  subproblem 

(3.7) may be found i n  (Wierzbicki 1978) . The kth subproblem dual  
Mk+l+l 

i s  t o  f i n d  va lues of  t h e  dual  va r i ab l es  ( m u l t i p l i e r s )  X E IR g 

t o  minimize 

sub j ect t o  

C j k+l A .  + A = 1 and h > 0 f o r  g ( y R ) ~ ~  J P j A P 5 O  . 
g (.y$ E G k+ 1 



Let X k+l be some solution of 4 1 ) . Then 

For the subproblem (3.7a) and (3.7b) used at Step 8, we put 

hk+' = 0 in (4.1) and (4.2). 
P 

Note that the dual subproblem (4.1) has at most f i + 1 
9 

unknowns, where is set up by a user, whereas in (Lemarechal 1978; 

Mifflin 1979) the size of the subproblem equals k and grows to 

infinity. 

We shall now show that our algorithm is an extension of 

the modified method of centres ((Pironneau and Polak 19721, done 

in the spirit of (Lemarechal 1978). Suppose that 

(4.3) f (x) = max fi (x) and h(x) = max hi (x) 
i=l;n i=l ;m 

where f i: IRN + IR and hi: IRN + IEl are continuously differentiable. 

In (Kiwiel 1981 ) , we have presented an extension of the 

methoa of centres to this case, in which the search direction 
k d is computed by solving 

(4.4a) minimize 4 1 8 . 1 ~  + v 
Ak 

subject to 

(4.4b) k k k k -[f(x ) -fi(x ) + h + ( ~  ) I  + (Vfi(x 1.d) < V  

k k  
~ E I ~ ( X  .E 1 , 



where the activity sets IO and Ic are defined by 

and E~ 2 - E > 0 is an activity variable. The stepsize tk is then 

computed by an Amijo-type rule so that x k+l = xk + tkdk satisfies 

Assuming that {Ak} are uniformly positive definite and bounded. 

we prove in (~iwiell981) that every accumulation point 

of the above algorithm is stationary and that, under additional 

regularity assumptions, the algorithm converges linearly. More- 

over, we noted that by Wierzbicki's results (Wierzbicki 1978), 

(4.4) may be interpreted as a quadratic approximation direction 

finding subproblem for the function $k at xk, which in turn 

approximates Ioffe's Lagrangian (Ioffe 19791, 

(4 6) @ (x) = maxif (x) - f (GI , h (x) 1 , 

where 2 minimizes f on s. Therefore, the results of 

(Wierzbicki 1978) suggest that in order to obtain faster con- 

vergence, the variable metric Ak should approximate the Hessian 

L(G,i) of the normal Lagrange function L for the problem of 

minimizing f on s, i-e. 

where E IR m+n is an optimal Lagrange multiplier [see (Clarke 1976) 1 
satisfying 



To see the relevance of the above results for the algorithm 

presented in this paper, we start by showing that the subproblem 

(3.7) is an approximation of the subproblem (4.4) . By (4.3) and 

(Clarke 1975, Theorem 2.1), 

(4 9) af(x) = conv {Vfi(x):fi(x) =f(x)} and 

ah (x) = conv {vhi (x) :hi (x) = h (x) } . 

k If some hJ is close to x , linearization of fi and hi at yJ gives 

(4.10) fi(xk) "fi(yJ) + ( ~ f ~ ( y ~ ) , x ~ - y ~ )  and 

j Now (4.9) implies that we may suppose that gf (yJ) = Vfi(y ) with 
j j fi (y ) = f (yJ) , or that g. (yJ) = Ohi (yJ) with hi (yJ) = h (y ) . n k k j If we further assume that Ofi (x ) Vfi (yJ) or Vhi (x ) Vhi (y ) , 

which is justified when fit hi are continuously differentiable 
k and yJ is close to x , then collecting the above results we may 

write that 

Note that the bracketed terms on the left-hand side of (4.11) are 

nonnegativeby (4.3). If we assume that their right-hand side 



coun te rpa r t s  a r e  a l s o  nonnegat ive,  then  they  a r e  equal  t o  

a  ( x k I y J )  de f ined  by (2 .3)  and t h e r e f o r e  ( 4 . 1 1  ) imp l ies  t h a t  t h e  

subproblem (3.7a) and (3.7b) i s  an approximat ion of  t h e  sub- 

problem ( 4 . 4 ) .  

On t h e  o t h e r  hand, a  c l o s e r  i nspec t i on  of  t h e  dua l  sub- 

problem ( 4 . 1 )  shows t h a t  g  (yi) - s with  r e l a t i v e l y  sma l l e r  
k+ 1 a ( x k I y J )  - s tend  t o  c o n t r i b u t e  more t o  t h e  d i r e c t i o n  d  , 

s i n c e  corresponding A; k+l - s a r e  l a r g e r  ( c f .  (4.2b) ) . This  
J 

f a c t  prov ides another  argument f o r  us ing  t h e  a b s o l u t e  va lue  i n  

Although ou r  a lgor i thm is  designed f o r  f unc t i ons  of more 

genera l  na tu re  than  t h a t  g iven by ( 4 . 3 ) ,  w e  l i k e  t o  t h i n k  of  

L ipsch i t z  f unc t i ons  as i f  they  were po in twise maxima o f  i n f i n i t e  

c o l l e c i t o n s  of  smooth func t i ons .  A s t ra igh t fo rward  ex tens ion  o f  

t h e  above approach may be based on t h e  obse rva t i on  t h a t  one may - 
re -de f ine  t h e  a c t i v i t y  sets i n  ( 4 . 4 )  by p u t t i n g  I. ( x , E ) =  { l  , .. .n}= T - 0 
and I C ( x I € )  = i l ,  ..,m} = I without  impai r ing t h e  convergence o f  - 
t h e  a lgor i thm i n  (Kiwiel 7 981 ) . Hence, i n  t h e  genera l  c a s e ,  

one may t r y  t o  c o n s t r u c t  t h e  a c t i v i t y  sets by memorization, i .e . ,  
J j use a l l  prev ious ly  computed g ( y J )  - s and f  (y ) - s o r  h ( y  ) - s 

f o r  d i rec t . i on  f i n d i n g .  Th is  i s  done by Lemarechal (1978) and 

M i f f l i n  (1979) . W e  fo l low a d i f f e r e n t  pa th ,  d i s c a r d i n g  t h e  

o l d e s t  in format ion a t  Steps  3  and 8  and agg rega t i ng  it by t h e  

use of  t h e  c o n s t r a i n t  ( 3 . 7 ~ )  i n  d i r e c t i o n  f i nd ing ,  s i n c e  by 

( 4 . 1  ) and (4.2b) , a g r a d i e n t  d e l e t e d  from G kC1 a t  s t e p  3  may 

s t i l l  c o n t r i b u t e  t o  pkC1 , and hence t o  dkcl , through i t s  i n -  
k  f l uence  on p  . 

W e  s h a l l  now address  t h e  important  ques t i on  o f  t h e  choice 

o f  t h e  v a r i a b l e  m e t r i c ,  us ing  t h e  r e s u l t s  of  t h e  a n a l y s i s  o f  
k+ 1 

t h e  " e x p l i c i t "  case  ( 4 . 3 ) .  W e  s t a r t  by no t ing  t h a t  i f  1 

denotes a  Lagrange m u l t i p l i e r  i n  t h e  subproblem ( 4 . 4 1 ,  then  
A 

under r e g u l a r i t y  assumptions A + A ,  see ( K i w i e l  1981 ) . 
T 

Therefore t h e  use o f  some quasi-Newton formula which c o n s t r u c t s  - 
A 

k+ 1 
from A k I  x  k+l  - xk and LX(x k+l  , A ~ + ' )  - L ( x k , ~ v l )  i s  

X 

reasonable (Wierzbicki  1978) .  1 n ' t h e  more g e n e r a l  case ,  from - 
(4.2b) and (4.7)  w e  see t h a t  p  

k+l Ak+l 
approximates L~ ( x  , . 



However, t h e r e  is  no quan t i t y  corresponding t o  L (x  lk+') , hence 
k+ 1 X I T  

w e  consider  us ing p  - pk f o r  va r i ab l e  met r ic  updat ing.  

On t h e  o t h e r  hand, s i nce  pk may be i n t e r p r e t e d  a s  an element 

of t h e  genera l i zed  g rad ien t  of a  nonsmooth analogue of t h e  

Lagrangian ( 4 . 7 ) ,  t h e  use of  S h o r t s  famous va r i ab l e  met r ic  (Shor 

1979) based on t h e  d i f f e rence  of two success ive  g rad ien t s ,  i . e . ,  
pk+ 1 - pk i n  our  case,  immediately suggests  i t s e l f .  Thus w e  

t ake  

where Bk i s  an N x N matr ix  updated i n  t h e  fo l lowing way. In t ro -  

duce t h e  opera to r  of space d i l a t i o n  R ( 5 )  i n  a  d i r e c t i o n  B 
5 E mNt 1 5 1 = 1 and a c o e f f i c i e n t  of  space d i l a t i o n  B E [0 ,  11 by 

o r ,  i n  matrix form, 

Then, fo l lowing Shor (1979),  w e  choose a  f i xed  BE ( 0 , I )  and 

take  

w i th  t h e  d i r e c t i o n  C k + l  s a t i s f y i n g  

I t  i s  q u i t e  easy t o .  check t h a t  ( 4 . 1 2 )  , (4.13) and (4.15) imply 

t h a t  



(4.16) N f o r  a n y u ~ ~  . 

Therefore w e  adopt t h e  fo l lowing s t r a t e g y .  During t h e  run of 

t h e  a lgor i thm,  t h e  v a r i a b l e  m e t r i c  matr ix  i s  updated a t  most - 
M - t i m e s ,  count ing  from i t s  l a s t  r e i n i t i a l i z a t i o n  a t  S tep  8. 

UP 
Therefore (4.16) imp l i es  t h a t  

hence {A 1 and { B ~ }  are uniformly p o s i t i v e  d e f i n i t e  and bounded. 
k  

Due t o  l i m i t e d  space,  w e  s h a l l  n o t  d i s c u s s  d e t a i l s  o f  p o s s i b l e  

l i n e  search  procedures used a t  S tep  1. It s u f f i c e s  t o  mention 

t h a t  M i f f l i n ' s  procedures from ( M i f f l i n  1979) o r  ( M i f f l i n  1977) 

may be e a s i l y  adapted t o  s u i t  our  needs expressed by (3.1) 
k k  k  through (3 .4 ) .  For example, t a k e  5 < min E ~ , K  s / I d  ( 1  i n  t h e  

procedure i n  ( M i f f l i n  1979:9),  s u b s t i t u t e  f  by O k  and d e l e t e  h  

from i t s  d e s c r i p t i o n .  One may a l s o  check t h a t  t h e  cond i t i ons  f o r  

f i n i t e  t e rm ina t i on  o f  t h a t  procedure do n o t  change, i .e . ,  f  and 

h  should be weakly upper semismooth [see ( M i f f l i n  1979) o r  

(Mif f l i n  1977) f o r  t h e  d e f i n i t i o n ]  . 
W e  s h a l l  now d i s c u s s  t h e  r e s e t t i n g  tests which enab le  t h e  

a lgor i thm t o  drop o b s o l e t e  g r a d i e n t  in format ion a t  S tep  8.  The 

test  (3.5) a l lows r e s e t t i n g  each t i m e  when t h e r e  i s  s u f f i c i e n t  

decrease i n  t h e  o b j e c t i v e  func t i on  va lue .  The r e s e t t i n g  tests 

(3 .6)  and (3.9b) f o r c e  r e s e t t i n g  when t h e  bundle G k+ l  i s  no t  
k  k+ 1  

l o c a l ,  i. e. , ak+' is l a r g e  compared wi th  1 v  I o r  1 v  1 , and 
hence t h e  d e l e t i o n  of  some o l d  g r a d i e n t s  i s  j u s t i f i e d .  The 

r e s e t t i n g  test  1 pkcl 1 4 cO , cO being of t h e  o r d e r  of machine zero ,  

which appears a t  S teps  6  and 8 ,  is  used t o  f o r c e  a r e s e t t i n g  
- - 

when p  k f l  may be meaningless due t o  round-off e r r o r s .  Its second 
k+ 1 k  purpose i s  t o  f o r c e  lx - x  I + 0 ,  as shown i n  t h e  nex t  s e c t i o n .  



5. CONVERGENCE 

Since M(x) i s  a convex compact s e t  f o r  any X E I R  
N 

(M i f f l i n  1977:Proposi t ion 2 .7 ) ,  a  po in t  Z E  s i s  s t a t i o n a r y  f o r  

f  on S i f  and on ly  i f  

W e  say t h a t  a  po i n t  Z E S  i s  E - s t a t i ona ry  f o r  f  on S i f  0 

If t h e  a lgor i thm s tops  a t  S tep  8 ,  then  by ( 4 . 1 ) ,  (4 .2b ) ,  
k+l k+l t h e  s topping r u l e  and ( 2 .5 ) ,  we have pkclE{gf ( x  ) )u{gh (x ) 1 

k+ 1 
and I P  I <E0; )  hence x  kC1 i s  E - s t a t i ona ry .  Below w e  s h a l l  

k  0  
show t h a t  i f  x  E S then any x  E S. Summing up, w e  see t h a t  

if t h e  a lgor i thm s tops ,  then i t s  l a s t  po i n t  i s  f e a s i b l e  and 

E - s ta t i ona ry .  
0 

From now on w e  suppose t h a t  t h e  a lgor i thm does no t  te rmina te .  

Then w e  have t h e  fo l lowing convergence theorem. 

k  THEOREM 5.1 . Suppose t h a t  {g (y  ) lrn i s  uniformly bounded. Then 
kR every accumulat ion po i n t  o f  {x ) 1s f e a s i b l e  and E - s t a t i ona ry  

O k  f o r  f  on S. The set o f  a l l  accumulat ion p o i n t s  o f  {x  ) is c losed 

and connected and f  is cons tan t  on t h i s  set. 

k  Proof .  To ob ta i n  con t r ad i c t i on ,  suppose t h a t  {x  1 has some 

accumulat ion po i n t  ; which i s  no t  E ~ - s t a t i o n a r y ,  i .e . ,  

xk + ; ~ E K ~  and 

(A) W e  s t a r t  by showing t h a t  t h e  a lgor i thm i s  r e g u l a r ,  i .e.,  t h a t  

(5.4)  1 Xk+l k  - x  1 + O  a s  k + m  . 



k  
On e n t e r i n g  S t e p  1,  I p  1 > E~ by (3 .9a )  and t h e  r u l e s  o f  S t e p  8 .  

k 2  - S i n c e  Ip I - / d k i k  by ( 3 . 1 0 ) ,  and (4.17)  i m p l i e s  t h a t  
Bk 

k  2 2ii 
I P  I H .  a @ up ( pk / 2 ,  w e  conc lude  t h a t  on e n t e r i n g  S t e p  1 

K 

S ince  a ( x , y )  i s  nonnega t i ve  by (2 .3 )  and X k+l  0 ,  (3.10) and 

(5 .5)  imply t h a t  a t  S t e p s  1 and 7  

k  k  k  Suppose t h a t  x E S. Then $ k ( ~  ) = h + ( x  ) = 0  and (3.3) w i t h  

(5 .6)  imply t h a t  .A k  h ( x k + l )  = h ( y i )  C 0,  s i n c e  t i  k  2 0. The re fo re  
0  xk+'q S and i f  x E S,  t h e n  

(5 .7 )  
k  k  $ k ( ~  ) = h + ( x  ) = 0  f o r  a l l  k.  

Now ( 2 . 4 ) ,  (5 .6)  and (5 .7 )  imply t h a t  

(5 .8)  
k  f  (xk+l  ) - f (x ) c m .  t k vk  4 o f o r  a l l  k.  

1 1  

which t o g e t h e r  w i t h  (5 .7 )  p roves  t h a t  eve ry  accumu la t ion  p o i n t  
k  o f  { x  ) h a s  t h e  same f - va l ue  and i s  f e a s i b l e .  By (3.1)  and 

k  (4.17)  and lp ( > E 0  

k  S i n c e  f  (x ) + f )  k E K 1 ,  ( 5 . 6 ) ,  (5 .8 )  and (5 .9)  imply ( 5 . 4 ) .  



(B) We now prove t h a t  

I f  t h e  a lgor i thm t akes  an i n f i n i t e  number of s e r i o u s  s t e p s  w i th  tt > 0 ,  t h e  r u l e s  of S tep  2 and (5.4)  show t h a t  t h e  sequence of 
k s h i f t s  IS  1 converges t o  zero.  On t h e  o the r  hand, i f  tt = 0 f o r  

a lmost a l l  k ,  then. subsequent ha lv ing K a t  S tep  2 f o r ces  

rk + 0. S ince r k  ; i n  both cases  and (3.2)  imp l ies  t h a t  

k k+ l }  - xk+l 1 c rk max {s ,s I YR I 

t h e  v a l i d i t y  of (5.10) i s  es tab l i shed .  

(C) W e  s h a l l  now cons ider  asymptot ic p rope r t i e s  of t h e  sets 
k k G and A . Define a u x i l l i a r y  v a r i a b l e s  

(5.11) -k a = max { I y '  - x  k+ 1 j k + l l  
R I : G ( Y ~ ) E G  

j k + l } ,  ak = min {a (xk+l ,yA) :g ( y R ) E ~  - 

Since G~ con ta ins  a t  m o s t  elements,  ( 5 . 4 ) .  (5.10) and (5.11) 
g 

imply 

W e  s h a l l  now prove t h a t ,  g iven two p o s i t i v e  numbers 6 and E 

and p o s i t i v e  i n t e g e r s  N1 and N 2 ,  t h e r e  e x i s t s  an i n t ege r  N3 2 N1 

such t h a t  f o r  k = N 3 ,  N3  + l t . . . ,N3  + 1J2 



j j 
(5.15~) g(yR) =gf(yR) for g ( y J ) ~ ~ k  R if h(ji) < 0 . 

(5.15a) follows from xk + k € K l  and (5.4) with (5.10). (5.15b) 

follows from xk + ; k E K1, (5.4) and (5.10) , the assumed bounded- 
k - ness of ig(y ) lk=qt the definition of a(x,y), (2.5) and (3.4). In 

particular, if h(x) < 0, then for sufficiently large k E K 1  we 
k must have h(yR) < h(;)/2 by (5.10), hence (2.5) and (3.4) imply 

k k 
that g(yR) = gf(gR) and one need only consider the upper part 

of (2.3), which also proves (5.15~). 

(D) We shall now analyze asymptotic properties of the sub- 

problem (3.7). By (3.10.) and (5.12) 

at Step 1, so (3.4) and (3.10) imply 

k, 5 0  and l p k 1 2  Since a(x ,yR by (5.5) , if some constant 
Hk 

mi satisfies Ip; E (ma, 1 ) and 

then 



k Introduce an auxilliary variable po by 

Then. (4.1) implies 

k Since {g(yR) 1 is bounded by assumption. (4.17) implies the 

existence of a constant C < +a satisfying 
9 

(5.22) 1g(yk) I c for all k. 
Hk 

-k ^k Suppose now that a and a and a constant 6 satisfy 

(5.23) -k ^k 
max {a ,a 1 G 6 G (rn;(-mR)~l/mR . 

Then (5.18) through (5.23) and [3, Lemma 4.41 imply that.p 
k+1 

solving (3.7) satisfies 

where the function 4: 1R + IR is defined by 

2 
One immediately checks that 4 (t) < t for t E  (0.C I and that 

g 
lpk12 c2 by (4.26). (4.17) and (5.22). 

Hk g 
For a given 6 > 0, define a scalar t(6) by t(a) = 4 (t(6)) + 26 . 

Then it is easy to show that t(6) + 0 as 810 and that if 6 > 0 is 

sufficiently small, then any sequence of scalars {tilCIR+ 



2 
to Cg and ticl G $ (ti) + 26, converges to t (6) . Noting that by - 
(4.~16) 'Ipk+' 1; G l p k c l  1 and putting tk = , we come to 

k+ 1 Hk JP  IHk 
the following conclusion. 

Given any E > 0, there exists an 6 > 0 and a number N (E ) > 0 
P 4 P 

such that if (5.23) is satisfied for N,, (E-1 consecutive iterations * P 
without resettings, then at one of thcse iterations l p k l 2  < E . 

Hk P 

(E) From (5.3) and the properties of M it follows that there 

exists an E > 0 such that [13, Lemma 2.11 

(5.26) 141 > co for all gEconv {UM(X)} = M(;,E) . 
XEBE, €1 

k 
(F) Since (5.6) and f(x ) + f (2) imply that the resetting test 

(3.5) may be fulfilled only finitely often, we may suppose this 

test is inactive for sufficiently large k. 

(G) Reasoning as in part (C), it is easy to prove that given an 

O and N1, N2 > 0, there exists an integer N3 such that if a 

resetting occurs at some k E {N N +1,...,N3 +N2} then a 3' 3 

(5.27) k a < mael for k = k ,k + 1, ... a -  a tN3 + N2t 

k and that for this N3 the relations (5.15) hold. Since I v I > 

by (5.6), (5.7) shows that the resetting tests (3.6) and (3.9b) 

remain inactive for k = ka,ka + 1,. . . tN3 + N2= 

(H) Using the results of part (D), take E = and the 
P 

corresponding 6 > 0 and N (E ) = N4(c1). Take E > 0 introduced 
4 P 

in (E) and N, sufficiently large for the resetting test (3.5) to 

be inactive by (F) . Take N2 = 5 [N4 (E ) + $1 . Decrease 6,  if 

necessary, to satisfy the right hand side of (5.23). Apply the 

results of part (C) to find N3 > N1, such that (5.15) and (5.27) 

hold for the quantities introduced in this part of the proof. 

Suppose first that at some E E  { ~ ~ + f i  ,...,N3+M +~N,,(E~)} 
g g 

there is a resetting. By the rules of Step 8 and (5.15), wehave 



(5.28) 
k+ 1 

G ~ + ' C M ( ; . E )  and p  E M ( ~ , E )  , 

f o r  k  = E. Now (4.26) and (5.15) imply t h a t  (5.28) ho lds f o r  k  

s a t i s f y i n g  E < k  C N3 + N2.  Then t h e  r e s u l t s  of p a r t s  (F) and 

(G)  imply t h a t  t h e  on ly  r e s e t t i n g  f o r  t hose  k  may occur  through 

(3 .9a ) ,  i .e . ,  

which i s  imposs ib le  by (5.26) and (5 .28) .  Thus f o r  E < k  4 N3 + N 2 ,  

i .e . ,  f o r  more than  N 4 ( ~ 1 )  i t e r a t i o n s ,  t h e r e  i s  no r e s e t t i n g .  

S ince (5 .23)  is s a t i s f i e d ,  p a r t  ( C )  of  t h e  proof i n d i c a t e s  

t h a t  f o r  some k  s a t i s f y i n g  E 4 k  < N3 k  2  
+ N 2 t  I P  I H k  E .  By 

2 i  
(4.17) and (5.5)  t h i s  imp l ies  lpk12 C E , / B  UP = c2 and hence 0 
(5.29) ho lds ,  aga in  l ead ing  t o  con t r ad i c t i on  w i th  (5.26) and 

(5.28) . 
I t  remains t o  cons ide r  t h e  case  when t h e r e  is no r e s e t t i n g  

f o r  k  s a t i s f y i n g  N~ + ii G k  G N~ + B + 2 N 4 ( E 1 ) ,  i .e . .  f o r  a t  
53 g 

l e a s t  3  N4(E ) i t e r a t i o n s .  Reasoning a s  above, w e  show t h a t  
k  1  

I p ( < E f o r  some such k t  which f o r ces  a  r e s e t t i n g  by (3 .9a)  . 
0 

This  con t r ad i c t i on  ends t h e  proof .  

0 Remark 5.2. Suppose t h a t  t h e  set { x ~ l E t ~ :  f  (x )  4 f  (x ) , x  E  S 1 is 
k  bounded. Then Ex 1 has a t  l e a s t  one accumulat ion po i n t .  Due 

k  k  t o  t h e  l i n e  search  r u l e s ,  w e  a l s o  have {yR} bounded and {g(yR}  

is bounded by t h e  l o c a l  boundedness of  genera l i zed  g rad ien t s .  

Remark 5.3. One may a l s o  cons ider  a  v a r i a n t  o f  ou r  a lgor i thm 

i n  which M i f f l i n ' s  l i n e  search  (M i f f l i n  1979) is used. Th is  

invo lves a  r e -de f i n i t i on  of  $k and Mk,  v i z .  t ak ing  $ (x )  = 
k  kk f  (x )  - f  (x ) and Mk ( x )  = M(x) and demanding t h a t  h  (yi)  0 .  

Thus one ob ta i ns  an implementable ve rs ion  of  M i f f l i n ' s  method 

(M i f f l i n  1979) ,  f o r  which our  convergence r e s u l t s  a r e  expressed 

by Theorem 5.1. 



6. NUMERICAL RESULTS 

In this section we present numerical results obtained with 

a simplified version of the algorithm. The simplification.consists 

in taking a(x,y) = 0 instead of using the definition (2.3). Note 

that our convergence results remain valid for this modification. 

Taking a(x,y) = 0 greatly simplifies the direction finding 

subproblem. Let us introduce a transformation at the kth iteration 

by 

-k j * j j k+l 
g (yR) = Bkg (yR) for g (yR)e G I 

By (4.1 4 ) , one may implement this transformation efficiently , 
since 

Problem (4.1) reduces to the following 

minimize 

sub j ect to 

This problem is efficiently solved by Wolfe's algorithm (Wolfe 1976). 

The relations (4.2) now become 



Then thed i r ec t i on  d k+l  a f t e r  a v a r i a b l e  met r i c  update i s  computed 

f  rom 

k+ 1 k ' I n  our  implementation w e  a l s o  compute g (x ) whenever ti , 0 f  
and append it t o  t h e  bundle G a t  Step 3. Accordingly ( 6 . 4 )  

and (6.5)  undergo an obvicus modif i ca t i on .  

W e  s h a l l  now d i scuss  t h e  cho ice  of p a r m e t e r s .  W e  t a ke  - 
m = 0.5 and mR = 0 . 6 ,  K = * -  1 and mc = lo-". This choice i 
of mc would f o r c e  very f requent  r e s e t t i n g s ,  hence w e  r e s e t  by 

(3.5) only when t h e r e  a r e  LR i t e r a t i o n s  s i n c e .  t h e  l a s t  r e s e t t i n g  

wi th L~ a N / 2  ' 2 N ,  o r  when t h e r e  i s  a need f o r  v a r i a b l e  met r ic  

r e i n i t i a l i z a t i o n .  S ince t h e  va r i ab l e  metric is implementable by 

s t o r i n g  {Ck} and us ing ( 6 . 1 )  through ( 6 . 6 ) ,  t h e  number of updat ings 

depends on t h e  amount of ava iab le  s to rage.  For smal l  problems 

w e  t a ke  2 = 2 N I  f o r  N 1 0  w e  t a ke  smal le r  2 
UP UP ' 

The cho ice  of ma i s  guided by a s topping c r i t e r i o n .  I f  

one wants t o  a t t a i n  f i n a l  accuracy expressed by 

2 
where E > 0 a r e  set up by t h e  use r ,  then ma = E is - d a 
taken. M i s  taken equal  t o  N f o r  smal l  problems. 

g 
AS w e  do not  compute pk i n  our implementation, w e  use a 

-k r e s e t t i n g  t e s t  lp I G c0 wi th  E~ = On t h e  o the r  hand. 

our  implementation of Wolfe's a lgor i thm (Wolfe 1976) has tests 

-k+l meaningless. which d iscover  when t h e  numerical e r r o r s  make p 



The algorithm goes to Step 8 in this case to reduce the bundle 

G~". This strategy was found to be reliable in practice. 

We choose the coefficient of space dilation B equal to 

1/3 when N 10, and B = 0.1 for N > 10. 

The line search procedure that we use is a modfication of 

Mifflin'~ procedure from (Mifflin 1977). In our implementation 

the number of gradient evaluations is equal tonabout half of 

the number of function evaluations. 

The value of the parameter so influences the number of 

function evaluations on the first iteration. We usually take 
so - 1 - 2 .  

We developed a FORTRAN subroutine and tested it on the 

ODRA 1325 computer both in single and double precision (11 and 

20 significant digits, respectively). 

The algorithm has been tested on about 30 nonsmooth problems. 

Details of the results of computations will appear elsewhere. Due 

to lack of-space, we shall present here results for 3 standard 

nonsmooth unconstrained problems from (Lemarechal 1978). 

Since the stopping test based on (6.7) proved to be un- 

reliable for N > 10, most of the algorithm's runs were 

terminated by exceeding an allowable number of iterations and/or 

function evaluations. 

The first problem MAXQUAD (Lemarechal 1978, Test Problem 1) 

is quite easy. It has 10 variables, i.e., N = 10. Accordingly - 
we set B = 1/3, Mup = 15, LR = 10 and fi = 10. After20 itera- 

9 
tions and 84 function evaluations the vaue of f (x19) = -.84.1397. 

The second problem EQUIL (Lemarechal 1978, Test Problem 3) 

has N = 8. We took B = 1/3, fiUp = 12, LR = 8 and = 8. After 
9 

30 iterations and 95 f-evaluations we got f (x2') = .4239.1 o - ~ .  

The third problem SHELL DUAL (Lemarechal 1978, Test Problem 2) 

appears to be more interesting. Since N = 15, we take B = 0.1, - 
MuP 

= 22, LR = 22 and fi = 15. Below we present a table 
q 

iliustrating the progre;s of the algorithm. Nf denotes the 

number of function evaluations. 



Although our experience with the algorithm is still limited, 

we discovered that it is quite robust with respect to numerical 

errors. There are very small differences in its performance when 

it is run first in single and then in double-precision. The 

results presented above were obtained in single-precision. 
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