Implementation of a Model of Service Location

Vetschera, R.
IIASA Working Paper
WP-81-030

March 1981

Vetschera, R. (1981) Implementation of a Model of Service Location. IIASA Working Paper. WP-81-030 Copyright © 1981 by the author(s). http://pure.iiasa.ac.at/1731/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

IMPLEMENTATION OF A MODEL OF SERVICE LOCATION

R. Vetschera

March 1981
WP-81-30

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

SUMMARY

This Working Paper describes the implementation of a model developed by R. Domanski and A. Wierzbicki. The first part contains a brief description of the model. The second part is directed to the user of the simulation system and contains all information required to produce simulation runs. The remaining parts are a technical documentation for those who want to modify the system or adapt it for different computers. The internal structure of the system is explained, hardware and software requirements for its installation are specified and possible modifications and extensions are indicated. An appendix contains the source listings of all programs.

CONTENTS

SUMMARY iii

1. THE MODEL 1
1.1 Overview 1
1.2 Population 2
1.3 Employment in Other Sectors 3
1.4 Employment in Services 3
2. USING THE SIMULATION SYSTEM 6
2.1 Components of the System 6
2.2 Program Restrictions 7
2.3 Running the Simulation Program 7
2.4 Utility Programs 10
3. STRUCTURE OF THE SIMULATION PROGRAM 14
3.2 Major Components of the Program 15
4. UTILITY PROGRAMS AND RESULT FILE 18
5. PORTABILITY CONSIDERATIONS 20
5.1 Software Requirements 20
5.2 Hardware 20
6. POSSIBLE IMPROVEMENTS OF THE PROGRAM 21
7. 1 Computational Speed 21
6.2 Different Geographical Structure 21
6.3 Different Initial States 22
Appendix 23
References 43

IMPLEMENTATION OF A MODEL OF SERVICE LOCATION

R. Vetschera

1. THE MODEL
1.1 Overview

The model is used to describe the development of services in a network of N villages. Different types of service with different times of introduction and different employment effects are analyzed. The development is also influenced by two other sectors of the economy: industry and intensive agriculture. The state of the model at time t is thus described by three variables:

$$
\begin{aligned}
& P_{x, t} . . . \text { population in village } x \text { at time } t . \\
& \mathrm{E}_{\mathrm{x}, \mathrm{t}}^{\mathrm{V}} \cdots \text { employment in industry }(\mathrm{v}=1) \text { or intensive } \\
& E_{x, t}^{u} \cdots e_{\text {employment }}^{\text {time } t .} .
\end{aligned}
$$

The model will start from an exogenously given state (P_{0}, E_{0}^{v}, E_{0}^{u}) at time $t=0$. The dynamic development of the model is
governed by three equations. Each of these equations determines the change of one state variable.

Changes in population are influenced by the natural growth rate of population r and migrations $M_{x, t}$ within the network:
(1.1-1) $\quad P_{x, t+1}=(1+r) P_{x, t}+M_{x, t}$

Employment in industry and intensive agriculture depends on the employment in the previous period and changes $\Delta_{x, t}^{V}$ which are generated by an occupational employment mechanism:
(1.1-2) $\quad E_{x, t+1}^{V}=E_{x, t}^{V}+\Delta_{x, t}^{V}$

Employment in services is modified in a similar way:
$(1.1-3) \quad E_{x, t+1}^{u}=E_{x, t}^{u}+\Delta_{x, t}^{u}$

These three changes will be described in the following sections.

1.2 Population

The potential of migration $M_{x, t}^{*}$ in one village comprises all people affected by changes in employment and their dependants:
$(1.2-1) \quad M_{x, t}^{*}=k\left(\sum \Delta_{x, t}^{v}+\sum \Delta_{x, t}^{u}\right)$

This potential migration has to be modified to ensure that the sum of migration flows within the network is zero:
$(1.2-2) \quad M_{x, t}=M_{x, t}^{*}-\frac{\sum_{\bar{x}}^{M} \bar{x}^{*}, t}{\sum_{\frac{1}{x}}^{\left(P_{\bar{x}}-\frac{M^{*}}{\bar{x}, t}\right)} \cdot\left(P_{x, t}-M_{x, t}^{*}\right)}$

This migration plus the natural growth rate r of population determine the size of population in the next period of time as defined in equation (1.1-1).
1.3 Employment in Other Sectors

Changes in the employment in intensive agriculture and industry correspond to the unemployed labour force at time t :

$$
\begin{equation*}
\Delta_{x, t}^{v}=\delta_{x}^{v} \sum_{y}\left(\frac{P_{y, t}}{k}-\sum_{v} E_{y, t}^{v}-\sum_{u} E_{y, t}^{u}\right) \tag{1.3-1}
\end{equation*}
$$

where δ_{x}^{V} is a parameter indicating the use of the total unemployed labour force for employment in sector v in village x. If δ_{x}^{V} is zero, the employment E_{x}^{V} will remain at the initial level $E_{x, 0}^{V}$.
1.4 Employment in Services

There are three phases of development of services in the model:
(a) a service u is not introduced before a specific point in time $t_{u 0}$. For $t<t_{u 0^{\prime}}$ employment in service u is kept at zero level.
(b) in some villages the service is randomly introduced at time $t=t_{u 0}$.
(c) for times $t>t_{u 0}$, two possible cases must be considered:
(c1) a service u already exists in a village x and E_{x}^{u} is modified according to the demand for that service.
(c2) if the service u does not yet exist in village x, it might be newly opened.

So there are two basic mechanisms determining the employment in services: an opening mechanism, which is used in phase (b) and (c) and an employment modification mechanism, which is used in phase (c). Furthermore, there are differences in the opening of services in phase (b) and (c).

A new service will be introduced at time $t=t_{u 0}$ (phase b) at a fixed level of employment $E^{\mathrm{u} 0}$ in randomly chosen villages. The probability that a new service will be introduced in village x is
(1.4-1)

$$
p\left(E_{x, t+1}^{u}>0\right)=\psi_{1 x}^{u} \frac{\left(P_{x, t}+\gamma R_{x, t}\right) N}{\sum_{\bar{x} \in x}\left(P_{\bar{x}, t}+\gamma R_{\bar{x}, t}\right)}
$$

where

$$
\begin{aligned}
& \gamma \text { and } \psi_{1 \times}^{u} \text { are parameters } \\
& N \text { is the number of villages } \\
& \mathrm{X} \text { is the set of all villages }(\{1, \ldots, N\})
\end{aligned}
$$

and

$$
R_{x, t}=\sum_{u} E_{x, t}^{u}
$$

is the existing level of other services in village x.
When an existing service is to be modified, (phase c1) the first step is to calculate the attractiveness of all services existing in village x for people living in all other villages, y as:
$(1.4-2) \quad A= \begin{cases}\frac{E_{x, t}^{u}+\sum_{\bar{u} \neq u} \lambda_{u} E_{x, t}^{\bar{u}}}{d_{x y}^{\alpha}} & \text { if } E_{x, t}^{u}>0 \text { and } d_{x y} \leq D_{0} \\ 0 & \text { if } E_{x, t}^{u}=0 \text { or } d_{x y}>D_{0}\end{cases}$
where λ_{u}, D_{0} and α are parameters and $d_{x y}$ is the distance between x and y. This attractiveness is compared with that of other villages \bar{x} to the same village Y, giving the relative attractiveness
(1.4-3) $\quad \eta_{x y}^{u}=\frac{A_{x y}^{u}}{\sum_{\bar{x} \neq x} A_{\bar{x}}^{u}+A_{x y}^{u}}$

The number of people attracted from village y to village x is therefore $P_{y, t} \cdot \eta_{x y}^{u}$ and the total employment needed to satisfy the demand encountered in village x is

$$
(1.4-4) \quad D_{x}^{u}=\sum_{y}^{u} P_{y} q^{u} n_{x y}^{u}
$$

where q^{u} is a parameter for service u.
Actual employment at time $t+1$ will differ from D_{x}^{u} due to two influences:
(1) It is assumed that employment will not exactly be changed by the difference required to reach D_{x}^{u}, but the changes in employment may over- or under-react to changes in demand thus:
(1.4-5) $\quad E_{x, t+1}^{u}=E_{x, t}^{u}+a\left(D_{x}^{u}-E_{x, t}^{u}\right)$
where a is a parameter indicating the precise reaction ($a=1$), over-reaction ($a>1$) or under-reaction ($a<1$).
(2) There is a minimum level of employment for each kind of service which is defined as $b E^{\mathrm{uO}} . \mathrm{E}^{\mathrm{UO}}$ is the initial level of employment at which the service was started and b is a parameter. If demand falls below the level corresponding to minimal employment, the service is shut down completely and $E_{x, t+1}^{u}$ is set to zero.

The opening of a new service after time $t_{u 0}$ (phase c2) combines both the mechanisms described above. First, a hypothetical attractiveness is computed in a similar way to (1.4-2) and (1.4-3), using the starting size E^{uO} as a service size:
$(1.4-6) \quad \tilde{\mathrm{A}}_{x y}^{u}=\frac{E^{u 0}+\sum_{\bar{u} \neq u} \lambda \bar{u} u E^{E^{\bar{u}}} x, t}{d_{x y}^{\alpha}}$
(1.4-7) $\quad \tilde{\eta}_{x y}^{u}=\frac{\widetilde{A}_{x y}^{u}}{\sum_{\bar{x} \neq x} A_{\bar{x} y}^{u}+\widetilde{A}_{x Y}^{u}}$

This estimated attractiveness is used to calculate the possible size of employment in a new service u :

$$
(1.4-8) \quad \widetilde{\mathrm{D}}_{\mathrm{x}}^{\mathrm{u}}=\sum_{\mathrm{y}} \mathrm{pq}^{\mathrm{u}} n_{\mathrm{x}}^{\mathrm{u}}
$$

Opening a new service is considered worthwhile if $\widetilde{D}_{\dot{x}}^{u}>E^{u 0}$. Whether the service will actually be opened is determined by a random procedure. The probability of opening the service is computed in a way similar to (1.4-1):
(1.4-9) $P\left(E_{x, t+1}^{u}>0\right)=\psi_{2} \frac{\left(P_{x, t}+\gamma R_{x, t}\right) N}{\sum_{\frac{1}{x}}\left(P_{\bar{x}, t}+\gamma R_{\bar{x}, t}\right)}$

If the service is to be opened, employment in it is set to $\widetilde{\mathrm{D}}_{\mathrm{X}}^{\mathrm{u}}$.
2. USING THE SIMULATION SYSTEM

2.1 Components of the System

The simulation system, which implements the model described in chapter one consists of two sets of programs:
--The first set contains the actual simulation program. This program performs all the calculations specified in the model and stores the successive states of the model in a result file.
--The second set contains utility programs, which process the result file and print various reports.

The separation of actual simulation and the generation of output enables the user to produce more detailed outputs oniy for those runs for which they are really needed and without rerunning the simulation program for each type of output required.

2. 2 Program Restrictions

Both the simulation program and the utility programs have been developed for a specific version of the model and are based on some assumptions of that version. In comparision with the general model described in chapter one, these assumptions lead to three restrictions of the system:
(a) The size of the model is limited to up to 36 villages and up to five services.
(b) A specific geographical structure of the network (as described in 3.1.3) is assumed and the distance between two villages is computed according to that structure.
(c) The initial state of the model is defined as

$$
\begin{aligned}
& P_{x, 0}=P_{0} \quad \text { for all villages } \\
& E_{X, 0}^{V}=0 \quad \text { for all villages } \\
& E_{X, 0}^{u}= \begin{cases}0 & \text { if } t_{u 0}>0 \\
\text { generated according to }(1.4-1) & \text { if } t_{u 0}=0\end{cases}
\end{aligned}
$$

2.3 Running the Simulation Program

The simulation program SIM is used to generate simulation runs. It will read all parameters required for the run from a file called PAR and will produce a result file named OUT. Messages for the user will be written to the standard FORTRAN output unit (the terminal in the UNIX system).

2.3.1 Input to the Simulation Program

All input to the simulation program is contained in the parameter file PAR. This file consists of several lines. Most lines contain one or more parameters written in free format and separated by commas (lines requiring a special format are indicated in the following description). The contents of each line are:
line contents

1 nr of villages N, $n r$ of services U, nr of other sectors V
a, D_{0}, a, b
k, r, P_{0} (initial population size of each village)
E^{uO} for all services
$t_{u 0}$ for all services
$\psi_{1}, \psi_{2}, \gamma$ (if $\psi_{1}{ }_{\mathrm{u}}$ is to be specified for each individual village and service, a value <0 for ψ_{1} must be specified in this line. In this case, the line is followed by N additional lines, one for each village. Each of these lines contains U values specifying $\psi \underset{x}{u}$ for the village and the U services. In numbering the following parameter lines, it is assumed that these lines are not present.)
$\lambda_{\bar{u} u}$ (each line contains the u values corresponding q^{u} for all services
These lines are used to set the ∂^{V}, line 13 for industry $(v=1)$ and line 14 for inte $\mathrm{x}_{\mathrm{n}} \mathrm{five}$ agriculture ($v=2$). They must be written in a fixed format. Their contents are:

column	content
$1-05$	value of ∂_{x}^{V} if sector v occurs in a village
6	blank
$7-42$	N indicator values $(0$ or 1$)$ for the vil-
	lages. If sector $v i s$ to occur in a vil-
	lage, 1 must be specified. If it is not
	to occur, 0.

Starting value for the random number generator (a large integer number). Different starting values will lead to different results in the randomized opening of new services.

Number of periods to be simulated.

The program does not perform any checks on the parameters. When parameters or the structure of the parameter file are incorrect, computational errors may cause the program to terminate abnormally.

A sample parameter file is shown in figure 2-1.

$$
\begin{aligned}
& 36,5,2 \\
& 2.0,100.0,1.0,0.5 \\
& 3,0.01,500.0 \\
& 5.0,10.0,15.0,20.0,25.0 \\
& 0,5,10,15,20,25 \\
& 0.166667,0.166667,100.0 \\
& 0.2,0.1,0.0666667,0.05,0.04 \\
& 0.2,0.1,0.0666667,0.05,0.04 \\
& 0.2,0.1,0.0666667,0.05,0.04 \\
& 0.2,0.1,0.0666667,0.05,0.04 \\
& 0.2,0.1,0.0666667,0.05,0.04 \\
& 0.004,0.007,0.012,0.017,0.020 \\
& 0.00501000000001001000000010010000000100 \\
& 0.00200000001101001100001110011100000000 \\
& 896745231.0
\end{aligned}
$$

$$
50
$$

Figure 2-1. Parameter file for the simulation program.

2.3.2 Output from the Simulation Program

Output from the program consists of two parts: a result file OUT and messages on the standard output device.

The result file contains information about parameter settings for the simulation run and the successive states of the model. Its contents are used by the utility programs for generating output listings of the simulation.

The simulation program will write the following messages on the standard output device:

PROCESSING TIME $T=t$
This message is issued every time before calculations for a new period t will begin.

MIGRATION ERROR, SUM = s

This message is printed when, due to rounding errors, the sum of all migration flows in the model exceeds a threshold value (normally 0.0000001). Calculations will proceed after the message is written.

2.3.3 Time and Space Requirements

On a CDC Cyber 170-720, the program needs about 16 k words (CM 40000 octal) of main storage. The CPU time required for a simulation run of 50 periods is about 450 seconds ($T 700$ octal).
2.4 Utility Programs
2.4.1 Types of Output

Two types of output can be produced from the result file: maps and time paths.

A map shows the spatial distribution of one state variable at one point of time. The programs used to produce maps will print sets of maps for several variables and periods. As an example, a map of the population at time 50 is shown in figure 2-2.

A time path represents the development of one village and contains all state variables of the village for all periods of time. An example of a time path is shown in figure 2-3.

In addition, all utility programs produce a listing of the simulation parameters as shown in figure 2-4.
2.4.2 Running the Utility Programs

There are five utility programs which can be used to process the result file. Their names and functions are:
name
ALLVL time paths showing the individual development of each village.

LONG maps showing the spatial distribution of population, employment in services and employment in other sectors.

SHORT maps showing the spatial distribution of population and employment in other sectors.

SUMRY time path for the whole system
VLIST time path showing the individual development of one village
585.351
1147.44
1147.44
847.800
936.077
I日E.sib
668.675
EEE.bis
502.594
1917.66
8
i
i
i
n
$\stackrel{\sim}{2}$
$\dot{0}$
i 636.225
519.333
1434.75
565.056
518.604
519.333
1077.30
634.418
772.968
nて. $2 \varepsilon Z I$
997.719
LEs.s8s
915. 381
PDPULATION AT TIME $\quad 50$
Figure 2-2. Example for a map.

N
 \div

茫

SETTLEMENT NETWORK MOLEL

SETTING OF PARAMETERS:

```
NR OF VILLAGES: 36
NR OF SERVICES: SECTORS: 2
5
SPACE WEIGHT ALPHA: 2.
INFLUENCE RANGE IIO: 5
REACTION LEVEL A:
5.
.5
CLOSING LEVEL B: . 
FAMILY SIZE K: 3.
POPULATION GROWTH RATE 1. %
INITIAL POPULATION SIZE:SOD.
INITJAL SERVICE SIZES: 5.00000
STARTING TIMES: 0 5 10 15 20
PROEAEILITY LEVEL, PSII: . 166667
PROBARJLITY LEVEL PSI2: i.E+30
CLUSTERING GAMMA: PSI2: 100.
EMPLOYMENT/IIEMANII UNIT: . 400000E-02
```

10.0000
15.0000
20.0000
25.0000

All utility programs use a common set of subroutines, which are also included in the utility program file.

The utility programs process a result file and produce a listing on an output file. The names of both files may be specified by the user. The programs use FORTRAN units 5 and 6 for communication with the user. The following input will be requested interactively:

request	required response		
RESULT FILE NAME		\quad	name of the 'ouT' file produced by the
:---			
simulation program.			

All responses may be entered in free format.
3. STRUCTURE OF THE SIMULATION PROGRAM

The simulation program consists of the following modules:

module name	purpose
SIM	main program, main simulation loop for t.
PARSET	input of simulation parameters.
INIT	generation of the initial state of the model.
STEP	controls the calculations for one period.
STOUT	output of the state for one period
GEMPSV	generation of employment in services for $t+1$.

GEMPII	generation of employment in intensive agriculture and industry for $t+1$.
GPOP	generation of population for $t+1$.
NEWSER	updating of status vectors from t to D +1.
randomized generation of new services.	

In addition, IMSLIB routine GGUBS is used to generate random numbers.

The interconnection between these routines is shown in figure 3-1.

Figure 3-1. Interconnections of modules.

3.1 Major Components of the Program

3.1.1 Overall Structure of the Simulation

All calculations in the model are based on the current state as specified by the variables $P_{t}, E_{t}^{u}, E_{t}^{V}$. It is therefore necessary to keep these variables unchanged while the new state vectors P_{t+1}, E_{t+1}^{u}, and E_{t+1}^{v}, are computed. In the simulation program, three additional vectors P1, EU1 and EV1 are used to store the new state values, and only after all calculations have been completed,
these vectors are copied into the actual state vectors, thereby moving the model into the next period.
3.1.2 Generation of Employment in Services

There are two routines which are involved in changing the employment in services: GEMPSV and NEWSER.

Routine GEMPSV performs the deterministic part of the modifications. It will perform modifications in existing services (including the closing of services) and calculate the level at which a new service should be opened. The level of a new service is either $E^{u 0}$ for $t=t_{u 0}$ or the estimated level \widetilde{D}_{x}^{u} for later periods. Both the modified levels of existing services and the levels at which new services can be opened are stored in EV1. (This is possible as the sets of villages involved in these two cases form a partition of the set of all villages).

Routine NEWSER randomizes the opening of new services. For each village, the probability of opening the service is computed and a random number between 0 and 1 is generated. If the random number is less than the probability, the service is opened. If it is greater, the service will not be opened and employment for $t+1$ is set to zero. The routine can determine easily, by looking at the current state, whether a service is to be opened or modified in the village. If $E_{x, t}^{u}$ is zero, an opening might occur, otherwise an existing service is modified and the value for $E_{x, t+1}^{u}$ as computed by GEMPSV is left unchanged.

3.1.3 Distance Between Two Villages

It can be thought that the villages in the network are at the points of a grid as shown in figure 3-2. A move from one village to the next is equivalent to a relocation by one row and one column (type 1 move) or no row and two columns (type 2 move). Each type of move corresponds to a distance of 4 kilometers.

The distance d between two villages v1 and v2 is computed as the shortest path between the two villages. This shortest path is determined by the following method:

Figure 3.2. Location of villages in a grid.

Let v 1 be located at $(\mathrm{x} 1, \mathrm{y} 1)$ and v 2 at $(\mathrm{x} 2, \mathrm{y} 2)$.
If $|\mathrm{x} 1-\mathrm{x} 2| \geq|\mathrm{y} 1-\mathrm{y} 2|$ then v 2 can be reached from v 1 by $|x 1-x 2|$ moves of type 1.

Proof. From the structure of the network it can be seen that
(3.1-1) $|y 1-y 2|=2 k+(|x 1-x 2| \bmod 2)$
where

$$
k \leq\left[\frac{|\mathrm{x} 1-\mathrm{x} 2|}{2}\right]
$$

The distance $|y 1-y 2|$ can be covered by $2 k$ moves of type 1 in which the y-coordinate is changed by $\operatorname{sign}(y 1-y 2)$, and $2\left(\left\lfloor\frac{\mid x 1-x 2 \downarrow}{2}\right\rfloor-k\right)$ moves of type 1 , in which y is changed first by 1 and then by -1 , leaving it unchanged after the two moves. If $\mathrm{y} 1-\mathrm{y} 2$ is odd, $\mathrm{x} 1-\mathrm{x} 2$ is odd, too, and a final move of type 1 will change both the x and the y coordinate to the desired values.

This method will generate a path of the shortest possible length because it will take $|x 1-x 2|$ moves and at least $|x 1-x 2|$ are required to cross the distance in rows between v1 and $v 2$.

$$
\text { If }\left|y^{1}-y^{2}\right|>|x 1-x 2| \text {, we may write }
$$

(3.1-2) $\quad|y 1-y 2|=2\left\lfloor\frac{\lfloor x 1-x 2\rfloor}{2}\right\rfloor+(|x 1-x 2| \bmod 2)+2 n, n>0$
as the distance between two neighbouring villages in a row is two columns. The distance of

$$
2\left\lfloor\frac{\lfloor x 1-x 2 \downarrow}{2}\right\rfloor+(|x 1-x 2| \bmod 2)
$$

is covered by $|x 1-x 2|$ moves of type 1 as shown above, the remaining distance in y is covered by
(3.1-3) $\quad n=0.5 \times\left(\left|y 1-y^{2}\right|-|x 1-x 2|\right)$
moves of type 2 , giving a total of
(3.1-4) $m=|x 1-x 2|+n$
moves of 4 kilometers each.
4. UTILITY PROGRAMS AND RESULT FILE

The utility program set consists of five main programs and two common subroutines. The connection between subroutines and main programs is shown in the following table, where an x indicates that a subroutine is used by a main program.

main pgm.	subroutines	
	MAP	PRTPAR
ALLVL		\mathbf{x}
LONG	\mathbf{x}	\mathbf{x}
SHORT	\mathbf{x}	\mathbf{x}
SUMRY		x
VLIST		x

Subroutine MAP is used to print a map of the network of villages on the output file which is referenced via unit number 2. The map contains six lines of numbers, separated by two blank lines. Above and below the map, two blank lines are written. The routine requires two parameters:

parameter	type	description 1
2	(36) real	number of villages to be printed, (usually 36$).$ vector of values to be printed.

Subroutine PRTPAR opens the result file and the list file and prints the parameter values stored in the result file. Parameter q^{u}, which is used by program SUMRY, is stored in a common block called PARAM.

The names of the files are requested from the user. The result file is opened with unit number one, the list file with unit number two. Unit numbers five and six are used for communication with the user.

The result file contains 15 records with parameter values, followed by records containing the successive states of the model. The contents of records 1-15 are

```
record content
    1 nr of villages, nr of services, nr of sectors.
    2 a,D , a,b.
    3 k,r,P
    4 Eu0.
    5 tu0.
    6 }\mp@subsup{\psi}{1}{},\mp@subsup{\psi}{2}{},\gamma
7-11 }\mp@subsup{\lambda}{\overline{u}u}{u}(record 7 for \overline{u}=1,\ldots,record 11 for u = 5).
    12 qu
13-14 }\mp@subsup{\partial}{\textrm{x}}{\textrm{V}}\mathrm{ (record 13 for v=1, record 14 for v=2).
    15 starting value for the random number generator.
```

Each of the following records contains a time index t and P_{t}, E_{t}^{u} and E_{t}^{V} for that period.

5. PORTABIIITY CONSIDERATIONS

5.1 Software Requirements

All programs are written in ANSI FORTRAN 77 and should be acceptable to any processor supporting this standard. They rely quite strongly on some new features of that standard (particularly the IF-THEN-ELSE construct and some I/O operations), so considerable effort may be required to transform them to conform to the old (1966) standard.

A routine GGUBS from the IMSL program library is used to generate random numbers. If this library is not available, routine GGUBS can be replaced by any routine generating uniformly distributed random numbers in the $(0,1)$ interval. The only call to that routine is located in subroutine NEWSER. Changes in the random number generator might also affect the usage of the starting value variable SEED, which is located in the common block PARAM.

Difficulties might arise from using FORTRAN unit numbers five and six for communication with the user in the utility programs. References to these unit numbers are made in subroutine PRTPAR and in main programs LONG, SHORT and VLIST. These should be changed if necessary.

5.2 Hardware

On the CDC Cyber system, which uses 60 bit arithmetic, rounding errors in the generation of migration were below the tolerance value of 1.e-7. On a system with a smaller wordlength rounding errors may exceed that value.
6. POSSIBLE IMPROVEMENTS OF THE SYSTEM

6.1 Computational Speed

Computing time of the model is considerable and might become unacceptable on slower systems. One possibility to increase the computational speed is changing the calculation of demand in routine GEMPSV. There, the relative attractiveness is calculated as specified in the model as

$$
\eta_{x y}^{u}=\frac{A_{x y}^{u}}{\sum_{x \neq x} A_{\bar{x} y}^{u}+A_{x y}^{u}}
$$

Computing $\sum_{\bar{x} \neq x} A_{x y}^{u}$ for each pair (x, y) requires $0(N * * 3)$ additions. Instead, a vector $h_{y}=\sum_{x} A_{x y}^{u}$ could be computed once and used in the calculation of $\eta_{x y}^{u}$. In the calculation of $\tilde{\eta}_{x y}^{u}, h_{y}$ can be substituted for $\sum_{\bar{x} \neq x} A_{\bar{x} y}^{u}$, as in this case $E_{x, t}^{u}=0$, so $A_{x y}^{u}=0$ and therefore

6.2 Different Geographical Structure of the Network

The behaviour of the model is influenced by the geographical structure of the network via the distance $d_{x y}$ between two villages. This distance is computed in routine DIST. To specify a different structure, routine DIST should be replaced by a new routine which returns the distance of villages in the new network. A simple solution would be a routine which keeps all distances in a table and uses a DATA statement to initialize that table.

To represent the new structure of the network in the outputs, routine MAP in the utility program set has to be changed to print a map of the new network. The programs which use this routine assume that two maps fit on a page and might have to be changed if the maps become too large.

If the new network is to contain more than 36 villages, the dimensions of arrays in all routines have to be changed accordingly.
6.3. Different Initial States of the Model

The initial state of the model as specified in 2.2 is set up by routine INIT. To obtain a more general version of the system, routine INIT should be modified to read the initial state from a file.

APPENDIX

Program listings.

```
PROGRAYSIM 73/73 QPT=0 FTN 5.04518
    PROGRAM SIM
    C MAIN PPOGRAM FOR SETTLEMENT NETWCRK SIMULATION
        INTEGER T,FIN
        REAL P(36),EU(5,36),EV(2,36),EU1(5,36),EV1(2,36)
        REAL ALPHA,A,B,K,TAU,DO,EUO(5),PSII(5,36),PSI2,LAMBDA(5,5),CU(5),
            DEL(2,36),DO,GAMMA
        INTEGER N,NU,NV,TUO(5)
        OOUBLE PRECISION SEED
        COMMDN /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
        *
        SAVE /PARAM/
    C READ SIMULATION PARAMETERS
        CALL PARSET(FIN)
    C GENERATE INITIAL STATE OF MCDEL
        CALL INIT(P,EU,EV,EUI,EVI)
    C MAIN SIMULATION LOOP FOR ALL PERIODS
        DO 5 T=1,FIN
            WRITE(*,*) 'PROCESSING TIME T=1,T
    C COMPUTATIDNS
        CALL STEP(T,P,EU,EV,EUI,EVI)
    C OUTPUT
        CALL STOUT(T,P,EU,EV)
        CONTINUE
        STOP
        END
```


SUBRCUTINE PARSET(FIN)

C this routine reads the parameter files and stores the parameters
C IN CDMMON BLOCK IPARAMI
C MOST PARAMETERS ARE ALSO WRITTEN TO QUTPUT FILE OUT FOR
C LATER PRINTING
CHARACTER*8 FI,F2,F3
INTEGER [,J,OH(36)
REAL W
REAL ALPHA, A, $9, K, T A U, P O, E U O(5), P S I I(5,36), P S I 2, L A M B D A(5,5), O U(5)$,

* DEL(2,36), DO,GAMMA

INTEGER N,NU,NV,TUO(5),FIN
DOUBLE PRECISION SEED
COMMON /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUC,

* PSII,PSI2,LAMBDA,QU,OEL,DO,PO,GAMMA

SAVE /PARAM/
OPEN(UNIT=1,FILE=CPAR')
OPEN(UNIT=Z,FILE='OUT', FORM='UNFORMATTED')
READ(1,*) N,NU,NV
WRITE(2) N,NU,NV
READ(1,*) ALPHA,DO, A,B
WRITE(2) ALPHA,DO,A,B
READ(1,*) K,TAU,PO
WRITE(2) K,TAU,PO
READ(1,*) (EUO(I),I*1,NU)
WRITE(2) (EUO(I),I=1,NU)
READ(1,*) (TUO(I),I=1,NU)
WRITE(2) (TUO(I),I=1,NU)
READ(1,*) W,PSI2,GAMMA
IF(W.GE.O) THEN
DO $31=1, N U$
DO $3 \mathrm{~J}=1, \mathrm{~N}$ PSII $(I, J)=W$ CONTINUE
ELSE
DO $4 I=1, N$
READ(1,*) (PSII(J,I),J=1,NU)
CONTINUE
$W=-1.0$
END IF
WRITE(2) W,PSI2,GAMMA
DO 5 I=1,NU
READ(1,*) (LAMBDA(I,J),J=1,NU)
WRITE(2) (LAMBDA(I,J),J=1,NU)
CONTINUE
READ(1,*) (OU(I),I*I,NU)
WRITE(2) (QU(I),I=1,NU)
$0025 \mathrm{I}=1, \mathrm{NV}$
READ(1,'(F5.3,1X,36I1): $W,(D H(J), J=1, N)$
DO $10 \mathrm{~J}=1, \mathrm{~N}$
DEL(I,J) $=W$ WH(J)
CONTINUE
WRITE(2) (DEL(I,J),J=I,N)
continue
READ(1,*) SEED
WRITE(Z) SEED
READ(1,*) FIN
RETURN
END

```
SURROUTINE INIT 73/73 OPT=0 FTN 5.0+518
    SUBPDUTINE INIT(P,EU,EV,EUI,EVI)
c gfneqate the initial state of the model
    REAL P(36),EU(5,36),EV(2,36),EUI(5,36),EVI(2,36)
    INTEGER X,U,V
    REAL ALPHA,A,B,K,TAU,PO,EUO(5),PSI1(5,36),PSI2,LAMBDA(5,5),QU(E)
    * DEL(2,36),DO,GAMMA
    INTEGER N,NU,NV,TUO(5)
    DOUBLE PRECISICN SEED
    COMMON /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
        *
                                    PSII,PSI2,LAMSOA,QU,DEL,DO,PO,GAMMA
    SAVE /PARAMI
    OO 15 X=1,N
C SamE population for all villages
        P(x)=PO
        DO 5 U=1,NU
C EMPLOYMENT IN TIME -1 IS O FOR ALL SERVICES
    EU(U,X)=0.0
C FOR SERVICES WITH TUO : O , EMPLOYMENT MAY BE SET TO EUO
C OTHERAISE, EMPLDYMENT IS O
    IF(TUO(U).EQ.O) THEN
                    EUI(U,X)=EUO(U)
                ELSE
                    EUI(U,X)=0.0
                END IF
5
                        CONTINUE
C EMPLOYMENT IN OTHER SECTORS IS O
            DO 10 V=1,NV
                EV (V,X)=0.0
                EVI(V,X)=0.0
                CONTINUE
                    1 0
15
    CONTINUE
C PERFORM RANDDM OPENING OF SERVICES WITH TUO = O
    CALL NEWSER(O,EU,P,EUI)
    OO 20 X=1,N
            OC 2O U=1,NU
                        EU(U,x)=EUI(U,X)
                        CONTINUE
2 0
C DUTPUT THE STATE AT T=0
    CALL STOUT(O,D,EU,EV)
    RETURN
    END
```

```
SURROUTINE STEP 73/73 OPT=0 FTN 5.0+518
SUBROUTINE STEP(T,P,EU,EV,EUI,EVI)
    C TRANSITION FROM T TO T+I
    INTEGER T
    REAL P(36),EU(5,36),EV(2,36),DEU(5,36),DEV(2,36),
            * EUl(5,36),EV1(2,36),P1(36)
    C CHANGE EMPLOYMENT IN SERVICES
        CALL GEMPSV(T,P,EU,EUI)
    C RANOOMIZATION OF OPENING OF NEW SERVICES
        CALL NEWSER(T,EU,P,EUI)
    C GENERATE EMPLOYMENT IN INDUSTRY&INTENSIVE AGRICULTURE
    CALL GEMPII(T,P,EU,EV,EVI)
    C GENERATE POPULATION
    CALL GPDP(T,P,EU,EUI,EV,EVI,PI)
C UPDATE STATUS VECTORS
    CALL UPDT(T,EU,EUI,EV,EVI,P,P1)
        RETURN
        END
SUBROUTINE STOUT T3/73 DPT=0 FTN 5.0+518
    SUBROUTINE STOUT(T,P,EU,EV)
    C WRITE THE STATUS VECTORS TO OUTPUT FILE
    INTEGER T
    REAL F(36), EU(5,36),EV(2,36)
    WRITE(2) T,P,EU,EV
    RETURN
    END
```


SUBROUTINE GEMPSV(T,P,EU,EI)

```
C THIS SUBRDUTINE COMPUTES THE EMPLOYMENT IN SERVICES
C AT TIME T+1
    INPUT: STATE VARIABLES P AND EU AND TIME T
    QUTPUT: EMPLOYMENT AT T+1 STOPED IN EI
                        Note that el will contain the possible level
            DF EMPLOYMENT FOR QPENING OF NEW SERVICES
            RANODMIZATION OF OPENING IS DONE BY NEWSER
            WHICH WILL GE CALLED AFTERWARDS
        INTEGER T,U,U日,X,XB,Y
        REAL P(36), EU(5,36),E1(5,36)
        REAL Z1,ATTR(36,36),AS(36,36),51,S2,H,EE,LIMIT,DIST,D
        REAL ALPHA,A,B,K,TAU,PO,EUO(5),PSI1(5,36),PSI2,LAM8DA(5,5),DU(5),
            DEL(2,36),DO,GAMMA
            INTEGER N,NU,NV,TUO(5)
            DOUBLE PRECISION SEEO
            COMMON IPARAMI SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
            * PSII,PSIL,LAMBDA,OU,DEL,DO,PO,GAMMA
            SAVE /PARAM/
C THERE ARE 3 CASES FOR T <,E,> TUO
            OO 40 U=1,NU
C THE MOST IMPORTANT CASE IS T > TUO
        IF(T.GT.TUO(U)I THEN
c COMPUTIE ATTRACTIVENESS ATTR ANO POSSIBLE ATTRACTIVENESS AS
C FOR EACH PAIR OF VIllages \langleX,Y\rangle
        DO 15 x = 2,N
            Z1=0.0
                        OO 5 UB=1,NU
                                IF(UB.EQ.U) THEN
                            ZI=ZI+EU(U,X)
                    ELSE
                            Z1=21+LAMBDA(UB,U)*EU(UB,x)
                            ENO IF
        CONTINUE
            OO 10 Y =1,N
                O=DIST(X,Y)
                IF(D.LE.DO) THEN
                    ATTR(X,Y)= L1/(D**ALOHA)
                    IF(EU(U,X).EQ.O.01 ATTR(X,Y)=0.0
                    AS(X,Y)=(Z1+EUO(U))/(D**ALPHA)
                ELSE
                    ATTR(X,Y)=0.0
                    AS (X,Y)=0.0
                END IF
                CONTINUE
10 CONTINUE
C COMPUTE RELATIVE ATTPACTIVENESS ETA AND FROM IT THE
C REOUIRED LEVEL OF EMPLOYMENT EE
```

```
SURROUTINE GEMPSV 73/73 OPT:0 FTN 5.04518
2 0
2 5
C check if the service will become to small and has to be shut
C OR IF THE LEVEL OF DEMAND IS TO SMALL TO OPEN A NEW SERVICE
    LIMIT=EUO(U)
    IF(EU(U,X).GT.0.0) LIMIT=8*LIMIT
    IF(EE.LT.LIMIT) EE=0.O
    El(U,X)=EE
    CONTINUE
C CASE 2: T = TUO
C IN THIS CASE, EI IS SET TO EUO FOR ALL VILLAGES
C RANOOMIZATION OF OPENING WILL BE OONE BY ROUTINE NEWSER
    ELSE IF(T.EO.TUO(U)) THEN
                    00 33 X=1,N
                                EI(U,X)=EUO(U)
                        CONTINUE
C CASE 3: T < TUO
C EMPLOYMENT WILL BE KEPT AT LEVEL ZERO
            ELSE
                    DO 35 x=1,N
                        EI(U,X)=0.0
                        CONTINUE
                END IF
40 CONTINUE
        RETURN
        END
```

```
SUbROUTINE GEMPII(T,P,EU,EV,EI)
```

C THIS SUBROUTINE COMPUTES THE EMPLOYMENT IN INTENSIVE AGRICULTURE
C AND INOUSTRY
C input: time t and state variables p eu ev
C OUTPUT: EV AT TIME T+I STORED IN EI
INTEGER X, U, V, T
REAL $P(36), \operatorname{EU}(5,36), \operatorname{EV}(2,36), \operatorname{DEV}(2,36), E 1(2,36), S$
C declaratricn of model parameters and their common block
PEAL ALPHA,A,B,K,TAU,PO,EUO(5),PSII(5,36),PSI2,LAMBDA(5,5),DU(5),

* DEL $(2,36)$, DO, GAMMA
INTEGER N,NU,NV,TUO(5)
DOUBLE PRECISION SEED
COMMON /PARAMI SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
* PSII,PSI2,LAMBDA, OU, DEL, DO, PO,GAMMA
SAVE /PARAM/
C COMPUTE UNEMPLOYED LABOUR FCRCE
C AS PDPULATIGN/FAMILYSILE -EMPLOYMENT(SERVICE) - EMPLOYMENT(SECT) $S=0.0$
$0015 x=1, N$
$S=S+P(x) / K$
00 E U=1,NU $S=S-E U(U, X)$ continue
$0010 \mathrm{~V}=1, \mathrm{NV}$ $5=S-E V(V, X)$ CONTINUE
10
CONTINUE
C SPREAD AMONG SECTORS
$0020 \mathrm{~V}=1, \mathrm{NV}$
$0020 \quad X=1, N$
$\operatorname{DEV}(V, x)=\operatorname{DEL}(V, x) * S$
$E I(V, x)=E V(V, x)+\operatorname{DEV}(V, x)$
20 CONTINUE
RE TURN
END

```
    SUBROUTINE GPQP(T,P,EU,EUL,EV,EVI,PI)
C COMPUTE POPULATIDN AT TIME T+1
    INTEGER T,U,V,X
    REAL DEU(5,36),DEV(2,36),P(36),P1(36),MS(36),GAM1,PS(36),
    * PTS,SM,MX,S,EU(5,36),EU1(5,36),EV(2,36),EV1(2,36)
    REAL ALPHA,A,B,K,TAU,PO,EUO(5),PSI1(5,36),PSI2,LAMBOA(5,5),OU(5)
    * DEL(2,36),D0,GamMa
    INTEGER N,NU,NV,TUO(5)
    DOUBLE PRECISICN SEED
    COMMON /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
    *
    SAVE /PARAM/
```

C COMPUTE CHANGES IN EMPLOYMENT
$004 x=1, N$
$002 U=1, N U$
$D E U(U, X)=E U 1(U, X)-E U(U, X)$
CONTINUE
$003 \mathrm{~V}=1, \mathrm{NV}$
$D E V(V, X)=E V I(V, X)-E V(V, X)$
CONTINUE
CONTINUE
C COMPUTE PDSSIBLE MIGRATIDN AND SUMS
$P T S=0.0$
$S M=0.0$
$G A M I=0.0$
$0015 x=1, N$
$S=0.0$
DO 5 U=1,NU
$S=S+D E U(U, X)$
CONTINUE
DO $10 \mathrm{~V}=1$, NV
$S=S+\operatorname{DEV}(V, X)$
CONTINUE
$\operatorname{MS}(x)=K * S$
$P S(x)=P(x)-M S(x)$
$P T S=P T S+P S(X)$
GAM1=GAM1+MS(X)
CONTINUE
GAMI=GAMI/PTS
C COMPUTE ACTUAL MIGRATION, NEW POPULATION
C AND SUM DF MIGRATION FLOWS
$S M=0.0$
DO $20 \quad x=1, N$
$M X=M S(x)-G A M 1 * P S(x)$
$S M=S M+M X$
$P 1(X)=(1.0+T A U) \neq P(X)+M X$
CONTINUE
C CHECK IF MIGRATION FLDWS SUM UP TO ZERO

```
    IF(ABS(SM).GT.I.E-7) WRITE(*,*) M MIGPATION ERRGR,SUM*',SM
    RETURN
    ENO
```


SUBROUTINE UPOT(T,EU,EU1,EV,EVI,P,P1)

C MOVE THE STatus VECTORS OF T+1 (EUl,EVI,pl)
C TO THE CURRENT STATUS VECTORS EU, EV ANO P
INTEGER T, X, U, V
$\operatorname{REAL} \operatorname{EU}(5,36), \operatorname{EU1}(5,36), \operatorname{EV}(2,36)$, EV1 $(2,36), P(36), P 1(36)$
REAL ALPHA,A,B,K,TAU,PO,EUO(5),PSII(5,36),PSI2,LAMBDA(5,5),OU(5), * DEL(2,36), DO,Gamma

INTEGER N,NU,NV,TUO(5)
DOUBLE PRECISION SEED
COMMON /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,

* PSII,PSI2,LAMBDA, OU,OEL,DO,PO,GAMMA

SAVE /PARAM/
DO $15 X=1, N$
$P(x)=P 1(x)$
OD 5 U=1,NU $\operatorname{EU}(U, X)=E \cup 1(U, X)$
5 CONTINUE
OD $10 \mathrm{~V}=1, \mathrm{NV}$ $E V(V, X)=E V I(V, X)$
10 CONTINUE
15 CONTINUE
RETURN
END

```
    SUBRIUTINE NEWSER(T,EU,P,EUI)
C RANOCMIZED OPENING OF SERVICES
C INPUT: TIME T, OLD STATE EU AND P
            POSSIBLE LEVEL OF SERVICES IN EI
    OUTPUT: NEW LEVEL OF SERVICES IN EI, WHERE OPENINGS OF NEW
                        SERVICES ARE DROPPED RANDOMLY FROM PREVIOUS EI
        INTEGER NR,U,X,T,UU
        REAL P(36),EU(5,36),EU1(5,36),RR,RX(36),R(1),PROB
        REAL ALPHA,A,R,K,TAU,PO,EUO(5),PSI1(5,36),PSI2,LAMBOA(5,5),OU(5),
        * DEL(2,36),DO,GamMA
            INTEGER N,NU,NV,TUO(5)
            DOUGLE PRECISION SEED
            COMMON /PARAM/ SEED,N,NU,NV,ALPHA,A,B,K,TAU,EUO,TUO,
        * PSII,PSI2,LAMBDA,OU,DEL,DO,PO,GAMMA
            Save /PaRAM/
            NR=1
            OD 15 U=1,NU
C OPENING MAY OCCUR DNLY AT T > TUO
                IF(T.GE.TUO(U)) THEN
C COMPUTE PROEABILITY MODIFIER TERM FOR VILLAGES
        RR=0.0
        OD 5 x = 1,N
        RX(X)=0.0
        OO 3 UU=1,NU
                        RX(X)=RX(X)+EU(U,X)
                        CONTINUE
        RR=RR+P(X)+GAMMA #RX(X)
        cONTINUE
        OD 10 X=1,N
C USE DIFFERENT PSI FOR T=TUO ANO LATER
        IF(T.EO.TUO(U)) THEN
                        PROB=PSII(U,X)*N*(P(X)+GAMMA*RX(X))/RR
        ELSE
                        PROB=PSI2*N*(P(X) &GAMMA*RX(X))/RR
                END IF
C SUBJECT TO RANDOMIZATION IF EU = O
C (I.E. IF IT IS AN OPENING ANO NOT A MODIFICATION OF SERVICE)
                CALL GGUBS(SEED,NR,R)
                IF(R!I).GE.PROB.ANO.EU(IJ,X).EQ.O.0) EUI(U,X)=0.0
                    1 0
                continue
        END IF
        CONTINUE
        RETUPN
        END
```

```
FUNCTION DIST
73/73 OPT=O
    REAL FUNCTION DIST(I,J)
C THIS FUNCTION IS USED TO COMPUTE THE DISTANCE BETHEEN THO
c villages in the nethork
    INTEGER I,J,II,J1,X1,X2,Y1,Y2,OX,DY
C THE DISTANCE WITHIN A VILLAGE IS SET TO 0.4
        IF(I.EO.J) THEN
            DIST=0.4
            RETURN
c compute the distance between different villages
        ELSE
            I1=1-1
            J1=\-1
C XI IS THE ROW NUMBER OF VILLAGE 1, YI ITS COLUMN NUMRER
C NOTE THAT VIllages are at odo COLQUMNS IN EVEN raWS and at
C EVEN COLOUMNS IN DOD ROWS
            x = 1 1/6
            Y1=2*MOC(I1,t)+MOD(X1+1,2)
            X2= \1/6
            Y2=2*MOD(J1,6)+MOD(X2+1,2)
C COMPUTE DISTANCES IN ROWS AND COLOUMNS
C ONLY COLDUMN DISTANCES > ROH DISTANCE ARE OF INTEREST BECAUSE
C SMALLER ROW DISTANCES CAN BE CROSSED 8Y MOVING DIAGONALLY
    DX=ABS (X1-X2)
        OY=ABS(Y1-YZ)-DX
            IF(DY.LT.O) DY=0
C CORRECT FOR THE FACT THAT COLOUMN DISTANCES ARE NOW 2*ROW DISTANCES
C because of the odo/Even coloumn location of villages
            OY=OY/2
C DISTANCE BETWEEN TWO ADJACENT VILLAGES IS 4 kM
    DIST=4.O*(OX+DY)
        RETURN
        END IF
        END
```

```
    PROGRAM ALLVL
    INTEGER T,N,I
    REAL P(36),EU(5,36),EV(2,36),S
    CALL PRTPAR
    OO 15 N=1,36
    WRITE(2,'(''1'',A,I5)') 'TIME PATH fOR VILLAGE',N
    WRITE(2,101)
    WRITE(2,102) 1,2,3,4,5,1,2
    5 READ(1,END=90) T,P,EU,EV
    S=0.0
    007 I=1,5
        S=S+EU(I,N)
    CONTINUE
        WRITE(2,103) T,P(N),(EU(I,N),I=1,5),S,(EV(I,N),I=1,2)
        GOTO 5
    90 REWINO 1
        OD 10 I=1,15
        READ (1)
        CONTINUE
    10 CONTINUE
    STOP
    101 FORMAT(//52X,'EMPLOYMENT IN SERVICE'
        * ,32X, 'EMPLOYMENT IN SECTOR')
    102 FORMAT(1 TIME POPULATIQN 1,I9,4113,' SUM 1,2113)
    103 FORMAT(IIO,9G13.6)
    END
```

```
PROGRAM LONG
```

c
COMPLETE SET OF MAPS (POPULATION, SERVICES, CTHER SECTORS)
INTEGER T,X,U,V,I
REAL P(36), EU(5, 35), EV $(2,36), \operatorname{VAL}(36)$
C PERFRRM INITIALIZATION
CALL PRTPAR
WRITE(6,*) 'ENTER PRINT INTERVAL: '
READ(5,*) I
C LOOP FOR ALL TIME PERIODS

5

C MAP OF POPULATION
WRITE(2,'('II'', A, I5)') ' PQPULATION at TIME ', CALL MAP(36,P)

C MAPS OF SERVICES
DO $15 \quad U=1,5$
IF(MOD(U,2).EO.1) WRITE(2,'(1'1'1)'
$0010 \quad x=1,36$ $\operatorname{VAL}(x)=E U(U, x)$
CONTINUE
WRITE(2,*) ' EMPLOYMENT In SERVICE ',U,' at time ', CALL MAP(36,VAL)
CONTINUE
C MAPS OF OTHER SECTORS
WRITE(2,'('M1')')
DO $25 \quad V=1,2$
$0020 \quad x=1,36$
$\operatorname{VAL}(x)=\operatorname{EV}(V, x)$
CONTINUE
WRITE(2,*) ' EMPLOYMENT IN SECTOR ', V,' AT TIME $1, \mathrm{t}$ CALL MAP(36,VAL)
CONTINUE
GOTO 5
STOP
END

```
PROGRAM SHORT 73/73 OPT=0
                                    FTN 5.04518
            PROGRAM SHORT
C SHORT MAPS (POPULATION AND OTHER SECTORS)
C USED FOR THE BASE SOLUTION
            INTEGER T,X,U,V,I
            REAL P(36),EU(5,36),EV(2,36),VAL(36)
C PERFORM INITIALIZATION
            CALL PRTPAR
            WRITE(6,*) IENTER PRINT INTEPVAL: '
            READ(5,*) I
C LODP FOR ALL PERIODS
5 READ(1,END=90) T,P,EU,EV
        IF(MOD(T,I).NE.O) GOTO 5
        HRITE(2,'('II'',A,I5)i): POPULATION AT TIME 1,T
C MAP DF POPULATION
        CALL MAP(36,P)
        WRITE(Z,'(1'1'()')
C MAPS OF OTHER SECTORS
    DD 25 V=1,2
            DO 20 x=1,36
                VAL(x)=EV(V,X)
            CONTINUE
            WRITE(2,*) ' EMPLOYMENT IN SECTOR ',V,' AT TIME ',T
            CALL MAP(36,VAL)
            CONTINUE
                    2 5
        GOTO 5
90 STCP
    END
```

```
PROGRAM SUMRY 73/73 OPT=0 -38-
    PROGRAM SUMRY
C SUMMARY CUTPUT FOR THE WHOLE SYSTEM
    INTEGER T,I,J
    REAL P(36),PS,EU(5,36),EUS(5),EV(2,36),EVS(2),S,QU(5)
    COMMON IPARAMI QU
C PERFORM INITIALIZATION
    CALL ORTPAR
    WRITE(2,'(''1'',A)') 'TIME PATH FOR THE WHOLE SYSTEM:
    WRITE(2,101)
    WRITE(2,102) 1,2,3,4,5,1,2
C TIME PATH FOR THE SYSTSM
5 READ(1,END=25) T,P,EU,EV
    OO 10 I=1,5
        EUS(I)=0.0
        CONTINUE
        EvS(1)=0.0
        EVS(2)=0.0
        PS=0.0
        S=0.0
        00 20 J=1,36
            00 15 I=1,5
            EUS(I)=EUS(I)+EU(I,J)
            S=S+EU(I,J)
            CONTINUE
        EVS(1)=EVS(1)+EV(1,J)
        EVS(2)=EVS(2)+EV(2,J)
        PS=PS+P(J)
        CONTINUE
        WRITE(2,'(I10,9G13.6)') T,PS,(EUS(J),J=1,5),S,(EVS(J),J=1,2)
        GOTO 5
25 CONTINUE
C DEMAND SATISFACTION CDEFFINCIENTS
    REWIND 1
    DO 30 I=1,15
        READ(1)
30 CONTINUE
    WRITE(2,'(''1'',A)') 'DEMAND SATISFACTION COEFFICIENTS'
    WRITE(2,'(/A/)')' TIME COEFFICIENTS'
35 READ(1,END=90) T,P,EU,EV
    OO 40 I=1,5
        EUS(I)=0.0
    40 CONTINUE
        PS =0.0
        00 50 J=1,36
            PS=PS+P(J)
            0045 I=1,5
                EUS(I)=EUS(I)+EU(I,J)
                continue
            continue
```

 \(00 \begin{aligned} & 55 I=1,5 \\ & E U S(I)=E U S\end{aligned}\)
 EUS(I)=EUS(I)/(PS*OU(I))
 CONTINUE
 WRITE(2,'(I10.5G13.6)') T,(EUS(I),I=1,5)
 GOTO 35
 90 STDP
101 FDRMAT (//52X,'EMPLOYMENT IN SERVICE'
* , 32X, 'EMPLOYMENT IN SECTER')
102 FORMATI TIME POPULATION 1,I9,4I13,' SUM ',2I13)
ENO

```
OROGRAY VLIST
73/73 OPT=0
FTN 5.0+518
PROGRAM VLIST
C time path for one village
INTEGER T,N,I REAL \(P(36), \operatorname{EU}(5,36), \operatorname{EV}(2,36)\)
C PERFORM INITIALIZATION
WRITE( ,*) 'ENTER VILLage NUMBER: '
READ(5,*) N
CALL PRTPAR
C PRINT PAGE HAEDING
hrITE(z,'('I'',A,I5)') 'time path for VIllage',n WRITE(2,101) WRITE(2,102) 1,2,3,4,5,1,2
C LOOP FOR ALL TIME PERIODS
5 READ(1,END=90) T,P,EU,EV
C SUM OF SERVICES
\(S=0.0\)
0010 I 21,5 \(S=S+E U(I, N)\) continue
WRITE(2,103) T,P(N),(EU:I,N),I=1,5),S,(EV(I,N),I=1,2) GOTO 5
90 STOP
101 FORMAT(//52X, 'EMPLOYMENT IN SEPVICE'
* , 32X,'EMPLOYMENT IN SECTOR')
102 FORMAT(' TIME POPULATION 1,I9,2II3,1 SUM 1,4I13)
103 FQPMAT(/I10,9G13.6)
END
```

```
    SUBROUTINE MAP(N,VAL)
C PRINT A MAP OF THE VALUES PASSED IN VAL
    INTEGER N,I,J
    REAL VAL(36)
    WRITE(2,'(//I')
    DO }5I=0,(N/6)-
            IF(MOD(I, 2).EO.0) THEN
                URITE(2,101) (VAL(6*I+J),J=1,6)
            ELSE
            WRITE(2,102) (VAL(6*I+J),J=1,6)
            ENO IF
        CONTINUE
        WRITE(2,'(//)')
        FORMAT(//T10.6G15.6)
        FORMAT(//T20,6G15.6)
        RETURN
        END
```

SUBROUTINE PRTPAR
reat and print the parameter part of the result file

CHARACTER*R F1,F2
INTEGER I,J
REAL ALPHA,A,B,K,TAU,PO,EUO(5),PSI1,PSI2,LAMBDA(5,5),OU(5),

* DEL(2,36),DO,GAMMA

INTEGER N,NU,NV, INTYP,TUO(5)
DOUBLE PRECISICN SEED
COMMON /PAPAM/ QU
Save /PaRam/
HRITE(6,*) 'ENTER RESULT FILE NAME: '
READ(5,*) F1
OPEN(UNIT=1,FILE=F1,FCRM=IUNFORMATTED')
REWIND 1
WRITE(G,*) IENTER LIST FILE NAME: '
READ(5,*) F2
OPEN(UNIT=2,FILE=F2)
WRITE(2,'(A)') '1 SETTLEMENT NETHORK MODEL'
WRITE(2,'(A/)') 10 SETTING OF PARAMETERS:'
READ(1) N,NU,NV
WRITE(2,*) NR OF VILLAGES: 1,N
WRITE(2,*) NR OF SERVICES: $1, N U$
WRITE(2,*) (NR OF OTHER SECTORS: ',NV
WRITE(2,*)
READ(1) ALPHA,DO,A, B
WRITE(2,*) ' SPACE HEIGHT ALPHA: ',ALPHA
WRITE(2,*) INFLUENCE RANGE DO: 1.DO
WRITE(2,*) REACTION LEVEL A: $1, A$
WRITE(2,*) CLOSING LEVEL 8: 1,8
WRITE $2, *)$
REAO(1) K,TAU,PO
WRITE(2,*) FAMILYSIZE K: i,K
WRITE(2,*) ' POPULATIDN GROWTH RATE 1,TAU*100.0,1 \%
WRITE(2,*) INITIAL POPULATION SIZE:',PO
WRITE (2,*)
READ(1) (EUO(I),I=1,NU)
WRITE(2,101) INITIAL SERVICE SIZES: ', (EUO(I),I\&1,NU)
READ(1) (TUO(I),I=1,NU)
WRITE(2,*) STARTING TIMES: $1,(T U O(I), I=1, N U)$
WRITE(2,*)
REAO(1) PSII,PSI2,GAMMA
WRITE(2,*) PROBABILITYLEVEL PSII: ',PSII
WRITE(2,*) PROBABILITY LEVEL PSI2: 1,PSI2
WRITE(2,*) CLUSTERING GAMMA: ',GAMMA
DO 5 I=1,NU
READ(1) (LAMBDA(I,J),Jel,NU)
CONTINUE
REAO(1) (QU(I),I=1,NU)
WRITE(2,101) ' EMPLOYMENT/DEMANO UNIT:',(OU(I),I=1,NU)
$0015 \mathrm{I}=1, \mathrm{NV}$
READ(1) (OEL(I,J),J=1,N)
CONTINUE
REAO(1) SEED
FП̧MAT(A, EG15.6)
RETURN

END

REFERENCES

Domanski, R., and A. Wierzbicki (forthcoming) A simulation model for restructuring a rural settlement network.

