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ABSTRACT

This paper uses abstract optimization theory to characterize
and analyze the stochastic process describing the current marginal
expected value of perfect information in a class of discrete time
dynamic stochastic optimization problems which include the famil-
iar optimal control problem with an infinite planning horizon.
Using abstract Lagrange multiplier techniques on the usual non-
anticipativity constraints treated exzplicitly in terms of adap-
tation of the decision sequence, it is shown that the marginal
expected value of perfect information is a nonanticipative super-
martingale. For a given problem, the statistics of this process
are of fundamental practical importance in deciding the necessity
for continuing to take account of the stochastic variation in the
evolution of the sequence of optimal decisions.
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1. INTRODUCTION

This paper uses abstract optimization theory to characterize and
analyze the stochastic process describing the current marginal expected
value of perfect information in a class of discrete time dynamic stoch-
astic optimization problems which include the familiar optimal control
problem with an infinite planning horizon. Using abstract Lagrange
multiplier techniques on the usual nonanticipativity constraints treated
explicitly in terms of adaptation of the decision segquence, it is shown
that the marginal expected value of perfect information in a nonantici-
pative supermartingale. For a given problem, the statistics of this
process are of fundamental practical importance in deciding the necessity
for continuing to take account of the stochastic variation in the evolution
of the sequence of optimal decisions.

Let x = {x },.7 be a sequence of decistions in Rn and let

~tt=1

£ = {gt}t=1 be a discrete time stochastic process in (3,I,u) of sub-

sequent obsecrvations. A policy (decision rule or recourse funstion) is

a measurable map X:3 +x(g§) . Consider the problem



T

( .
(RP) inf B(Z _; £,(x)]

.t € n m =
S.t X PtC]Rt gt(g_c)EQtC]Rt a.s. ¢t LIPS
{(where n,go, =n,m <m = m) and the nonanticipaiive condition
that the current decision X, depends only on the seguence of observa-
tions 51,52,..., Et-1 , and reallsei dgnglons XysXgreeor X g (and

thus § ) to date. Here ft: s x xt=1 R +IR is assumed measurable
in its first argument and Borel measurable in its second and

§t(§): = ft(-,x(-)) , and similarly for gt(g) . (A full set of technical
assumptions will be introduced in §§2 and 3.)

The problem (RP)=-~termed the dynamic recourse problem—-has a number
of important applications in the mathematical sciences (¢;f. Dempster,
1980). Special cases include stochastic dynamic linear or quadratic
programming formulations of energy-economie planning models, 3Birge (1980),
Louveaux and Smeers (1980,1981); <inventory control models, see e.qg.
Veinott (1966); Markov decision processes with random transition matrices
for manpower planning, Grincld (1976,1980) and the classical discrete
time optima. control model. To see the last assertion in more detail,

make the following substitutions in (RP):

X: = (g,g) m,: = m n,: ST m+n

Q,: = {0} poi o= {z,) x R® P: = R e=2, ... ,1
f k) = £, (x,) g (x): =0

gt(§): = §t+1-h(gt,gt)-§t t=1,...,7-1

Then (RP) reduces to the familiar control problem

(c) sup, E[I,_] £,(z,,u.)]

= h(-z-t";lt) + ...,1-1

W
fu
.
(7]
o+
[
-
~

Ze+1



Control and state space constraints are easily added to (C) by suitable
definition of Pt’ t=1,...,1T .

Characterization of the (optimal) solutions to the general problem
(RP) for finite <t has been treated by Rockafellar and Wets(1976a,b,
1978) for the convex case under a Slater regularity condition (constraint
gualification) using the duality theory of convex conjugate functions.
More recently (1981), they have given a similar treatment of the convex
Bolza problem--a special case of (C)--for finite <t . Hiriart-Urruty
(1978,1981) has considered a more general class of nonlinear special
cases of (RP) for finite T . He applied a theory characterizing in
terms of generalized gradients the minimum of an integral functional
involving a measurable locally Lipschitz integrand subject to a measur-
able closed valued multifunction constraint. The version of (RP) he
treated has some nondifferentiable and some differentiable constraints
and a correspondingly mixed Slater/Mangasarian~Fromowitz constraint
qualification is enforced.

This paper discusses the use of recently developed abstract mathe-
matical programming theory (Dempster,1976; Zowe and Kurcyusz,1979;
Brokate, 1980) to extend these results to the infinite horizon ( T
infinite) problem for the general ncnlinear case under appropriate reg-
ularity conditions involving problem functions in L_ . The suppore
represenzaiicn problem (Dempster,1976) for (RP) is addressed to obtain
the appropriate stochastic maximum princiéle and nonanticipative super-
martingale representation of the L, multiplier process corresponding
to the nonanticipative constraints. The general results were announced
in Dempster (1980); details and proofs will appear elsewhere. In this
paper, emphasis is placed on pvrecise problem formulation, results and
interpretation ($§2 and 3) and attention is focused on the supermartin-
gale multiplier process corresponding to the nonanticipative constraints
(§4). Technical limitations to extending the analysis of this marginal
expected value of perfect information process to continuous time systems
--involving say diffusion or jump dynamics--are discussed briefly in §5
with a view to their possible relaxation in future work using recent
theories of pathwise integration of stochastic differential eqguations
(Sussman, 1978; Marcus,1981).

2. THE DYNAMIC RECQURSE PROELEM AS AN ABSTRACT OPTIMIZATION PROBLEM

The purpose of this section is to set up the problem (RP) as an
abstract mathematical programme of the form

(P) - SUP, . p (%) s.t. g(x) eQ



where P and Q are sets in appropriate linear topological spaces U
and Vv, f:U +R and g:U +V .,

A natural assumption to make in the applications cited in §1 is
that feasible policies should be essenticlly bounded--i.e. in L_ --
on (Z,Z,u) , ef. Rockafellar and Wets (1976,1978,1981), although a
similar treatment of policies in Lp(1.ip <») 1is also possible, c¢f.
Eisner ané Olsen (1975,1980), Hiriart-Urruty (1978,1981). Hence assume

I completed with respect to u and define

(2.1) L2: = L_[(Z,I,u);R"]
and
R
X: = X = (x1, ..,xT) U.--Xt__1 L.,
.- gz ~ . = Tp =
PL: = {¢el, | ¢:2 ~ P} P: =X, _qP,
oS: = {ver | v:z -0} 0:=x__70.° :

equipping U with the usual equivalent of the product topology defined
in terms of the norm {uj =sup_u.l, - (We shall be party to the usual
abuse of terminology by referzxing to the eguivalence class elements of
Banach function spaces as functions and subject to the standard analyst/
probabilist's schizophrenia by denoting the elements of., for example,

L, as both u and u depending on whether the analytzc or probabil-
istic interpretation is to the fore.) The abstract ob]ectlve function of

(P) is obviously
» - —3 T
(2.2) f(x).--E[Zt=1 gt(§)] '

but a little more analysis will be necessary in order to define the
abstract constraint function g and its range (image) space V .

The problem lies with the explieit characterization of nonantici-
pation. Its solution was first proposed in the context of stochastic
linear programming by Eisner and Olsen (1975,1980). Let {Zt} be the

usual increasing tower of a-fields,

cenerated bv the process § . Lvery feasible policy x 1s assumed to



be adapted, 1i.e.

vy

(2.3) X, = E{x } a.s. t=1,...,T

Re T Bix 12

t-1
After canonically embedding Lmt in L: in the obvious wav, we may

define the closed projections

n :Ln

n =
g P Llg Ly o 2 I 2: E{z | £}

for t¥1,...,1 . Then x is adapted to & if, and only if,

-~

(2.3") (I-T__y)%, =0 t=1,...,7 .

Here (when we make the usual assumption that X, is deterministic)

HO: =IIK1 , Where K1
niq - . . n
Lm embedded in L_ .

We may now define the constraint function of (P) as

denotes the linear svan of the constants in

m -
Lt x(Lg)L

(2.4) g:U =Vi=X__]

t=
such that

X+ g(xX):= (g1(x),g2(x),-.- ; (I-Ho)x1, (I—H1)x2,... Yy

with V equipped with the normed-defined equivalent of the product
topology (as with U ). All these considerations apply egqually Qell to
finite or infinite T . 1In the sequel we shall consider only the case
of infinite <t ; necessary changes for the simpler case of finite 1

are easily supplied by the reader. Further, define gt,ft to be the
history, i.e. E1r8oreevrBii XquXgreeu X of the observation, respec-
tively policy, process to time t . We shall specialize in what follows
to the case==-relevant to all the practicai examples of §1-=0f triangular
(RP), for which current constraints depend only on observafion and

decision histories z¢ dacte, i.e.

(2.5) gt(§ ' X ) aQt a.s. t=1,2,... .

(Thus the measurability properties for the 9 cited in §1 may be re-

stricted to :t racaher than 2 .)



This completes the basic set of assumptions needed to specify and
analyze the dynamic recourse problem (RP) over an infinite horizon.
Further (illustrative) technical assumptions will be introduced as re-
guired to complete the analysis in §3.

3. CHARACTERIZATION OF OPTIMAL SOLUTIONS

The characterization of optimal solutions for the abstract mathe-
matical programming problem (P) necessitates consideration (perhaps only

implicitly) of its Langrangian Function
(3.1 dp(x,y"):= £(x) + y'g(x) '

for xeU and multiplier vectors y'eV',6 the dual space of V (con-
sisting of all linear functionals on V continuous in the given topology
for v).

We shall thus here need the following characterization of L: . due
essentially to Yosida and Hewitt (1952) (see also Dubovitskii and
Milyutin, 1965, Valadier, 1374, and Dempster, 1976). A finitely additive
row n~vector valued measure Tm':Z *IRn' on (E,L) is purely finitely
additive ‘p.f.a.) 1if, and only if, for all countably additive real valued
measures v on (Z,I) and for all £>0 there exists AEeZ such that
lv(A Y[<e and w'( A) =0'e r" i.e. a p.f.a. measure is carried by
sets assigned arzlt‘arllv small measure by any countably additive measure.
(Prime is used to denote a dual element;in the finite dlmen51onal case
this is consistent with vector transposition.) Denote by L the

(Banach) dual space of Lz {as defined in (2.1)), by L? the space of

1

(coordinatewise) absolutely integrable row n=-vector valued functions on
)

(z,Z) and by P?  the space of purely finitely additive row n-vector

valued measures on (3,I) .

Proposition: 3.1. Given the measure space (Z,IL,u) , if [ 1is complete

with respect to the o -finite measure u , then

) 1
L EL?GBPn n
3
. . . . n
Here = denotes isometric isomorphism and the action of y'elL_, on an

n

n-vector valued function xel_ 1is given by

(3.2) y'x: = vi(D)x{DL (@) + for(dE)x(5)

= 3% X + yé S



The first integral in (3.2) is simply an abstract Lebesque integral; the
second requires the analogous integration theory developed for finitely
additive measures by Dunford and Schwartz (1956). In fact, Valadier
(1974) extended the result of Propdsition 3.1. to the o-finite case from
the finite case established by Yosida and Hewitt (1952), while Dubovitskii

: : . *
and Milyutin (1967) independently gave a complete treatment of L, in
terms of singular functionals (y, of (3.2)) without reference to their
integral representations. A finer characterization of L: in terms of

1]

natural subspace of ph appears in Dempster (1976).

We are now in a position to make precise sense of the Langrangian

function (3.1) for (P). According to (2.4) we are interested in repre-
tati £ the dual e, x. 2™ @, o v=x. 1™ @)V
sentation © e dual space, =1 Lew - , O =21 la ( m) Y,

where IN denotes the natural numbers. A straightforward application of

Proposition 3.1 vyields ¢ as given by

(3.3) $(x,y")
= I, {Ef_(x) + Eylg, (x) + Epc(I-N__)x,
+ o m(dE)g (&, x(8))

Do+ SoovlEn) (x (5) ~Elx ]I _,}(&)]
* oo Xe(dE,dt) (G (8,x(8)), x (8) - Elx [T _,}(8))

using the fact (Yosida and Hewitt, 1952) that all p.f.a. measures on IN
(with counting measure # taken as ground measure) are carried by

neighbourhoods of =, In (3.3)

n. ' m_' v n/! ' '
gt':sLmt ,gt':eLwt 'frtePt ,\l’tsPn '
) 1
XQEP[(E xWN,exy (X)), uxt) ;IRm+n ] , the space of row {(m+n)-vector

valued measures on the product o-£field shown, and in the corresponding
integral = has been canonically embedded in r".

Next we characterize an optimum X of (P) in terms of a suitable
concept of derivatives of the Lagrangian ¢ given by (2.3). Rather than
use minimal concepts and introduce highly technical conditions on (P),
we shall by way of iliustration use Fréchet derivatives and give regu-
larity conditicns only for (RP) suificient to ensvre the truth of the

-

following Huinw-luckar Ihecrem for (P), o7. Zowe and Xurcyusz (1979).



Suffice it to say here that versions of Proposition 3.2 below are avail-
able involving both generalized derivatives (c¢f. Hiriart-Urruty, 1981)
and (one-sided) Gateaux directional derivatives (Dempster, 1976) under
minimal regqgularity conditions (c¢f. Dempster, 1976; Brokate, 1980) for

(P) posed in locally convex Hausdorff topological vector spaces. We
shall need the concept of the dual cone Q'CV‘' of a set Q CV as

(3.4) Q':={y'ev':y'z>0, ¥zeQl ,

and similarly for sets in U.

Proposition: 3.2. Let U and V be Banach spaces and the problem func-
tions f and g of (P) be Fréchet differentiable with derivatives V£
and Vg respectively. Then under sui*able regularity coﬁditions on (P),
Xg an optimum for (P) implies that there exists yée Q' such that

wg: = V, 8(xg,yy) = TE(xg) + YoVglx e ~ P

(3.5) g(xo? = Vy,¢(x0,y6)€ Q
wéuimaxo ¥VueP
¥99(xg) Sy V vveQ =

Conditions (3.5) are termed Xuhn-Tucker (necessary) conditions for an

optimum of (P).

If 0ePCU and 0eQCV , the last two imply the complementary slack-

negs conditions
(3.6) maxo = 0 yég(xo) =0 .

Applying Proposition.3.2 under suitable regularity assumptions on
(RP) yields a (necessary) characterization of its optimal policies in
terms of the abstract Lagrangian of (P) given by (3.3). However, inspec-
tion of (3.3) raises the gquestion of conditions under which this charac-
terization remains valid if the awkward terms involving integrals with
respect to purely finitely additive measures are dropped. This is a
special case of the general supgpar: represcntation prablem (Dempster,1976)
which has appeared in the control (éubovitskii andAMilyutin,1965), eco-
nomics (e.g. Prescott and Lucas,1972) and opiimizatiocn (Rockaificllar und

Wets,1976a,b,1978) literature.



To solve the support representation problem for (RP) we must give
conditions on the problem sufficient to make both the stochastic p.f.a.
measures ﬁé and wé, t=1,2,..., and the intertemporal p.f.a. measure ¥x_
of (3.3) vanish. The followinc conditions are a distillation of the
literature cited above. Some terms and definitions will be needed. A
policy history §t is termed feasibie if it satisfies the constraint

structure of (RP) to time t, i.e. if we have for its components

X, €P . - gs()_cs) er a.s. s =1,...,t .
Define
B - Lt .
Xo: = jx €R “ix, =x,(§) ,§ €I, x" feasiblel
and
D _ .
Ct: = 3xtEER :xt=xt(E) , L EE, X feas:Lbleg .

Clearly C. essentially lies in oo but the analytical (computational)
intractability of (RP) arises from the fact that this inclusion is in
general essentially strict. The conirollabiiity (or relatively complete

recourse) condition
(3.7) u|zt(xtACt) =0 t=1,2,... ,

ensures almost sure decision recourse at all times from any realization
of the observation (and decision) process to date and forces the optimal
stochastic p.f.a. measure vé of Proposition 3.2 to vanish. Rockafellar
and Wets (1976a) obtain more technical sufficient conditions. They show
by example that, without the exzpliett introduction into the problem of
the constraints which bind at an optimum induced on Ce by later stages,
the support representation problem in terms of L1 multipliers for (RP)
is insoluble. Since a nonanticipative constraint (2.3) cannot lead to
infeasibilities of subsegquent nonanticipative constraints, we can con-
clude immediately that the stochastic p.f.a. measures wé, t=1,2,...
always vanish at the optimum. To ensure that the optimal intertemporal
p.f.a. measure x! vanishes, it suffices to assume that 0 GPt, t=1,2,...
and the fintte horizon approzimation condition:

t

(3.8) for some <(21), x feasible implies (x,0,0,...)

feasible for all t 2 =

Examples of nontrivial p.£f.a. measures (in the absence of this condition)



are known (see Prescott and Lucas,1972).

Next we must state suitable regularity conditions on (RP) sufficient
to ensure the conclusions of Proposition 3.2. in teﬁgs of L, mult%pliers.
Hence we assume (by way of illustration) that PtCIRt and QtCIR t are
closed convex cones, O¢ Qt and the problem.functions ft'gt are differ-
entiable with respect to their policy components with gradients Vft, Vgt,
t=1,2,... . Given a set C (in a linear topological space) and a point

x e C define the inner approzimation cone
. . =N -
I(x,C). muxZOX(C X) 14

where the intersection is taken over neighbourhoods (A” of x. We shall
assume that for an optimal policy Xa

m

IRt

P - Q=

oot

(3.9) Et(ES) + Vgt(fg) I(ft’xr=

a.s. t=1,2,... .

Since the {linear) projections I -Ht of (2.3') are closed, (3.9) is
sufficient to ensure that the abstract problem function g of (2.4)

satisfies
(3.10) g(xo) + Vg(xo) I(xO:P) -Q =V

in terms of its Fréchet derivative at an optimum X, of (P) for the

closed convex cone QCV , ef. Dempster (1976), Zowe and Kurcyusz (1979).
Finally we are in a position to apply Proposition 3.2 to obtain a

local version of the Kuhn-Tucker necessary conditions (3.5) for an opti-

mal policy x, of (RP), in terms of a stochastic mazimum principle in-

0
volving the L, multiplier processes y' and p', of the form

L
yt € Qt a.s.
@ o ., S - '
Zs=lvxt§s(§)+ Zs=t¥svxtgs(§ ) € Pt a.s.
) t -
(3.11) x,€P. g (x7) £Qy x. =E{x [I _;} a.s.

fcr t=1,2,...



In the case that all problem functions are concave in the policy vari-

ables, conditions (3.11) are also sufficient--in general, they are not.
In the next section, we turn to an analysis and interpretation of

the (cptimal) multiplier process g' corresponding to the nonanticipative

constraints (2.3) of (RP).

4. TEE MARGINAL EXPECTED VALUE OF PERFECT INFORMATION SUPERMARTINGALE

In this section we shall assume that a fixed optimal policy Xg for
(RP) is specified. (Various further assumptions may be adduced to the
problem to guarantee existence and even unigueness of the optimal policy.,
but these will not concern us here.) We shall apply modern perturbation
theory for the abstract programme (P) of §2, see e.g. Lempio and Maurer
(1980), to study the nonanticipative constraint multiplier process »p'

-~

corresponding to the chosen optimal policy Xg for (RP). Of interest
are perturbations to the nonanticipative constraints (2.3) of the form

} -2 a.s. t=1,2,4..,

(4.1) x, = E{x | z2,

~t =1

where the z, are arbitrary n-vector valued functions measurable with

respect to I ) (s(t) >t) and hence representing information on the

s(t
Ffuture of the observation process &£ . More specifically, fix t and

£ measurable with respect to
Zs for some fixed s>t and consider perturbations of the tth non-

an arbitrary n-vector valued function z

anticipative constraint of the form

(4.2) Xy = E{ictlzt_1}-_aft a.s.
for ac[(0,8] (6§ >0) . Denote the optimization problem resulting from

the perturbation (4.2) as (RP[azt]) and its abstract egquivalent as
(P[azt]). Define the abstract perturbation function 7 :V +RU {»} as

(4.3) mlaz, ): = sup{f(x): xeP,g(x) + a(0,...,0,z,,0,...) eQl .

Then, under conditions on the problem data of (RP) such that the original
problem has an optimal solution, the perturbed problems P[azt] will
have feasible solutions. We shall assume that we may find a curve x(a)
such that x(a) is feasible for P[azt] and 1ima+o x(a) = XgeU . Then,
since the closed projection (I -TT ) defines a subspace of L_, the
Lagrange multiplier oée L?'for the constraint (2.3) is an anihilator
(supvorting hvrerzlare) of this subspace. Under our assumdtions (applv-

ing Theorem 4.3, Lempio and Maurer,198(0) we may thus conclude that we



may choose
(4.4) Pe = Vt'fT(O) ’

where V. m denotes the Fréchet derivative of the perturbation function
(8.3) of the abstract problem (P) evaluated at 0 under perturbations of
the form (4.2) at time t . That is, the current state 91': of the non-

L]
anticipative constraint multiplier process p! in L? represents the

marginal ezxpected value of perfect informati;; (EVPI) at time t with
respect to future states of the observation process €.

We first establish that this marginal EVPI process p' --like the
optimal policy process Xg itself--is adapted to the observation process

£ .

-~

Lemma: 4.1. The process g' in L? is nonanticipative, 1i.e.

: 1 - 1 -

(4.5) N E{gtlzt_1} a.s. t=1,2,... .

| This fact follows from the observation that expression (4.4) for

p,'; does not depend on any particular perturbation (4.2) representing
some future knowledge of the observation process _&_ a

Next we show that the process o' has the supermartingale property.
This reflects the fact that the earlier information on the future ob-
servation process 5 is available, the more its marginal expected worth

to optimal decision making.

[ 4
Theorem: 4.2. The process p' in L? is a supermartingale, i.e.

(4.6) e 2Elp|Z.} a.s. for (1¢) t<s .
a By virtue of (4.5) we must show for fixed t and s>t that
L}
E{Euth}i E{p |z} a.s. .

But a further consequence of (4.5) is that for all s>t

' = '
E{lpelz ) = Elpglz 41 a.s. p

and hence (4.6) is eguivalent to showing that

E{pilz,t 2 Elplls}  as. o .



But information on the future of £ after time s~1, as represented
by an n-vector valued perturbation function z measurable with respect
to L for u2s , cannot be worth less in expectation the earlier it

is known, i.e.
(4.7) mlaz ) 27 laz,) ’

where zoi=z, =2 . Indeed, an optimal policy for the problem perturbed
at time t can take this information into account earlier than a corres-
ponding policy for the problem perturbed at s . Hence, subtracting w(0)
from each side of (4.7), dividing by a >0 and passing to the limit as
a+0, yields

' = '
P = V,m(0) 2V _T(0) = pg

Since integration is nonnegativity preserving

E{p, (2.} 2 Elo lL,} a.s. . |

5. POSSIBLE EXTENSIONS

As noted in the introduction, the marginal expected value of perfect
information (EVPI) process g' is of considerable potential importance
for stochastic systems of the dynamic recourse type arising in practice
(see §1). If this nonanticipative supermartingale process in L?':=
L1[(E,Z,u);.mp'] remains in a ball of (problem dependent) radius £ >0
for all t after some time s> 1, then the stochastic elements of the
problem are practically inessential from time s onward and a determin-
istic model--and simpler computational procedure--should suffice. Of
course, this statement raises the knotty problems of prior numerical
computation of the marginal EVPI process, or--more realistically--of
bounds on this process, etc. (in this context, see Birge,1980).

Nevertheless, it would be interesting to have theoretical results
similar to those derived in §4 for familiar optimization of stochastic
system problems in continuous time involving dynamics driven by semi-
martingales (see e.g. Shiryaev,1980). The difficulty in attempting an
analogue of the analysis presented in this paper for such systems is
that the corresponding perturbed abstract problem (as utilized in 4)
must make sense. Put &ifferently, the original stochastic opti-
mization problem must remain well defined when nonanticipativity is
rsiaxec. Using the Ito caleculus arproagh {2ni 1z¢ ra2cent L XtEehSLCas

to semimartingales generating mixed diliuzicn anéd jumrs dynamics) this



is not possible, since the rigorous analytic integral form of the dyna-
mics requires nonanticipativity of the integrand in the stochastic integ-
rals involved. This technical regquirement of the stochastic integration
theories utilized has been relaxed for integration of Gaussian processes
with respect to similar processes by Enchev and Stoyanov (1980), but
this setting is of insufficient generality for many systems of interest.
More promising is the application to the problem at hand of the recent
pathwise theory of stochastic integration introduced for the study of
stochastic differential equations whose integrals are driven by processes
with continuous sample paths by Sussman (1978) and developed for semi-
martingales with jumps, for example, by Marcus (1981).

In the case of successful application of the approach of this
paper to optimization of stochastic systems in continuous time, with
differential dynamics in :an of the form >:c=§()§) , it may be conjectured
that the full expected value of perfect information proce?s o in L1
may be recovered from the marginal EVPI process p' in L? by (Lebesque)

integration as

(5.1) o, =/ p

for an appropriate definition of is . This is again a statement of some

potential practical impoftance for stochastic system modelling.
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