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ABSTRACT 

This paper uses abstract optimization theory to characterize 
and analyze the stochastic process describing the current marg ina l  
e x p e c t e d  v a l u e  o f  p e r f e c t  i n f o r m a t i o n  in a class of discrete time 
dynamic stochastic optimization problems which include the famil- 
iar optimal control problem with an infinite planning horizon. 
Using abstract Lagrange multiplier techniques on the usual non- 
anticipativity constraints treated e x p l i c i t l y  in terms of adap- 
tation of the decision sequence, it is shown that the marginal 
expected value of perfect information is a nonanticipative super- 
martingale. For a given problem, the statistics of this process 
are of fundamental practical importance in deciding the necessity 
for continuing to take account of the stochastic variation in the 
evolution of the sequence of optimal decisions. 
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This paper uses abstract optimization theory to characterize and 

analyze the stochastic process describing the current marginal expected 

value o f  perfect in format ion in a class of discrete time dynamic stoch- 

astic optimization problems.which include the familiar optimal control 

problem with an infinite planning horizon. Using abstract Lagrange 

multiplier techniques on the usual nonanticipativity constraints treated 

zxpl ic i t ly in terms of adaptation of the decision sequence, it is shown 

that the marginal expected value of perfect information in a nonantici- 

pative supermartingale. For a given problem, the statistics of this 

process are of fundamental practical importance in deciding the necessity 

for continuing to take account of the stochastic variation in the evolution 

of the sequence of optimal decisions. ' be a sequence of dec is ions  in Let x = Cxtjt=l Rn and let 

be a discrete time stochastic process in ( Z , C , p )  of sub- _F = i;t)t=l 
sequent obscr2at ions.  A ?ol icy ( dec<s ion  ru le  or recourse  func t ion)  is 

a meesurable nap x : S  -cx (S)  . Consider the problem - 



(where nt 2 nT = n , mt ; mT = m) and the n o n a n t i c i p a 5 i v e  condition 

that the current decision xt depends only on the sequence of observa- - 
tions 51,52,..., St-l , and realised decisions x1,x2,..., x ~ - ~  (and 

- - nnt +IEl is assumed measurable thus 5 ) to date. Here ft: = x Xtll 

in its first argumsnt and Bore1 mehsurable in its second and 

f (XI : = ft ( , x ( ) ) , and similarly for qt (5) . (A full set of technical -t - 
assumptions will be introduced in $$2 and 3.) 

The problem (RPI--termed the dynamic  r e c o u r s e  p rob iem- -has  a number 

of important applications in the mathematical sciences ( c j .  Dempster, 

1980). Special cases include stochastic dynamic linear or quadratic 

programming formulations of e n e r g y - e c o n o n i c  p l a n n t n g  models, 3irge (1980), 

Louveaux and Smeers I1980,1981); t n v e n t o r g  z g n t r o l  models, see e.g. 

Veinott (1966); Mcrkov d e c i s i o n  p r o c e s s e s  with random transition matrices 

for msnpower p l a n n i n g ,  Grincld (1976,1980) and the classical d i s c r e e e  

t i m e  o p t i m a l  c o n t r o l  model. To see the last assertion in more detail, 

make the following substitutions in (,W) : 

Then (RP) reduces to the familiar c o n t r o l  p r o b l e m  



Control and state space constraints are easily added to (C) by suitable 

definition of Pt, t=l, ..., T . 
Characterization of the (optimal) solutions to the general problem 

(RP) for finite has been treated by Rockafellar and Wets(1976aIb, 

1978) for the convex case under a Slater r e g u i a r i t y  c o n d i t i o n  ( c o n s t r a i n t  

a u ~ t i , + ' i ~ a t t o n )  using the duality theory of convex conjugate functions. 

:lore recently (19811, they have given a similar treatment of the convex 

Bolza problem--a special case of (C)--for finite r . Hiriart-Urruty 

(1978,1981) has considered a more. general class of nonlinear special 

cases of (RP) for finite T . He applied a theory characterizing in 

terms of generalized gradients the minimum of an integral fmctional 

involving a measurable locally Lipschitz integrand subject to a measur- 

able closed valued multifunction constraint. The version of (Re) he 

treated has some nondifferentiable and 'some differentiable constraints 

and a correspondingly mixed Slater/llangasarian-Fromowitz constraint 

qualification is enforced. 

This paper discusses the use of recently developed abstract mathe- 

matical programing theory (Dempster,l976; Zowe and Kurcyusz,l979; 

Brokate,l980) to extend these results to the i n f t n i t e  h o p i t o n  ( r 
infinite) problem for the general nonlinear case under appropriate reg- 

ularity conditions involving problem functions in L- . The s a p p o r t  

r e p r e s e n $ a ? i o n  problem (Dempster,l976) for (RP) is addressed to obtain 

the agropriate stochastic maximum principle and nonanticipative super- 

martingale representation of the L1 multiplier process corresponding 

to the nonanticipative constraints. The general results were announced 

in Dempster (1980); details and proofs will appear elsewhere. In this 

paper, emphasis is placed on precise problem formulation, results and 

interpretation ( $ 5 2  and 3 )  and attention is focused on the supermartin- 

gale multiplier process corresponding to the nonanticipative constraints 

($4). Technical limitations to extending the analysis of this marginal 

expected value of perfect information process to continuous time systems 

--involving say diffusion or jump dynamics--are discussed briefly in $5  

with a view to their possible relaxation jn future work using recent 

theories of ~athwise integration of stochastic differential equations 

(Sussman,l978; Marcus,l981). 

2. THE DYNMIIC RECOURSE PROBLEM AS AN ABSTRACT OPTIMIZATIOX PROBLEM 

The purpose of this section is to set up the problem (RP) as an 

abstract mathematical programme of the form 

(PI sup f (2 ; )  s.t. xeP g (x) E: '2 



where P and Q are sets in appropriate linear topological spaces U 

and V , f:U + R  and g:U + V  . 
A natural assunption to make in the applications cited in $1 is 

that feasible policies should be esssn t t c l l y  bounded--i.e. in Lm -- 
on (S,Z,p) , c j .  Rockafellar and Wets (1976,1978,1981), although a 

similar treatment of policies in L (1 ;p cm) is also possible, c f .  
P 

Eisner and Olsen (1975,1980), Hiriart-Urruty (1978,1981). Hence assume 

Z completed with respect to u and define 

and 

equipping U with the usual equivalent of the product topology defined 

in t e m s  of the norm (ul = suptlutlm . (we shall be party to the usual 

abuse of terminology by referring to the equivalence class elements of 

Banach function spaces as functions and subject ?o the standard analyst/ 

probabilist's schizophrenia by denoting the elements of. for example, 

IJ a, as both u and u - depending on whether the analytic or probabil- 
istic interpretation is to the fore.) The abstract objective function of 

(PI is obviously 

but a little more analysis will be necessary in order to define the 

abstract constraint function g and its range (image) space V . 
The problem lies with the e z ~ l i c i t  characterization of nonantici- 

pation. Its solution was first proposed in the context of stochastic 

i i n e c r  programming by Eisner and Olsen (1 975,1'980) . Let {Zt) be the 

usual increasing tower of a-fields, 

generated b y  the process 5 . Cvzry feasible policy x is assumed to - - 



n 
After canonically embedding Lm n in L_ in the obvious wag. we may 

define the closed projections 

for t=l, ..., r . Then x is adapted to 5 if, and only if, - - 

Here (when we make the usual assumption that x l  is deterministic) 

": ="1 
, where K 1  denotes the linear sgan of the constants in 

n embedded in Lm . La, 
We may now define the constraint function of (PI as 

such that 

with V equipged with the normed-defined equivalent of the product 

topology (as with U ) .  All these considerations apply equally well to 

finite or infinite r . In the sequel we shall consider only the case 

of infinite r ; necessary changes for the simpler case of finite T 

are easily supplied by the reader. Further. define ttIxt to be the 

hisrory, i.e. 51,;2,...,5t; ,~c,...,x , of the observation, respec- -t - 
tively policy, process to tine t . We shall specialize in what follows 

to the case--relevant to all the practical examples of $1--of t r i ~ n g u t a ~  

(RP), for which current constraints depend only on observation and 

decision histories to date, i.e. 

(Thus the measurability properties for the gt cited in $1 may be re- 

strictec? to It rather than : . )  



This completes the basic set of assumptions needed to specify and 

analyze the dynamic recourse problem (RP) over an infinite horizon. 

Further(i1lustrative)technical assumptions will be introduced as re- 

quired to complete the analysis in $3. 

The characterization of optimal solutions for the abstract mathe- 

matical programming problem (P) necessitates consideration (perhaps only 

implicitly) of its L a n g r a n ~ i c n  f u n c t i o n  

for X E U  and m u l t i p z i e r  vectors ~ ' E V '  , the duaZ space of V (con- 

sisting of all linear functionals on V continuous in the given topology 

for V). * 
We shall thus here need the following characterization of L- , due 

essentially to Yosida and Hewitt (1952) (see also Dubovitskii and 

Ililyutin, 1965, Valadier, 1974, and Denpster, 1976). A finitely additive 

row n-vector valued measure T ' : L  + R "' on (1.1) is p u r e l y  f i n i t e l y  

a Z d i t t 3 e  ( p . j . a . )  if, and only if, for all countably additive real valued 

measures v on (:,XI and for all E>O there exists AEcE S U C ~  that 

i v  (AL) I < L and 1' ( hE) = O I L  R n' i. e. a p. f . a. measure is carried by 
8 

sets assigned arbitrarily small measure by any countably additive measure. 

(Prime is used to denote a dual e1ement;in the finite dimensional case 
n* this is consistent with vector transposition.) Denote by L- the 

n (Banach) dual spaca of L- (as defined in (2.1) 1 ,  by L:' the space of 

(coordinatewise) absolutely integrable row n-vector valued functions on 

(E, 1) and by pn' the space of purely finitely additive row n-vector 

valued measures on ( Z  X >  . 
F ' ropos i t i o x :  3.1. Given the neasure space (f,Z,u) , if X is complete 

with respect to the u-finite measure p , then 

n* Here = denotes isometric isomorphism and the action of ylcLm on an 

n-vector valued function xr~: is given by 

( 3 . 2 )  y'x: = :, - y '  (;)x ( 2 : )  i /-;?.'(dS)x(~) - 



The f i r s t  i n t e g r a l  i n  (3 .2 )  i s  simply an a b s t r a c t  Lebesque i n t e g r a l ;  t h e  

second requ i res  t h e  analogous i n t e g r a t i o n  theory  developed f o r  f i n f t e Z y  

a d d i t i v e  measures by Dunford and Schwartz (1956) .  I n  f a c t ,  Va lad ie r  

( 1 9 7 4 )  extended t h e  r e s u l t  of  P ropos i t i on  3.1. t o  t h e  a - f i n i t e  case  from 

t h e  E i n i t e  case e s t a b l i s h e d  by Yosida and H e w i t t  ( 1952 ) ,  wh i l eDubov i t sk i i  
* 

and Cl i lyut in ( 1 9 6 7 )  independent ly  gave a  complete t r ea tmen t  of  Lm i n  

terms of  s inguLa r  func t io r .aZs  (y; of (3 .2 )  w i thout  r e fe rence  t o  t h e i r  
- 

i n t e g r a l  r e p r e s e n t a t i o n s .  A f i n e r  c h a r a c t e r i z a t i o n  of  L: i n  terms of 

n a t u r a l  subspace of p n r  appears  i n  Dempster (1976) . 
tJe a r e  now i n  a  p o s i t i o n  t o  ma!ce p r e c i s e  sense  of t h e  Lansrangian 

f unc t i on  (3.1 ) f o r  (P)  . According t o  ( 2 . 4 )  w e  a r e  i n t e r e s t e d  i n  repre-  
mt* n  N n  N 

s e n t a t i o n  of t h e  dua l  space,  XtP1 L, x (L,) o f  V (=xt_Y L? x (L,) ) 

where IN denota-s t h e  n a t u r a l  numbers. A s t r a i g h t f o r w a r d  a p p i i c a t i o n  of  

P ropos i t i on  3.1 y i e l d s  Q a s  g iven by 

us ing  t h e  f a c t  (Yosida and H e w i t t ,  1952) tha, t  a l l  p . f . a .  measures on IN 

(w i th  count ing measure % taken  a s  ground measure) a r e  c a r r i e d  by 

neighbourhoods of - . I n  (3 .3)  

XI E P [ ( I x ~ ,  E X Y ( N ) I  u X # )  ; 
=m+n ' 

m 1 t h e  space o f  row (m+n)-vector 

valued measures on t h e  product  a - f i e l d  shown, a n d i n  t h e  cor responding 

i n t e g r a l  gt has been canor. ical ly  embedded i n  lRm . 
Next we c h a r a c t e r i z e  an optimum x of (PI i n  terms of a s u i t a b l e  

0 
concept  of d e r i v a t i v e s  of t h e  Lagrangian @ given by ( 3 . 3 ) .  Rather than 

use minimal concezts  and i n t r oduce  h igh ly  t echn i ca l ,  cond i t i ons  on ( P ) ,  

we s h a l l  by way of  i l l u s t r a t i o n  use  ~ r g c h e t  d e r i v a t i v e s  and g i ve  regu- 

l a r i t y  cond i t i cns  o:iliv f o r  ; 2 P )  sufficient t o  enccre  che t r u t h  02 t h e  

fo l lowing : : . i ; : ,6 -Jsckzr  , ' ; ~ ~ c i l ~ m  f o r  (P) , P.=. Zowe and :turcyusz (1979) . 



Suffice it to say here that versions of Proposition 3.2 below are avail- 

able involving both generalized derivatives (cj. Niriart-Urruty, 1981) 

and (one-sided) Gateaux directionpl derivatives (Dempster, 1976) under 

min ima l  regularity conditions (cf. Dempster, 1976; Brokate, 1980) for 

(P) posed in locally convex Hausdorff topological vector spaces. We 

shall need the concept of the Jz.4~1 coze Q ' C V '  of a set Q C V  as 

and similarly for sets in U. 

Propos i t ion :  3.2. Let U and V be Banach spaces and the problem func- 

tions f and g of (P) be Frdchet differentiable with derivatives V f  

and Vg respectively. Then under suitable regularity conditions on (P), 

xO an optimum for ( - 0 )  implies that there exists y i ~  Q' such that 

V u e  P 

Conditions (3.5) are termed Kuhn-Tucker  (necessary 1 cond i t ions  for an 

optimum of (PI. 

1f' 0 e P C U and 0 E Q C V , the last two imply the comp Zementary s lock -  

neas  condit'ions 

Applying Proposition 3.2 under suitable regularity assumptions on 

(RP) yields a (necessary) characterization of its optimal policies in 

terms of the abs t rac t  Lagrangian of (PI given by (3.3). However, inspec- 

tion of (3.3) raises the question of conditions under which this charac- 

terization remains valid if the awkward terms involving integrals with 

respect to purely finitely additive measures are dropped. This is a 

special case of the ger~ersl s ~ ; F J ~ * _ ;  r z ~ ~ l ~ ~ ~ n t a t ~ ~ n  pro j l z rn  (Denpster,l975) 
I 

which has appeared in the control (Dubovitskii and tlilyutin, 1965), eco- 

nomics (e. g. Frescott and Lucss ,1372) 2nd o~;irr,iz~tic;n (Rockalcllzr ~ n d  

Wets,1976a,b,1378) literature. 



To solve the support representation problem for (RP) we must give 

conditions on the problem sufficient to make both the stochast ic  p.f.a. 

measures T '  and $I;, t=1,2, ..., and the inter'enporal p.f.a. measure X: t 
of (3.3) vanish. The followinc conditions are a distillation of the 

literature cited above. Some terms and definitions will be needed. A 

policy history xt is termed feas ib le  if it satisfies the constraint 

structure of (RP) to time t, i.e. if we have for its components 

Define 

"t xt: = lxt E I :xt = xt (6) , 6 E I , xt - .  feasible 1, 
and 

Clearly Ct essentially lies in Xt, but the analytical (computational) 

intractability of (RP) arises from the fact that this inclusion is in 

general essentially strict. The con t ro l lab i i i t y  (or re la t ive ly  cornpletz 

r ecou rse )  condition 

ensures almost sure decision recourse at all times from any realization 

of the observation (and decision) process to date and forces the optimal 

stochastic p.f.a. measure T '  of Proposition 3.2 to vanish. Rockafellar t 
and Wets (1976a) obtain more technicai sufficient conditions. They show 

by example that, without the ezpl ic i t  introduction into the problem of 

the constraints which bind at an optimum induced on Ct by lhter stages, 

the support representation problem in terms of L1 multipliers for (RP) 

is insolubZe. Since a nonanticipative constraint (2.3) cannot lead to 

infeasibilities of subsequent nonanticipative constraints, we can con- 

clude immediately that the stochastic p.f.a. measures $;, t=l,Z,. .. 
always vanish at the optimum. To ensure that the optimal intertemporal 

p.f.a. measure X: vanishes,'it suffices .to assume that 0 EPt, t=1,2, ... 
and the f in i te  hor izon appro= i .~a t ton  conditioa: 

( 3 . 8 )  for some r (211, x feasible implies (xt,O,O, . . . )  

feasible for all t 1 r . 

Examples of nontrivial p.5.a. measnres (in the absence of this condition) 



a r e  known ( s e e  P r e s c o t t  and L u c a s , 1 9 7 2 ) .  

Next  we mus t  s t a t e  s u i t a b l e  r e g u l a r i t y  c o n d i t i o n s  on (RP) s u f f i c i e n t  

t o  e n s u r e  t h e  c o n c l u s i o n s  o f  P r o p o s i t i o n  3 .2 .  i n  terms o f  L, m u l t i p l i e r s .  

Hence w e  assume (by  way o f  i l l u s t r a t i o n )  t h a t  P t  C IF?t and Qt  c IRmt a r e  

c l o s e d  convex c o n e s ,  0 c Q t  and  t h e  p r o b l e m . f u n c t i o n s  f t , g t  are d i f f e r -  

e n t i a b l e  w i t h  r e s p e c t  t o  t h e i r  p o l i c y  componen ts  w i t h  g r a d i e n t s  V f t ,  Vgt, 

t = 1 , 2 ,  ... . Given  a  se t  C ( i n  a  l i n e a r  t o p o l o g i c a l  s p a c e )  and  a p o i n t  

X E C  d e f i n e  t h e  i n n e r  approx imat ion  coze 

where  t h e  i n t e r s e c t i o n  is t a k e n  o v e r  n e i g h b o u r h o o d s  x o f  x .  W e  s h a i l  

assume t h a t  f o r  a n  o p t i m a l  p o l i c y  xy 

S i n c e  t h e  ( l i n e a r )  p r o j e c t i o n s  I -!I o f  ( 2 . 3 ' )  are  c l o s e d ,  ( 3 . 9 )  is  t 
s u f f i c i e n t  t o  e n s u r e  t h a t  t h e  a b s t r a c t  p rob lem f u n c t i o n  g  o f  (2 .4)  

sat is f ies  

i n  terms o f  its F r e c h e t  d e r i v a t i v e  a t  a n  optimum xo  o f  (PI f o r  t h e  

c l o s e d  convex  c o n e  Q C V , cf. Dempster  (1976)  , Zowe and Kurcyusz  ( 1979 )  . 
F i n a l l y  w e  a r e  i n  a  p o s i t i o n  t o  a p p l y  P r o p o s i t i o n  3.2 t o  o b t a i n  a  

Zocal v e r s i o n  o f  t h e  Kuhn-Tucker n e c e s s a r y  c o n d i t i o n s  ( 3 . 5 )  f o r  a n  o p t i -  

mal p o l i c y  2O o f  ( R P ) ,  i n  terms o f  a s t o c h a s t i c  mazimum p r i n c i p l e  i n -  

v o l v i n g  t h e  L m u l t i p l i e r  p r o c e s s e s  y'  and p' , o f  t h e  fo rm 
1 " - 



I n  t h e  case  t h a t  a l l  problem func t i ons  a r e  concave i n  t he  po l i c y  v a r i -  

a b l e s ,  cond i t i ons  (3 .11)  a r e  a l s o  su f f i c i en t - - i n  g e n e r a l ,  they  a r e  no t .  

In  t h e  nex t  s e c t i o n ,  w e  t u r n  t o  an a n a l y s i s  and i n t e r p r e t a t i o n  of 

t h e  (op t ima l )  m u l t i p l i e r  p rocess  p '  cor responding t o  t h e  n o n a n t i c i p a t i v e  - 
c o n s t r a i n t s  (2.3) of (RP) . 

4 .  THE MARGINAL EXPSCTED VALUE O F  PERFECT 1YT'ORI.IATION SUPERMARTINGALE 

I n  t h i s  s e c t i o n  we s h a l l  assume t h a t  a  f i x e d  op t ima l  po l i c y  x  f o r  - 0  
(RP) i s  s p e c i f i e d .  (Various f u r t h e r  assumpt ions may be adduced t o  t h e  

problem t o  guaran tee  e x i s t e n c e  and even uniqueness of  t h e  op t ima l  p o l i c y ,  

bu t  t h e s e  w i l l  n o t  concern us h e r e . )  W e  s h a l l  apply modern p e r t u r b a t i o n  

theory  f o r  t h e  a b s t r a c t  programme (PI of  $2, see e.g. Lempio and Maurer 

(1980) ,  t o  s tudy t h e  n o n a n t i c i p a t i v e  c o n s t r a i n t  m u l t i p l i e r  p rocess  p '  - 
corresponding t o  t h e  chosen op t ima l  po l i c y  xo f o r  (RP). Of i n t e r e s t  - 
a r e  p e r t u r b a t i o n s  t o  t h e  n o n a n t i c i p a t i v e  c o n s t r a i n t s  (2 .3)  o f  t h e  form 

where t h e  zt a r e  a r b i t r a r y  n-vector  valued f unc t i ons  measurable w i th  

r e s p e c t  t o  Z s  ( t )  (s ( t  > t )  and hence rep resen t i ng  information on t h e  

fueuz-e of t h e  observa t ion  p rocess  5 . More s p e c i f i c a l l y ,  f i x  t and - 
an a r b i t r a r y  n-vector  va lued f unc t i on  z, measurable w i t h  r e s p e c t  t o  

L 

IS f o r  some f i x e d  s > t and cons ide r  p e r t u r b a t i o n s  o f  t h e  tth non- 

a n t i c i p a t i v e  c o n s t r a i n t  of t h e  form 

f o r  a  E [ O ,  6 1  ( 6  > 0) . Denote t h e  op t im iza t ion  problem r e s u l t i n g  from 

t h e  p e r t u r b a t i o n  (4.2)  a s  (RP[azt l )  and i ts  a b s t r a c t  e q u i v a l e n t  as 

(P [az t ]  ) . Define t h e  a b s t r a c t  p e r t u r b a t i o n  func t ion  n : V + IRU I-} a s  

Then, under cond i t i ons  on t h e  problem d a t a  o f  (RP) such t h a t  t h e  o r i g i n a l  

problem has an opt imal  s o l u t i o n ,  t h e  per tu rbed  problems P[azt l  w i l l  

have f e a s i b l e  s o l u t i o n s .  W e  s h a l l  assume t h a t  w e  nay f i n d  a curve x ( a )  

such t h a t  x  (a) i s  f e a s i b l e  f o r  P[azt ]  and l i m o s o  x  ( a )  = xO E U . Then, 

s i n c e  t h e  c losed  p r o j e c t i o n  ( I  - I! t )  def i n s  a subspace of La , t h e  
n  ' 

Lagrange m u l t i p l i e r  P; E: L, f o r  t h e  c o n s t r a i n t  ' (2.3)  is an a n i h i l a t o r  

(suppor t ing  hyyer?la?e) of  t h i s  subs?aco. Under Dur a s s u ~ p t i o n s  (apply- 

i n 9  Theorem 4 . 3 ,  Lecpio and biaurer,l9SC) we zay thus  conclude t h a t  we 



may choose 

where Vta denotes theFr6chet derivative of the perturbation function 

(4.3) of the abstract problem (PI evaluated at 0 under perturbations of 

the form (0.2) at time t . That is, the current state E; of the non- 
n ' anticipative constraint multiplier process _pi in L 1  represents the 

marginal  expected va lue of per fect  in fo rmat ion  (EVPI) at time t with 

respect to future states of the observation process E . - 
We first establish that this marginal EVPI process p '  --like the - 

optimal policy process zO itself-is adapted to the observation process 

Lemma: 4.1. The process P .. ' in 1:' is nonant i r ipat iue,  i.e. 

This fact follows from the observation that expression (4.4) for 

P: does not depend on any particular perturbation (4.2) representing 
C 

some future knowledge of the observation process E . - m. 
Next we show that the process o '  has the supermar t inga te  property.  - 

This reflects the fact that the earlier information on the future ob- 

servation process F, is available, the more its marginal expected worth - 
to optimal decision making. 

n ' 
Theorem: 4.2. The process P '  in L ,  is a supe rmar t i nga le ,  i,e. - 
(4.6) !?t- ' > E(.P;I Ltl a, s. for (12) t < s . 

By virtue of (4.5 we must show for fixed t and s> t that 

But a further consequence of (4.5) is that for all s$t 

and hence (4.6) is equivalent to showing that 



But information on the future of 5 after time s-1, as represented - 
by an n-vector valued perturbation function z measurable with respect 

to ZU for u ~ s  , cannot be -worth less in expectation the earlier it 

is known, i.e. 

. - where zS. - zt: = z  . Indeed, an optimal policy for the problem perturbed 

at time t can iake this information into account earlier than a corres- 

ponding policy for the problem perturbed at s . Hence, subtracting ~ ( 0 )  

from each side of (4.7), dividing by a > 0 and passing to the limit as 

a +  0 , yields 

Since integration is nonnegativity preserving 

5 .  POSSIBLE EXTENSIONS 

As noted in the introduction, th2 marginal expected value of perfect 

information (EVPI) process 9' is of considerable jotent ial  importance - 
for-stochastic systems of the dynamic recourse type arising in practice 

n' (see $1). If this nonanticipative supermartingale process in L1 : = 

Li [ (I, L , u ) ; IRn' ] remains in a ball of (problem dependent) radius i > 0 

for all t after some time s 2 l  , then the stochastic elements of the 

problem are practically inessential from time s onward and a determin- 

istic model--and simpler computational procedure--should suffice. Of 

course, this statenent raises the knotty problems of prior numerical 

computation of the marginal EVPI process, or--more realistically--of 

bounds on this process, etc. (in this context, see Birge,lSBO). 

Nevertheless, it'would be interesting to have theoretical results 

similar to those derived in $4 for familiar optimization of stochastic 

system problems in contiquous time involving dynamics driven by semi- 

martingales (see e.g. Shiryaev,l980). The difficulty in attempting an 

analogue of the analysis presented in this paper for such systems is 

that the corresponding pertxrbed abstrzct problem (as utilized in :4) 

must make sense. Put 5ifferrntly, the ori~inel stochastic gpti- 

mization problem must remain well defined when nonanticipativity is 
r a e  Jsing the Ito calculus a F r ~ % c ; :  I3r.2 1-2-. z1csnt t~;t~r,s.'c.-.s - -. 
to semimzrtingslzs 3ener~:ir.; mixec C i 2 i ~ r i c z  322 j..-- -I., dynamics) this 



is not possible, since the rigorous analytic i n t e g r a l  form of the dyna- 

r n i c s r e q u i r e s n o n a n t i c i p a t i v i t y  of the integra~ld in the stochastic integ- 

rals involved. This t e c h z S c s Z  requirement of the stochastic integration 

theories utilized has been relaxed for integration of G a u s s i o n  processes 

with respect to similar processes by Enchev and Stoyanov (19'80)~ but 

this setting is of insufficient generality for many systems of interest. 

More promising is the application to the problem at hand of the recent 

p a t h w i s e  theory of stochastic integration introduced for the study of 

stochastic differential equations whose integrals are driven by processes 

with continuous sample paths by Sussman (1978) and developed for semi- 

martingales with jumps, for example, by Marcus (1981). 

In the case of successful application of the approach of this 

paper to optinization of stochastic systems in continuous t h e ,  with 

differential dynamics in lRn of the form ; = f (x) , it may be conjectured - - . "  
that the f u l l  expected value of perfect information process u in L1 " 
may be recovered from the m a r g i n a l  EVPI process p a  in 1;' by (Lebesque) " 
integration as 

for an appropriate definition of zS . This is again a statement of'some 

potential practical importance for stochastic system modelling. 
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