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Decomposition of two-block optimization problems 

E. Nurminski 

ABSTRACT 

This paper is concerned with the problem of balancing an  
optimization model consisting of two submodels. The submodels 
are represented by separate linear programming problems and are 
linked by dependance on common resources, or by the presence of 
the same variables in both of them. 

The method for coordinating the activities of submodels, in 
order to reach an overall optimum, is based on the direct 
exchange of proposals between submodels. Computational 
improvements in comparison with the conventional master- 
subproblem-s scheme are  shown. 

1. Introduction 

Here we consider some improvements in solv~ng the problem of balancing 

an optimization model consisting of two subrnodels linked by the use of common 

resources, or by dependance on common variables 

The general framework of the approach follows decomposition ideas of 

large-scale mathematical programming. In the beginning of the 60's Dantzig 

and Wolfe proposed the wldely known decomposition principle (DantzigGla). 'The 

nature of this conception is to replace the initial large-scale problem by a 

sequence of smaller problems, each representing different sections of the initial 

one, with some coordinating master problem balancing the separate solutions of 

the subproblems. 

However, further computational experiments with thi; principle provided 

varied results. For linear programming it was shadowed by developments in 

sparsity techniques. O n  the other hand, the decomposition principle, as  origi- 



nally formulated, turned out to be too slow to serve as the theoretical founda- 

tion for distributed decision making processes(Diric kx79a). 

The main problem with this algorithm is thal; it often requires many cycles 

between subproblems and the coordinating master problem. 

The frequently observed computational behavior of the Dantzig-Wolfe 

decomposition principle consists of' rather rapid improvement on the initial 

iterations of the optimization process, with slow convergence on the final stage. 

The latter takes many cycles between subproblems and master  problem, and is 

the main source of dissapointment for those who unsuccesfully tried to use rhe 

Dantzig-Wolfe decomposition principie. It is certainly the main obstacle barring 

the wide application of dec~mposi t ion ideas in large-scais mathematical pro- 

gramming. A decrease in the number of cycles between master and subprob- 

lems does not necessarily decrease computations, but for large-sclle problem; 

it reduces the most critical part-exchange with the secondary memory, or 

exchange of the coordinating information between subproblems and/or  master 

problem. Improvements in the decomposition algorithm may also bring new 

iasights into rnecnanisrns of distribuLed decision making. 

2. Formulation of the problem 

Consider a two-block problem w:th linkirg var~ables: 

rnin ( c A z A  + c g z g  ) 

AAzA + B A z  5 bd 

ABzB + B B z  C b B  

where Z A  and zB can t e  viewed upon as internal variables of subproblems or sub- 

models A ,  B and the common variable z links these two subproblems. For a 

fixed z hol.rever the whole problem ('.) splits into two independent problems. 

f ~ ( 2 )  = min I c A z A j  (2) 



and 

f ~ ( z i  = min j c g z g  

ABZB 5 b g  - B B z  

each of them requiring a smaller commitment of computer resources. 

The methods of direct or resource-directive decomposition tend to consider 

(1) as a problem of the kind 

where f A ( z )  and f g ( z )  are given by ( 2 )  and ( 3 )  respectively. 

Indirect or dual decomposition is based on dualization of certain key con- 

straints in a linear programning problem. Partial or compleie dualization o; 

extremai problems often allows the d~cornposlt ion of an lnitially large-scale 

problem into smaller ones with some coordi-?ating program of moderate size. 

This ideri also underlies the decomposition principle of Dantzig a ~ d  Wolfe. 

To demonstrate thls, notice that for the problem (:), or equivalently ($) ,  

the key constraint 1s the convention that var~a5le z must have the same value In 

functions ( 2 )  and ( 3 )  

By explicit formulation of this constraint for the problem ( L )  and subse- 

quent duaiizirg of the resulting cocstrained problem one can obtain the dual 

problem 

where fA* (P)  is the conjugate of function f A  (2) 

and f  J ( ~ )  is the conjugate of function f  (z) 



Dual variables p  are customarily interpreted as prices for linking variables 

x .  Computation of the values j A * ( p ) , j J ( p )  can be interpreted as a local optim- 

ization in subproblems A,B for given prices p  provided by master problem: 

- f ~ * ( y ~ )  = rnin ~ C A Z A  + p z  1 
-4.4 2.4 +BAz g b d  

- f J ( p )  = min jcBzB - p z  1 
A B ~ B + B B ~ g b B  

It is useful to notice that f f f ( - p ) ,  f J ( p )  are convex functions with subgra- 

dients -zA1 , zJ equal to the z-components of the solutions of (7 ) - (8 ) .  In other 

words subgradients of the functions f A e ( p ) ,  f J ( p )  are proposals of the local 

subproblems in terms of the Dantzig-Wolfe decomposition scheme. 

Problem ( 5 )  can be solved by a number of methods updating prlces p using 

values of functions fA'(-p) , f $ @ )  and their subgradients and the Dantzig-Wolfe 

decomposition method can be interpreled as a cutting plane algorithm 

{KelleyGOa) applied for optimization of nondifferentiable function 

f ( P I  = ~ A ' ( P )  -+ f B ( p ) .  

Conceptually the cutting plane method consists of maintaining the set  

P = l p 1 , p 2 ,  . . . j of the approximate solutions of the problem ( 5 )  and solving on 

each iteration the linear auxiliary problem 

rnin v 

g  ( P k )  P  - g g < p k )  Pk - f k k )  
p k € p  

where f  (p) is a function to be minimized and g ( p k ) € a f  (pk) is the subgradient 

set of the function f  (p) a t  the point p k .  

The solution ( i7,p) of (9) provid.es a lower bound G for the optimum value of 

(5) andj5 is added to the set  P  for performing the next iteration. Some authors 



(Topkis70a) considered the variants of the scheme with exclusion of some points 

from the se t  P which correspond to nonactive constraints in (9). 

The problem (9) forms the master problem of the Dantzig-Wolfe decomposi- 

tion principle and problems (7)-(8) are subproblems of t h s  scheme reacting to 

the prices provided by (9). 

There is a number of ways to make use of the master problem (9). If  (9) is 

solved for every set  of proposals then it is called restricted master 

problem(Lasdon70a). On the other hand it is possible to  make only a few itera- 

tions toward optimality in (9) and then tu rn  to subproblems (7)-(8) for the gen- 

eration of new proposals. 

3. Directions for improvements 

Convergency properties of the Dantzlg-Wclfe decomposition principle ar.d 

its prilctlcal significance have been widely discussed. T h s  scheme, to its advan- 

tage, has a nice clear concept. of trade-ofis between the masLer problem hnd 

subproblems, i t  appeals to economic inter2retations and has inspired many dis- 

cussions on the mechanisms of optimal decision mbking. 

However, from the computational point of view, this method did not have a 

good reputation untll recently. T h s  may be attr ibuted to the slow convergence 

of cutting plane method (9) underlying the Dantzig-Wolfe decomposition princi- 

ple and it is possible to improve the performance of t h s  scheme by replacing 

master problem (9) with the faster general methods of nondifferentiable optimi- 

zation (See f.i. Lemarechal7Da) 

On the other  hand, it is also possible to exploit the specific structure of the 

problem (4) or equivalentiy (5). 



3.1. Direct exchange of proposals 

The particular feature of problem (5) is that the objective functlon there is 

the sum of two functions each of them referring to the different subproblems. It 

allows the direct interaction between subproblems A and B to be organized, and 

it incorporates into the optimization process, not only the information about the 

primal solutions of (7)-(8), but also dual information associated with these prob- 

lems. 

Mathematically, it consists of introducing two new problems 

and 

where zA+, xJ are some p rop~sa ls  from subprobletns X and B respectivzIy, 

obtained from some previous iteration 

The expressions (10) and ( i l )  provide better entries for the set P then 

those generated by the rather  crude approximation (9) of th.e original problem 

(5) and, as a result, the convergence of the balancing procedure is speeded up. 

A s  shown by numerical experiments conducted with this approach on the final 

stages of the optimization process, the solution of (iO) or (11) often simply coin- 

cides with the overall optimum in (5). 

From the techmcal point of lqew, the solution of (10) and (11) amounts to 

solving a slight modification of the problem (7)-(8). Problem (10) for instance, 

can be looked upon as a dual of the problem 



with the solut ionp of (10) corresponding to optimal dual multipliers for the con- 

straints (:3).  

Problems (12)-(13) can be interpreted as a result of a direct exchange of 

proposals between subproblems. In this case the proposal zA+ generated in one 

subproblem ( A in this case ) is used as a constraint in another subproblem ( E 

in t h s  case ). 

There a re  several ways of using the solutions to  (10)-(11). The simplest one 

would be to add them to the se t  P and initiate through (9) the new round of 

exchanges of proposals between subproblems. 

Another way to  use prices generated in (10) is to  send them directly to sub- 

problem (7) to generate a new proposal in subproblem A ,  and to use the new 

proposn! zA* in (:0), and so on. 

Symmetr!cally it can be done with problems (8),(11). 

Unfortunately it is not an  absolutely safe approach. Computat!onal experi- 

ence showed that even if it speeds up the convergence on the initial i te ra t iox ,  i t  

is still slow on the final stage--a frequently reported shortcoming of the Cantziz- 

Wolfe decomposition principle. The reason for this is that the prices generated 

through (10)-(1:) may produce in  (7)-(8) in the final stage ol the optimization 

process, proposals which are  not active in (9). Then i t  becomes necessary to 

invoke (9) to break a deadlock and generate new set  of prices. If the master 

problem (9) 1s being invoked on every iteration this scheme is becoming 

equivalent to the convent-ional Dantzig-Wolfe decomposition principle with the 

typical computational behavior. 

3.2. Master functions 

Further improvements may consist of delegating some of the master func- 

tions to subproblems. 



It may be observed that the proposals generated in one subproblem may be 

infeasible for another one, that is, the problem ( ~ 2 ) - ( 1 3 )  may become infeasible 

due to constraint (13) .  I f  so, the dual problem (10 )  is unbounded and it is neces- 

sary to impose some bounds on prices p to get a solution. I t  is clear then that 

this solution would be far away from the solution of ( 5 )  anyway, and so bring very 

little new information about the solution to this problem. 

The general idea to  overcome t h s  shortcoming is to distribute the con- 

straints of the problem ( 9 )  between subproblems (10)-(11)  to decrease the varia- 

tion in prices generated in these subproblems 

Modified problems ( l o ) , ( :  1 )  may have a form 

k k where fi is an upper estimate of the overall optimum in ( 5 )  and g ( p k )  = z~ - z~ - 

is a subgradient of the function f ( p )  = f ; ( p )  + f J ( p ) .  a t  the point p = p k ~ ~ .  

The upper estimate G may be updated during the optimization process using the 

values of the function f (p) whch have been already computed. 

The solution of (14 ) , (15 )  may be used in the primal subproblems (7)-(8), 

generating there new proposals whch  are then substituted into ( ; 4 ) , ( : 5 )  and so 

on, as proposed in Section 3.1. 

This modification, however, does not annul completely the need to use the 

master problem ( 9 )  and, from time to t-ime, it might be necessary to invoke the 



master problem (9). Computational experience discussed below shows that the 

need to call master problem (9) is, nevertheless, much lower, and in many cases 

the master problem (9) is not called a t  all. 

4. Numerical example 

Here we consider, in a more detailed way, an application of the proposed 

idea to the mini-scale problem used by E.M.Beale(Beale63a) to illustrate his 

method of parametric decomposition. 

This mini-problem has three linking variables which link together two sub- 

problems shown below each with 6 internal variables and 3 constraints. 

Subproblem A 

rnin iz, + 2, + 5 . z 6  - 1 . 5 ~ ~  - z z - 0 . 5 ~ ~  j 

C ~ 4 - 2 3  - 2 1  f 3 . 2 3  = 4 .  

2 2  i 24 - 25 - 2.26 z2 - 2 3  = 0 .  

23 - 24 + Z g  - 26 + Z 1 + 3.22 = 0 .  

Subproblem E. 

min 12.2, t z, + 23 - 1 . 5 ~ ~  - z2  - 0 . 5 ~ ~  j 

2 1  - Zq - Z 5  - 2 6  -k Z l  t 2 . ~ ~  - 2 . ~ ~  = 2. 

Z 2 - z q - z 5 + Z l  - x 2 i z 3 = 4 .  

2 3  - z 5 - 2.20 - Xl - 2 2  + 2 3  = 2. 

In each subprcblern the variables z - 26 are internal variables and x ,  - z3 

are links. 

The Dantzig-Wolfe decomposition method used for the comparison included 

such features as a restricted master problem and generation of only one new 

proposal From every subproblem for every new s.et of prices provided by the 

master problem. None of the advanced features of the Dantzig-IVolfe decomposi- 

tion method developed, for instance, in(Loute8la) was implemented. 



The performance of this variant of the Dantzig-Wolfe decomposition princl- 

ple is shown below. 

/ I value of w s t e r  prices I 1 ! 
1 problan ~ ( 1 )  1 ~ ( 2 )  I p(3) 

I I i I i ! i I 

In contrast the algorithm proposed above took only one round of direct pro- 

posal excharge. 

The solution was reached through the following sequence of steps: 

Step 1 



Subproblem A was solved with zero initial prices and produced the following 

results ( only the column section of the correspondent output is shown j .  

problem name BEAL. A 

objective value -1.200000000d+01 

sect ion 2 - colurns 

h e r  . colum. a t  . . .act iv i ty .  . . . obj gradient. . reduced cost 

col . . . .  1 11 0.  d+OO 
c o l . .  . . 2  11 0. d 4 0  
c o l . .  . . 3  11  0 .  diO0 
col . . . .  4 bs 4.5@000d+00 
c o l . .  . . 5  11 0 .  d+OO 
c o l . .  . . 6  I 1  0 .  d-QG 
l ink . . .  i bs 9.50000d+00 
l i nk . .  . 2  11 0 .  diO0 
! lnk. . . 3  bs 4.50OOCd-00 
rhs. . .  . . eq - ~.001)GOd40 

Step 2 

The proposal from the subproblem -4 ( values of linking variables ) was 

directed to the subproblem B as a cmst ra in t .  Subproblem B was solvzd and 

the correspondent row section of the solution is shown below: 

problem name DEAL-H 

objective va!ue -6.500000000d+00 

section 1 - rows 

row.. at  . . .  act iv i ty  . . .  slack act iv i ty  .dual act iv i ty  . . i  

cos t r o w  bs -6.50000d+00 6.50000d+OO - 1 . OOOOOd+O@ 
rmv. . . . 2  eq 2 .  G0000d+O@ 0.  d-00 0.  dr00 2 
row. . . . 3  eq ~.OOOOOd-00 0 .  d 4 0  - 1.000OOd+OO 3 
row.. . . 4  eq 2.000OOd+00 0 .  d+OO 0.  d&O@ 4 
n. row. . l  eq 9.50000d+00 0 .  d t O O  -5. M3000d-01 5 
n.row..2 eq 0 .  d+OO 0. dt00 - 2.000OOd~OO 6 
n. row. .3 eq 4.  50OCOdGO 0.  d+OO 5.00000d-01 7 

Additional rows in this su.bproblem represent extra constraints which 

appeared in the probiem (12)-(13) and dual variables corresponding to 



these constraints are the solution to the problem (10) 

Step 3 

Dual variables related to additional constraints in subproblem B are used as 

prices for linking variables in subproblem A. 

The column section of the solution shows that subproblem A generated the 

same value for linking variables: 

problem name BEAL-A 

objective value -!.450000000d+01 

sect ion 2 - colums 

nurber .colurn. a t  . . .  act ivi ty . . .  .obj gradient. .reduced cost 

! c o l  11 0 .  dLO0 
2 co l . .  . . ?  L l  G .  d-OO 
3 c o l . .  . . 3  11 0. dLOO 
a C O ~  . . . .  4 bs 4.5@00Ocl-O0 
5 co l . .  . . 5  11 0 .  d+OO 
6 co l . .  . . 6  11 0. dcO0 
7 l i  n k . . .  i bs 9.50GOOMO 
8 l ink. .  . 2  11 0. d+OO 
9 l ink..  . 3  bs 4.5000W-00 

10 r h s . . . . .  eq -1.0000064C 

The Fact that the solution of this problem coincides with the previous propo- 

sal from subproblem A means that it is optimal. 

Stop 

Of course a good initial poinL accounts partly for such rapid convergence 

but mitie; prices were rather far from the optimal ones 

Another reason for such good performance is the right order of exchanges: 

we started with the subproblem A, generated the proposal in t h s  subproblem, 

sent it to B, generated the prices there, sent them back to A, generated a new 

proposal. from A and stopped. If we started from B the progress would have not 

been so spectacular. 



References 

Beale63a. E.M.L. Beale. "The s~mplex method us:ng pseudo-basic variables for 
structured linear programmng problems," pp. 133-148 in R e c e n t  a d v a n c e s  
in m a t h e m a t i c a l  p r o g r a m m i n g ,  ed. R.L. Graves and P. Wolfe,HcGraw-Hill 
Book Company, N.Y. (1963). 

Dantzig6la. G.B. Dantzig and P. Wolfe, "The decomposition algorithm for linear 
programming," Econometrics 29 pp. 767-778 (1961). 

Dirickx79a. Y.kI.1. Dirickx and L.P. Jennergren, S y s t e m  z n a l y s i s  b y  m u l t i l e v e l  
m e t h o d s :  with app l i ca t ions  to  e c o n o m i c s  a n d  m a n a g e m e n t ,  John Wiley Be 
Sons ( 1979). 

KelleyGOa. J.E. Kelley, "The Cutting Plane Method for Solving Convex Programs," 
Journal of  t h e  S o c i e t y  f o r  Indus t r ia l  a n d  Applied h i a t h e m a t i c s  8(4) pp. 703- 
712 (1960). 

Lasdon70a. L.S. Lasdon, O p t i m i z a t i o n  Theory  f o r  Large S y s t e m s ,  Macmillan, New 
York (1970). 

Lemarechal78a. C. Lemarechal and R .  Mifflin, N o n s m o o t h  o p t i m i z a t i o n :  Proceed- 
i n g s  of  a I IASA Workshop,  March 28-April 8,1977, Pergamon Press (1978). 

Loute8ia. E.  Loute and J.K. Ho, "An advance implementation of the Dantzig- 
Wolfe decomposition algorithm for linear programming," pp. 425-460 in 
Large-Scale L inear  p r o g r a m m i n g ,  R o c  e e d i n g s  o f  a I IAYA Workshop, 2-6 
J u n e  1980, Volume  1, ed. G.B. Dantzig, M.A.H. Dempster and M.J. Kallio, 
(:gal). 

Topkis70a. D.M. Topkis, "Cutting plane method withollt nested constraint set,"  
Operat ion  R s s e z r c h  18(3) pp. 404-413 (1 970). 




