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ABSTRACT 

We show that the operators E~ (conditional expectation 

given a T-field G) and 3 (subdifferentiation), when applied 

to a normal convex integrand f, commute if the effective 

domain multifunction o + {x E R ~ (  f (o,x) < +a1 is G-measurable. 



ON THE INTERCHANGE OF SUBDIFFERENTIATION 
AND CONDITIONAL EXPECTATION FOR CONVEX 
FUNCTIONALS 

R.T. Rockafellar and R. J-B. Wets 

We deal with interchange of conditional expectation and 

subdifferentiation in the context of stochastic convex analysis. 

The purpose is to give a condition that allows the commuting of 

these two operators when applied to convex integral functionals. 

Let (R,A,P) be a probability space, G a T-field contained 

in A, and f an A-normal convex integrand defined on R x R" with 

values in R ~ { w ) .  The latter means that the map 

is a closed-convex-valued A-measurable multifunction. See [2] 

and [9] for more on normal integrands and their properties. In 

particular recall that for any A-measurable function x: R + R ~ ,  

the function 

is a A-measurable and the integral functional associated with f 

is defined by 



To bypass some trivialities we impose the following summability 

conditions: 

(1) there exists a G-measurable x:R + Rn such that If(x) is finite, 

1 1 
(2) there exists V E  Ln(G) = L (R,G,P;R~) such that If, (v) is finite, 

* 
where f is the (A-normal) conjugate convex integrand, i.e. 

* 
f (w,x) = sup [v'x-f(w,x)I . 

XER" 

Finally, we assume that A --and hence also G --is countably gen- 

erated, and that there exists a r e g u l a r  conditional probability 

(given G )  , pG: A x R + [O, 1 1  . Whenever we refer to the conditional 

expectation given G, we always - mean the version obtained by in- 
G 

tegrating with respect to P . Consequently all conditional 

expectations will be regular. 

G 
In particular the conditional expectation E f of f is the 

G-normal integrand defined by 

+ n Also given I.:R+R , a closed-valued A-measurable multifunction, 

its conditional expectation given G is a closed-valued G-measur- 

able multifunction obtained via a projection-type operation from 

a set 

1 1 onto Ln (G) = L (a, G,P;R") . Valadier has shown that a regular 
G version E I.:R Rn is given by the expression 

We refer to [12] and the references given therein for the prop- 
G erties of E f; in particular to the article of Dynkin and 

Estigneev [3], which specifically deals with regular conditional 

expectations of measurable multifunctions. 



We consider If and I as (integral) functionals on 1, (A) 
E f 

and L;(G) respectively. The natural pairings of Lm with L 1  and 
m * 

(1 ) yield for each functional two different subgradient multi- 

functions. We shall use aIf and 31 for designating 1 -sub- 
* * Emf * 

gradients and a If and a I for ( L ) -subgradients. Rockafellar 
E f 

[8, Corollary 1B] shows that when the summability conditions (1) 

and (2) are satisfied, one has the following representation for 
m * 

(1 ) -subgradients: 

* 
( 3 )  a I~ (x) = { v+v~  J V E ~ I ~  (x) .V,ES~ (A) with vs [x-XI] - > O  V X ' E ~ O ~  I 1 f 

where S (A) is the space of singular continuous linear functionals n 
on L ~ ( A ) ,  and 

m 
dom If = {x E L, (A) I I~ (x) < 

* 
is the effective domain of If. (For the decomposition of (Lm) 

4 n 
consult [2, Chapter VIII I ) . Furthermore the L ' -subgradient set 

is given by 

The summability conditions (1 ) and (2) on f imply similar prop- 
G erties for E f, so the formulas above also apply to I . Thus 

for X E  L,(G) we get ~~f 

with us [x-x ' 1 - > 0 . Vx ' E dom I } 

and 
~~f 



W e  a r e  i n t e r e s t e d  i n  t h e  r e l a t i o n s h i p  between a I f  and 3 1  . 
Re ly ing  on t h e  f o r m u l a s  j u s t  g i v e n ,  C a s t a i n g  and V a l a d i e r  

E f 

[ 2 ,  Theorem VI I I .371  show t h a t  i f  i n  p l a c e  o f  t h e  s u m a b i l i t y  

c o n d i t i o n s  ( 1 )  and ( 2 )  , one  makes t h e  s t r o n g e r  assumpt ion :  

( 7 )  t h e r e  e x i s t s  x O  E  L ~ ( G )  a t  which I i s  f i n i t e  and norm f  
c o n t i n u o u s ,  

t h e n  f o r  e v e r y  x  E L: ( G )  o n e  g e t s  : 

where rc d e n o t e s  t h e  r e c e s s i o n  ( o r  a s y m p t o t i c )  cone  [ 2 , 7 ] .  I f  

x E i n t  dom I , 31  ( x )  i s  weakly  compact  and  t h e n  r c [ a 1  ( x ) ]  = 
E  f  E  f  E  f  

( 0 1 ,  i n  which c a s e  

T h i s  was a l r e a d y  o b s e r v e d  by Bismut [ I ,  Theorem 41. F o r  t h e  

s u b s p a c e  o f  L: o f  c o n s t a n t  f u n c t i o n s ,  H i r i a r t - U r r u t y  [ 4 ]  o b t a i n s  

a  s i m i l a r  r e s u l t  f o r  t h e  & - s u b d i f f e r e n t i a l s  o f  convex f u n c t i o n s .  

Here w e  s h a l l  g o  one s t e p  f u r t h e r  and p r o v i d e  a  c o n d i t i o n  

under  which t h e  rc t e r m  c a n  be d ropped  from t h e  i d e n t i t y  

w i t h o u t  r e q u i r i n g  t h a t  x ~ i n t  dom I f .  Very s i m p l e  examples  show 

t h a t  t h e  rc  t e r m  i s  somet imes i n e s c a p a b l e  i n  ( 8 ) .  F o r  i n s t a n c e ,  
G suppose  G = {+, i l l  ( s o  E  = E) and c o n s i d e r  £ ( a , * )  

= $ ( - m , E ( w ) l ,  . . - .  . -  

t h e  i n d i c a t o r  o f  t h e  unbounded i n t e r v a l  ( -m,E(w) ] ,  where 5 i s  a  

random v a r i a b l e  u n i f o r m l y  d i s t r i b u t e d  on  [ 0 , 1 ] .  I n  t h i s  c a s e  - 
b = E f  = E f = I  G 

$ ( - , I  01 
SO t h a t  a 1  ( 0 )  = R+ b u t  E ( a I f ( o ) )  = 

EGf E f  - 

E{O)  = ( 0 ) .  Thus ( 8 )  would f a i l  w i t h o u t  t h e  rc t e r m .  

THEOREM. Suppose f  i s  a n  A-normal convex integrand such 

t h a t  t h e  closure of its effective d o m a i n  muZtifunction 

( 1  0 )  u ~ D ( u ) :  = c l  dam f ( w , . )  = c l  { X E R " ~ ~ ( U , X )  < + . . I  



i s  G-measurable. Assume t h a t  I f ( x )  < +m f o r  eve ry  x  E L ~ ( G )  

such t h a t  x (w)  Edom f  ( w , . )  a . s . ,  and t h a t  t h e r e  e x i s t s  

x0 E L ~ ( G )  a t  which If i s  f i n i t e  and norm con t inuous .  Then 

f o r  every  x  E L ~ ( G )  one has 

o r  i n  o t h e r  words, t he  c losed-va lued  G-measurable m u l t i -  

f u n c t i o n s  

and 

G 
W E  [ a f c . , x c - ) )  I 

a r e  a lmos t  s u r e l y  equa l .  

Proof.  From ( 8 )  it f o l l o w s  t h a t  

G 
a I G  ( X I C E  ( a I f ( x ) )  . 

E f  

I n  v iew o f  ( 6 )  and ( 4 )  t h i s  ho lds  i f  and o n l y  i f  

I t  t h u s  s u f f i c e s  t o  p rove  t h e  r e v e r s e  i n c l u s i o n .  L e t  u s  suppose 
G t h a t  U E ~ E  f ( - , x ( * ) ) .  For  eve ry  ~ E R " ,  d e f i n e  

T h i s  i s  a n  A-normal convex i n t e g r a n d  which i n h e r i t s  a l l  t h e  

p r o p e r t i e s  assumed f o r  f  i n  t h e  Theorem ( r e c a l l  t h a t  u E  L ; ( G ) ) .  
G G Moreover OEaE g ( * , x ( * ) ) .  W e  s h a l l  show t h a t  OEE a g ( * , x ( = ) ) ,  

G which i n  t u r n  w i l l  imply t h a t  u  E E af ( -  , x  ( ) ) and t h e r e b y  com- 

p l e t e  t h e  proof  o f  t h e  Theorem. 

C S ince  a lmos t  s u r e l y  0  E aE ' g  ( u , x  (u) ) , w e  know t h a t  
* 

0 E a 1  ( x )  C a I I: ( X I .  Hence x  min imizes  I on L ~ ( G ) .  ~ e t  
E Gg E g E Gg 



inj denote the natural injection of L ~ ( G )  into L,(A) with 

Now note that inj ; = x also minimizes I on W C L;(A), or equi- 
E g 

valently I on W, since the two integral functionals coincide on 

W (by the definition of conditional expectation.) Thus 

where OW is the indicator function of W, or equivalently: 

since g is (norm) continuous at some x0 = inj x0 E W. By (3) , this 
1 means that there exist V E  Ln(A), vsESn(A), such that 

(13) vS[x - x 1 1  - > 0 for all x' ~ d o m  I t 
9 

and -(v+vS) is orthogonal to W, i.e. 

This last relation can also be expressed as 

(v+vs) [inj yl = 0 for alyEL,(G) t 

or still for all y E 1, (GI 

* 
inj (v + vs) [yl = 0 , 

* * * 
where inj : A + ( L: (G) ) is the adjoint of inj. Thus the * 
continuous linear functional inj ( v + v  ) must be identically 0 

S 
on L,(G), i.e. on L,(G) one has 



G * 
The last equality follows from the observation that E = inj * 1 
when inj is restricted to Ln(A), cf. [2, p.2651 for example. 

We shall complete the proof by showing that the assumptions 

(121, (13) and (15) imply that 

This will certainly do, since it trivially yields the sought-for 

relation 

To obtain (1 6) , it will be sufficient to show that 

for all y Edom I C L:(A). To see this, recall that the relations 
g G 

(17) and ~ € 3 1  (x) (cf. (12)) imply that v - E v E a I  (x), from 
g g 

which (1 6) follows via the representation of L' -subgradients 

given by (4). In fact, because the effective domain multifunc- 

tion, or more precisely its closure wbD(w), is G-measurable, 

it is sufficient to show that (17) holds for every yEdom I nu. 
9 

Suppose to the contrary that (17) holds for every y E d o m  I nW -- 
9 

or equivalently because of the - < inequality that (17) holds for 
1 every y E c l  dom I nW --but there exists $ E  Ln(A) such that 

9 
Ig(Y) < +m and for which (17) fails, i.e. we have 

G 
Because -E v and x are G-measurable, this inequality implies that 

Moreover, since I ( < +m, it follows that almost surely 
g 



Taking conditional expectation on both sides, we see that 

because D is a closed-valued G-measurable multifunction. Natur- 

ally E W .  Because I is by assumption finite on {z E L; (G) ( 
9 

z(w) Edom g(w,.) a.s.1, and D(w) = cl dom g(w,-), it follows from 
G (19) that E y E c l  dom I . Hence (17) cannot hold for every 

9 
y Edom I nW since E ~ $  belongs to (cl dorn I ) nW and satisfies (1 8) . 

g 9 

There remains only to show that (1 7) holds for every y E L:(G) 

such that inj y = yEdom I . But now from (13) we have that for 
9 

each such y 

vs[x-y] = vS[inj x - in j  yl > 0 t - 

or again equivalently: for each y Edom I ~L;(G), 
9 

* 
(inj vs) [x-y] - > 0 . 

But this is precisely (1 71, since we know from (1 5) that on L;(G), * G 
inj v s =  -Ev.  

COROLLARY. Suppose f i s  a  A-normal c o n v e x  i n t e g r a n d  s u c h  

t h a t  F(x) c +m whenever  x Edom f(w,*) a.s., where 

Suppose moreove r  t h a t  t h e r e  e x i s t s  x0 ERn a t  t ' h i c h  F i s  f i n i t e  

and c o n t i n u o u s ,  and t h a t  t h e  m u l t i f u n c t i o n  

W ~ ~ ( ~ )  = c1 dom f(w,*) 

i s  a l m o s t  s u r e l y  c o n s t a n t .  Then f o r  a l l  XER", 

where t h e  e x p e c t a t i o n  o f  t h e  c l o s e d - v a l u e d  m e a s u r a b l e  m u l t i -  



f u n c t i o n  I' i s  d e f i n e d  by 

PROOF. Just apply the Theorem with G = {$,R), and identify 

the class of constant functions --the G-measurable functions -- 
with R". 

This Corollary was first derived by Ioffe and Tikhomirov 

[5] and later generalized by Levin [6]. Note that our definition 

of the expectation of a closed-valued measurable multifunction 

is at variance with the definition now in vogue for the integral 

of a measurable multifunction, which does not involve the closure 

operation. (Otherwise the definition of the integral of a multi- 

function would be inconsistent with that of its conditional ex- 

pectation, in particular with respect to G = {@,R)r and also 

when r+Er  is viewed as an integral on a space of closed sets it 

could generate an element that it is not an element of that space.) 

APPLICATION 

Consider the s t o c h a s t i c  o p t i m i z a t i o n  p rob lem:  

(21) find inf E[f(wIxl (w) .x2 (w) ) 1 over all x  EL^ (G) , x  EL^ (A) , 
nl  "2 

where A and G are as before, and f is an A-normal convex inte- 

grand which satisfies the norm-continuity condition: 

(22) 0 0 there exists (xl ,x2) E L: (G) x (A) 
1 "2 

at which If is finite and norm continuous. 

Suppose also that the effective domain multifunction 

n "2 w +dom f(w,*.-) = { (xl ,x2) E R x R I f(w.xl ,x2) < +rn) 

is uniformly bounded and that there exists a summable function 
1 h E L (A) such that (x, ,x2) E dom f (w. - )  implies that 



I f (u1,x1 ,x2)I 2 h(l~). Finally suppose that the multifunction 

"1 n2 w * Dl ( w )  = cl {xl E R (3x2 E R such that f (w,xl ,x2) < +m} 

is G-measurable. For a justification and discussion of these 

assumptions cf. ['I 1, Section 21. From Theorem 1 of [1 1 1 ,  it 

follows that the problem 

( 2 3 )  find inf E lg (w,xl (w) ) I over all xl  E 1; (G) 
1 

where 

is equivalent to (21) in the sense that if (XI ,E2) solves (21), 

then xl solves (23), and similarly any solution xl of (23) can 

be "extended" to a solution (xl 'X2 ) of (21 ) . Both problems also 

have the same optimal value. 

The hypotheses imply that 

is an A-normal convex integrand, since the multifunction 

wbepi(inf f(w,xl,x2)) is closed-convex-valued and A-measurable. 
X 

Its effecti4e domain multifunction, or more precisely 

is G-measurable. Combining (11) with the representation for the 

subgradients of infimal functions [13, VIII.41, we have that for 

every xl E l m  (G) 
"1 

q 1  ( 1  = ~?v(w) I (v(w) ,o) af(w,xl (w) ,x2) 

for some x2 E Rn2 I ( ) , 

from which Theorem 2, the main result of [11], follows directly. 



REMARK. If the underlying probability measure P has finite 
w *  

and (1 1) and (20) are satisfied with- support, then (Ln) = Ln t  
out any other restriction. 

On the other hand, if P is nonatomic, and the effective 

domain multifunction (or its closure) is not G-measurable, then 

the identities (1 1) and (20) do not apply. More precisely, 

suppose that there exists a subset C of R" such that the A- 

measurable set 

has (strictly) positive mass and is not G-measurable. Then the 

term rc[aI (x)] can never be dropped from the representation 
E f 

of a1 given by ( a ) ,  as can be seen from an adaptation of the 
E f 

arguments in Section 4 of [lo]. In those cases the inclusion 
G G 

E af C aE f will be strict for at least some x E L;(G). 
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