

Modeling Regional Water Supply: Silistra Case Study

H

FR

H H H

No. of Lot of Lo

NH I

Chernyatin, V.

IIASA Working Paper

WP-81-093

July 1981

Chernyatin, V. (1981) Modeling Regional Water Supply: Silistra Case Study. IIASA Working Paper. WP-81-093 Copyright © 1981 by the author(s). http://pure.iiasa.ac.at/1668/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

MODELING REGIONAL WATER SUPPLY: SILISTRA CASE STUDY

V. Chernyatin

July 1981 WP-81-93

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

PREFACE

Water resource systems have been an important part of resources and environment related research at IIASA since its inception. As demands for water increase relative to supply, the intensity and efficiency of water resources management must be developed further. This in turn requires an increase in the degree of detail and sophistication of the analysis, including economic, social and environmental evaluation of water resources development alternatives aided by application of mathematical modeling techniques, to generate inputs for planning, design, and operational decisions.

In 1978 it was decided that parallel to the continuation of demand studies, an attempt would be made to integrate the results of our studies on water demands with water supply considerations. This new task was named "Regional Water Management" (Task 1, Resources and Environment Area).

One of the case studies in this Task, carried out in collaboration with several Bulgarian institutions and the Regional Development Task of IIASA, is concerned with water resources management in the Silistra region of Bulgaria. This paper on modeling the water supply system in the Silistra region accompanies the earlier study on the water demands of agriculture in the same region.

Murat Albegov	Janusz Kindler					
Leader	Chairman					
Regional Development Task	Resources & Environment Area					

CONTENTS

1. INTRODUCTION

- SILISTRA WATER SUPPLY PROBLEMS AND PURPOSES 2. OF MATHEMATICAL MODELING
- GENERALIZED WATER SUPPLY MODEL 3.
 - 3.1 Basic Assumptions

 - 3.2 Uniform Flow Network3.3 Mathematical Description of Model

3.3.1 Constraints 3.3.2 Objective Function

- 4. SILISTRA WATER SUPPLY MODEL
- 5. RESULTS OF MODELING
 - Basic Characteristics of Water Supply System 5.1
 - 5.2 Marginal Costs of Water
 - 5.3 Sensitivity Analysis
 - Practical Application of Model 5.4
- 6. CONCLUSIONS

APPENDIX: Computer Output of the LP Silistra Model

REFERENCES

MODELING REGIONAL WATER SUPPLY: SILISTRA CASE STUDY

V. Chernyatin

1. INTRODUCTION

The IIASA's water resources research related to the Silistra Case Study started in 1977 with the modeling of agricultural water demands (Gouevsky and Maidment, 1977). In many respects, the water demand model had the character of a general agricultural model for the Silistra region. Later on, the model was extended to take into account the subdivision of the region into a number of districts with the various conditions of soil, crop structure, water supply, etc. (Gouevsky, Maidment, and Sikorski, RR-80-38, 1980). The crucial point at this stage of the study was knowing how much water supply costs in total, and what the shadow prices of water for the various districts would be. Unfortunately, it is impossible to answer these questions, even roughly, without analysis of a regional water supply system.

The second stage of the Silistra water resources related study, being the main subject of this paper, is a water supply model. The major problem to be solved here is to determine the least-cost variant of the water supply system and the shadow prices of water distributed geographically. The latter very much influences the intraregional structure and intensity of production. In this respect the water supply model reported here can be considered as an essential part of the system of regional models

-1-

(Albegov and Chernyatin, 1978). What is especially important is that the water supply model should be interrelated with other regional models. In the Silistra Case, at the end of 1979, such a coordination was done for the agricultural water demand and supply models (Chernyatin and Gouevsky, forthcoming).

This paper sums up IIASA's work on modeling of the Silistra water supply system. The water supply model presented here was developed in close cooperation with the Sofia Institute for Water Projects which is responsible for designing water resources systems in Bulgaria. It must be stressed that the Silistra region is characterized by fairly simple hydrological conditions in the region. Namely, abundance of water in the Danube river-the only source of water--allows one correctly to confine oneself to within-year regulation of water resources. This property essentially simplifies analysis of a water supply system. The developed optimization model determines basic parameters of the Silistra water supply system--capacities of reservoirs and pumping stations, and discharge capacities of canals.

Although intended primarily for the Silistra water supply system, the model actually had many properties of a general water supply model under conditions of within-year regulation of water resources. Afterwards the model was generalized to cover the whole set of irrigation systems of "Silistra type". In this general form, it is expected to be applied for the planning of many irrigation systems in the Danube lowland in Bulgaria. The first experiment in this field was crowned with success. Namely, the practical application of the modeling results lead to a considerable budget saving for the Silistra irrigation system.

Below, the purposes of modeling, the mathematical model of a regional water supply, and the results of its application for the Silistra region are described in detail.

2. SILISTRA WATER SUPPLY PROBLEMS AND PURPOSES OF MATHEMATICAL MODELING

Silistra is a region covering a 2700 km² area, with a population of 200,000 located in the North-Eastern part of Bulgaria. The soil quality and the number of days of sun per

-2-

year make this region favorable for intensive agricultural development under irrigation. Unfortunately, it has a pronounced shortage of its internal water resources. Since no other rivers exist in the region, the bordering Danube river is the only source of water for agricultural, domestic and industrial consumption. Groundwater is available, only in small quantities, at a depth exceeding 400 metres which makes it unprofitable for production use. Furthermore, the annual rainfall is rather moderate--500 mm in average--and distributed (somewhat unfavorably) within the year with respect to the growing season.

According to the long-term hydrological forecasts, there will be no deficit of water in the Danube river at least until the year of 2000. Because of the abundance of water in the Danube river, the question of how much water to withdraw for agricultural and industrial production and for municipal use is decided solely by the economics of water use. Suffice it to say, for example, that all the irrigated areas are located at a level varying from 100 m to more than 200 m higher than the Danube river level. This means that the conveyance of irrigation water is rather expensive.

The water supply system for the Silistra region is divided into two separate sub-systems--irrigation water supply and water supply for household and industrial consumption. The reason for making such a division is the essential difference in the level of water quality demanded by different types of water users. With regard to industry these are mainly food enterprises except for some other industrial activities in the city of Silistra. However, being situated along the Danube river they have their own water intakes which are small in comparison to the total regional water requirements. As it is known, the food industry requires that the water quality be of drinking-water standards, which, of course, are higher than that required for irrigation water.

In quantitative respect, about 10 to 15% of the total regional water requirements fall to the share of household and industrial uses. The only source of water for these uses is the <u>Danube</u> terrace water, which is limited in quantity. On the other hand,

-3-

irrigation water is withdrawn from the Danube river whose water quality is much worse than that of terrace water, but it is admissible for irrigation. The irrigation water supply system, in turn, represents a system of interconnected reservoirs, canals, pumping station, culverts, syphons, etc. All the above leads to the conclusion that the Silistra irrigation system is a separate and most important part of the regional water supply system. That is why this study is concerned with the irrigation water supply system only.

From the geographical point of view, the irrigation system for the Silistra region is divided into three hydraulically disconnected water supply systems for the Tutrakan, Malak Preslavets and Silistra districts, respectively (see Figure 1). The M. Preslavets irrigation system is the most representative one with respect to both the irrigation area (more than 60%) and the number of typical system elements such as reservoirs, pumping stations, canals, etc. Regarding the Tutrakan irrigation system, this project is already underway and half-built. Therefore, the M. Preslavets irrigation systems have been chosen as a pilot water project in the Silistra case. The water supply model developed for the M. Preslavets district is expected to be transferred afterwards to other irrigation systems in the Silistra region.

The work on mathematical modeling of water supply systems has been done by IIASA, in close cooperation with the Sofia Institute for Water Projects. Of course, the mathematical modeling by no means replaces the whole work of designing a water resources system. The best way to understand the purposes of modeling or, similarly, what IIASA's role was in such a collaboration, is to briefly reproduce the sequence of designing stages in the development of a water supply system as they were made by the Institute for Water Projects.

As seen from Figure 2, the designing stages for an irrigation system range from preliminary investigations to design work. We will briefly comment on them. The <u>first stage</u> includes preliminary geological, topographical, and design investigations, with the object of roughly outlining what type of water supply

-4-

Figure 1. Silistra region.

Figure 2. Sequential stages in designing of water supply system.

system will be created--with reservoir or not, with open canals or pipelines, with water conveyance by gravity or by pumping, etc. At the <u>second stage</u>, the land suitable for irrigation is defined and, by doing that, the water requirements are determined.

The <u>third stage</u> consists in the definition of a set of possible variants for a water supply system. In fact, this alternative set is infinite. Nevertheless, in view of pure practical difficulties--complicated water-balance, engineering, and economic calculations of the whole irrigation system--in the <u>next</u> stage the designer has to confine himself to a set of a few variants, usually no more than 4 or 5. The <u>fifth</u> design <u>stage</u> results in determination of the "best" variant for an irrigation system. The "best" here, means the optimal variant in the narrow sense of the word, as we are dealing with the optimal variant chosen from among a very limited set of possible variants of water supply systems. The measure with which to compare the different variants amongsteach other is the total annual cost of a water supply system.

Looking at the design scheme presented in Figure 2, it is evident that stages 4 and 5 are rather labor-consuming and, at the same time, easily formalizable. We can give the mathematical modeling complete control over these two stages. The essential advantage of the mathematical-modeling approach here is that it allows to analyze the infinite number of variants for a water supply system. In the mathematical model, the simulation of the infinite number of variants is realized in a fairly simple manner--by the flow and mass balance constraints in all the nodes of a water network. Another stage--search for the optimal variant--is realized by the optimization procedure, which determines the least-cost variant of water supply system.

Thus, through substitution of the two conventional design stages (see Figure 2--choice of a few variants and determination of the "best" variant of a water supply system) for the two modeling stages--simulation of all potential variants and search of the optimal variant produces results which:

- o saves the designer from the multiple, labor-consuming calculations of a water supply system;
- o guarantee the selected variant to be really optimal.

-7-

The mathematical modeling effort has two additional objectives which are very important for practical application. Namely, the mathematical model should be:

- (a) operational for a wide range of initial data,
- (b) suitable for the rather arbitrary configurations of water supply system.

Of course, application of a mathematical model requires that the analyst has access to the computing facilities equipped with a necessary software.

3. GENERALIZED WATER SUPPLY MODEL

3.1 Basic Assumptions

Before describing the mathematical model, it is necessary to outline the range of its applicability. The best way of doing that is to present the main assumptions of the model:

- The main goal of the water supply system under analysis is to meet water requirements, prespecified both in space and time.
- 2. The water supply system is determined as it is by the end of the planning period.
- The available water resources are unlimited and can meet all water requirements.
- 4. Proceeding from the analysis of topographical and geological conditions, the basic scheme of the water supply system is fixed.
- 5. The optimal water supply system is considered to be that one which is the least-costly.
- 6. All water-users consume water resource irreversibly.
- Only within-year regulation of water resources is considered.
- 8. The transit time delays for canals are not taken into account.

Actually these assumptions indicate the type of a water supply system which can be analyzed by the model presented below. The first step of the model building process is to construct flow network representation of the irrigation system. 3.2 Flow Network Representation of the System

The flow network consists of the following standard elements:

- 1. nodes,
- 2. arcs,
- 3. inputs (inflows),
- 4. outputs (outflows).

All of them should be interconnected in a certain sequence as it is in the real irrigation system. Though mapping a real system into a uniform network is not a matter of difficulty, nevertheless, this procedure cannot be entirely formalized. For example, in doing so, sometimes we have to introduce a number of fictitious nodes and arcs, combine a few standard elements into one unit, etc.

Next, this spatial representation has to be expanded to take into account the multi-period operation of the water supply system. This means that the flow network should have two dimensions--space and time. The time representation of the system can be realized as a layered network, where each layer corresponds to a single time period and is connected with the subsequent ones by storage arcs leaving all reservoir nodes. Since the links between the time layers are easy to be accounted for, we can confine ourselves to a detailed consideration of only one time layer of flow network, taking into account the storage arcs entering and leaving the reservoir nodes. Figure 3 shows all standard elements of a flow network and their interpretation in the terms of real elements of an irrigation system.

Any irrigation system we are dealing with in this paper is assumed to be represented by a flow network consisting only of the standard elements presented in Figure 3. By definition, any input can only be at a pumping node, which is called an input pumping node. On the other hand, any internal pumping or distributing node is assumed to have an output. The actual absence of water withdrawal in some internal pumping or distributing nodes is simulated by the output of zero capacity. For explanatory purposes, a simple example of a flow network for a single time period is shown in Figure 4.

	Standard Element of the Model	Corresponding Element of the Real Water Supply System	Legend
1	Input	Water source or water inflow from other system	\rightarrow
2	Reservoir Node	Storage reservoir	
3	Pumping Node	Pumping station	
4	Distributing Node	Junction of two or more water flows	\bigcirc
5	Arc	Open canal, pipeline, culvert, syphon or any combination of those	\rightarrow
6	Storage Arc	Fictitious link for taking into account the transfer of water from one time period to another	>
7	Output	Water withdrawal for irriga- tion or water outflow to other system	-1->

Figure 3. Types and Definitions for Standard Elements of the Flow Network.

Now we should introduce the numbering system for all elements of the flow network and for all time periods. The complete numbering system is shown in Table 1 (the elements of the flow network presented in Figure 4 are numbered following these rules).

For the sake of generality, it is easy to present the uniform network in an analytical form. For these purposes, it is necessary to introduce the following notions describing the links between all nodes.

Figure 4. One-Layer Spatial Uniform Network.

for Standard Elements of Flow Network and for the Time Periods. Numbering System Table 1.

	Type of Model Element	S	Number of Elements	Numbering Index	Set of Elements of a given type
-	Inputs		ω	ಶ	1,,s
2.	Reservoir Nodes		ч	ć	1,,r
3.	Pumping Nodes	input internal	ν E	·t	r+1,,r+s r+s+1,,r+s
t.	Distributing Nodes		1	ć	r+s+m+1,,r+s+m+ <i>l</i>
5.	Arcs		u	i	1,,n
6.	Outputs *		m+ <i>l</i> .	ŕ	S + r+1,,r+s+m+2
7.	Time Periods		N	¥	1 , N

* Distributing or internal pumping nodes and outputs leaving them have the same sequential number.

I = {1,...,n} = set of all arc numbers, I⁺_jεI = subset of the entering-arc numbers for node j, I⁻_jεI = subset of the leaving-arc numbers for node j.

Let us assume a real irrigation system which is mapped into a uniform flow network consist of the standard elements given in Figure 3. Then the uniform network is said to be presented analytically, if the following data are specified:

- 1. numbers s, r, m, l, n,
- 2. subsets of arc numbers I_j^+ and I_j^- for all $j = 1, \ldots, r+s+m+l$.

For example, the analytical representation of the flow (Table 2) network shown in Figure 4 is:

s = 2; r = 2; m = 1; l = 3; n = 11.

Node Number = j	I ⁺ j	ŗ
1	2	3
2	7	8, 11
3	Ø*	1
4	ø	6
5	4	5
6	8, 9	10
7	1, 3	2,4
8	5,6	7,9
9	10, 11	ø

Table 2. Subsets I_j^+ and I_j^- in the pattern network

* Ø is empty set

-13-

3.3 Mathematical Description of the Generalized Model

To describe formally the water supply model, it is necessary to define the model variables; for the sake of brevity they are presented in the following table:

Table 3. Variables in the Model

Definition	Designation	Units	Type of Variable
Input flow α in period k	q_a^k	m ³ /s	decision (or ini- tial data)
Flow in arc i in period k	y ^k i	m ³ /s	decision
Output flow j in period k	wj	m ³ /s	initial data
Capacity of reservoir j	v,	m ³	decision
Discharge capacity of canal/ arc i	^z i	m ³ /s	decision
Capacity of pumping station/ node j	xj	m ³ /s	decision
Duration of time period k	tk	sec	initial data
Active water storage in reservoir j at the beginning of period k	s ^k j	m ³	decision

As seen from the above table, input flow q_{α}^{k} (k=1,...,N) from a water source α can be a decision variable or initial data. The first situation corresponds to the case where input water flow results from the solution of some optimization problem. The water sources here can be streamflow, lake or groundwater. In the second case, the input water flow is prespecified. For example, it can be an input from another irrigation system already built. On the other hand, output water flow w_{j}^{k} can be a water requirement for an irrigated area or a fixed input into another irrigation system. In both cases, this flow should be prespecified. Now we have at our disposal everything that is required to describe the model mathematically. Let us start with constraints on the decision variables. All constraints of the model are physical ones, and can be divided into the following four groups:

- Non-negativity conditions for decision variables
 Being inherent in most mathematical programming problems, these constraints require that all decision variables be non-negative.
- (2) Flow balances at pumping and distributing nodes

This set of constraints requires that flow continuity be satisfied at the network nodes. For input pumping nodes those are:

$$q_{\alpha}^{k} + \sum_{i \in I_{j}^{+}} y_{i}^{k} - \sum_{i \in I_{j}^{-}} y_{i}^{k} = 0,$$

$$\alpha = 1, \dots, s$$
$$j = r + \alpha$$
$$k = 1, \dots, N$$

Analogously, for the distributing and internal pumping nodes we have:

$$\sum_{i \in I_{j}^{k}} y_{i}^{k} - \sum_{i \in I_{j}^{-}} y_{i}^{k} - w_{j}^{k} = 0 ,$$

$$j = r+s+1, \dots, r+s+m+\ell$$

$$k = 1, \dots, N.$$

(3) Mass balances for each reservoir

These constraints describe the release and storage regimes for all reservoirs:

$$s_{j}^{1} = t_{N} \left(\sum_{i \in I_{j}^{+}} Y_{i}^{N} - \sum_{i \in I_{j}^{-}} Y_{i}^{N} + s_{j}^{N} \right) + s_{j}^{N} ,$$

$$s_{j}^{k+1} = \left(\sum_{i \in I_{j}^{+}} y_{i}^{k} - \sum_{i \in I_{j}^{-}} y_{i}^{k} \right) + s_{j}^{k} ,$$

$$j = 1, \dots, r$$

$$k = 1, \dots, N-1$$

The first set of these constraints is annual cycle condition for reservoirs. In other words, it reflects the fact that we consider only within-year regulation of water.

(4) Upper bounds

This set of physical constraints requires that canal and pumping station flows and active reservoir storages should not exceed their capacities. Those are:

$$t_{k} \sum_{i \in I_{j}} y_{i}^{k} - s_{j}^{k} \leq 0$$

$$s_{j}^{k} - V_{j} \leq 0 \quad (\text{for reservoir nodes})$$

$$j = 1, \dots, r; \ k = 1, \dots, N$$

$$\sum_{i \in I_{j}} y_{i}^{k} - x_{j} \leq 0 \quad (\text{for pumping nodes})$$

$$i \in I_{j}^{-1}$$

$$j = r+1, \dots, r+s+m; \ k = 1, \dots$$

 $y_i^k - Z_i \leq 0$ (for canals/arcs)

i = 1, ..., n; k = 1, ..., N.

.,N

Furthermore, a number of upper bounds constraining capacities of water supply facilities should be added.

3.3.2 Objective Function

As stated above, the objective of our modeling is to find a least-cost water supply system. When the hydraulic scheme of the system is fixed, we should determine capacities of reservoirs, pumping stations, canals, and within-yearregimes of their operation. In the model under analysis, the measure for the total costs associated with the establishment and operation of the water system is the generalized annual cost caused by:

- construction of reservoirs, pumping stations and canals,
- loss of the submerged arable lands,
- operation of reservoirs and canals,
- maintenance of pumping stations,
- consumption of electric energy for pumping water.

As stated above, we keep the assumption that objective function is linear with respect to capacities of reservoirs and pumping stations, and discharge capacities of canals. To express it formally, the following notions should be introduced:

- a_j = increment of annual cost associated with the construction and operation of reservoir j, due to the unit increment of its capacity, lv/m³;
- b = increment of annual cost associated with the construction and maintenance of pumping station j, due to the unit increment of its capacity, lv/m³/s;
- Y_i = increment of annual cost associated with the construction and operation of canal i, due to the unit increment of its discharge capacity, lv/m³/s;
- e = unit cost associated with electricity consumption for water pumping at node j.

* lv is an abbreviation for leva - Bulgarian monetary unit.

In these terms, the objective function can be written as follows:

It must be said that objective function E describes the real annual cost of the whole water supply system with the precision of constant additives. Because constant additives do not influence the solution of an optimization problem, they are omitted.

Thus, the generalized mathematical model of water supply system under analysis is the set of constraints (1)-(4) and objective function (5) to be minimized over all decision variables. It is enough for the user of this model to know the numbers r, s, m, 1, n, N, the sets of arc numbers I_j^+ and I_j^- , and the initial data w_j^k , t_k , a_j , b_j , γ_j , e_j , for all j and k.

4. SILISTRA WATER SUPPLY MODEL*

The mathematical model of the Silistra water supply system will be derived from the general model as a special case. The detailed scheme of the (modeled) water supply system is shown in Figure 5. It consists of the following standard elements: three reservoirs, six pumping stations, twenty canals, and nine distributary nodes. In addition, the irrigation system's only water input comes from the Danube river and the twelve water outputs intended for irrigated areas.

^{*} By the Silistra water supply system we mean the M. Preslavets one.

Figure 5. Scheme of the Silistra water supply system.

The Silistra water supply model is constructed under the same assumptions which we previously stated. We will briefly comment on some of them in connection with the Silistra Case. For each irrigated area, the water requirement and the generalized irrigation time-table are specified. Although the Silistra water supply system is expected to be put into operation only step-wise, the decision is made solely with respect to the fully completed system which corresponds to the end of the planning period, the year of 1990. In the Silistra site of the Danube river, the total water withdrawal does not exceed 5% of the streamflow, even in the peak period of a dry year. This allows one to regard the (available) water resources as unlimited. The irreversible use of water follows from the fact that the only user of water is irrigation. Finally, because of the small size of the Silistra region, the transit time delays are not taken into account.

As stated previously, in order to describe mathematically the model we should:

- (1) specify the numbers s, r, m, l, n, N;
- (2) enumerate all the standard elements into a flow network according to the rules of Figure 5;
- (3) define the subsets I⁺_j and I⁻_j for all nodes j=1, ..., r+s+m+l. After doing this (see Figure 1), we obtain: s = 1 = number of water inputs or input pumping nodes, r = 3 = number of reservoir nodes, m = 5 = number of internal pumping nodes, 1 = 10 = number of distributing nodes, n = 21 = number of arcs.

The subsets of the entering (I_j^+) and leaving (J_j^-) arcs are in Table 4.

It is necessary to stress that in the Silistra Case the water input q_1^k is a decision variable, and the twelve water outputs w_j^k (j = 6, ..., 10, 12, ..., 18) are prespecified irrigation water requirements.

Node Number j	r ⁺ j	ıj
1	14	15
2	17	18
3	20	11
4	φ	1
5	18, 21	19
6	5	6
7	6	· 7
8	7	8
9	9	10
10	1	12
11	12	2, 3
12	2	13
13	13, 15	14
14	3	16
15	19	4
16	4	5
17	8	9
18	10, 11	20
19	16	17, 21

Table 4. Subsets I_{j}^{+} and I_{j}^{-} in the Silistra Water Supply System

Thus, the mathematical model of the Silistra water supply system can be presented in the form of constraints (1), ..., (4) and the objective function (5). However, taking into account the peculiarities of the Silistra irrigation scheme, the model can be written much more simply. First, as seen from Figure 5, capacities of all pumping stations are equal to the discharge capacities of the respective canals. This means that some decision variables are unnecessary and can be omitted from the general model. Second, some canals are (intentionally) considered to be of zero cost. This is done for three reasons. The first is that the sizes (costs) of some canals (e.g. 13) are fully defined by those of the adjacent up-stream canals (respectively 2). The second reason is that some of the canals are artificially introduced into the scheme (e.g. 21) to present it as a uniform network. Finally, the costs of some canals (e.g. 17) are included in the costs of other facilities (reservoir 2). Everything mentioned above means that the expression (5) for objective function in the Silistra water supply model can be essentially simplified in comparison with the general case.

The mathematical model for the Silistra irrigation system is presented below in the reduced form, which corresponds to the general model (1) - (5) with the above mentioned simplifications introduced. The transformations of the general model constraints and the objective function include:

(1) elimination of the decision variables:

 $g_{1}^{k}, y_{21}^{k}, y_{19}^{k}, x_{4}, \dots, x_{9},$ by the relations : $q_{1}^{k} = y_{1}^{k}$ $y_{19}^{k} = y_{2}^{k} + y_{3}^{k}$ $y_{21}^{k} = y_{16}^{k} - y_{17}^{k}$ $x_{4} = z_{1}$ (1) $x_{5} = z_{12}$ $x_{6} = z_{5}$ $x_{7} = z_{6}$ $x_{8} = z_{7}$ $x_{9} = z_{9}$

(2) omission of the decision variables z_{12} , ..., z_{21} because they correspond to the canals of zero cost as explained above.

With these modifications, the model under analysis is written as follows (constraint sets and the objective function are numbered in accordance with the numbers adopted for the general model presented in section 3 of this paper): Flow balances at pumping and distributing nodes

 $y_1^k - y_2^k - y_3^k$ $= w_{10}^{k}$ $y_2^{k} - y_{13}^{k}$ $= w_{12}^{k}$ $y_{13}^{k} - y_{14}^{k} + y_{15}^{k} = w_{13}^{k}$ $y_{3}^{k} - y_{16}^{k}$ $= w_{1\mu}^{k}$ $y_{12} + y_{17}^{k} - y_{18}^{k} - y_{16}^{k} = 0$ = w₁₅^k (2) $y_{12}^{k} - y_{\mu}^{k}$ k = 1, ..., N $y_{\mu}^{k} - y_{5}^{k}$ = w k 16 $y_5^k - y_6^k$ $= w_6^k$ $y_6^k - y_7^k$ $= w_7^k$ $y_7^k - y_8^k$ $= w_8^k$ $y_8^k - y_9^k$ $= w_{17}^{k}$ $y_{9}^{k} - y_{10}^{k}$ $= w_q^k$ $y_{10}^{k} + y_{11}^{k} - y_{20}^{k}$ $= w_{18}^{k}$. Mass balances for reservoirs $S_1^{k+1} - S_1^k + t_k (y_{15}^k - y_{14}^k) = 0$ k = 1, ..., Ns,ⁿ⁺¹ $= S_1^{1}$ $s_2^{k+1} - s_2^k + t_k (y_{18}^k - y_{17}^k) = 0$ (3) s,ⁿ⁺¹ $= s_{2}^{1}$ $s_3^{k+1} - s_3^k + t_k (y_{11}^k - y_{20}^k) = 0$ sⁿ⁺¹ $= S_{3}^{1}$. Upper bounds $t_{k_{15}}^{k} - S_{1}^{k} \leq 0$ $t_{k}y_{18}^{k} - s_{2}^{k} \leq 0$ (4) $t_{k}y_{11}^{k} - s_{3}^{k} \leq 0$ k = 1, ..., N $y_{16}^{k} - y_{17}^{k} \leq 0$ $s_j^k - v_j \leq 0$ j = 1, 2, 3 $y_p k - Z_p \leq 0$ $p = 1, \ldots, 11, 12$ The reduced form for the objective function is:

$$E = \sum_{j=1}^{3} a_{j}v_{j} + \sum_{p=1}^{12} \gamma_{p}z_{p} + (5)$$

cost of reservoirs cost of canals and pumping stations
$$+ \sum_{k=1}^{n} + t_{k}(e_{4}y_{1}^{k} + e_{5}y_{12}^{k} + e_{6}y_{5}^{k} + e_{7}y_{6}^{k} + e_{8}y_{7}^{k} + e_{9}y_{9}^{k})$$

cost of energy for pumping water

The model consisting of relations (2)-(4) and the objective function (5) was implemented on a computer.

5. RESULTS OF MODELING

The mathematical model presented in Section 4 was run on the IBM 370/165 in Pisa. Before showing the results of modeling, it is necessary to present the full set of model coefficients-time periods t_k , water requirements w_j^i , and the cost coefficients a_j , e_{α} , γ_p .

Actually, a year was divided into the nine time periods, as shown in Table 5. While modeling, the three-month time period, December, January, and February was omitted, because during these winter months water supply system does not operate. This interruption is caused both by possible freezing of water in canals or reservoirs and by the necessity of carrying out some work on maintenance of the irrigation system.

The prespecified water requirements for all irrigated areas are shown in Table 6. There is no irrigation in the first period of four months, with interruption for the winter season, and it can only be used for storing water in reservoirs, if any. The sixth period--the first ten days of August--is a period of the most intensive irrigation for all areas. Table 5. Division of a Year into Time-Periods.

Period Number	Months	Duration [month]	Comment
_	December January February	3	out of work
1	October November March April	4	no irrigation
2	Мау	1	
3	First 20 days of June	2/3	
4	Last 10 days of June	1/3	
5	July	1	
6	First 10 days of August	1/3	the most inten- sive irrigation
7	Last 20 days of August	2/3	
8	September	1	

			~				r 3/-1
Table 6.	water	Requirements	IOL	ALL	Irrigation	Areas	[m /s].

Period Water num- ber require- i ments	1	2	3	4	5	6	7	8.
w ⁱ 1	0	0.248	0.317	1.191	0.897	1.294	0.582	0.242
w ⁱ ₂	0	0.179	0.228	0.859	0.61	0.961	0.42	0.174
w ⁱ ₃	0	4.015	5.127	19.248	13.674	20.927	9.419	3.914
w ⁱ ₄	0	0.383	0.488	1.833	1.302	1.993	0.898	0.373
w ⁱ ₅	0	0.626	0.8	3.003	2.133	3.264	1.469	0.61
w ⁱ ₆	0	0.413	0.528	1.983	1.408	2.155	0.97	0.403
w ⁱ ₇	0	0.257	0.328	1.229	0.873	1.337	0.602	0.25
w ⁱ 8	0	0.887	1.135	4.263	3.027	4.634	2.086	0.867
w ⁱ ₉	0	1.057	1.35	5.069	3.6	5.51	2.48	1.03
w_{10}^{i}	0	0.525	0.671	2.522	1.791	2.741	1.234	0.512
w ⁱ ₁₁	0	0.414	0.53	1.987	1.411	2.16	0.972	0.404
w ⁱ 12	0	7.413	9.467	35.551	25.248	38.64	17.39	6.569
		<u> </u>	<u> </u>	L		<u> </u>	<u> </u>	<u> </u>

 $\gamma_1 = 118060 \ lv/m^3/sec.$ lv/m³ = 0.0122 a₁ $Y_2 = 66896$ = 0.101 a₂ $a_3 = 0.0368$ $\gamma_3 = 79130$ 11 11 $e_{4} = 0.00593$ $\gamma_{\mu} = 68900$ $\gamma_5 = 128088$ e₅ = 0.000359 " 11 $e_6 = 0.000282$ $\gamma_6 = 149418$ 11 $e_7 = 0.00094$ $\gamma_7 = 150641$ 15 $Y_8 = 8653$ $e_8 = 0.000525$... n $\gamma_9 = 105155$ $e_{q} = 0.00213$ $Y_{10} = 17115$... $Y_{11} = 67754$ 11

All of the model coefficients presented in this section are calculated on the basis of initial data submitted by the Sofia Institute for Water Projects.

 $Y_{12} = 44960$

н

5.1 Basic Characteristics of Water Supply System

One of the main goals of modeling is to determine basic characteristics of the Silistra water supply system--capacities of reservoirs and pumping stations and discharge capacities of canals. Some of these capacities computed under the above coefficients are shown in the following table (Table 7).

As can be seen from Table 6, the time-tables of irrigation for all areas are rather irregular. Analysis of water requirements shows that ratio $w_j^i/\max w_j^i$ is constant for all irrigated areas (within 2-3%). In other words, all areas have the same irrigation time-table (see Figure 6).

If the water supply system had contained reservoirs, then all canals and pumping stations would have had the same withinyear operation regimes as the time-table of irrigation. From this point of view, reservoirs are intended for equalization of the within-year operation regime for the irrigation system.

While running the model, the following cost coefficients were used:

Figure 6. Time-table of irrigation.

Facilities	Capa	Units		
	Model Notation	Value		
Reservoir 1	V ₁	5.248	10 ⁶ m ³	
Reservoir 2	v ₂	2.459	п	
Reservoir 3	V3	131.645	11	
Pumping Station 1	Z ₁	38.054	m ³ /s	
Pumping Station 2	x	21.801	II.	
Pumping Station 3	z ₅	16.382	н	
Pumping Station 4	^Z 6	15.045	ft	
Pumping Station 5	Z ₇	12.433	11	
Pumping Station 6	Z ₉	10.891		
Canal 2	Z ₂	15.813	TT	
Canal 3	Z ₃	21.344	n	
Canal 11	² 11	38.64	11	

Table 7. Basic Characteristics of the Silistra Irrigation System

Figures 7 and 8 show the operation regimes for some facilities. Comparison of Figures 6 and 8 lead to the conclusion that the reservoirs result in:

(1) equalizing the within-year operation regimes, and

(2) decreasing the maximum transient water flows,

for pumping stations and canals. The former occurs during the four-month non-irrigation period of storing water in reservoirs. For example, the operation time-table of pumping station 4 is very close to constant during all the nine working months (see Figure 8).

The decrease of the maximum transient water flows becomes possible, because in the peak irrigation periods--last 10 days of June and first 10 days of August--the water requirements are met by reservoirs as much as possible. Quantitative illustration of this point is made easy with the help of the example of the basic pumping station 1 situated on the Danube streamflow. As seen from Table 6, the total maximum water requirement

Figure 7. Within-year storing of water in reservoirs.

Figure 8. Within-year operation regimes for pumping stations.

corresponding to the peak irrigation period 6 is:

$$w_{max} = \sum_{j=1}^{12} w_j^6 = 85.616 \text{ m}^3/\text{s}$$

This means if reservoirs had not existed, the capacity of the pumping station would have been equal to 85.626 m³/s. But, as can be seen from the last table (Table 7), the optimal value for this capacity is only $38.054 \text{ m}^3/\text{s}$. In other words, the presence of three reservoirs decreases the capacity of the Danube pumping station by 2.25 times.

5.2 Marginal Costs of Water

Another set of modeling results is concerned with marginal cost of water. The two groups of costs are presented here-seasonal and mean annual unit costs of water. Both are obtained as the solution of the dual problem with respect to basic one.

By definition, the seasonal marginal cost (c_j^k) of water in the j-th irrigated area is the increment of the optimal value of objective function E caused by the unit increment of water consumption in this area at time period k. In principle, it is an additional cost associated with supplying the j-th area with an additional unit of water at time period k. The seasonal marginal costs of water are shown in the following table.

As can be seen from Table 8, seasonal marginal costs of water depend essentially on the geographical location of an irrigated area and the season of water consumption. For example, at the seventh irrigation period, the seasonal costs vary from 0.0059 to 0.0584 lv/m^3 , or about ten times, depending on the location of the irrigated area. Analogously, in the eighth irrigated area, these costs differ about sixtysix-fold--from 0.0075 to 0.0495 lv/m^3 -depending on the season.

Three tendencies are clearly observed when analyzing the seasonal marginal costs of water. Firstly, costs depend on the intensity of irrigation during a given period, rather than on

-						_				
	Period Numbers Area Numbers	1	2	3	4	5	6	7	8	Units
	1	0.59	0.59	0.59	2.89	1.01	10.7	0.59	0.59	$10^{-2} lv/m^{3}$
	2	0.59	0.59	0.59	2.89	2.89	12.8	0.59	0.59	11
	3	0.59	0.59	0.59	2.89	2.89	12.8	0.59	0.59	11
}	4	0.59	0.59	0.59	3.77	3.77	10.7	0.59	0.59	n
	5	0.63	0.63	0.63	3.81	3.81	15.9	0.63	0.63	ท
	6	0.63	0.63	0.63	3.81	3.81	23.9	0.63	0.63	n
	7	0.66	0.66	0.66	3.84	3.84	38.8	0.66	0.66	ท
	8	0.75	0.75	0.75	5.58	5.58	49.5	0.75	0.75	11
	9	0.8	1.82	1.94	5.63	5.63	49.6	5.63	1.62	н.
,	10	0.8	1.82	1.95	5.63	5.63	49.6	5.63	1.95	11
	11	2.0	2.16	2.16	5.84	5.84	49.8	5.84	2.16	n
	12	2.16	2.16	2.16	5.84	5.84	14.7	5.84	2.16	
		1	í	1	1 I	1			1	

Table	8.	Seasonal	Marginal	Costs	of	Water
-------	----	----------	----------	-------	----	-------

the period itself. In particular, at the period of the most intensive irrigation--the first 10 days of August (i=6)--the unit water costs for all irrigated areas are much higher than all other periods. Secondly, the seasonal costs of water increase, as a rule, when the distance of an irrigated area from the Danube river increases too. Thirdly, it is important that the possibility of withdrawing water for some irrigated areas directly from a reservoir influences the seasonal cost of water very much. For example, for area 12, distant from the Danube river, the seasonal cost (0.0147) is much less than in the adjacent area 11 (0.498 lv/m^3). This happens because irrigated area 12 can use water from reservoir 3, which is impossible for area 11.

For the purposes of economic analysis, the mean annual marginal costs of water are more suitable than the seasonal ones. It is natural enough to define the mean annual cost c_i , for some

irrigated area j, as the weighted-mean sum of seasonal costs over all the time periods; that is:

$$c_{j} = \sum_{i=1}^{B} \delta_{j}^{k} c_{j}^{k} , \qquad (6)$$

where $\delta_j^i > 0$ and $\sum \delta_j^i = 1$. By definition, the weight coefficients δ_j^i are directly proportional to the amount of water taken by irrigated area j in the respective time periods. Namely,

$$\delta_{j}^{k} = \frac{t_{k}^{w_{j}^{k}}}{\sum_{j} t_{k}^{w_{j}^{k}}}$$
(7)

As seen from the above (see Table 6), the weight coefficients for the different irrigated areas are with sufficient accuracy equal, i.e. $\delta_j^k = \delta^k$ for all j=1, ..., 12. This is a trivial consequence of that fact that all irrigated areas have the same time-table of irrigation (see Figure 6).

The weight coefficients calculated by the formula (7) are given below:

Table 9. Weight Coefficients for Marginal Costs of Water

Period Number i	1	2	3	4	5	6	7	8
Weight Coeffi- cient k	0	0.09	0.076	0.144	0.306	0.156	0.141	0.088

Using relation (6), the mean annual unit costs of water are determined as follows:

Area Numbers	1	2	3	4	5	6	7	8	9	10	11	12
Mean Annual Costs, 10 ⁻² lv/m ³	2.67	3.57	3.53	3.6	4.54	5.69	8.03	10.5	11.5	11.7	11.8	6.16

Table 10. Mean Annual Costs of Water

As can be seen from above, the mean annual costs of water also depends on geographic location of an irrigated area. The costs vary about 4.5 times--from 0.0267 lv/m^3 in area 1 to 0.118 lv/m^3 in area 11. As stated before, reservoirs decrease the mean annual costs of water for irrigated areas using water directly from the reservoir. For example, in area 12, the mean annual cost equals 0.626 lv/m^3 versus 0.118 lv/m^3 in the eleventh area, which is closer to the Danube than the previous one. The same can be said about the third and second irrigated areas-- 0.353 lv/m^3 versus 0.0357 lv/m^3 , respectively.

All the above-mentioned facts mean that the use of the average unit cost of water is not correct in economic analysis.

5.3 Sensitivity Analysis

When modeling, the response of optimal solutions to the variations in some initial data was analyzed. From one point of view, water requirements, price of land, and price of electric energy are most uncertain in the Silistra Case. We will try briefly to explain this point. As a rule, water requirements are determined proceeding from a priori defined unit costs of water. Since it is impossible to correctly prespecify these costs, we should make provision for the possibility of varying water requirements in a wide range. Next, the land price is a rather subjective value and therefore uncertain. It is sufficient to say that the price of land in Bulgaria is defined as a net return from the hundred-years crop-yield on this land. At the same time, in the Silistra region, one has to distinguish four categories of land depending on soil quality and topographical conditions. Lastly, the problem of today--energy--is the reason for widely varying prices of electricity. That is why we have centered on the sensitivity of the model with respect to the above-mentioned initial data.

Since meeting water requirements is the main purpose of water supply system, it should be very sensitive to those. The two types of variations in water requirements were considered--coordinated and partial. By coordinated variation in water requirements, we mean the case where all of the fractional changes $\frac{\Delta w_{j}^{i}}{w_{j}^{i}}$ in water requirements are equal for all i and j.

The partial variation corresponds to an opposite case.

The response of the modeled water supply system to the coordinated variations in water requirements is shown in Figure 9. As noted from the figure, the changes in basic parameters and generalized annual cost of the irrigation system are a linear function of variation in water requirements. For example, the coordinated change in water requirements of 20% is identified with the changes in:

capacity of pumping station 1 of 7.6 m³/s,
capacity of reservoir 1 of about 1.05 million m³,
capacity of reservoir 1 of about 26.3 million m³,

o generalized annual system cost of 5.88 million lv/year.

Practically speaking, the marginal water costs--seasonal and mean annual--are insensitive to the coordinated variations in water requirements.

In a partial manner, water requirements were varied only for the third and twelfthirrigated areas; separately for each one. Such a choice of irrigated areas is stipulated by the fact that, among others, areas 3 and 12 have the largest water

Figure 9. Sensitivity of the system to coordinated variations in water requirements.

requirements. Within a year, water requirements for an area were changed proportionally over all time-periods so that the

fractional variations $\frac{\Delta w_j^i}{w_j^i}$ (j = 3 or 12) were equal for all i.

Figure 10 illustrates the results of sensitivity of some system parameters to the variations in water requirements for irrigated area 12. As can be seen from this figure, the responses of capacities of pumping station 1 and reservoir 2 to the variations in water requirements w_{12}^i are non-linear functions of those. In particular, a 20% increase of water requirement in area 12 does not influence the capacities of pumping station 1 and reservoir 2. In contrast with this, a 20% decrease in water requirement is identified with changes in capacities of pumping station 1 of 1.254 m³/s and reservoir 2 of 1.082 million m³.

As expected, the annual cost of the system and capacity of reservoir 3 are rather sensitive to the variations in the water requirements for area 12. Practically speaking, both are linear functions of those variations with the state coefficients of 0.1355 million lv/year/percent variation and 1.55 million m^3 /percent variation, respectively. It must be said that the capacity of the reservoir that is not shown in Figure 10, does not depend on the water requirement variations ranging from -80% to 20%.

The responses of some system parameters to the variations in water requirement for irrigated area 3 are shown in Figure 11. Three curves there corresponding to the generalized annual cost of the system, and capacities of pumping station 1 and reservoir 1, are very close straight lines. Hence, a 20% increase in water requirements increases annual cost by 0.818 million 1v/year, capacity of reservoir 1 by 1.012 million m³ and in capacity of pumping station 1 by 3.013 m³/s. Notably, capacities of all the water supply facilities situated on the branches of the water network to the right side of node 11 (see Figure 5) do not depend on the variations in water requirements for area 3.

Figure 10. Sensitivity of system to partial variations in water requirements.

Fractional change in water requirements for irrigated area 3

Figure 11. Sensitivity of system parameters to variations in water requirements.

We go on with sensitivity analysis of the system under uncertainty in land price. As stated above, it is a subjective value. At the same time, establishment of the water supply system entails the inevitable losses of land needed for the construction of irrigation facilities. According to the data presented by the Sofia Institute for Water Projects, up to 70% of their generalized annual costs are due to the land losses. When modeling, the following two types of lost land are taken into account:

- (1) submerged by reservoirs,
- (2) needed for construction of canals.

It must be said that, as distinct from reservoirs, the area of land required for construction of canals depends on canal capacities.

Figure 12 illustrates the sensitivity of water supply system with respect to the variations in land price. As can be seen from it, capacity of the Danube pumping station is actually insensitive to land price in its whole range. The capacities of reservoirs 1 and 3 are constant in the range of price ratio from 0.5 to 2.0, but then the decrease in the price ratio from 0.5 to 0.1 is identified with the changes in the capacities of 6.95% and 7.68% for reservoirs 1 and 3, respectively. The capacity of reservoir 2 is most sensitive to land price. For example, a decrease of the price ratio from 0.5 to 0.1 causes the 86.3% increase in the capacity of reservoir 2. Observing the curves in Figure 12, we can state that basic parameters of water supply system are fairly insensitive to land price in the range of price ratio from 0.5 to 1.5.

The capacities of all water supply facilities are quite insensitive to the variations in energy price. This conclusion follows from the structure of objective function (5). As can be seen from it, the total energy cost associated with pumping water is determined only by the following values:

- (1) price of electric energy,
- (2) amounts of water pumped by each of the six pumping stations within a year.

-41-

Figure 12. Sensitivity of system to variations in price of land.

Since the scheme of water supply system is fixed and water requirements are prespecified, the latter means that the energy cost does not depend on the variant of the system. In other words, the search of optimal solutions does not depend on energy price. Thus, this results in the insensitivity of the basic system parameters to every price. Of course, the generalized <u>annual cost</u> of the water supply system is influenced by energy price. Specifically, the annual cost of the system is a linear function of energy price, so that a 1% increase in price is identified with an increase in annual cost of 0.039 million lv/year.

Summarizing some results of sensitivity analysis, we can state that the water supply system is rather sensitive to both the coordinated and partial variations in water requirements. As to prices of land and energy, the system is fairly insensitive to them--at least in the long range.

5.4 Practical Application of the Model

The present version of the Silistra Water Supply Model was first implemented on the Pisa IBM 370/165 computer and afterwards transferred to the Sofia ICL 1904 computer. Running the model on the latter allowed the Bulgarian designers to correct basic parameters of the irrigation system due to the variations in some initial data over time.

In 1979, IIASA recommendations on the basic parameters of the Silistra water supply system were given to the Sofia Institute for Water Projects which is in charge of designing water resource systems in Bulgaria. As a result of the above, the main criteria for the practical estimation of the modeling results is the generalized annual cost of the water supply system, in spite of the fact that this annual cost of the system envisaged by the project was known--45.516 million lv/year. The point is that the generalized annual cost under modeling is not a real one due to the following. Firstly, the linear objective function describes only in approximate terms, the changes in real costs depending on the changes in decision variables. Secondly, it takes into account no additive components. As a modeling results, the optimal value of generalized annual cost of the system is equal to 29.4 million lv/year.

-43-

That is why the following way was chosen to correctly estimate the optimal solution obtained by the model run. As stated above, the model run results in capacities and operation regimes for all the water supply facilities. On the basis of this data, once more hydraulic and economic calculation of the whole irrigation system was made by the Sofia Institute for Water Projects. The generalized annual cost--39.212 million lv/year--obtained by this calculation, should be compared with that envisaged by the project. Comparison of two annual costs answers the question, which of the two variants of water supply system is better--that envisaged by the project or that determined by the optimization model. The following table illustrates some results of comparing the two variants of the water supply systems.

Table 11. Comparison	of	the	Water	Supply	System	Variants
----------------------	----	-----	-------	--------	--------	----------

Variant Facility	Determined by Modeling	Envisaged by the Institute for Water Projects	Units
Pumping Station 1	38.054	23.22	m ³ /s
Reservoir 1	5.248	26.02	million m ³
Reservoir 2	2.454	26.03	million m ³
Reservoir 3	131.645	193.80	million m ³
Canal 1	38.054	23.22	m ³ /s
Canal 2	15.813	12.10	m ³ /s
Canal 3	21.344	12.40	m ³ /s
Generalized Annual Cost	29.400 by model run 39.212 by hydrau- lic cal- culation	45.50	million lv/ year

By analyzing Table 11, we can conclude that the main distinction of the modeled variant from the projected one consists in the decrease in the capacities of all reservoirs and, on the other hand, in the respective increase in the capacities of the main canals and pumping station. The analysis of the generalized annual costs shows that the variant of the irrigation system obtained by modeling is cheaper by 6-304 million lv/year (or about 15%) in comparison with the projected one.

The more detailed cost analysis, carried out by the Sofia Institute for Water Projects points out the additional advantages of the optimal variants of the system compared to those envisaged by the project. Specifically, for the variant of the irrigation system determined by modeling, the total capital investment and cost of submerged land is 32 million lv and 8.4 million lv respectively; less than for the variant envisaged by the project.

Thus, using the optimization model in choosing the optimal variant of the Silistra water supply system has resulted in a considerable budget saving. If there had not been a projected variant, the use of the model would have saved designers from the labor-consuming hydraulic calculations for a number of preliminary variants of the water supply system. The latter advantage of the mathematical modeling approach to a water supply problem is of great importance in planning the new irrigation systems.

6. CONCLUSIONS

This paper sums up the IIASA's work on the water supply modeling in the Silistra Case Study. The major results are:

 Development of the general water supply model suitable for irrigation systems of rather arbitrary configurations. The main objective of modeling is to determine the least-cost variant of a water supply system.

-45-

- Development and computer implementation of the Silistra irrigation water supply model based on the general one. For a wide range of input data, the developed model allows one to determine:
 - o capacities,
 - geographically distributed marginal costs of water, and

within-year operation regimes,

for all the water supply facilities of the Silistra irrigation system.

- 3. The sensivitity analysis which results in that Silistra water supply system is rather sensitive to the variations in water requirements, and fairly insensitive to the variations in prices of land and electric energy.
- 4. Practical application of the modeling results to the Silistra irrigation system points to the advisability of a considerable decrease in the capacities of all three reservoirs. The optimal variant obtained by modeling is about 40 million lv in capital investment, and 6.3 million lv in annual cost cheaper than that envisaged by the project.
- 5. The developed modeling approach is expected to be used by the water use designer as a universal tool to search for the least-cost alternatives for many irrigation systems in Bulgaria.

REFERENCES

- Albegov, M., and V. Chernyatin. 1978. An Approach to the Construction of the Regional Water Resource Model. RM-78-59. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Chernyatin, V., and I. Gouevsky. 1981. Coordination of Water Demand and Supply Models: Silistra Region Case Study. WP-81-94. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Gouevsky, I., and D. Maidment. 1977. Agricultural Water Demands: Preliminary Results of Silistra Case Study. RM-77-44. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Kindler, J., and C.S. Russell, eds. Modelling of Water Demands. To appear in the Wiley International Series on Applied Systems Analysis. Laxenburg, Austria: International Institute for Applied Systems Analysis.

APPENDIX: COMPUTER OUTPUT OF THE LP SILISTRA MODEL

The linear programming model of the Silistra Irrigation was implemented on the Pisa IBM 370/165 by Andras Por from the SDS Section of IIASA. The Sesame package was used for generating the model into a MPS 360 format and was also used for the solution. Below, the identifiers for constraints $(2^{1}) (5^{1})$, (horizontal section), and decision variables (vertical section), and the listing of optimal solutions are presented.

Name of Row	Definition	Ref- erence	Unit
DEMjk	Flow balance at node j in time period k	(2 ¹)	m ³ /s
STORik	Mass balance in reservoir i in time per- iod k	(3 ¹)	m ³
BALAi	Annual cycle condition for reservoir i	(3 ¹)	m ³
RELik	Upper bound on water release from reservoir i in period k	(4 ¹)	m ³
INFLOWK	Flow balance at node 5 in period k	(2 ¹)	m ³ /s
CONSTRK	Physical constraint on flows at node 19	(4 ¹)	m ³ /s
UPSTOik	Upper bound on water storage in reser- voir i in period k	(4 ¹)	⁸ M
UPCNnk	Upper bound on water flow in canal n in period k	(4 ¹)	m ³ /s
FUNC	Objective function	(5 ¹)	lv/year

The decision variable identifiers almost coincide with their notions in the mathematical model. The only difference is that the first identification number corresponds to the lower index of a variable and the second identifier number corresponds to the upper one.

5011100S

OPTIMAL SOLUTION AT TIFKATION NUMBER 332

DEFINED AS	FUNC RHS
•••A(![V]]Y•••	->[000+>>2
• • • 1919 1946 • • •	FING FONAL AFSIMATES

Altens office order 1.

A1 14:34:22 AN 02/19/40

11117

5011110

	• • • • • • •	} \	ACHIVITY	SLACK ACTIVITY	LOWEN LIMIT.	. UPPER LIMI1.	DUAL ACTIV
-	1 1 1 1	51	- 21000452	- 204 000 4			
ſ	י ואנין	t t			INON	NONE	1.000000
	C 4 1 4 5 4	с -	• •		•	•	0054300
4	1.1.1.1.1	t u	•	• •	•	•	0059300
	1001-144 ·	2	•		•	•	0216334
•		64	•	• •	•	•	-61482.24
-	(114 Pr] 401]	f a	• •	• •	•	•	-61482.24
÷	1051 101	t 1	•	•	•	•	-61482.24
3	1051-1401	E u	•	•	•	•	-61482.24
-	1041.1401	E U	•	•	•	•	-65204.JS
Ξ	10-04-01	0 4	•	•	•	•	-65204.35
~ 1	10/0414		•	•	•	•	-64128.12
~	111111111		•	•	•	•	-77874.04
" (1011.440		•	•	•	•	45.716E8-
<u> </u>	101.0 4 40		•	•	•	•	-83317.24
÷	111111111		•	•	•		-207160.7
	510 F 10 F		•	•	•	•	1.49444-
1		, y	•	•	•		0059200
-	10101.540		- Li 26 21 22 2	•	NUNE	•	
	5-10-62-01			0.4404470	NONE		•
2	141 / 141	2 3	•	•	•	•	.0059300
			•	•	NONE	•	
	101-401		コードコモナにキビー	0.404945	NONE	•	
	105 1424		- 101479 20	•	•	•	.0216334
ì	101012-01	į		05676101	NONE	•	•
1. J	1011 5-40 1	1		1/141/203	NONE	•	•
	1020101		Crk kg • 0 -	10-841955	NONF	•	• •
57	10101101	2		•	•		61482.241
	10/01/01	5		21.162245	NONE	•	
116	101-0-11-00			15.413250	NONE	•	• •
1+	10.01 1.01		-1.4.3C(+)) -1. Extrater	C+07C++01	NONE	•	•
1	102021201		CC40C40*71	7.6450455	NONE	•	• •
-	10500010401	1		5.49(0455	NONE	•	•
***	10 (1-10 10 1			1,5401,51.4	NONE	•	•
-	10FCF 0F01			1.54Z0000	NONE	•	•
í.			00000214.	00000/15.	NUNE	•	
1	167 1-1 0.01	ÉE	•		NUNE	•	101779.66
÷				•	NONE	•	17115-000
-		, .	-13.640000	34.640000	NONE	• •	
			64040401-	10.909045	NUNE	• •	•
1		23	00000472.		.2480000	.24800000	-14370.540
		2 -		•	.17900000	.17900000	-15370.560
-	141 141			•	4.0150000	4.0150000	-15370.560
() ()	くらい (こう)			•	. 18300000	190005HL.	-15370.560
1.1	14 1 1 1 1 1 2	2		•	.62600000	• 626011000	-16301.088
-11	40,000,000	t 1.		•	.41.300006	-41300000	-16301.088
4 /	1.1.1.1.1.1		. 48.70000	•	00000142.	0000142.	-17032.032
11 13	2020-0-40	2	1.0570000	•	000001944	. 44700000	-19468.512
-	アロノト・トー	t (1	• 24500000			0000/50-1	-50552.985
	[14 10 cm]		. 4 1 4 0 0 0 0 0	•		00000676.	-50552.985
-	14 F F = 7		7 41 4111.111	•		• • • • • • • •	- 4 4 1 7 4 4 4
				•	7-413000	1 41 14000	

ייים או איי

tues stuffor

•:	4 fuent	•• • • 0 • 0 • • •	١٧	ACTIVITY	SLACK ACTIVITY	LOWEH LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY
	ير ب	101 100	S.H	•	•	NONE	•	•
	46,	101015.01	54	-57455H4 • U	524H5H4.0	NONE	•	•
	11	5074015	E O	•	•	•	•	.00593000
-	11 ¹ ,		Ĩ	•	•	NONE	•	•
	14.	10/01/11	r I	-2454H03.0	2454804.0	NUNE	•	•
	1) 7 1	5101 402 ++1 3u2	н 1 1 1	- 224 304 34 -	- SE HUE DOO	• NOUJE	•	.02163347
	1	(d'5-1 o 40 2	, ,	- H599453-	4.124922H	NUNE	• •	•
	10	2021 5 10 1	5.1	-14.610955	14.616455	NONE		• •
	л. С	2010-0-110-1	5.0	•	•	•	•	15370.560
	+ - -	5010474A	SH	-18.612295	18.612245	NONE	•	•
	¥1.	そのえの うじすい	52	-11.615250	11.619250	NUNE	•	•
	۲	2010-0-0-0-01	ч У		6.3440455	NONE	•	•
	1-1	20404140	чS	-4 • 546()455	4.5460455	NONF.	•	•
	1.1	10 (1 0002	х Х	-2.8040455	2.8040455	NONE	•	•
	21	UP(.) 0602	Ч.S.H	-1.7240455	1.1240455	NONE	•	•
	1-1	2070-02-02	Ę	•	•	NONF	•	24123.673
	10	くつきこういう	ΗS	0270000	.0270000	NUNE	•	•
	Ξ.	205043-01	Y. I	04000100	.0400000	NONE	•	•
	1 2	ノーニー・コートン	ŗ	45400000	.45400000	NONE	•	•
<		101-2040	ے ۲	•	•	NONE	•	•
		20/111.00	SH I	-/-]H404H-/-	7. 1440455	NONE	•	•
	ź		з Ш.	0000016.	•	.3170000	• 31700000	-10247.040
	1		2	00000422	•	00000422.	• 2280000	-10247.040
	-	505 Lu 40	2) . 1	0000/21-5	•	5.1270000	5.1270000	-10247.040
	د . - آ	11F N.] 4 0 .4	: ب	. 4680000	•	. 48800000	. 4880000	-10247-040
	2	Luc [14.30]	ר בי ר בי	0000004.	•	• 8000000	.9000000	-10867.392
	= ·		с Ч	0000025.	•	.5240000	.52800000	-10867.392
	2	1.040440	2	10000426.	•	. 1240000	.3280000	-11354.688
	`		2 C	1.1350000	•	1.1350000	1.1350000	-12979.008
	- -				•	1.350000	1.3500000	066 · 10/ EE-
	đ : 2		: ح د له	• • / 1 0 0 0 0	•	1 00000	. 67100000	066.10766-
	Î.			00000055.	•	00000064.	0000055	-37342.630
	2 - 2			01101197.6	•	9.46/0000	9.4670000	-37382.630
4			2 3	•	•	-	•	00000000
-	ر ۱	COLUT240		• 574 75 74 - 0	• 524H5H4 - D	NONF	•	•
	116.	51022012	5-1	•		-		00593000
-	1,	141 203	UI.	•	•	NONE	• •	
	5	0×540×03	5.1 S 1	-7457BCF • 0	2459408.0	NONE	•	•
	5	510F 40 F	e B	•	•	•	•	.02163347
	47.41	600 H44	S E	-64156477.	64156471.	NONE	•	•
	۲ ۲	Cutors m	5	-118769.45	118769.45	NONE	•	•
	2 7	C(41-51-0.3	5. 1	-15.224955	15.224455	NONE	•	•
	7	1-11-0-01		•	•	•	•	10247.040
	,	60104340	5	024202-21-	12.208420	NONE	•	•
	· · · · ·	F07813.81	r. T	-1.4704750	1.4208150	NONE	•	•
	2 -	1010 1 101	/ 1		4.21175455	NONE	•	•
	<u>-</u> .	() () () () () () () () () () () () () (ς Ξ	-4 • I I * 0422	7.7407 11. 4	NONE	•	•
		10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	7. J 2 :		V. • * * 10 • 10	HONE	•	•
			/. 2 :	1-2-22-21	CC+04) + 1	AUNE	•	
		1 11 11 11 1. 1.1	Ë	•	•	NUN	•	19415.7HZ

1011-0.10

1 (142 - 141] (122

• DUAL ACTIVITY -98745.588 -25010.520 -25010.520 -48646.195 -50486.515 -50486.515 .02301736 ·03713729 .03160729 -26279.560 -75031.560 -75031.560 -97815.060 -98745.588 -144577.78 -145938.58 -145938.58 -25010.520 -32605.020 -32415.196 -32915.196 -33158.844 -48192.595 -48646.195 .02894736 .03680000 32605.020 9887.000 1594.5000 14221.541 -94476.532 -151454.54 .05843347 • .. UPPER LIMIT. 19.24H000 1.8330000 1.2290000 0000196.1 .89/00000 .6100000 13.674000 1.3020000 2.1330000 .H7300000 .85400000 3.0030000 0000490.4 2.5220000 1.40H0UU0 3.0270000 J.6000000 1.4110000 0000141. 0000686.1 4.2630000 35.551000 0000161.1 ..LOWER LIMIT. 1.9470060 35.551000 2.1330000 1.4080000 1.4110000 25.244000 0000EHV.1 0000622-1 4.2430000 2.5220000 9.24B000 0000668.1 5.0690000 U000014H. .6100000 13.674000 1.302000 00000FTH. 3.0210000 3.6000000 . H5900000 3.0030000 0000161.1 0000141-1 NUNE NONE NONE NONE NONE NUNE NUNE NUNE NUNE NONE NONE NONE • NONE NONE NONE NUNE NONE NONE NONE NONE NUNE NONE NUNE NONE SLACK ACTIVITY .6514545 .320000000 00000414. 000000000 6.5760455 19.413000 000000552. 00000442. 5.6404545 7.7009545 4-64149-2 .14100000 4H260207. .10H00U0U • ... ACTIVITY ... -. 12000040 -.47900000 -4.5760455 0000EH. 1.00.30000 0000596.1 00006221 4.2630000 2.5220000 0000746. 35.451000 ---2H00000 2424124 -5.6909545 . 5100000 1.4004000 0000167. 0000400.1-0000141.1 00000658. 000822.61 0000640.4 - 34660207. -1H.4]3000 --2440000 -.1080000 4446002.1--4.6874545 -----00000/6H. 3.474000 0000206. 0000551.2 • • • • • • • • • • U0000FL4 000075000 . . [] () () 0 • 1 22 £ Ē E L 2 3 ÷ 2 Ξ 1 Ē Ξź 3 - -Ē Ē <u>-</u> 3 = ÷ ł *ふい* ニエ ۶ ۲ ÷ Ξ E. 24 Ξ Ξ ž Ē ž Ë 5. L ₽ T ĩ ł Ϋ́ ŝ ۍ ۲ 2 ÷ Ξ Ξ Ξ Ξ Ξ Ë 60111340 11-11-20-1 10110-0310-4 1.4 1.1 1.4 0.3 60012140 ものくし むきい 0101540 2001-13-00 11-11-11-11-44 10-5-171-444 1111-114 P0+0-14941 PH C C 101 (194 40.2020.040 111-11-11-11-4 104043-00 14 CE 4404 13 1 1 1 1 1 1 4 11111 11111 2010/01/01 11-510204 2001-244 111/12 507 1941 0.0.51.4.0.9 0.0.4 (20.0) 111 ~ 1004 1.01 1.144 1.84 1404 さじたい イイン 101111110 P014-01 2 ちこく ミニュ 111-4-44 1111100 2070141 111 1 1 1 1 1 1 1 1 1 1 0.071.170 1 + 1-1 202 110-11-04 1-1-1-1-10-4 1-1-1-07-04 P.E.P. () M.D.A. 2071201 211 111 1 111 Prot 1 / 10 +++1114 1-1-1 2014 505 H 4 = > 3 \$ \$ \$ \$ \$ \$ \$ \$ ÷ íΞ 22 ξĘ GIT AUT IN 222222 -= 5 ~ ` ' . 23 1.5 `. : : - 7 3 ٦ د 1 7 501 1 -- 1 ŝ : 1 2 1 7 Š ; -÷ < < < 4

-151459.54

000442*42

000425.64

2

2021 1402

11

50110 Jus

DOLLAR STORE

.

•	11-1-14-14	••• 64•••	1 4	ACIIVITY	SLACK ACTIVITY	LOWEN LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY
	11/	5.101-105	E.O.	•	•	•	•	.02894736
<	1 444	201147	Ę	•	•	AUNE	•	•
	154	en 101 e m	201 1	- 3463H] h.U	346.3H] h. 0	NONE	•	•
	1-1	5101605	E J	•	•	•	•	.03773729
4	141	FEL 205	Ë	•	•	NUNE	•	•
	24	いい としたのとう	÷.	-1511136.0	1511136.0	NONE	•	•
	1	5101-4015	н С	•	•	•	•	.05843347
	1	ካበድ ትንባ	ЗС Т	-1814478.5	141447H.5	NONE	•	•
	101	GUEDTZGO	J. I	-24675608.	24675804.	NONE	•	•
	145	らいかし うすい い	ΥN	-14.043000	000640.61	NONE	•	•
	1-1	11 11 11-11-	rju L	•	•	•	•	97815.060
	141	5010-40A0	Ę	•	•	NONE	•	10909.000
	74	よりくりょううきり	Ē	•	•	NONE	•	48752.000
	1/1	2012-0-3-01	Ę	•	•	NONE	•	71535.500
	171	らいをいいいてい	5 F	-1.2110000	1.2110000	NONE	•	•
	21	ረሀረቱ ዲሆነት	r:r	46400000	.4640000	NONE	•	•
	17.1	5040-1)70	E	•	•	NONE	•	42664.773
	1/4	2070404040	s: E	4]595455	.4]545455	NUNE	•	•
	175	10408041411	s:-		2,4454545	NONE	•	•
	47	5050103481	s, T	-4 - 204 2242	4.2049545	NONE	•	•
	111	580 E 3 2 2 2	SH	-5.6759545	5.6759545	NONE	•	••
4		6911-13-00	Ë	•	• 1	NONE	•	•
	2	トライー ネリービ	<i>Г.</i> Т	-2.3420000	2.3420000	NONE	•	١
	= 1	DEA 1000	E U	1.2940010	•	1.2940000	1.294000	-92387.520
	Ĩ	Dr Fl 205	5	. 4610000	•	• 46100000	.46100000	-110531.52
	-	0r E. J. 306	24	000126.02	•	20.927000	20.927000	-110531.52
	•. ~]	11-1] s il v	2	0000246.1	•	1.4430000	0000644.1	-92387.520
	71	1-FF 1-5-04	لد د	3.2640000	•	3.2640000	3.2640000	-137657.70
	ا بر ا	14 2 1 2 1 2 1 2	+ c	2.15501100	•	2.1550000	2.1550000	-206557.70
		1.4 8 6 4 11 4	5 S	0000166.1	•	0000166.1	1.3370000	+934H86-34
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00/0:140	г. С	4.034000	••	4.6340000	4.634000	-428233.14
	188	1 1 1 1 1 1 1	2	5.5100000	•	5.5100000	5.510000	-428686.74
	189	DEM1 / 015	E 0	2.7410000	•	2.7410000	2.7410000	-428686.74
		11 - 6405	2	2.100000	•	2.1600000	2.1600400	-430527.06
	161	DEM180%	с Ц	38.640000	•	34.640000	34.640000	-118240-21
			2	•	•	•	•	00066500.
		111 100	Ξ	•	•	HONE	•	.1220000
	* . 7 .		Ē	•	•	NONE	•	• 03838264
		507-1115	2	•	•	•	•	00066500.
	<u>.</u>	111 200	ป	•	•	NONE	•	.1010000
	<u>}</u>	902015-01	Ë.	•	•	NUNE	•	.06919271
	H()	5101 106	2	•	•	•	•	.05843347
		KEL 305	£	-16661459.	15551455.	NONE	•	•
		-0501540	/. : 1	• 26/ 966 18-	-75787618	NON	•	•
		COL 5 12 05	r T	-18-954000	14.454000	NONE	•	•
	イニイ	1	2	•	•	•	•	92347.520
	オロン	9010-41700	Ē	•	•	NONE	•	87264.000
	204	11-11-02	Ш.	•	•	NON	•	18144.000
		01.01.01.01.0	s. T	01000145	.3970000	NUNE	•	•
	487		Ē	•	•	NONE	•	000.000
	1=1	00204240	Ē	•	•	NONE	•	128088.00
		14-(L 0505	Ę	•	•	NUNE	•	92531.636

.

STREET AND SOURCE

AT 14:34:22 ON 02/19/80

•

### 

Purs Stillur

DUI SHE F		11	••••¤CTIVITY•••	SLACK ACTIVITY	LOWER LIMI1.	UPPER LIMIT.	<b>DUAL ACTIVITY</b>
n.07	11FCF0704	5H	9494250-2-	2+26220-2	NONE	•	•
9 	60803340	in I	-6.5829545	6.5029545	NONE	•	•
11.2	107.0.10.00	S E	C+C6[51.H-	2+44157.A	NUNE	•	•
$\frac{1}{2}$	10019201	5. X	-10.84145	10.841955	NUNE	•	•
• <b>-</b> •	(0611-0-0)	Ш.	•	•	NONE	•	67754.000
• ] ·	10111-1-20P	٦ ٦	•	•	NONE	•	44960.000
1	1001 144	с <b>1</b>	• <b>5</b> 8700000	•	.54200000	0000282.	-10247.040
il.	10/1-1-1	t t	••~•00000	•	.4200000	.42000000	-10247.040
117	1:1 1-1 10.7	1 2	9.4190000	•	9.4190000	000061**6	-10247.040
<u>-</u>	14 1 4 1 4 1 1	+ C	011000454*	•	.84R00000	00000868.	-10247.040
· · · ·	1051344	24	1.4540000	•	1.4690000	1.4690000	-10867.392
じてん	109[-16]	Р. С.	00000026.	-	0000014.	.4700000	-10867.392
1	10.004.001	2 4	•60200000	•	.40200000	• 4020000	-11354.688
	10/04/01	-	Z • UM60U00	•	2.0460000	2.0860000	-12979.008
	1000.401	ţ	2.440000	•	2.4800000	2.4800000	-97292.390
ようへ	1011414	t a	1.2340000	•	1.2340000	1.2340000	-97292.390
۲ ۲	1.6 1.0 1.0 1	с. 4	. 4720000	•	.9720000	0000216.	EU.ET2001-
5	1.0.01.001.01	с. Т	11.340000	•	17.390000	000065.11	-100973.03
1 ~ ~	10[-01]5	ь С	•	•	•	•	.00593000
とくへ ち	+r1]n7	Ĩ	•	•	NONE	•	•
5.4	19101.10	ł	-5248584.0	5248584 .0	NUNE	•	•
ロイン	2023012	- - 4	•	•	•	•	.00593000
1-~ 4	107114	Ë	•	•	NONE	•	•
~~~~	10201514	2. 1	- <u>7457804.0</u>	0.6049245	NUNE	•	•
- -	101 1015	£u	•	•	•	•	.02163347
54.1	111 307	Ē	•	•	NONE	•	.03680000
ڑ ب	10601 2001		-]]4484503	1144H4E03	NONE		
÷,	Luchs (0)	ž	-11.54U452	236092-11	NUNE	•	•
してい	10401441	2	•	•	•	•	10247.040
467	101010101	511	646241146-	4.1/42455	NONE	•	•
いつく	10203340	r I	00937474-9-	5.414200	NONE	•	•
ニー・		ź	-Z.+H+50454	2 . 4850455	NONE	•	•
	10504 641	ז ב	1/	2.4450455	NONE	•	.•
	1050-1140	s. I	-1.X60045	1.2600455	NONE	•	•
* * .	10481140	/ 2	1.5730474 1	.52504545	NONE	•	•
	10/0/14140	Ę	•	•	NONE	•	83406.182
ና - - - - - - - - - - - - - - - - - - -		r. t		1.450000	NONE	•	1
		ź	0000271•2-	0000271.2	NONE	•	•
		/ : t		4.1440000	NONE	•	•
		,	555/66 8/-	54616642	NONE	•	•
		/. : 5 :		4.5400424	NONE	•	•
			- 245 00000	•	00000272*	.2420000	-15370.560
		2	-1/400004/1-	•	.17400000	.1740000	-15370.560
	(++ 1 + 1 + 1 0 C	2	9-01 4 1 4 1 6 1 6 1 6	•	1.4140000	3.4140000	-15370.560
				•	. 17,300000	00000676.	-15370.560
4			0000014.	•	. 5100000	.6100000	-16301.088
י ר י		- -	000000000	•	00000607.	.4030000	-16301.088
		2 ·		•	0000042.	.25000000	-17032.032
				•	. 85 700000	. 8670000	-19468.512
			1.0.300000	•	1.030000	1.0300000	-34524.676
		2 :	00000/14*	•	00000212.	.5120000	-47177-616
	111 1-11 1-11	2	. 4 8 4 8 9 9 9 9 9 9	•	.4040000	.44400000	-56073.945

-

.

ent fu ios

भगति सम्ह २,७१२

-

.DUAL ACTIVITY	-56073.945	.00593000	•	•	00593000	•	•	.02163347	•	•	•	15370.560	•	•	•	•	•	•	1 7 6 9 5 • 3 6 4	H653.0000	3375,3091	•	•	•
UPPEN LIMIT.	6.5690000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
••LOWER LIMIT.	6,5540000	•	NUNE	NONE	•	NUNE	NUNE	•	NUNE	NUNE	NONE	•	NONE	NONE	NONE	NUNE	NONE	NONE	NONE	NONE	NUNE	NUNE	NUNE	NUNE
SLACK ACTIVITY	. •	•	•	5244584.0	•	•	0.4046347	•	•	131645603	244592.41	•	14.787295	11.725250	6.4070455	4.5630455	22+01E4-5	1.1440455	•	•	•	.4040000	34 . 640000	1.2370455
••• AGTIVITY•••	6.5640000	•	•	- 7248584.0	•	•	0.404542-	•	•	-131645503	-14-563475	•	-14.787245	092921.11-	-4.4010475	44.5430455	-2.43]0455	-1.7440455	•	•	•		- 14.640000	-1.23/0455
٩I	t u	ŕ :	SH	5 1	F (1	Ĩ	У Т	r:	ŝ	2 1	ר ג	t o	J I	7 1	У L	у Н	J, H	J.H	Ĩ	Ę	Ĩ	нs	J L	ŗ
	1041-140	STG-108	401102	101015-01	オミヘナシアト	FEL 208	キロイントン キー	HUE 4015	HEL 3114	111-570304	(.i.f. < 1, (.i.d.	[441.020144]	H (1-010H	101 (1-0×03)	10501140	11411 114118	10-0-0-01	111-11-01-04	114 (1447) 411	111-11-10-07-1	104 UA UA UA	2010 [24) 441	111 [14] 411	bb51-43-44
(411 411)	- 42	くよく	547	まんへ		297 -	141	れんし	ナムへ	-1-	こく	515	ドノイ	110	トレン	27.	111	110	リンド	ヨバイ	- H N	でよう	・イイ	サイイ

e (11 | 1000

लेग (1) वड्डा कारता 10)

	14 11-11	Baar (n)*	7 V	•••ACIIVIIY	••1800 TUGN1••	••LOWER LIMIT.	ПМІТ КІМІТ.	.REDUCED COST.
	· · · · · · · · · · · · · · · · · · ·	101	2	14 056250	114060 00		NOME	
	147				11000011 44844 010	•		•
						•		•
					000.00161	•	NUN	•
			<u>í</u>	000/25.41	000.000.000	•	NUNE	•
						•	NUNE	•
			/. 1		1474 LA.UU	•	NON	•
			r : F	12.44.44	150641.00	•	NONE	•
			ź		0000.5644	•	NONE	•
			S. I	2491491	00.44[40]	•	NUNE	ie
	34.0		л Г	224 [4 4 . 11]	17115.000	•	NUNE	•
	51		нS	34.640000	61754.000	•	NUNE	•
	5.75	- >	s I	5.44544	• 12200000	•	NONE	•
	1 * *	<i>ر</i> >	∕ t	0.1010111	.1010000	•	NONE	•
	= 1	Ŧ. >	ч. Ч	L]] b 4 5F () J	.03480000	•	NUNF	•
	りうて	11	ۍ ۲	21.661080	44460.000	•	NONE	•
÷	404	2100	ן. ו	•	•	•	NONE	•
	101	1 a la	5 1	•	٠	•	NONE	•
	N II	ナニント	۲ ۲	•	•	•	NONE	•
	F.118	ー・シン	5 2	•	•	•	NONE	•
	104	7-1-1-	у. Т	10157930.	•	•	NUNE	•
	÷ ₹	5301	л Т	10157930.	٩	•	NONE	•
	Jun	Y 1,40 1	S.H.	•	•	•	NUNE	•
	367	11411	5.4	•	•	•	NONE	•
<	111	11:01	L,	•	•	•	NUNE	•
	- <u>-</u>	1 + 1	ž	10.441955	•	•	NUNE	•
	110	トコンドム	<u>у</u> Т	249194.01	3722.1120	•	NONE	•
	114	「ミニント	SI	10.441945	•	•	NONE	•
-	· 1 •	10117	L L	•	•	•	NUNE	•
	- -	10101	s I	10.44144 Sev	6]482.240	•	NONE	•
	4 1 4	10/01	S. I	•	•	•	NONE	•
	r F	1 014 01 1	Y	30.449	•	•	NUNE	•
	57	10701	5 M	10.841955	•	•	NUNE	•
	1.11	Y 11-2-11	∕ ĭ	10.491475	2424.7760	•	NONE	•
	5 5	10001	х Т	10.84147	4745.4200	•	NONE	•
	<u>,</u>	Y 11 / 14]	ž	344 1 AH • 0 1	5443.2000	-	NONE	•
	170	10107	5	CC7 [72.0]	• ;	•	NUNE	•
			s E	659 689 01	0++-5+012	•	NUNF	•
-		10411	, . I .	666164.01	•	•	NONE	•
5				•	•	•	NUNE	•
<			<u> </u>	•	•	•	NONE	•
:			י ב ז ב	•	•	•	NONE	•
			2 3	•	•	•	NONE	•
				4 - 11 15 A 0 4 4	•	•	NUNE	•
4	5 Å	Y I a I V	-		•	•	NUNE	•
:			ני ב בי ב	•	•	•	NON	•
					•	•	NONE	•
				14.010921	•	•	NON	•
				0r74'0**		•	ANON	•
	· • •	11112	 	1 C 4 4 0 0 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•	-	NONE	•
		71112 71112	- ,	10.00 100 100 100 100 100 100 100 100 10	•	-	NUNF	•
			/. J 1 1		16c.175cl	-	NUN	•
	-	レンシー	<i>r.</i> c	1111937 1 •5	•	•	NUNE	•

eti (1) [095

CULUMME SECTION

.REDUCED COST.		•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	• •	
•• ИРРЕН ЦІМІІ.	AUTAIE	NUNE	NONE	NUME	NONE	NUNE	NOME	NONE	NUNE		JANON JANON	NUNE	NUNE	NONE				NUNE	PUON PUON		NUNE					NONE			NONE	NONE	NONE	NONE	NONE	NUME	NONE	NONE	NONE	NONE	NONE	NUNE	NON	NUNE	NONE	NUNE	NUNE	NOME	NONE	NON	MONE	NONF	NONE	NUNE
FUWEH LIMII.		• •		•		•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				• 1	• •			•	•	•	•	•	•	•	•	•	• •	•	•		• •		• •	•
INPUT CUST	•	• •	730.94400	2436.4400	1360.4000	•	1004.0264				• •	•	•					620.15200			10247.040		•	•	4H7.24600	1624 3200	0002.709		3680.6400	•	•	•		•	•	•	•		•	310.17600	•		4]23 . 5280				このだすの。むすべ	H12.16000	423.60000	•	1844.3200	
•••ACTIVIIY•••	664464 • 1	13.941455	226172.61	244052.61	44466451	24475.11	10.619195	224764.01	•	•	•	•	130426643	04/6491.4	USTETEU.E	•	10.648455	17.224955	249420.45	38.640000	069644.65	0476546.B	244961.1	14.424455	229944.61	13.568955	224354921	11.083955	10.412455	9 • F B 2 9 5 4 5	5243584 . 0	2454404.0	1.4235400		131645603	14.660250	1.4470000	0.147500	Unu114.41	21.260000	4.2430000	34.640000	34.054250	15.414250	21.344000	14.257000	16.274000	15.045000	10.7HZ000	0000£17.d	3.141000	1.2040000
μ	54	51	54	1 Y	÷	51	ЧS	5. T	L L	Ľ	нS	ч	SH	S.H	S H	ЧS	5:1	51	нS	511	нS	۶ ۲	N H	Ч, Ч	нS	S, M	HS	S I	τS	E.F.	4S	HS.	Ъ. Г	ŝ	155	SH	S.	ŝ	÷.	, I	5	5.	ž	л. Г	чS	, T	51	ŝ	1:1	нs	{	۲. ۲
NHR 107.	イロトロン	イロタロ人	くりられる	20407	ノミノヨス	イコメロメ	1050x	くこうしゃ	5103	パリイト	71/07	Y 1 5 0 2	1.46.2	1.01.17	Y 1 4 0 3	۲ اما ۲ ۲ اما ۲	Y] r 11 3	Y1203	12003	11103	Y0103	ドロンロト	とりとりと	Y (14 0.4	¥0403	Y0-04	£0703	тиния	EUSUY	1001	5104	マンニタ	Y1703	1.0411	41125	×116° [J	Y 1 . U 4	¥] \0.4	Y hu4		×11-1-1	1104	76104	マロンコム	Y (1 1() 4	Y () 4 () 4	¥ 0504	¥ (1++() 4	1114	Y (1 14 11 4	×0104	Y] (1114
14111 SL, 12	111	1 1 1	1.34	14 1)	141	145	+ + +	444	1415	441	146	11 77 8	7 = -	11-15	1.15		545	4.14	441	111,15	1-1	н / L	545	41.11	Jul	へいて	11. 1	5ra	14-12 1	5.1	145	142	354	110	175	~ ~ ~	1.15	114	5			115	2	E	1.15	\L.		1-1-1-	÷	1110		115

and to be

COLUTANS SECTION

'ER LIMII REDUCED CUST.	NONE .	NUNE .	NUNE	NUNE .	NUNE .	NUNE .	NUNE •		NUNE .			NUNE .	NONE .	NUNE .	N()NE	NONE	NONE .					NONE .	NONF	NONE .		NONE	NONF .	NDNF 105408.00	NONE	NONE	NONE	NONE 67754.000	NONE .	NONE .	NONE .	NONE.	NUNE .		NONE .	NONE	NONE NONE NONE	NONE NONE NONE NONE	NONE NONE NONE NONE NONE	NONE	NUNE	NUNE	NUNE	NUNE	NUNE	NONE
4dU•; •1																																																		
••LOWEH LIMI	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	• •	• •		•	•	•	•	•	•	•	•	•	•		•	•••	•••	• • • •	••••	••••	· • • • • • • • •	••••	••••
INPUT COST	•	•	•	•	•	•	•	•	630 F3460	00036.064	•	• •	09C.U/661	•	•	•		0004.0142				• •	• •	•	• •			• •		• •	310.17600	•		5123.5200	•	•	•	743.54400	H12.16000	453.60000		•	1440.J200	1440.J200	144055000	0056.0041	00%€.0₽₩[00%6.0281	0056.02HI 	0056.02AI
ACIIVIIY	1244764.0	944672.00	1.048000	Z . H4 70000	101969503	0-2502.001 5-104/1-0	6 4 7 6 4 7 1 0 1 6 4 1 4 6 4 4 7		24.042000 14 649000				007400°40	067510°C1		000426.11	000314.61			6.6770000	5.215000		0.4045347		. 36600000	50046415	14 852250		6.0747500	18.954000	21.401000	•	38.640000	34.054250	055614.61	0002 24 2000	14.537000	16.342000	000440.41	10.411000	0400106**		2.1600600	2.160060V	2.160060V	2.1600600	2.1600600	2.1600600 2.4470000	7.1600600 2.447000 1n661455.	7.1600600
A 1	S H	S.H	S : X	ž	Y I				5 U	0 J 1 1		2 3				Ê		2		: <i>V</i>	. <i>.</i> ,	5 5 1	J. I	, , , ,	Т Т), I	÷.		1 2	r T	нs	11	Sн	S: E	SH	У Н	5 I	51	HS:	SH	нS		нS	н <u>5</u> ГГ	н 2 Т х 2 х	т — т т х — х х х — х х	a Tarta Tarta	z T t t T t	т — т - т - т - т - т - т - т - т - т -	1 - 1 1 - 1 - 1 - 1 2 - 1 2 2 - 1 2 2 1 2 - 1 2 2 - 1 2 2 1
NAU 100*	2012	いました	Y1/114	Y 1 M 14	5005 2017	11405	7 1 5 1 F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		40077						10407		70705		7070X	2001 X	5145	10/5	40/1X	71-0-1	5,41)4-	1306	714UN	Y1506	Y]+114	7170H	72405	1106	Y 01 0 5	70206	705.0Y	7 (14115	70-05	イリトリト	70705	10406		10404	10407 1007	710400 71005 5107	10400 1041 1042 1072	78705 7165 5167 5767 7175	78900 71005 5107 5707 71705 71705	70707 7017 7072 7072 70717 70717 70717 70717	7 8900 81 805 81 81 81 80 71 805 71 805 71 805 71 807
MUNICH N	6.246	ニッチ		ر .	1.1.1	1 7	107			771						7		103		1 = 4			× - 4	4 4		4 1 7	4	111	<u>4 t</u>	5 4	キノコ	+ / 	どとき	ال که ۹	やいや	よべき	キノモ	しいさ	エンマ	よくさ	4.41		15.4	ا ا ا ا ا			- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		- 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	

<

לורוצואי איונא אווירא

AT 14:34:22 ON 02/19/80

50F1F109

COLUMAS SECTION

1-13	. V NWI	 Эм		INPUT COST	LOWER LIMIT.		.REDUCED CUST.
~ ~	īī		/.\$60955 7.\$60955	520.35200		NUNE NUNE	•
1	П		•			NONE	63590.400
1	r		420455	•	•	NONE	•
	£	, 25	644478.6	10241.040	•	NONE	•
i	T	2	000664.	•	•	NONF	•
1	Ξ		664464.6		•	NUNE	•
~	Ī	, I F	639190.A	•	•	NONE	•
	Ĭ		64619190	447.24600	•	NONE	•
	I	. 14	449914.	1624.3200	•	NONE	•
1	÷	; l <i>c</i>	244345645	907.20000	•	NUNE	•
~	1	· · · ·	3434546	•	•	NUNE	•
	õ	Ŧ	,7194545	3680.6400	•	NUNE	•
1	Ï		2424741.	•	•	NUNE	•
	Ŧ		•	•	•	NONE	•
	ľ		•	•	•	NONE	•
~	Ξ		•	•	•	NUNE	•
~	ľ		•	•	•	NONE	•
	Ĩ,		•	•	•	NONE	•
:	ï		4140000	•	•	NONE	•
I	Ξ	,	•	•	•	NUNE	•
I	Ξ		•	•	•	NONE	•
ĩ	Ť	· 14	.56JY55	•	•	NUNE	•
r	ï	14		940.52H00	•	NUNE	•
r	Ð		4169545	•	•	NONE	•
Ŧ	5		•	•	•	NONE	•
ĩ	Ŀ	5 I J	366955	15370.560	•	NUNE	•
:	Ĩ	4	. UHHUU(IU	•	•	NONE	•
£	Ē	i 14	44454.4	•	•	NUNE	•
I	£		4.953955	•	•	NONE	•
Ŧ.	Ĩ	. 1.	3.50445	730.94400	•	NUNE	•
I	ĩ		244005.6	2436.4410	•	NONE	•
I	Ť	1	664664.5	1360.8000	•	NUNE	•
r	ï		22460401	•	•	NONE	•
I	÷	. 10	274198.	5520.9600	•	NONE	•
ĩ	1	, ,	244744.	•	•	NONE	•
r	Ĩ		•	•	•	NUNE	•
ī	Ξ		•		•	NONE	•

ł