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FOREWORD

The principal aim of health care research at IIASA has
been to develop a family of submodels of national health care
systems for use by health service planners. The modeling work
is proceeding along the lines proposed in the Institute's
current Research Plan. It involves the construction of linked
submodels dealing with population, disease prevalence, resource
need, resource allocation, and resource supply.

The work presented in this paper uses validation techniques
and sensitivity analysis to examine critically the predictive
performance of the model RAMOS (Resource Allocation Model Over
Space). This model is designed to predict the impact on hos-
pitalization rates of changes in population and resource avail-
ability over time and space.

Related publications in the Health Care Systems Task are
listed at the end of the paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper focuses on the predictive capabilities of the
model RAMOS (Resource Allocation Model Over Space). This
model, which Is being jointly developed by IIASA and the
Operational Research Services of the UK Department of Health
and Social Security (DHSS), is designed to predict the impact
on hospitalization rates when population and resource avail-
ability are changing simultaneously in time and space. The
performance of the model is critically examined using vali-
dation techniques and sensitivity analysis. The validation
part is based on an experiment that tries to simulate the
outputs of a regional health care system at a peint earlier
time. This "back-prediction" is then compared for accuracy
with what actually occurred. It is shown that the model
functions very well in achieving the purposes for which
it was designed. Different model specifications are then
tested in order to seek further improvements that remove
some small but consistent biases in the outputs. Following
this, a detailed sensitivity analysis is carried out ©on the
main input variables and parameter, in order to check the
internal consistency of the model when it is exposed to un-
realistic extremes of change. The paper concludes by noting
the mostly satisfactory performance of the model in both the
validation tests and the sensitivity analysis but with some
caveats and recommendations for further research.
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RAMOS: A MODEL VALIDATION AND SENSITIVITY ANALYSIS

1. INTRODUCTION

The size and spacing of health care facilities is a funda-
mental consideration in ensuring those in need of medical
attention to have reasonable access to the supply of available
services. The problem is that needs vary in time and space,
mostly according to the relative size, structure, morbidity
and spatial distribution of the population, whereas the faci-
lities at supply peoints (hospitals, clinics, etc.) remain
fixed in position for the duration of their functioning.

In certain planning environments, the providers of health care
services often experience much difficulty in equating the
supply of resources in different locations with the relative
needs of the local populations over time (RAWP, 1976).
Particularly in densely populated regions or large urban
agglomerations where changes in demographic structure can

be rapid and substantial, these problems become sufficiently
complex and potentially costly so as to warrant the development
of better, more effective decision-making tools for determining
the spatial consequences of different patterns of allocation

and reallocation. In this way, the system can be made to
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respond more effectively to the relative needs of the
population at medical risk (LHPC, 1979).

The reallocations in a regional health care system
take several forms. Only occasionally, do they entail the
opening of an entire new facility or the closure of an old
one. In the short term, at least, it is more common for
facilities to be simply updated, enlarged, or reduced in size
according to the availability of hospital beds or manpower,
for example. These reallocations can nevertheless be substan-
tial (-30% to +16% in different treatment districts in south-
east England between 1975 and 1977) indicating the necessity
for planning tools with both long- and short-range perspectives.

At IIASA, a group of models is being developed that
enables users to simulate the consequences of different
resource configurations when there are simultaneous changes
in demand and resource availability of the type described.
This work is being carried out in conjunction with the Opera-
tional Research Services of the UK Department of Health and
Social Security (DHSS). Currently, information is available
on how to specify, construct and calibrate the basic model
(Mayhew and Taket, 1980) and on how to apply it, or one of
its close variants, in particular decision-making contexts
(Mayhew, 1980, 1981).

The purpose of this paper is to investigate the
accuracy of the model in its ability to predict change, and
from this to obtain an accurate indication of confidence with
which the model can be used for decision-making purposes. The
two main components of this investigation are a set of detailed
validation tests and a sensitivity analysis of the model
parameters. Together, the tests show that the model is indeed
suited to the purposes for which it was designed but that
some further empirical work in refining the input variables
is needed to remove some small though consistent biases in

the output.

The empirical effort that has gone into validation of
the outputs seems from published sources to be rare for
this class of model. Thus the results are also of general
interest, having implications for a broad range of appli-

cations in the spatial interaction field.



2. THE MODEL

The basic model is known as RAMOS (Resource Allocation
Model Over Space). In its simplest form it hypothesizes that
the number of hospital patients generated in an origin zone i
(place of residence) and treated in treatment zone j (a hos-
pital district) is in proportion to the morbidity or "patient
generating potential" of i and the resources available in j
but is in inverse proportion to the accessibility costs of

getting from i to 3.

Mathematically, the model is stated as follows:

Tij = Bj Dj Wi £(8, cij) (1)
where
i =1, , the number of origin zones
j = 1,3, the number of treatment zones

Tij = the predicted patient flow from origin zone
i to treatment zone j

D. = the available resources as measured by the
caseload capacity in j for treating patients

in a medical specialty or group of specialties

W. = the patient generating factor (pgf), which is
an index of the propensity of the population
in i to generate patients in the same group

of specialties

f(B,c..) = a deterrence function, monotonic and declining,
representing the fall in demand for health
care services with decreasing accessibility

- -8
(e‘g" exp( B cij)l cij )

f(s,cij) is abbreviated for convenience to fij'

. In later sections,



cij a measure of accessibility expressing the
difficulty of a person in i to be admitted
as a patient in j. It is normally repre-
sented by distance, travel time or a related

surrogate

B = a parameter to be determined empirically

from the existing pattern of patient flows

-1
. [i Wi f(B,cij)] (2)

oz}
i

Equation (2) is a constraint, known as a balancing factor.
It ensures that the resources in each location are used to
capacity. With some reformulation this assumption can be
relaxed to take account of slack or other factors in parti-
cular systems, but this is not considered in the current

application.

The model functions in two modes: calibration and
prediction. The first consists of finding a value for 8
such that the model most accurately recreates an observed
matrix of patient flows {Tij}; the second, is concerned
with the prediction of patient flows, hospitalization rates,
and other outputs using forecasted values for D. and Wi, the
resources and patient generating potential. In this investiga-

tion we are concerned mostly with the second mode.

3. VALIDATION

The method of validation is based on an experiment that
back-predicts the output variables of the model using input
data consistent with the time of back-prediction and then
compares these outputs with what actually occurred. In the

experiment the model parameter £ is assumed unchanged. This



is because it is an empirically derived constant, specific
to the system under investigation, that is usually assumed
to be unchanged over a typical planning period. Clearly,
if the model outputs accurately portray the realized out-
puts of the system, then the model can be used with more
confidence to predict a wide range of possible planning

scenarios.

The validation exercise is divided into three parts.
Part I takes a model, calibrated on 1977 data, and then
compares the model predictions with the actual performance
of the system two years earlier; Part II examines different
specifications of certain of the input variables and compares
the accuracy of the resulting predictions with those obtained
with the original model specifications; and Part III gives a

detailed error analysis and suggestions for further improvement.

The use of 1975 as a test year was determined by data
availability, and although it is near to 1977 in terms of time,
the changes in data values were found sufficient in this two-
year period for validation purposes. Some additional data
of much less quality were also available for 1367, but only
for a smaller part of the region of interest (Figures 1 and 2).
Accordingly, less emphasis must be placed on the results
obtained. Nevertheless, these results are presented where

useful for comparisons.

3.1. 1975 Back=-prediction

The version of the model discussed in this section has

the following specifications:

Dj(t) = The resources in each treatment =zone are
defined as the number of acute patient admssions
to hospitals in time-period t (for list of
included specialties, see Mayhew and Taket,
1980, p.16).



f(B,cij) = The deterrence function, defined as exp(-Bcij),
where 8 = 0.367 and {cij} is "Matrix 3" in

the above reference.

Wi(t) The patient generating factor defined as

i i Pil(t)Ulm(t), where Pil(t) is the popula-
tion in i in age-sex category 1 at time t and

8] is the national discharge rate in 1 for

1m
clinical specialty m.

The zoning system over which the model is applied covers 44
origin zones and 69 destination zones concentrated in London
and southeast England. This system is shown in the two accom-
panying maps (Figures 1 and 2); a key to the numbered zones

is shown in Table 1.

3.1.1, The data
The data available for the 1975 validation consisted of

(a) a 44 x 18 origin destination matrix of actual patient
flows in 1975, the destinations covering the portion
of the region served by the North West Thames
Regional Health Authority (i.e., the northwest
guadrant in Figure 23)

(b) the total number of hospital admissions generated
in the 40 origin zones covered by the four Thames
Regional Health Authorities (i.e., excluding

origin zones 41 to 44 in Table 1)









Table 1. Key to Figure 1.
Origin Destination
1 Barnet 1 N Bedfordshire 45 Bexley
2 Brent 2 S Bedfordshire 46 Greenwich
3 Harrow 3 N Hertfordshire 47 Bromley
4 Ealing 4 E Hertfordshire 48 st Thomas't
5 Hammersmith 5 NW Hertfordshire 49 Kings'
6 Hounslow 6 SW Hertfordshire 50 Guys'
7 Hillingdon 7 Barnet* 51 Lewisham
8 Kens + Chelsea 8 Edgware* 52 N surrey
9 Westminster 9 Brent 53 NW Surrey
10 Barking 10 Harrow 54 W Surrey
11 Havering 11 Hounslow 55 SW Surrey
12 cCcamden 12 S Hammersmith 56 Mid Surrey
13 1Islington 13 N Hammersmith 57 E Surrey
14 City 14 Ealing 58 cChichester
15 Hackney 15 Hillingdon 59 crawley
16 Newham 16 K/C/W Nw* 60 Worthing
17 Tower Hamlets 17 KX/C/W NE 61 Croydon
18 Enfield 18 K/C/wW S 62 Kingston
19 Haringey 19 Basildon 63 Roehampton
20 Redbridge 20 Chelmsford 64 wWandsworth
21 Waltham Forest 21 cColchester 65 Sutton
22 Bexley 22 Harlow 66 Oxfore
23 Greenwich 23 Southend 67 E Anglia
24 Bromley 24 Barking 68 Wessex
25 Lambeth 25 Havering 69 oOther RHAs
26 Lewisham 26 N Camden
27 Southwark 27 S Camden
28 cCroydon 28 Islington
29 Kingston 29 city
30 Richmond 30 Newham
31 Merton 31 Tower Hamlets
32 Sutton 32 Enfield
33 Wandsworth 33 Haringey
34 Bedfordshire 34 E Roding
35 Hertfordshire 35 W Roding
36 Essex 36 Brighton
37 E Sussex 37 Eastbourne
38 Kent 38 Hastings
39 Surrey 39 SE Kent
40 W Sussex 40 Thanet
41 oxford 41 partford
42 E Anglia 42 Maidstone
43 wWessex 43 Medway
44 other 44 Tunbridge

*K/C/W = Kensington, Chelsea, and Westminster

1-Destinations 48,49,50 are named after teaching hospitals within the districts.
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3.1.2. Changes in model inputs 1975 and 1977

Table 2 provides an indication of the change in the main
input variables, Wi and Dj’ that occurred between 1975 and 1977.
It shows that the patient generating factors, Wi’ were smaller
in 1975, which was partly a reflection of the lower national
hospital utilization rates at that time. It also shows some
interesting geographical variations in W, with the largest
increases (5% to 10%) occurring in the peripheral parts of
the region. These are mostly an indication of the growth in
the elderly population over this period in these areas,
although the long-term trend for a deconcentration of people
from the central area contributes to this difference.

For the resource variable, Dj' the proportionate changes
in values are much larger (-30% to +16%), with the biggest
increases concentrated outside the London area. Caseload
capacities, the resource measures, are a function of capital
developments, trends in treatment (length of hospital stay),
differential utilization rates in each clinical specialty,

manpower availability,and other factors.

Finally, Table 3 shows,for a sample of origins, the per-
centage changes in hospitalization rates (the number of hos-
pital admissions per thousand resident population) -- one
of the principal variables that we would like the model to
predict accurately. The values indicate a considerable dis-
tributional change (-21% to +7%), which suggests that they
should provide a good test for the model. A closer examina-
tion of this table also reveals the important observation that
some of the origin 2zones in the inner London area had higher
hospitalization rates in 1977 than in 1975 despite lower
patient generating factors, indicating some important depen-
dency of demand on supply that we would alsc like the model
to predict. Thus, it may be concluded from these tables that
the 1975 data will provide a very suitable basis for the main

investigation.
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Table 2. Changes in input variables: 1975 validation compared
with 1977 (calibration year).
PATIENT GENFRATING FACTORS (Wi)
1975 patient generating factor as
Zone percentage of 1977 patient generating
number Area of Residence, i factor
5 Hammersmith 99
13 Islington 98
33 Wandsworth 97
22 Bexley 95
37 East Sussex 95
12 Camden 94
35 Hertfordshire 93
Average: Inner London 97
Outer London 95
Other* 94
AVAILABLFE RESOQURCES (Dj)
Zone 1975 capacity as percentage of 1977
number Health District, j capacity
27 South Camden 116
6l Croydon 104
5 North West Herdfordshire 97
64 Wandsworth 95
25 Havering 0
28 Islington 86
45 Bexley 72
37 Eastbourne 70
Average: Inner London 94
Outer London 91
Other** 88

*Zones 34,

35, 36, 37, 39, 40.

**Zones 1-6, 19-23, 36-44, 52-60.
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Table 3. Change in output variables: 1975 validation

compared with 1977 (calibration year).

HOSPITALIZATION RATES

Zone 1975 hospitalization rate as percentage
number Area of Residence of 1977 hospitalization rate
5 Hammersmith 107
17 Tower Hamlets 102
28 Brent 96
2 Surrey 91
31 Islington 89
11 Havering 89
22 Bexley 86
37 East Sussex 85
31 Mer ton 82
3 Harrow 79

Average: Inner London 96
Outer London 89
Other 89
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3.1.3. Reproduction of the patient flow matrix

Table 4 gives several statistics showing the goodness-of-
fit of the predicted 1975 flow matrix {Tij} to that observed
{Tij} as described in section 3.2. The test carried out to
produce these results was based on a regression analysis of
flows between origin-destination pairs predicted by the
model and those that were actually observed. The most im-
portant statistics shown are R2, the coefficient of explana-
tion,and the slope and intercept of the regression. When
R2 and the slope equal one and the intercept is zero,

a perfect correspondence is indicated between the model pre-
dictions and reality (Mayhew and Taket, 1980). As is seen,

the realized values match these criteria very well.

The 1977 calibration statistics are also included for
comparative purposes. The results for both dates are thus
in close correspondence, suggesting that the model performs
very well with respect to these measures and is successful

in back-predicting the flow matrix.

3.1.4. Reproduction of hospitalization rates

The second level of validation concerns the model's
ability to recreate the 1975 hospitalization rates. Contained
in Table 5 is a list of the actual rates by origin zone and
those predicted by the model. 1In Figure 3 the results are
plotted with the 10% error margins also added. As is seen,
errors in 30 out of the 39 zones shown are less than 10%,
while overall the absolute percentage error is only 6%. This
compares very favorably with the calibration year model in
which 32 out of the same 39 zones had less than 10% error and
where the average absolute error was 5.7%. The results of
these two tests—--based on back-predicting the flows and rates
--are thus highly satisfactory, the model performing almost
identically in 1975 as it did in the calibration year, 1977.
We shall now seek further improvements by testing alternative

specifications of the model inputs.



Table 4. Reproduction of

-1l4=

section of 1975 trip matrix.

1975 goodness-of-fit

1977 calibration

over destinations in statistics
northwest quadrant
Coefficient of explanation,R2 0.9626 0.983
Slope of regression line 0.9766 1.001
Intercept of regression line lo.05 12.30
Root mean square error¥* 325.2 226.4
Mean absolute error** 114.0 79.3
Mean absolute % error*** 137.7% 118.5%
= 2%
T,.-T,.
* rusg = |7 ¥ T3 "iy
i3 N
T, -T
el =17 ay
i3 N
**%x  |pe| = Z z |le- ij x 100
i] T
le M
such that N,, # O
i]
where M= Z z (Nij # 0)
ij
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Table 5. 1975 validation.

Zone Hospitalization Rates Overall average absolute
number Area of Residence Actual Model %Error % error = 6.0%

5 Hammersmith 145.6 111.0 -23.8 Inner London: average
17 Tower Hamlets 141.5 135.0 - 4.6 absolute % error 7.5
9 Westminster 133.7 135.2 1.1
33 Wandsworth 124.5 124.7 0.2
8 Kensington and 122.9 135.5 10.3
Chelsea
14,15 City and Hackey 122.3 137.7 12.6
13 Islington 121.5 140.2 15.4
12 Camden 118.3 110.6 - 6.5
27 Southwark 117.0 116.8 =~ 0.2
19 Haringey 113.2 125.9 11.2
16 Newham 109.3 112.2 2.7
25 Lambeth 106.7 l04.1 =~ 2.4
26 Lewisham 106.0 112.5 6.1
2 Brent 124.6 133.5 7.1 Outer London: average
23 Greenwich 113.3 110.9 - 2.1 absolute % error 5.5
1 Barnet 107.1 112.6 5.1
6 Hounslow 102.4 101.0 -~ 1.4
21 Waltham Forest 102.4 113.2 10.5
10 Barking 102.1 924.9 - 7.1
18 Enfield 99.1 99.6 0.5
4 Ealing 96.6 108.7 12.5
3 Harrow 95.9 95.9 0.0
24 Bromley 94.6 98.1 3.7
31 Merton 94.5 107.3 13.5
22 Bexley 91.4 94.5 3.5
32 Sutton 90.4 93.6 3.5
30 Richmond 89.9 94.7 5.3
28 Croydon 89.4 85.9 - 3.9
29 Kingston 85.7 85.3 - 0.5
11 Havering 85.2 74.4 -12.7
20 Redbridge 83.7 79.9 - 4.5
7 Hillingdon 8l.4 75.3 = 7.5
39 Surrey 93.5 100.0 7.0 Other: average absolute
28 Kent 84.5 85.6 1.3 % error 4.4
36 Essex 83.1 78.4 - 5.7
35 Hertfordshire 81l.1 88.4 9.0
37, E Sussex 80.0 77.9 =~ 2.6
40 West Sussex 77.2 80.1 3.8
34 Bedfordshire 71.5 72.3 1.1
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Figure 3. Plot of 1975 hospitalization rates predicted by
the model on actual hospitalization rates.
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3.2. Alternative Model Specifications

Thus far the model has been validated against 1975 data.
In this section slightly different model specifications are
attempted to check whether the prediction errors can be
further reduced. Consideration is focused on Wi’ the patient

generating factor, and on fij’ the deterrence function.

3.2.1. The patient generating factor

The propensity to use health care services is mostly
a function of age and sex, but it is also believed to be in-
fluenced by social, economic, environmental, and other
factors. 1In investigations (LHPC, 1979) it has been shown
that death ratios are highly correlated with key social
and economic indicators of deprivation. The proposal,
therefore, is to modify the existing Wi by a zone-specific
death ratio and then to re-run the model to see whether
better predictions result. A death ratio in zone i is

calculated from routinely published statistics at time t as

follows
ACF; (£)R} (t)
Ri(t) = (3)
R(t)
where
*x*
Ri(t) = the crude death rate in origin zone 1i.

Deaths in psychiatric or other long stay
institutions are apportioned over all areas
of the country according to the sizes of the
non-institutional populations before the cal-

culation of this rate

R(t) = the national death rate
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the area comparability factor for place of

where ACFi
residence i

= the national death rate in age-sex category 1
Pl = the national population in category 1

Pil = the population in origin zone i category 1

and where

av)
-
+
I
=~
e}
(=]
]
+

The death rate Ri(t) is hence a type of standardized mortality
ratio whose use is hypothesized to reflect those regional
variations in patient generating potential unaccounted for

by the local age and sex structure. It is applied by multi-
plying it with the existing value of Wi(t) as follows

New calibration and prediction runs of the model were
carried out using the modified vector of generating factors.
Table 6 shows the calibration statisfics, whereas Table 7 gives
the broad results of the back-predictions with additional

comparisons for 1967.
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Table 6. Comparison of calibration statistics.

Method of calculation of pgfs

with death ratios no death ratios

Parameter 0.363 0.367
Flow matrix statistics
R2 0.981 0.983
Slope of regression b 1.0000 1.0010
Intercept a 11.65 12.30
Root mean square error 239.8 226.4
Mean absolute error 83.4 79.3
Mean absolute % error 119.1% 118.5%
Hospitalization rate

statistics
Mean absolute error 6.5 5.7
Mean absolute % error 5.6% 5.0%
Number of origins with 34 38

<10% error

The calibration procedure is fully described in Mayhew and Taket (1980).
Briefly, the predicted flows are regressed on the observed. The parameter
value B is systematically adjusted until the slope of the regression b
equals one.
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Table 7. Comparison of prediction runs.

Method of calculation of pgfs

Run/Statistic with death ratios no death ratios
1967

Hospitalization rates*

Mean absolute error?* 13.9 13.5

Mean absolute % error* 14.8 14.5

1975

Hospitalization rates

Mean absolute error 6.8 6.4

Mean absolute % error 6.6% 6.0%

Trip Matriz
(destination in north-
west guadrant only)

R2 0.962 0.963
Root mean square error 325.9 325.2
Mean absolute error 115.3 114.0
Mean absolute % error 139.5% 137.7%

*Calculated over origins in northwest quadrant. These were the
only origin zones for which actual 1967 data were available.
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As is seen, death ratios make almost no difference to the
goodness-of-fit statistics in the calibration run. As for
the exercise in back-prediction, the errors are marginally
worse at both times. The conclusion, therefore, is that
death ratios do not add to the explanatory power of the
model, and that if social, economic, and other factors do
alter the propensity to use hospital services, then death

ratios are not a good way of representing them.

3.2.2, A derived deterrence function

If an actual flow matrix {fij} is available then it
becomes possible to derive the deterrence function {fij}
directly. In conventional calibrations of the model,
it is more normal to work with a cost matrix {cij} and

hence with particular functional forms for fij' for example
-8

. j 0 .
however, is that it enables a user always to obtain a

exp(—Bcij) or c, . An advantage of the first approach,
"perfect fit" to the calibration year data. If it is

assumed that the empirically derived {fij} remains constant
over time, then the model can be used for prediction in the
usual way. More importantly, it is a reasonable assumption
that, if changes do occur in fij’ they will almost certainly

be smaller than those occurring either in Dj or in W.. Because
of the "perfect fit" property, therefore, validation tests
assume a great importance, enabling the user to test rigorously

different model specifications.

To obtain such a deterrence function, {fij} must be defined,
a deterrence matrix, where f1j is abitrary and has no unit of

measurement. Then using simple substitution, we get

£, = =4 1 i# o1 (6)
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where

T..
1]

the observed flow from i to j

T1j

the observed flow from origin zone 1 to j

[1f Tij = 0, set Tij to some small number, here 0.4/) 1. This
is to ensure fij # 0, and to avoid problems with a 2&ro denomi-

nator in (6).]

Wj,w1 = the pgf in zone i and zone 1 respectively

and where f1j’ the first element in each row of the deterrence

matrix is fixed arbitrarily to a suitable wvalue > 0.

Using the above method, two sets of deterrence functions
(A and B) were obtained for calibration year data

(i) Function A based on the usual pgfs, i.e.,

_ ) . Pp.,U
Wi il il "1m (7)
(ii) Function B based on the use of death ratios, i.e.,
*
W, = R, W, (8)
i i1

The model was then re-run using 1975 and 1967 data and the
outputs were compared with what actually occurred. The

results are shown in Table 8. These indicate a significant
improvement in accuracy at both times over the results obtained
with the conventional calibration procedure (Table 4). They
also show that the inclusion of death ratios (Function B) tends
to detract from the explanatory power of the model, confirming
the results of section 3.2.1. above. The conclusions of these
respecification procedures are hence threefold: first, age

and sex are confirmed as the dominant criteria influencing

the potential demand for health care services; second, the



Table 8.
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deterrence functions.

Prediction runs using empirically derived

Model run/statistic

Function A

Function B

no death ratios in pgfs

death ratios in pgfs

1967
Hospitalization rates*

Mean absolute error?®

Mean absolute % error?®

1978
Hospitalization rates

Mean absolute error

Mean absolute % error

Flow matrix
(destinations in north-
west quadrant only)

2
R
Root mean square error

Mean absolute error

Mean absolute % error

9.1%

3.5

3.2%

0.989

178.2

46.1

96.6

10.5

10.8%

3.7%

0.988

182.1

48.6

98.9

*Calculated over origins in northwest quadrant only.

origin zones for which actual 1967 data were available.

These were the only
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effects of socio-economic factors on additional unexplained

variations in the use of health services cannot be described
using death ratios; and three, the enhanced accuracy of the

model using derived deterrence functions indicate that there
is scope for improving the specification of {cij}’ the cost

matrix, as used in conventional calibration methods (Mayhew

and Taket, 1980).

3.3. Further Error Analysis

One of the findings of the calibration analysis described
in Mayhew and Taket (1980) was a tendency for the model to over-
predict hospitalization rates in the inner urban zones. When
the errors resulting from the 1975 back-prediction were closely
examined, this bias seemed to recur in the same form, thus

raising two questions for research.

1) Can the input variables, both pgfs and accessibility

costs, be improved to remove the source of this bias?

2) Given the apparently consistent nature of the biases,
is it possible to derive empirically based correction

factors that can remove them?

The first question was partially dealt with earlier in section
3, and currently more research is in progress to identify
improved measures of both potential demand (Wi) and accessi-
bility costs (ci.). We now examine the second possibility in

J
more detail.
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Bias in the prédiction of hospitalization rates

Figure 4 gives a comparison of the actual change in hos-
pitalization rates by origin zone with that predicted by the
model. It is apparent in this diagram that the model correctly
predicts the direction of change (and usually the percentage
too) in most cases (twe serious exceptions are zones 12 and 17).
The absolute values, however, are often wrong, though not by
very much. As noted in section 2, the magnitude of the pre-
diction errors are very similar to those in the calibration
stage, implying therefore, that errors in calibration will be
repeated during prediction runs. Figure 5, a plot of 1975
errors on those in 1977, shows a marked correlation (r = 0.80),
substantiating this hypothesis. A similar exercise using 1967
data gave a comparable result (r = 0.81). The conclusion is,
therefore, that until more research is available that improves
the specification of input variables, there seems to be an
empirical basis for making small adjustments to the model
outputs in order to improve further the accuracy of the

predictions.

4. SENSITIVITY ANALYSIS

Sensitivity analysis consists of examining the changes
in the model outputs when perturbations are made to the input
variables and parameters. Unlike the validation tests, sensi-
tivity analysis is concerned with the theoretical behavior of
the outputs when the model is exposed to extremes of change
rather than with the accuracy of the predictions. For current
purposes the sensitivities analyzed are with respect to the
patient generating factors, resources and parameter value, B.
The first two are of direct concern to health care planners
reflecting the dimensions of demand and supply, whereas the third,
the sensitivity of B to change, is important from the standpoint

of the model's assumptions (section 3).
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Figure 4. Changes in hospitalization rates 1975 to 1977:
"model" and "actual". Rates, on the horizontal
axis, are in cases per thousand.
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Figure 5. A plot of prediction errors in hospitalization
rates in 1975 on those obtained for the calibration
year, 1977.
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4.1. Patient Generating Factors

The user of the model is concerned to know how changes
in values of the pgfs affect the number of patients generated

in a zone (jTij ). There are three cases to consider.

1) The effect on yi(=§Tij) caused by a change in Wi

2) The effect on Y; caused by a change in Wk’ k # 1

3) The effect on Yy caused by simultaneous changes in all

W,
1

Case 1: From (1), summing over j, y; may be written in the form

WiD‘fi'
y, = E _J 1] (9)
; wifij+lz_wlflj
1#i

L
The first derivative of (9), yi(wi) (i.e., dyi/dWi) is positive;

2

the second, yi(Wi), {i.e., d Yi/dwi) is negative (0 < Wi < ®),

At infinity there is an upper bound given by } Dj; at this

point, then, i theoretically commands all the resources in the
system. These facts describe a concave function of the satura-
tion type.

Some examples for different values of i are shown in
Figure 6. An examination shows that zones peripheral to the

metropolitan center increase rapidly for small Wi' but with
further increases the rate of growth drops sharply (e.g., 36,

34, 37). The centrally positioned zones in contrast experience
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36 Essex
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504
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30-
20-

10

10 20 30 40 50 60 70 80 90 100
pgf X 103

Figure 6. Case 1: Sensitivity of numbers of cases generated

to changes in W;, the pgf, for different origin
zones.
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a slower rate of growth initially but a slackening off in
these cases is not apparent in the range of Wi considered
(zones 8, 17, 22, 30). These results are consistent with
the differential patterns of facility access one expects

in urban and non-urban areas. In the urban case, access

is better but the spatial competition for resources is

more intense; in the non-urban case, there is less external
competition from other zones, but the populations are more

highly dependent on their local facilities.

Case 2: From (1), summing over j, y; may be written as a
function of Wy s k # 1
W.D.£. .
Y5 (M) = Z W, £ l+§ wjf o
j kkj 1 17173
1#k

Here, the value of y; goes to zero as Wk increases to infinity.
Thus, the number of patients generated by a zone declines when
there is an intrease in the pgfs of another zone and where

all zones compete for the same resources. Conversely, there
is an increase in Yi when the pgf of another zone declines.

The size of the change is governed also by the values of fkj’
and fij' If k is remote from i, Yy will -- other values
being constant -- change less than if k is near. This is

seen from an inspection of the expression for yi(wk), which is

, D£;. %)
v. (W ) = - W, E (11)
17k 1 (W, £, .+ W, £, .)2
g xTk3TIMR13

1#k
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In equation (11), fij and fkj are largest when i and k are
close to j and thus close to each other. Hence, changes

in Y; in these situations will be relatively greater.

Case 3: This is the most complex case, and it is difficult

to make general statements about it except when all the changes
take place in one particular direction. This complexity is

due to the extensive interaction effects that occur in the
system that the model is attempting to simulate. An illustra-
tion of this difficulty is given if we try to evaluate small
change in Yy by considering the total differential of Yy-

This change, dyi, is

—w Ll
dy; = ZBJDJfleWl WlkJDJBJ £5 5550 (12)

where de is the change of W Clearly, dyi is dependent in

K
many other interactions taking place elsewhere in the system,

interactions that are reflected by the second term in (12).

4.2. Resources

The effect on the predicted number of patients generated
in a zone due to changes in resource levels is more straight-

forward. From (1), differentiating with respect to Dj’

_ ivid
y; (Dy) = Q.W_J.f . (13)

Equation (13) is a constant, and it means that growth in i is



-32-

proportional to the share of the total potential demand

on j discounted by accessibility costs. For example, if
facilities are expanded in a location near i, the largest
proportion of new demand will be generated in the locality
of i rather than elsewhere (zone k, say) since almost
certainly Wifij > kakj providing Wk is of the séme order
as Wi' The sensitivity of the model to changes in Dj are

thus simple and intuitively reasonable.

A useful measure to derive from this property of the
model is the elasticity of the hospitalization rate in i

with respect to the resource level in j. This is
D. 9JH, T..
E, . = o2 —t = 13/5 (14)
ij R, 0oD. 2T, .,
1 ] J 1]
where H, is the hospitalization rate for a population P,
ZTi.
R, = & =4 (15)
il J Pi

Equation (14) expresses the proportionate change expected in

i following a change in the resources in j. It is of particular
value in determining a catchment population -- the resident
population in a region dependent on a treatment zone =--

which is defined as

C. = )E,.P, (16)
i

Equation (16) is one of several possible ways of representing
catchment populations. This particular one has the advantage

of being easily related to the model outputs.
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4.3. Discount Parameter, 8

The model parameter B is assumed constant in the predictive
mode of the model. Thus, it is necessary to test the effects
on the model outputs in the event that this assumption breaks
down. These effects are not easy to predict as the first

derivative suggests

_Bc

' - ij
y; (B) = % Tij(Bj gcijwie - cij) (17)

This result also depends on the form of the deterrence function

[here fij = exp(-Bcij)]. Some experiments were therefore
carried out on hospitalization rates for different zones

in the range B = 0 to B = 2.0. This range has been deli-
berately exaggerated to see how the model performs when

it is stretched. (In fact the maximum change that could be
expected if the model were recalibrated would only be around
+ 0.1.) In interpreting the results, an increasing B is asso-
ciated with diminishing accessibility as would occur if the
real costs of transportation increased. A decreasing value
of 8 would iTgéy the converse. When B is zero, fij goes to

1

1.0 (since e I = ¥ij) and so, as is seen from equation (1),

patients will be allocated to treatment zones by their share of

the total patient generating potential, Wi/z Wi‘ Figure 7
i

shows the results for several urban and non-urban zones. For
large B, centrally positioned urban zones (8 and 17) experience
sharp increase in rates; less central and non-centrally

located zones usually experience decreases. For the range

B8 = 0.2 to B = 0.4, the portion in which some change could be
realistically expected, a second diagram is shown (Figure 8).
Most sensitive to this variation here are zones 8 and 17, the
two most central zones in this sample. This is perhaps not

surprising since some difficulty is usually experienced in
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Figure 7. Variation in hospitalization rates in different
origin zones as a function of R, the model parameter
(see also inset in Figure 8).
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Figure 8. Hospitalization rates in different origin zones
as a function of R in the range 0.20 to 0.4.
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fitting the model to behavior in inner-urban zones at the
calibration stage, and this sensitivity to B is one of the

reasons for the difficulty.

5. CONCLUSIONS

This paper has described the results of validation
experiments and a sensitivity analysis on the model RAMOS.
This model is designed to assist decision makers in the
planning of health care services at the regional level.
Validation was accomplished in a back-prediction of the
state of the system at a point earlier in time. It was
found that the model was able to predict the outputs
of the system with considerable accuracy but that further
improvements were still possible. 1In the subsequent sensi-
tivity analysis the logic of the model was exposed to small
and large variations in the input variables and parameter
values. The results were intuitively reasonable, although
attention was drawn to the diverse sensitivities of different
zones under parameter variation that need to be observed.
The basic conclusion is, therefore, that the model achieves
the purposes for which it was designed. The question arises
whether the model can be used to tackle similar problems in
other health care systems. The indications are that it can,
although some small respecification may be necessary to take
account of local conditions. It is, nevertheless, advisable
that other applications should undertake routine validation
experiments, since these can uncover aspects for improvement
in the specification of the model while providing a check on

its predictive power.
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