User's Guide to SLIMFORP

Sichra, U.
IIASA Working Paper
WP-81-114

August 1981

Sichra, U. (1981) User's Guide to SLIMFORP. IIASA Working Paper. WP-81-114 Copyright © 1981 by the author(s). http://pure.iiasa.ac.at/1647/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

User's Guide to SLIMFORP

Ulrike Sichra

August 1981
WP-B1-114

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

FOREWORD

The work of the INterindustry FORcasting University of Maryland (INFORUM) has gradually expanded and similar work is now underway at over fifteen institutes around the world. SLIMFORP, the basic computer programming system for the forecasting models of INFORUM, makes the modeling efforts of the many institutes a practical reality.

A strong attempt has been made to make the programs portable. The solutions to several problems encountered while transporting the programs from computer to computer now lay hidden in the code. Sice unit numbers for specific data files may not be possible on all machines, I wich to call your specific attention to Appendix 2 where the linkage between data files and unit numbers is presented especially well.

The guide has the strength that it was not written by the original programmer of the model but rather by one, like many of you, who had to implement the model and adapt it to another machine. Thus, I believe, more of the questions asked by the newcomers to the programs are answered and probably in a better way than if I had written this manual.

Douglas Nyhus
Internationa Institute for Applied Systems Analysis

August 1981

TABLE OF CONTENTS

1. Introduction 1
1.1. What is SLIMFORP 1
1.2. Structure of the Guide 1
2. Overview of main parts 3
2.1. Preparation 3
2.2. Making Scenarios 3
2.3. Running the Forecast 3
2.4. Producing Output 4
2.5. Flowchart of Programs 4
2.6. Starting from Scratch 5
3. Transportability of SLIMFORP 7
4. Changes of Parts which are Country Specific 9
4.1. Parameters 9
4.1.1. Parameters in OTM 9
4.1.2. Parameters for all other Programs 10
4.1.3. Parameters used in the Printing Routines 11
4.2. Data-statements 11
4.2.1. Data Statement in OTM 11
4.2.2. FDV - Names 12
4.3. Titles 12
4.4. Control Input for the Printing Routines 13
4.5. Input for the Scenarios 13
5. Execution of SLIMFORP 14
5.1. OTM - One Table Maker 14
5.2. MATRED - Matrix Reader 15
5.3. FDVRED - Final Demand Vectors Reader 16
5.4. EQRED - Equation Reader 16
5.5. MFIXRD - Matrix Fixes Reader 18
5.5.1. MFIXRD - Fixes Reader 18
5.5.2. FIXMAT - Fix Matrices 20
5.6. FIXRED - Final Demand Fixes Reader 20
5.7. RUNLOOP - Forecast 22
5.7.1. ZERO 2-Zero LUZ 23
5.7.2. ZERONT - Zero NT 23
5.7.3. BE'GIN 23
5.7.4. FDVEC - Final Demand Vector 24
5.7.5. IOCOMP - Input/Output Computations 24
5.7.6. EMPLOY - Employment 25
5.7.7. FORE 25
6. Printing 27
6.1. MAKTIT - Make Titles 27
6.2. SUMPRINT - Summary Printing 27
6.3. MATLIS-Matrix Listing 29
6.3.1. WRITAB - Write A, B, and BR Matrix 29
6.3.2. MATLIS - Matrix Listing 29
7. Use of exogeneous variables 32
8. Use of more complicated equations 33
APPENDICES 34
9. Appendix 1: Organisation of Random Files 34
1.1. Random access file LU1 (fixbin) 34
1.2. Random access file LUZ (modoutbin) 36
1.3. Random access file LU3 (fdvbin) 37
1.4. Random File LU2F (matfixbin) 38
1.5. Random access file LU5 (titbin) 39
1.6. Random access file LU4 (matbin) 40
1.7. Order of print-elements in SUMPRINT and MATLIS 41
10. Appendix 2: Connection of Input and Output Files 42
11. Appendix 3: Main Programs and Subroutines 47
12. Appendix 4: Short Sequence of actions 49
4.1. Definitions 49
4.2. Programs 49
4.3. Description of each part in Runloop 54
13. Appendix 5: Sequence of Actions on the PDP $11 / 70$ under UNTX 56
14. Appendix 6: Sample inputs and outputs 59
6.1. Sample input for SUMPRINT 59
6.2. Sample input for MATLIS 61
6.3. Sample Output for MATLIS 62
6.4. Sample Output for SUMPRINT 66

User's Guide to SLIMFORP

Ulrike Sichra

1. Introduction

1.1. What is SLIMFORP

SLIMFORP is a program (or set of programs) for building national inputoutput models. It allows the user to make a basic model on the information contained in a single input-output table (as shown in Diagram 1.), and provides for running with ease a wide variety of scenarios. However, it is intended only as a starting point for developing a model. Though it provides for reading in equations for consumption, export, import, investment, inventory change, labour productivity rate, etc., its programming interprets only the simplest form of these equations, namely exponential growth (therefore "SLIM"). To use other functions, one just has to add other FORTRAN statements at clearly marked spots in the program.

The big bulk of statements perform the housekeeping of the data, and little programming has been done for the actual consumption patterns of the economy. But SLIMFORP is rather universal in that it can handle any number of I-0 sectors (the number is only limited by the size of the computer), and also stores other statistical data on a country which could perhaps be used at a later stage, or for other purposes.

1.2. Structure of the Guide

In this guide we explain first the structure of SLIMFORP (section 2) and its special features with regard to computer used (section 3) and country forecast (section 4). In section 5 ail programs and their subroutines are explained in detail, as well as the devices they need. Section 6 deals with printing routines. Sections 7 and 8 are devoted to extensions of the forecast program,i.e. more sophisticated functions for final demand and influence of exogeneous parameters, respectively. As a sample country we are using Sweden throughout this guide.

At the end of this guide there are 6 appendices; some give overviews on sections of this guide and others go into detail for the interested user. Appendix 1 deals with the organisation of random files and is included for information and control purposes. Appendix 2 is useful if you wish to understand the data flow among files and is necessary when transferring SLJMFORP to another computer. Appendix 3 is also an important piece of information for the transfer of programs, as it deals with programs and their subroutines. In Appendix 4 you find what is basically a resume of sections 5 and 6 of this guide. Appendix 5 is a resumee for PDP $11 / 70$ users. It lists the actions necessary for compiling and running SLIMFORP. Appendix 6, finally, shows sample inputs and outputs for the printing programs.

You might find several parts of this guide redundant. This is due to the experience of users of other guides, who at different levels of knowledge would like to find different depths of information. Naturally we are open to criticism and suggestions on how to change, restructure or append this guide.

Diagram 1. Input-Output Table

2. Overview of main parts

A first rough overview might be helpful for those users who are not familiar with SLIMFORP. When starting from scratch four main steps must be executed to produce the forecast, i.e. prepare the input, make scenarios, run the forecast and produce listings. Each step has several substeps which have to be carried out in the order specified. The following is a brief explanation of each step as seen in the context of the whole SLIMFORP.

2.1. Preparation

This group of programs has to be run when first converting the I/O table into "SLIMFORP-form", or at a later stage, when there are some corrections or changes to be made in the initial table.
(1) OTM - one table maker. This program converts the traditional input-output table of a country into a form suitable for use by the subsequent programs.
(2) MATRED - matrix reader. It is executed once to read the intermediate flow coefficient matrix A, again to read the capital flow coefficient matrix B, and finally to read the bridge matrix for personal consumption expenditure, BR. Each matrix is put into its own binary file.
(3) EQRED - equation reader. This reads the equations for government expenditure, personal consumption, export, capital investment, imports and inventory change and puts them on different files (the assignments will be seen later).
(4) FDVRED - final demand vector reader. This program reads and puts into a file any vector of final demands which is known for the first years of the forecast. It often happens, for example, that foreign trade data become available before we know enough to make a new base matrix. FDVRED allows us to use the known vectors in the "forecast" for these years, which are in fact recent history.

2.2. Making Scenarios

This part of the forecast is the main tool to produce different visions of the future. But even if you merely want the forecast to be carried out in its standard way (i.e. 5% exponential growth) you should run the programs specified here, as they create the necessary environment for the forecast.
(1) MFIXRD - matrix fix reader. This reads fixes for the forecast of the A, B and BR matrices, that is, exogeneous specifications for the changes over the period of the forecast. It prepares three files, one for each matrix, year-byyear, over the forecast period.
(2) FIXMAT - fix the matrices. With this program the fixes for the A, B and $B R$ matrices prepared in the before mentioned program are put into the correct storage place.
(3) FTXRED - fixes reader for final demand and input of exogeneous items such as population, labour force, etc. This program, together with MFIXRD, is the maker of scenarios. The fixes may not actually fix the forecast, but only modify it. They may be specified in a variety of ways. This program creates a binary, direct access file which is read by the different programs of the forecasting part.

2.3. Running the Forecast

This is a rather extensive set of programs which is executed as many times as the number of years to be forecast. If the country to be modelled is not too
big (in terms of sectors) it is possible to merge all programs into one big program and thus have simpler and less execution commands. However, we have separated the programs so that one can clearly see the different parts of the forecast.

If the program is to be run sequentially, the choice of method (call of system commands and assignment of files and devices) depends on the computer but the sequence has to remain the same.
(1) ZERONT - set to zero NT. The year count is set to zero in this program.
(2) ZEROZ - set to zero LUZ. The model output file is initialized with zero.
(3) BEGIN - begin the forecast. It initializes each year of the forecast and reads in the exogeneous variables. It solves the equations for government, exports and personal consumption expenditure.
(4) FDVEC - final demand vectors. This program consists of three subroutines:

* INVEST - solves the investment equation and checks for rerunning FDVEC and IOCOMP in case investments depend on the current year output.
** FIXFIN - puts the fixes on government, export, pce and investment.
*** DISTRI - distributes pce, final demand and capital to the different sectors.
(5) IOCOMP - input-output computation. This part of the forecast calculates the new input-output coefficients and also puts the fixes on imports and inventory and computes its final values.
(6) EMPLOY - employment calculations. Should there not be any employment figures or equations this will be treated simply as a dummy call.

2.4. Producing Output

There exists a set of programs with which one can produce listings and plots (simple lineprinter plots, in preparation).
(1) MAKTIT - make titles. All titles of the different sectors are written out in binary form for faster access in the next programs (SUMPRINT and MATLIS),
(2) SUMPRINT - make summary tables for the forecast. For specified final demand items the amounts produced in the different sectors are listed, as well as the growth rates between specified pairs of years.
(3) WRITAB - rewrite parts of A, B and $B R$ matrix for use in MATLIS.
(4) MATLIS - matrix listing. This printout shows the cell-by-cell flows in the specified forecast years, and its growth rates.
(5) GRAPH - the program to plot the history and forecast of the time series (in preparation).

2.5. Flowehart of Programs

The following flow a schematic overview of the programs. It is structured in
the way we run the forecast on our inhouse machine.

2.6. Starting from Scratch

If one is setting up the input-output table to run SLIMFORP for the first time on the computer, one should not venture into preparing different scenarios, or runnig a large number of years. It is advisable to simply run the basic programs and then check the results in order to see whether one has made any mistakes when inputting the I/O table.

At this stage you should therefore run the forecast for only one year, and with no other fixes than the ones built into the program. In detail this means:
(1) The paramter npmax is to be set equal to 1 in the parameter statement for all programs;
(2) The input for MFIXRD is a file with these three lines only:

999
999
999.
(3) The input for FIXRED is also a simple file:
title
baseyear, baseyear +1.1
999
999
(4) The input for sumprint should only request to print the item ngov+7 (= gross production).

3. Transportability of SLIMFORP

Slimforp is currently operating on the IIASA PDP 11/70 and the VAX both running under the UNIX Version 7 operating system. ${ }^{1}$ The PDP $11 / 70$ is a large "mini" with available core adequate to handle programs with up to 13,000 floating point numbers. We believe that the programs can be transferred rather easily to most other installations. Of course, the command language has to be changed, but that should not cause big problems. The potential difficulties are:
(1) The programs use the FORTRAN statements include and parameter. These are part of the new ASCII standard, so presumably they are, or will soon become, widely available. Their use can be circumvented, for a single country model, by a few hours' work with the text editor.
(2) SLIMFORP puts all of its matrix input-output through a subroutine called ATRAN, which uses special high-speed input/output routines available in the UNIX system. ATRAN should be rewritten for different computer installations to make use of the fastest mass-input-output means available at that installation.
We have three versions available on the standard tape. The IIASA version using UNIX system calls is called ATRAN. The Univac version is called UNIATRAN, and a slow-moving FORTRAN version that can be used to get started anywhere is called FATRAN (ATRAN, UNIATRAN, FATRAN are the "filenames", the subroutine is always called ATRAN). The most appropriate of these should be used. One of ATRAN's jobs is to connect logical units 11 through 20 (and also 21 when using UNIX) to appropriate external files. If UNIATRAN or FATRAN are being used, the connection will have to be made by programs in the executive language of the system being used. What those connections are is shown in Appendix 2 of this guide.
(3) The main forecast output, the fixfiles and some other files are stored in binary files with fixed record length and fixed record number (on some installations). It depends on the computer used as to how these definitions and accesses should be implemented.
All programs (except EQRED) use this type of files.
(4) The big loop of the forecast part in SLIMFORP is designed to match the requirements of our PDP $11 / 70$ under UNIX. It is also due to the size limitations of our computer that SLIMFORP consists of so many main programs instead of only a few. Depending on the computer a number of changes can be made in this direction.
(5) Assignment of input and output files has to be done beforehand for many operating systems. The necessary information to make the correct assignments is found in Appendix 2.
(6) The parameter nif (number of integers per floating number) in the parameter list depends on the computer one is using. In most big installations nif $=1$, on our PDP $11 / 70$ nif $=2$. It will be explained later how and when to use it.
(7) A number of programming details might have to be solved differently on another machine.

* The check of 'end of file' on input.
** Implicit 'do loop' on input which is larger than the actual input (not than the format). On the PDP 11/70 under UNIX the missing elements are set equal to zero.

[^0]*** Left or right adjustment of character strings stored in integer or real variables. The logical comparison of string variables might be different or not allowed.
**** The opening or closing of files might have to be handled with more care, as well as the number of files open at one time.
**** The program OTM creates files which are read by the programs MATRED, EQRED and FDVRED. Due to pecularities of our compiler, the first character in an outputfile is always used for line control purposes. It is thus necessary to remind this if another machine behaves differently. The relevant formats in OTM are number 32, 42, 52 and 70. In the subroutine PUNCH5 it is format 22.
(B) Small files have to be prepared to control the program execution

* The file year has one line, containing the last two digits of the base year (year of the I/O table).
** The file yes has also only one line, with a " 1 " in the first column.
(9) If one is using the IIASA computers one should check, that the correct directory names are being used. When using another computer this might be a completely different story anyway. The directory names play an important role in ATRAN (assignment of filenames to devices), and are very often refered to in the run files.
In order to take difficulties one at a time, one should not try to get a new model going on a new computer. It is best to come to IIASA and use the computer on which the system is already operating in order to build the basic model. This model can then be transferred to your home computer. If that is impossible, then one should first make an available model run and only then begin on one's own. For control purposes we have included sample input and output listings in Appendix 6. By means of these results you can check the implementation of Sweden on your machine.

We shall assume that you are at IIASA or on a similar machine and want to make a new model. We will assume that you are starting from the Swedish model which you want to remake into a model for another country.

4. Changes of Parts which are Country Specific

In addition to the changes needed to adapt SLIMFORP to run on another computer than IIASA's PDP $11 / 70$, there are a few changes to be made in order to make the forecast for each of the different countries.

A number of parameters have to be adjusted, some titles have to be set up and a few data statements and formats have to be changed so as to match the characteristics of that one country. As mentioned in the previous section we will take all examples from the Swedish case.

4.1. Parameters

The parameters can be seen as one of the most important parts of SLIMFORP as they drive the structure of the I/O table and the forecast, in combination with the equations to calculate final demand.

In a simple standard I/O table the number of rows and columns of the AMatrix (diagram 1) is the same, but if there are sectors, which only produce and do not buy, then the A-Matrix might have more rows than columns (this is the case in Sweden). On the other side, if you also read in employment, value added, etc., you have in total a bigger number of rows than just the ones of the A-Matrix (this is also applicable in the case of Sweden).

The differences from one country to another country lie in its original data (I/O table) and its parameters. In order to stay flexible with regard to the coding, the authors of SLIMFORP chose to keep as much information as possible in the parameter section. By this a quick switch from one country to another country is possible. We can divide the parameters in three main groups:

4.1.1. Parameters in OTM

There are three lines of parameters in OTM which are country specific. For Sweden they are:

```
parameter ns=39, nca=36, nc=134, jahrb=75, nri=48
parameter jcap=105, jimp=10B, jq=134, jpce=40
parameter ncaps=1, ngov=25, ngp4=29, jgov=109
parameter npceb=65
c ns = number of rows in table
c nca = number of columns of square matrix A
c nc = total number of columns read in
c jahrb = base year
c nri = total number of rows to be read in
c jq = column number of total outputs
c jcap,jimp,jpce,jgov = column number of the named
c column
c ncaps = number of columns in b matrix,
c ngov = number of government columns
c ngp4 = ngov + 4
c npceb = number of personal-consumption sectors
```

One has to adjust them to the size of the input-output table of the individual country.

NOTE:

The format number 52 in the program OTM might be too small for the input-output table of your country. If you get an error message on execution it is necessary to change this format to a larger one. But do not forget to accordingly change the format number 25 in the program FDVRED,
otherwise you will get wrong numbers.

4.1.2. Parameters for all other Programs

The large set of parameters which are needed in all programs of SLIMFORP (but OTM) also needs adjustment according to the country to be forecast. They are stored in a file called "Param".
These are for Sweden:

```
parameter \(n s=39\), nca \(=38\), nemps \(=39\), ngov \(=25\), ncaps \(=1\)
parameter matfxm \(=400\), ninvit \(=1\), nmatrx \(=3\)
parameter npceb \(=65\), nsmax \(=65\)
parameter ns1 \(=40\), \(\mathrm{ns} 2=41\), \(\mathrm{ns} 3=42, \mathrm{~ns} 5=44\)
parameter nif \(=2, \operatorname{ncg}=31\)
parameter \(n p c e p=10\), nexpp \(=8\), nimpp \(=8\), nven \(p=9\)
parameter nempp=8, npmax \(=16, n x=20\), ngovp \(=1\)
parameter nfxmax \(=200\), \(\mathrm{nxe}=1, \mathrm{nxp}=1\), ncapp \(=1\)
parameter nins \(=1\), nstrs \(=0\)
parameter nname=33
matfxm \(=\) number of possible fixes in matrices (limited
    by the program size)
nca \(=\) number of columns in A matrix,
ncapp \(=\) number of parameters in capital sector
ncaps \(=\) number of capital sectors \(=\) number of columns
    in B matrix
\(\mathrm{ncg}=\mathrm{ngov}+6=\) number of columns in fdvred matrix
nempp \(=\) number of parameters in employment equations
nemps \(=\) number of employment sectors
nexp \(=\) num. of param in export equations,
nfxmax \(=\) maximum nr. of fixes of fdv
ngov \(=\) number of government columns of final demand
ngovp \(=\) number of government equation parameters
nif = number of integers per floating word; 2 on pdp,
    1 on univac
    nimpp \(=\) number of parameters in import equations
    nins \(=\) number of investment sectors
    ninvit \(=\) number of investment iterations; 1 if there
        is no dependence of investment on current
        production; otherwise 2.
    nmatrx \(=\) number of matrices \(a, b, b r i d g e\), etc used
    nname \(=n c g+2=n g o v+8\)
    npceb \(=\) number of pce items before bridge table
    npcep \(=\) number of parameters in the pce equations
    npmax \(=\max\) number of years to be forecast
    ns \(=\) number of rows in A matrix
    \(\mathrm{ns} 1=\mathrm{ns}+1\)
    \(\mathrm{ns} 2=\mathrm{ns}+2\)
    \(n s 3=n s+3\)
    \(n s 5=n s+5\)
    nsmax \(=\) maximum of ns, ncaps and npceb
    nstrs \(=\) number of construction sectors
    nvenp \(=\) number of parameters in inventory equations
    \(n \mathrm{n}=\) number of exogenous items such as population
    nxp = number of parameters of exgeneous equations
```


c
c
c
c fortran unit numbers of direct access files
parameter lu $1=1, \operatorname{lu} 2=2, \operatorname{lu} 3=3, \operatorname{lu} 4=1, \operatorname{lu} 5=3$
integer* 4 k 0
Actually only the values on the 10 first parameter cards have to be changed. Comment cards following the parameter statements explain the meaning of these parameters. For example, if your A Matrix has 78 rows, you change the first card to read " $n s=78$ " where it now says " $n s=39$ ". (Although the number of columns in the A matrix, nea, may be smaller than the number of rows, the first nca rows must correspond one-to-one with the columns. The extra rows may be used for physical indexes, or for special detail; they do not enter into the logic of the model.) The last line in the parameterfile,
integer* 4 kO
makes sense only on a 16-bit word machine. It means that 4 bytes should be used for storing $k 0$. If your machine has no such instruction, throw away this card. Note also the definition of the parameter nif. If your machine uses a 32 or 36 bit word, you must set nif $=1$.

4.1.3. Parameters used in the Printing Routines

Likewise, you should modify the file "printpar", which for Sweden is just
parameter $n p 12=33, \operatorname{np} 12 p 1=34$
c $\quad \mathrm{np} 12=\mathrm{ngov}+\mathrm{B}$,
c $\mathrm{np} 12 \mathrm{p} 1=\mathrm{np} 12+1$
c the next parameters are used only in the matrix
c listing routines parameter ncfd $=32$, nlab $=10$
parameter nyrmax $=5$
c ncfd = number of components of final demand (=np12-1)
c nlab $=$ number of labels $=4+2 *$ nmatrx
c nyrmax $=$ maximum number of years to be listed in one
c run
Only the first 2 parameter lines need revision, the last one has to stay as it is, for all countries, due to the requirements in the programs.

4.2. Data-statements

There are quite a number of data statements in the programs which need some changes depending on the country you are forecasting.

4.2.1. Data Statement in OTM

There are three data statements in OTM:
data fdn/'pce ','exp ','imp ','ven ','ofi',
\& '201 ','202 ','203 ','204 ','205 ','206 ','207 ',
\& '208 ','209 ','210 ','211 ','212 ','251 ','252 '.
\& '253','254','255 ','256 ','258 ','259','260'.
\& '261','262 ','res '/
data key/0,107,108,106,109,110,111,112,113,114,115,
\& 116, 11'7,118,119,120,121,122,123,124,125,126,127,
\& 128,129,130,131,132,133/
and
data cap /'cap'/. am /'am'/. bm /'bm'/, br /'br'/, pce /'pec'/
the first two being country specific and closely related to each other.
In $f d n$ one specifies the abbreviations (three characters) of the final demand sectors which have to be in line with the abbreviations used in fdunames. The only change necessary here is to remove the government names (in this case from 'ofi' to 'res' as there are 25 government sectors in Sweden), and fill in as many names as your country has, instead. In each number corresponds to the column number where the element mentioned in $f d n$ is stored. In Sweden for example 'imp' is the 108 th column in the I/O table Note that pce is mentioned but not addressed in key (number 0). This sector has just been kept for the sake of completeness.

The third data statement contains the titles of the matrices ($\mathrm{A} M, \mathrm{BM}, \mathrm{BR}$), the personal consumption (PCE) and capita sectors (CAP) names. A change in this statement will probably only be needed when mayor changes are being made to OTM (e.g. more than one capital sector).

4.2.2. FDV - Names

The element fdunames, which comes into the programs by means of 'include', just consists of one data statement, which for Sweden is:
data name /'ofi', '201','202','203','204','205','206'
\& ,'207','208','209','210','211','212','251','252','253'
\& ,'254','255','256','258','259','260','261','262','res'
\& ,'exp','pce','imp','ven','cap','xog'
\& ,'lpr','emp' /
Only the "government names" need revision (first three lines). If ngov=3, then we need 'gv1', 'gv2', 'gv3' instead of 'ofi',, 'res' -- and no more.
It is important that the names 'gv1', 'gv2', ..., 'gvn', 'exp', 'pce', 'imp', 'ven', 'cap'. 'xog' stay in the specified order, which corresponds to the order in which the forecast results are written out to device LU2 (see later). 'emp' has to be the last entry in fdonames, any other number of names needed can be inputted between 'xog' and 'emp'.

4.3. Titles

Part of the data preparation is also to make a set of titles to go with your numbers. These titles are to be written on a file in the format
format (4x,5a4,24x,5a4)
in the following order:
line $n r$.

1	comment card (e.g.nr of titles in each group)
$1+1$	intermediate sector 1
\vdots	\vdots
$1+n s$	\vdots
$1+n s+1$	intermediate sector $n s$ (nr of rows)
\vdots	investment sector 1
\vdots	\vdots

```
1+ns+ncaps investment sector ncaps (nr of columns in
    B matrix)
1+ns+ncaps+1 P
1+ns+ncaps+npceb private consumption sector npceb
1+ns+ncaps+npceb+1 employment sector 1
:
1+ns+ncaps+npceb+nemps
1+ns+ncaps+npceb+nemps+1
:
1+ns+ncaps+npceb+nemps+nx
investment sector ncaps (nr of columns in B matrix)
```

 private consumption sector 1
    ```
    private consumption sector 1
:
:
.
.
employment sector nemps
employment sector nemps
exogeneous variable 1
exogeneous variable 1
:
:
exogeneous variable nx
```

```
exogeneous variable nx
```

```

The titles in Sweden start:

39 sectors, 1 investment, 65 consumption, 39 employ,

1 jordbruk och jakt
Zskogsbruk
3fiske och fiskevard
4 gruvor och mineralbrott
5skyddad livsmedelsindustri
6konkurr. livsmedelsindustri
agriculture and hunting forestry
fishing
mining
sheltered food industry competitive food industry

For better reading of the output we have provided space for titles in two languages, one language in each column. At the moment of printing the results one can chose the language by setting a specific parameter in the input control file of the printing routines (to be explained later). The second column of titles, if wanted, should start at column 49 , but they are not a must.

\subsection*{4.4. Control Input for the Printing Routines}

The printing routines SUMPERINT and MATLIS need control parameters to drive the amount and sequence of the output printed. These parameters are practically country-independent. Only the lines with the titles for the different sectors change with the country one is modelling. We refer to section 5 where the programs are described in detail.

\subsection*{4.5. Input for the Scenarios}

These inputs are of course country specific, but only in relation to the numbers used, and not to the format. Therefore we refere to the corresponding section 5 of this guide where the programs which prepare the scenarios are being discussed.

\section*{5. Execution of SLIMFORP}

In part 2 of this guide you find a brief overview of the programs which belong to SLIMFORP. In this part you will have referenced each program again, but in more detail, and takingn into consideration computer and country peculiarities as well.

Of course you will have to actually read the programs if you want to understand what they do in every detail. Part 5 is designed to make the acquaintance with them easier and more of a pleasure than a burden. We discuss here each program, putting at the beginning of each paragraph the name of the main program and subroutines to be compiled, as well as the input and the output devices needed. (To some readers the expression "logical unit" might be more familiar than "device", but the latter expression is kept throughout this guide). A consistent notation has been chosen for the file names. A file name starting with "Mass-" is always a mass storage file (fast I/O, to be accessed with ATRAN). A filename ending with "bin" is a random access file, created with "define file" (on the PDP \(11 / 70\), or with a similar command on another machine). File names and program names will be written in capitals. In Appendix 4 an abbreviated version of the same story is given.

\subsection*{5.1. OTM - One Table Maker}

Compilation: otm
Input: device5 = otminput (input/output table in standard form)
Output: device \(1=\) am (input/output matrix)
device \(2=b m\) (capital flow matrix)
device \(3=\) fdv (final demand vectors)
device \(6=\) eqs (equation parameters)
device \(B^{=}\)br (bridge matrix for personal consumption expenditure)
The first program to tackle is OTM (one table maker) which prepares all of the data input for SLIMFORP on the basis of one input/output table. The program begins with a set of parameters explained in section 4 (4.1.1. Parameters in OTM).

Change the values of the parameters in the three "parameter" statements to match your table. Their meaning is explained in the comment cards immediately following each "parameter" statement. Then move to the "data fdn/" statement and modify it to have as many of the "govn" names as there are government columns in your matrix. (This number appeared as ngov in the parameter statements.) Then modify the next line by putting under each name the number of its column. Here pee \(=\) personal consumption expenditure, imp \(=\) imports, exp \(=\) exports, and gov1, gov2, etc, are the government columns. In order to produce a correct table you should give a " \(O\) " as the column number of pce, although it is written in another column. (The pee part will be added in the program automatically, even if not specified !!).
Depending on the storage mode of your 1/O table the read command has to be changed (columns or row wise).
You must now prepare your input/output flow table in the form of card images by columns, with ten entries per card.

These cards will be read by the statements:
```

 do \(20 j=1, n c\)
 20 read (5,22) (a(i,j),i=1,nri)
22 format(10x,10f7.0)

```
where \(n \pi i\) is the number of rows and \(n c\) is the number of columns in the entire table, counting the final demand columns and any definitional columns, such as "total intermediate sales", not actually used by the model. Note that each column begins on a new card. Imports must appear as a negative column, rather than as a positive row as in most statistical publications. All of the personal consumption expenditure and the capital investment vectors should be side-by-side. The file with these card images is to be called OTMINPUT.

OTM is a rather important and at the same time flexible part of SLIMFORP. It is possible here to input exogeneous parameters which will be written out to device 6 (= EQS). Their names and positions within the table have to be counted as government sectors and be treated with special care. Employment can also be started in the same way the exogeneous variables get started. It is, however, also possible to input by hand some values to EQS or to start these variables in FIXRED. To start with, however, you should not plunge into these complicated issues, but only run a simple I/O table. Now compile OTM and run OTM with the OTMINPUT file described above as its standard input.

You might encounter an error message when running OTM, specially when writing to device 3 (=FDV) if the sum of capital or pce gets too big. The corresponding format which would need adjustment is:

52 format ( \(1 \mathrm{x}, \mathrm{a} 4, \mathrm{i} 2, \mathrm{i} 4,10 \mathrm{f} 8.0\) )
But you must not forget to also change the format in FDVRED (to be discussed later) when you read in the figures written to device 3 ( \(=\mathrm{FDV}\) ). In FDVRED it is:

25 format(a3,i1,i2,i4,10fB.0)
After having executed OTM you can make changes or corrections to the different output files which are to be put into mass-storage files with some of the next programs.

\subsection*{5.2. MATRED - Matrix Reader}

Compilation: matred and atran
\begin{tabular}{ll} 
Input: \(\quad\) & \begin{tabular}{l} 
device \(5=\) am (input/output matrix) \\
device \(5=\mathrm{bm}\) (capital fow matrix)
\end{tabular} \\
device \(5=\mathrm{br}\) (bridge matrix) \\
Output: \(\quad\)\begin{tabular}{l} 
(one after the other) \\
device \(6=\) checkfile \\
and \\
device \(13=\) Mass-BM (capital fow matrix, mass storage) \\
\\
device \(14=\) Mass-AM (input/output matrix, mass storage) \\
device \(16=\) mass-BR (bridge matrix, mass storage) \\
(one after the other)
\end{tabular}
\end{tabular}

This program takes some of the output created by OTM and makes mass storage files out of it to allow faster access. The files \(A M, B M\) and \(B R\) created by OTM can be taken as they are and need no handling before executing MATRED, except when you encounter errors or want to make some additions. Errors can also be corrected by executing MFIXRD, which will be explained later. Thus there is no need to run OTM more than once.

MATRED has to be executed three times, in order to put the A-Matrix (intermediate flow), the B-Matrix (capital flow) and the BR-Matrix (bridge matrix) into three mass storage files.

The format of the input file is always the same. Each file begins with a card giving the number of rows and columns in the matrix it contains. Then comes the matrix, flve coefficients per card, in the format

10 format(a2, a3,5(2i3, f9.3))
In each of the five triplets, there comes first the row number, then the column number, then the coefficient. The order of the cards or of the coefficients is of no consequence to the results. Here is an example from the Swedish model:
am 3938 , number of rows and columns
am \(110.034704150 .241771160 .14460217 \ldots\)
am \(190.0001151120 .0004911140 .018788121 \ldots\)

If you are using UNIX the program will take care of assigning the proper output device numbers to the different input files. If you are on another machine you should take care of this part yourself (depending on the implementation of ATRAN). The device \(6=\) checkfile will always be created for control purposes.

\subsection*{5.3. FDVRED - Final Demand Vectors Reader}

Compilation: fdvred
Input: device \(5=\) yes + year1 + fdv (control parameters and final demand vectors)
Output: device \(6=\) checkfile device LU3 = fdvbin (final demand vectors, random access)
Similar to the previous program, FDVRED makes a binary file from one of the outputs produced by OTM. This output is a random access file with fixed record length. Its organisation can be seen in Appendix 1.
The input to FDVRED in Sweden is for example:

\section*{1}

\section*{75}
exp 751 1156. 263. 87. 2378. 575. 557...
\(\exp 7511\) 334. 4016. 1135. 554. 0. 708...
\(\exp 7521\) 425. 0. 205. 0. 252. 0...
exp \(7531 \quad\) 0. 1558. 5. 0. 8B. \(\quad\) 0...
\(\operatorname{imp} 751\) 2728. 473. 65. 5753. 1748. 2621...
:
The first line is just a " 1 ", to indicate that you are starting from scratch, (no other option is allowed), the second line is the last two digits of the base year and then comes the fle FDV created by OTM.

\section*{NOTE:}

You should now remember to change format 25 if you had changed format 52 in OTM!

\subsection*{5.4. EQRFD - Equation Reader}

Compilation: eqred, tuck and atran
```

Input: device 5 = yes + eqs (control parameter and equation parameters)
Output: device 17 = Mass-eqs1 (parameters of equations for government,
pce, exports and exogeneous variables)"
device 18 = Mass-eqs2 (parameters for capital investment)
device 19 = Mass-eqs3 (parameters for imports and inventory, and
triangulation order)
device 20 = Mass-eqs4 (parameters for employment equations and
control variables)

```

This routine reads the equations of the model; the personal consumption expenditure bridge table -- if any, the aggregation code for the investment equations, and the triangular order of the input-output sectors. The type of equation speoified by a card is indicated by its first three letters, as follows:
```

gov government expenditures
pce personal consumption expenditure
exp exports
imp imports
cap capital investment
ven inventory
emp employ
xog exogenous variables
bri bridge table between pce categories and input-output sectors
iag aggregation code for investment sectors
itr triangulation order of input-output sectors
etc.

```

A sample input can be:
1
\begin{tabular}{lllr}
\(\exp\) & 1 & 1 & 1156. \\
\(\exp\) & 2 & 1 & 263. \\
\(\exp\) & 3 & 1 & 87. \\
\(\exp\) & 4 & 1 & 2378. \\
\(\vdots\) & & & \\
\(\vdots\) & & & \\
\(\operatorname{imp}\) & 1 & 1 & 2728. \\
\(\operatorname{imp}\) & 2 & 1 & 473. \\
\(\operatorname{imp}\) & 3 & 1 & 65.
\end{tabular}
\begin{tabular}{lllr} 
pce & 64 & 1 & 967. \\
pce & 65 & 1 & 3010.
\end{tabular}
itr
\begin{tabular}{rrrrrrrrrrrrrrl}
35 & 10 & 20 & 2 & 27 & 9 & 11 & 28 & 24 & 16 & 32 & 31 & 19 & 23 & \(\ldots\) \\
4 & 36 & 33 & 12 & 29 & 26 & 3 & 21 & 5 & 1 & 6 & 7 & 38 & 37 & \(\ldots\)
\end{tabular}

The first line of the input is a " 1 " to indicate that we are starting from scratch (also here it is not allowed to do anything else). In SLIMFORP the "equation" only consists of the value of the variable in the base year (as you can easily see by comparing the figures). It is up to the user to input more sophisticated equations (by changing the input file EQS).
In each equation, the first four letters identify the type of variable, and each parameter is identified by first, the sector number to which it applies, and second, by the number of the parameter in the equation. Each card is read with the format
10 format(a3,2x,5(2i3,f9.0))
this is, five parameters can be read by card. The resulting output for the government sectors is a three dimensional matrix, so that each element of each column of the government matrix may have its own equation. It need not necessarily carry just government columns; it may also be used for private, nonmarket services, or for exports divided by destination, or whatever other portion of final demand needs more columns. These extra column go into the count for the parameter ngov and their names appear in the first ngov names in the file FDVNAMES (just a data statement, included in many programs with \#include).
If you want you can also add by hand some exogeneous parameters for the equations which are then stored on a mass sortage file, together with other parameters to be listed below. But exogeneous variables and employment can also be inputted in FIXRED at a later stage.
The last text to be read in EQRED is itr, the triangulation order of the matrix. It is followed by ns sector numbers written in the right order of computation. In Sweden for example, sector 35 will be calculated first, then sector 10 , sector 20 , etc. and at last sector 39.

The output of EQRED is mass storage files to be accessed with the subroutine ATRAN. These mass storage files are used in the forecast part and if required the development of the parameters through the years can also be recorded here.

\subsection*{5.5. MFIXRD - Matrix Fixes Reader}

What is addressed under the label MFIXRD are actually two programs, MFIXRD and FIXMAT which always have to be executed together, one after the other.

\subsection*{5.5.1. MFTXRD - Fixes Reader}

Compilation: mfixrd, linint
\begin{tabular}{ll} 
Input: & device \(5=\) year \(1+\) matfixes (control parameters and fixes for the \\
& matrices" \\
Output: & device \(6=\) checkfile \\
& device \(L U 2 F=\) random access file with fixes
\end{tabular}

MFIXRD reads the fixes for the \(A M, B M\), and \(B R\) matrix from device 5 and stores them in a random access file LUZF.

If you are now starting from scratch, you can disregard the different types of fixes and their format, and you simply create the following file matfixes:

But if you are an experienced user, here is an example of possible fixes:
bmf,i \(191751.00080 \quad 2.000905 .000\)
999
amf,g \(13076 \quad 1.00080 \quad 5.20090\)
amf,g \(\quad 1-175 \quad 2.00080 \quad 1.50090\)
\(\begin{array}{llllll}5 & 2 & 4 & 8 & 10 & 40\end{array}\)
999
brfil 18752.000800 .020
brfil \(14751.00080 \quad .010\)
999

The general format of a line in the matfixes input is:
xxx,fnnnmmm y1 x1 y2 x2 y3 ... with the format (a3, \(1 \mathrm{x}, \mathrm{a} 1,2 \mathrm{i} 3,7(\mathrm{i} 3, \mathrm{f} 7.0\) )), where
xxx : matrix name (bmf, amf or brf)
f: \(\quad\) type of fix (i,g or \(l\), to be explained below)
nnn: row number of fix \((>0)\)
mmm : column number of fix
\(\mathrm{mmm}>0\) column mmm will be fixed
\(\mathrm{mmm}=0\) all elements of the row will be fixed
mmm < 0 a group of columns will be fixed; the number of elements in that group and the elements are specified in the next line with format (ni4)
yi: last two digits of year to be fixed
xi: fix parameter for the year i specified
After all fixes for one matrix have been inputted there has to follow a line starting with " 999 ". This is the flag to show that the fixes for the first matrix are finished and the fixes of the next matrix are to begin. The order of fixes, first for BM , then for AM , at last for BR , is to be kept. If there are no fixes for a matrix just the line with " 999 " has to be inputted.

If a further fix of a matrix refers to a group already specified, the same negative column number as previously used can be inputted again. In this case a blank line follows, instead of the group specification. It is not possible to specify more than 100 groups.

The program can handle the following types of fixes:
i: index growth.
Index fixes have to be inputted in pairs, i.e. ( \(\mathrm{y} 1, \mathrm{x} 1\) ), ( \(\mathrm{y} 2, \mathrm{x} 2\) ), etc, where yi is the last year and xi the index which will be applied to the coefficient of that year. The first index has to be given for the base year and all subsequent indices will be normalized to that base year index. The indices for the intermediate years not specified are calculated by interpolating linearly between two specified years. In case of missing indices for all years till the end of the forecast period, the last index will be applied.
In the above example the element in row19, column1 of the B-Matrix is multiplied with index 1. in the base year (75), index 2 . in the year 80 and index 5 . in the last year (90). For the missing years the indices will be set by interpolating linearly between the given ones.
g : exponential growth rate (= continuously compound annual).
The fix given is a percentage, i.e. \(x i=5.2\) means \(5.2 \%\) growth. For each rate you specify begin and end year, in the example all elements of row 13 have a \(1 \%\) exponential growth between 1976 and 1980, and then a \(5.2 \%\) growth till 1990 (or baseyar-1+npmax, if npmax is smaller than 16). Missing rates till npmax (last year of the forecast) are set equal to the last fix.
1: logistic growth.
The years specified in this fix are of no importance as the fix will start from the second year (counted from the base year) and will be applied up to npmax. The two parameters to be inputted are:
\(\mathrm{x} 1=\) first change
\(x 2=\) reduction of first change
x 1 and x 2 are percentages similar to the parameters in the g mode.
Then
\[
\begin{aligned}
& y(t+1)=y(t)^{*}(1+x 1) \\
& y(t+2)=y(t+1) *(1+x 1 n) \text { and } x 1 n=x 1 *(1-x 2)
\end{aligned}
\]

In the example the element in row1, column6 of the BR-Matrix will have a logistic growth with \(\times 1=2\). and \(\times 2=0.02\).
Several fix cards may be used for the same item, but only the same type of fix can be used in all of them. Each new line has to start from the year it finished on the previous card.

If the column number of a fix is 0 , it will be interpreted as an across the row change; all coefficients in the row will follow the specified path. Thus the third fix card above specifies that all of the coefficients in row 13 will grow exponentially by \(1 \%\) between 1976 and 1980; the increase is linear. Finally there is the possibility of specifying a group of coefficients in a row which all follow the same fix pattern. The fourth card, with the -1 in the column number position, notifies the program that the next card will define the group to which the fix on this card applies. This group will be called group 1; the next card says that there are 5 columns in this group and that they are \(2,4, B, 10\) and 40 .

In the examples we have observed a careful spacing of the input. Under UNIX this spacing may be replaced by a comma at the end of each field.

In Appendix 1 you can see how the random access file LU3F is organized, this is specially useful if you are testing the program on your machine and the results are not the ones you expect.

\subsection*{5.5.2. FIXMAT - Fix Matrices}

Compilation: fixmat, atran
\begin{tabular}{ll} 
Input: & device \(\mathrm{LU} 2 \mathrm{~F}=\) random access fixes and modes \\
& device \(13=\) Mass-BM (capital flow matrix) \\
device \(14=\) Mass-AM (input/output matrix) \\
Output: \(\quad\) & device \(16=\) Mass-BR (bridge matrix) \\
& device \(6=\) checkfle \\
& device \(L U 2 F=\) random access fixes and modes \\
& device \(11=\) Mass-BM-New (fixed capital flow matrix) \\
& device \(12=\) Mass-AM-New (fixed input/output matrix) \\
& device \(15=\) Mass-BR-New (fixed bridge matrix)
\end{tabular}

FTXMAT reads the file LUZF created by MFIXRD and imposes the fixes on the elements in the \(A M, B M\) and \(B R\) matrix respectively. In the course of this run the \(\mathrm{AM}, \mathrm{BM}\) and BR matrices are rewritten on another device. But not only the base year is stored again in the new devices, but all subsequent years up to the last year are written out, if available, or set to zero. Thus it is necessary to execute MFIXRD and FTXMAT even if you do not have any fixes for the matrices.

\subsection*{5.6. FIXRFID - Final Demand Fixes Reader}

Compilation: fixred, prefix, linint, atran
Input: \(\quad\) device \(5=\) fixes (fixes for final demand)
device LU1 = previous fixes
device LU3 \(=\) fdvbin (created in fdvred), with last year dates and final demand data for the base year.
device \(20=\) Mass-eqs4, size of common, for internal reasons.
Output: device \(6=\) checkfile
device LU1 = fixbin (random access file with fixes and their types).

This program processes the fix cards which are used to specify various scenarios in the final demands and starts the exogeneous variables. The fixes are read from a file called fixes. The first card of this file is the title for that scenario. The second card gives the starting year of the forecast, the terminal year and a variable called kurz. If kurz \(=1\) we get a very reduced control output on device 6, if kurz \(=0\) the control output is much longer.

The input file fixes is very similar to the previously explained file matfixes. The formats are nearly the same, only there are more types of fixes in the final demand fix reader. An example of fixes can be:
example
format
demonstration 28 february
75,80,1,
ofi,iz \(0,75,1.000,78,2.000,80,1.000,90,1.000\), pce,iz \(30,75,1.000,78,1.500,80,1.000,90,1.000\), pce,cz 9,75,.1,80,5000.,90,3000.,
imp,iz \(18,75,1.000,78,1.500,80,1.00,90, .300\),
imp, az 12,75,7456.,78,8000.,80,7000.,90,5000., ven, az 10, 75,1616.,78,1000.,80,500.,90,100., exp.iz -1.75, 1.0, \(78,2.0,80,1.0,90,2.0\),
\(\begin{array}{llllll}5 & 1 & 2 & 3 & 4 & 5\end{array}\)
xog,az 1,75,1000.,78,2000.,90,5000.,
999
999
The general format of the fixes is:
xxxtz nnn y1 x1 y2 x2 ... ...
with
xxx : final demand sector to be fixed, it is one of the elements of the array XXXX name (fdvnames)
\(t\) : type of fix, to be explained below
z: indicator to tell whether previous fix on this sector has to be cleared ( z \(=\) " \(z\) ") or not ( \(\mathrm{z}=\) any other character )
nnn: element to be fixed:
\(n n n>0\) the element "nnn" of \(x x x\) will be fixed
\(\mathrm{nnn}=0\) all elements of xxx are to be fixed, this is not allowed for imports and inventory
\(\mathrm{nnn}<0\) a group of elements in xxx will be fixed, the next card specifies which elements belong to it and how many there are; this option is not allowed for imports and inventory, there may not be more than 30 groups.
yi : last two digits for which the fix is applied
xi : parameter of the fix
After a group fix has been inputted it must be followed by either a card with the number of elements of that group and their specification, or a blank card if the group has been specified previously. The input format for the group specification is (20i4).

The types of fixes can be:

\section*{a: actual value;}
for each year yy you specify the value x1 to be used; the intermediate years not indicated will be interpolated linearly.
m: multiplication;
together with each year you specify the value xi which should be multiplied with the corresponding element of the forecast result
i: index;
similar to the index option in MFIXRD for each year, starting with the base year, you specify the index. The indices are normalized to the base year and will be applied to it.
c: constant term:
to be added to the value produced by the model's equation. For each year you specify the value xi to be used as a constant term.
\(\mathrm{g}: \quad\) growth rate;
this rate is used in the same way as in MFIXRD. It is applied to the base year. If a growth rate is not specified for each pair of years, a linear interpolation will be made to cover the missing years. The rate stays constant for all years between the last specified and the last year of the forecast.
The input data for the growth rate fix is:
xxxtznnn y1 x1 y2 x2 y3 x3 y4
(each growth rate is surrounded by beginning year and ending year).
\(r\) : works like the \(g\)-mode;
it can be used after any a, c or m fix, with some exceptions depending on the sector. xog only allows an " \(r\) " following an " \(a\) " fix; there is no " \(g\) " allowed for \(\operatorname{xog}\) (as it has to get started first); the r-fix following another fix has to start where the previous fix ended. The input format for the rfix is the same as for the g-fix.
The " \(z\) " in the fifth column of an input card means that any previous fix on this item should be removed. If you have another line of fixes for exactly the same element the " \(z\) " has to be replaced by a blank (this is always needed for the r -fix). On a "continuation" fix the first year must be identical to the last year of the preceding card.

The signal for stopping the fixes of final demand is a line starting with " 999 ".
The next input is the fixes for employment, which have the same format as the fixes for final demand, also followed by a " 999 " line.

In Appendix 1. you can see the contents of the random access file LU1 \(=\) fixbin.

\subsection*{5.7. RUNLOOP - Forecast}

This program is the forecasting part of SLIMFORP and therefore its most important part. Up to now it is written so as to produce a slim output, i.e. simple, with no exogeneous influences and \(5 \%\) exponential growth rate in the final demand sectors if not specified differently in the fixes. At the same time, here is room to make extensions to SLIMFORP and produce a more sophisticated forecast.

We have succeeded in having SLIMFORP running on our small inhouse computer PDP 11/70 for quite a number of sectors. This was only possible after splitting FORE (the original forecast program) into many main programs. As we think that the guide gains in clarity if we deal with small portions at a time we will explain here all separate parts of FORE (as we use them on our machine for big

\section*{input/output tables)}

The last part in this section suggests an integration of all parts of the forecast into one program (main programs become subroutines).

\subsection*{5.7.1. ZERO 2-Zero LUZ}

Compilation: zeroZ
\begin{tabular}{ll} 
Input: & none \\
Output: & device LUZ = modoutbin
\end{tabular}

The only function of this program is to zero out the forecast output which is written on a random access file and is called modoutbin throughout the forecast.

\subsection*{5.7.2. ZERONT - Zero NT}

Compilation: zeront
```

Input: device LU1 = fixbin (fixes of final demand)
Output: device LU1 = fixbin (fixes of final demand)

```

Similar to the previous program, this one is executed to zero out the "first year" counter \(n t\). This variable, which is stored in the first record of the random access file fixbin drives the amount of years to be forecast.

\subsection*{5.7.3. BEGIN}

Compilation: begin, exog, atran
Input: device \(\mathrm{LU} 1=\) fixbin (fixes of final demand) device LU3 \(=\) fdvbin (final demand vectors) device LUZ = modoutbin (forecast output) device 17 = Mass-eqs 1 (equations for government, pce, exports and exogeneous variables)
Output: device LU1 = fixbin (fixes of final demand) device LU2 = modoutbin (forecast output) device 17 = Mass-eqs 1 device \(6=\) checkfile device 21 = finn (UNIX solution)
The forecast starts with this program. Each new year of calculations has to start here, and this is also the reason that this program checks as to whether the last year of the forecast ( \(n p m a x\) ) has been reached. If so, a control variable is set to stop the run and is stored in the first record of FIXBIN.
When using UNIX on the PDP 11/70 at IIASA you will see that the file finn will be created on the "end-condition" and system commands are then used to check whether the forecast is finished or not. Depending on the system and computer you are using the solution might be different.
In section 5.7 .7 you will find a solution which relies solely on FORTRAN statements. That option of course assumes that all programs fit in core at once, and that you have only one main program (FORE) and all the rest are subroutines.

In BEGIN the subroutine EXOG is called. It starts the exogeneous variables which are inputted in FIXRED and therefore stored in fixbin. The sectors government, export and pce are calculated, according to the equations read in from device \(17=\) Mass-eqs1. In SLIMFORP these equations are very simple, as has already been mentioned, and only a standard \(5 \%\) growth is given to these sectors. lf there are any future values known beforehand, and stored in FDVBIN, they are taken here as well and superimposed on the standard growth. The year count is also increased in BEGIN, and therefore fixbin is used as input
(actual year) and output (new year). The results are written to modoutbin, in the appropriate locations of the random access file. For the organisation of the forecast output (modoutbin) we refer to Appendix 1.

\subsection*{5.7.4. FDVEC - Final Demand Vector}

Compilation: fdvec, invest, fixfin, distri, atran
Input: \(\quad\) device LU1 = fixbin (fixes for final demand) device LUZ \(=\) modoutbin (forecast output) device LU3 \(=\) fdvbin (final demand vectors) device 11 = Mass-Bm-New (capital matrix) device 15 = Mass-BR-New (bridge matrix) device \(18=\) Mass-eqs2 (capital investment equations)
Output: device LUZ = modoutbin (forecast output) device LU1 = fixbin device 1B = Mass-eqs2
device 6 = checkfile
device 21 = finn (UNIX solution)
The program FDVEC is only used to call three subroutines, INVEST, FIXFIN and DISTRI. The first subroutine, INVEST, calculates the equation for investment ( \(5 \%\) growth in SLIMFORP) with parameters taken from device \(18=\) Mass-eqs2, or superimposes on it future values stored in fdvbin. There is the possibility of making the investments dependent on current production, which would result in a rerun of the investment part (and associated parts, i.e. the whole FDVEC part). The parameter ninvit drives this option and in the subroutine INVEST the pointer is set to perform the correct action. This pointer is the same as used in BEGIN (to drive the number of forecast years) and is stored in the first record of the random access file fixbin.

The next subroutine in FDVEC, FIXFIN, puts the fixes taken from the random access file fixbin on government, export, personal consumption and investment. Of course, if there are any data for these sectors in FDVBIN (future values). these are superimposed on the fixes. The result is written into the model output file modoutbin.

The last subroutine in this group is DISTRI. It calculates the total final demand by adding up all sectors and aggregating, if necessary, capital and personal consumption (taken from device 11 and 15 respectively). The total final demand is transmitted to the other programs by storing it temporarily in the slot of inventory in modoutbin.

\subsection*{5.7.5. IOCOMP - Input/Output Computations}

Compilation: iocomp, atran
Input: \(\quad\) device LU1 = fixbin (fixes of final demand)
device LU3 = fdvbin (final demand vectors)
device LUZ = modoutbin (forecast output)
device 12 = Mass-AM-New (A-Matrix of \(1 / 0\) coefficients)
device 19 = Mass-eqs3 (equations for imports and inventory, and order of triangulation)
Output: device LUZ = modoutbin (forecast output)
device 19 = Mass-eqs3
This part of the forecast makes the input/output calculations. The factors to do this are read in from device \(12=\) Mass-AM-New. In the course of the Seidlprocess IOCOMP also fixes imports and inventory, taking the values from fixbin. or superimposing future values stored in fdvbin. If none of the values are there
imports are increased by \(5 \%\) (SLIMFORP) and inventory is left as it is, reading the equation parameters from device \(19=\) Mass-eqs3. Here is the place where you would input more sophisticated equations for both sectors.
After the computations have been done the result is written to modoutbin.

\subsection*{5.7.6. EMPLOY - Employment}

Compilation: employ, atran, ...
\begin{tabular}{ll} 
Input: & \begin{tabular}{l} 
device LU1 = fixbin (fixes of final demand) \\
device LUR \(=\) modoutbin (forecast output) \\
\\
device \(20=\) Mass-eqs 4 (equations for employment)
\end{tabular} \\
Output: & \begin{tabular}{l} 
device \(L U R=\) modoutbin \\
device \(20=\) Mass-eqs 4 \\
device \(6=\) checkfile
\end{tabular}
\end{tabular}

The employment calculations are performed here. It depends on the user what type of equations he or she uses. In device \(20=\) Mass-eqs 4 the parameters for employment can be found, if they have already been read in OTM. In fixbin you can also find employment fixes if you chose FIXRED to input them there.
For Norway, for example, the author of the forecast program chose to read in the first employment values in FIXRED and to calculate from them the parameters of the employment equations, which are the ratio "output/employment". Each new year in the forecast either takes the employment figures in FIXRED (if lasyr (ngov+6) \(>\) nyr), or else it calculates the new employment figures:
\(\operatorname{emp}(t)=q(t) /\left(\right.\) empeq \(\left.{ }^{*} e^{* *} 0.05\right)\)
i.e. a \(5 \%\) growth on employment.

The user should not forget that the first five words in device \(20=\) Mass-eqs 4 are meant to store the sizes of the different equation records (neco(i)). The next locations are then used to store the parameters of the employment equations and, if they are time dependent, the new set of parameters can also be written out each year.

\subsection*{5.7.7. FORE}

Compilation: fore, zeront, zero2, begin, exog, fdvec, invest, distri,fixfin, iocomp, employ, atran
Input: device LU1 = fixbin device LUZ = modoutbin device LU3 = fdvbin device 11 = Mass-BM-New device \(12=\) Mass-AM-New device 15 = Mass-BR-New device 17 = Mass-eqs 1 device \(18=\) Mass-eqs2 device 19 = Mass-eqs3 device \(20=\) Mass-eqs 4
Output: \(\quad\) device LU1 = fixbin device LUZ = modoutbin device \(17=\) Mass-eqs 1
device \(18=\) Mass-eqs2
device 19 = Mass-eqs3
device \(20=\) Mass-eqs 4
device \(21=\) Finn (UNIX solution)
device 6 = checkfile

If you are working on a big computer where all the forecasting programs can fit at once then this section is of interest to you. It shows you how to put all programs as subroutines into one big program called FORE, and thus solving the "loop-problem" with plain FORTRAN statements.

The program is simply the sequence of all the forecast programs described up to now. This means, that in order to understand the different routines of the program it is only necessary to look at the preceding sections, there you will find them referenced as main programs.

\section*{6. Printing}

There are some routines which allow the user to look at the results of the forecast in a convenient way, and to chose which things he or she wants to look at. The printing routines are called SUMPRINT and MATLIS, the plotting routine is called GRAPH. There are some helping programs that go with these programs, they will all be explained in this section of the guide.

\subsection*{6.1. MAKTIT - Make Titles}

Compilation: maktit
Input: device \(5=\) titles
Output: device LU5 = titbin (random access files with titles)
This program makes a random access file out of the titles given as input, in order to allow faster access to them. The titles inputted have to be in strict order:

> titles of intermediate sectors
> titles of capital sectors
> titles of personal consumption sectors
> titles of employment sectors
> titles of exogeneous items

The program is capable of reading two columns of titles (two languages), which are inputted with the format:
( \(4 \mathrm{x}, 5 \mathrm{a} 4,24 \mathrm{x}, 5 \mathrm{a} 4\) )
The first line of the input is interpreted as comment card and will be skipped. The resulting random access file is organized in a straight forward way. You will find details of it in Appendix 1. Both subsequent programs, SUMPRINT and MATLIS, use the resulting random access file as input to produce the listings.

\subsection*{6.2. SUMPRINT - Summary Printing}

Compilation: sumprint, growth, nelm, engl1, engl2, enlgl3, engl5
```

Input: device 5 = sumprintdat
device LUZ = modoutbin
device LUS = titbin
Output: device 6 = sumtab (listing of results)
device 7 = checkfile

```

SUMPRINT is designed to make a summary printing of the results of the forecast (stored in modoutbin). Actual values and growth rates between given pairs of years are printed. As in modoutbin only the final demand sectors are stored, these are the only items that can be outputted here. In order to get values for the intermediate sectors you are referred to the program MATLIS, to be explained later.

The subroutines used in the program SUMPRINT do not need any explanation; from their names one can easily understand their function. The subroutines ENGL.. are designed to allow for printing in two different languages.

The control input to this program, on device 5 , is a rather lengthy file. With it you decide on the amount of data which is going to be printed. The contents of this file is:
line variable name format
\begin{tabular}{|c|c|c|c|}
\hline 1 & heading 1 & & 5a4,24x,5a4 \\
\hline 2 & heading 2 & & 5a4,24x,5a4 \\
\hline 3 & heading 3 & & 5a4,24x,5a4 \\
\hline 4 & heading 4 & & 5a4,24x,5a4 \\
\hline 5 & heading 5 & & 5a4,24x,5a4 \\
\hline 6 & heading 6 & & 5a4,24x,5a4 \\
\hline 7 & comment card (dummy) & & \\
\hline 8 & nlinmx, jahrb, nengp & \(8(6 x, 14)\) & \\
\hline 9 & comment card (dummy) & & \\
\hline 10 & z1 z2 z3 .. z10 & 2014 & \\
\hline 11 & comment card (dummy) & & \\
\hline 12 & y1 x1 y2 x2 .. .. y10 x10 & 2014 & \\
\hline 13 & comment card (dummy) & & \\
\hline 14 & ix iy text & & 2i2,5a4,20x,5a4 \\
\hline 15 & ix iy text & & 2i2,5a4,20x,5a4 \\
\hline : & & & \\
\hline 14+ngov+9-1 & ix iy text & & \(2 \mathrm{i} 2,5 \mathrm{a} 4,20 \mathrm{x}, 5 \mathrm{a} 4\) \\
\hline \(14+\mathrm{ngov}+9\) & comment card (dummy) & : & \\
\hline \(14+\) ngov \(+9+1\) & ix iy text & & : \\
\hline \(14+n \mathrm{gov}+9+\mathrm{nx}\) & ix iy text & & 2i2,5a4,20x,5a4 \\
\hline
\end{tabular}

The first six lines of the file are headings which have to be specified in all cases. Here again one can input two columns (starting the second column at position 46) in order to have the choice between two languages.
nlinmx : maximum number of lines to be printed on one page, should be set according to the lineprinter used, but 55 seems to be a reasonable value
jahrb: beginning year of the forecast, i.e. base year of your input-output table
nengp : parameter to choose the language, \(=0:=\) language of first column, \(=\) 1:= language of second column.
zi : last two digits of years to be listed, up to a maximum of 10 years
yi xi : pair of years between which growth rates should be calculated and printed, up to a maximum of 10 pairs
ix : position of final demand element in device LU2 (modoutbin). This is fixed for all elements and should not be changed, otherwise you will not get the right figures. The positons are:
\begin{tabular}{ll}
1 & government 1 \\
2 & government 2 \\
\(:\) & : \\
ngov & government ngov \\
ngov+1 & export \\
ngov+2 & private consumption (pce) \\
ngov+3 & import \\
ngov+4 & inventory change \\
ngov+5 & capital investment \\
ngov+6 & employment \\
ngov+7 & gross production \\
ngov+8 & exogeneous variables (assumptions)
\end{tabular}

\section*{ngov+9 gross national product}
iy : flag for printing, \(=1:=\) figures for that element will be printed, \(=0:=\) figures for that element will not be printed.
text : text to be used for that element of final demand, again here one can have two languages, the second starting at column 46 .
Final demand figures are printed in the order the lines "ix iy text" are arranged in sumprintdat. If e.g.the line for imports is listed before the line for pce, then imports are written first, independent of their appearance in LUZ (madoutbin).

Exogeneous variables and gross national product are always printed in the last position, no matter where you specify them, and they are also printed for iy \(=0\) (no printing).

A sample sumprintdat and the corresponding output can be found in Appendix A6.

\subsection*{6.9. MATLIS- Matrix Listing}

Similar to MFIXRD, MATLIS consists of two programs which have to be run together, but for the sake of clearness we explain them separately.

\subsection*{6.3.1. WRITAB - Write A, B, and BR Matrix}

Comprilation: writab, atran

With this program some parts of the \(A, B\), and \(B R\) matrices are selected, according to the input in MATLISDAT, and stored in a random access file for further output with MATLIS.

\subsection*{6.3.2. MATLIS - Matrix Listing}

Compilation: matlis, headm, growth, engl1, engl4, engl6
Input: device \(5=\) matlisdat (control file for the printing)
device LUZ \(=\) modoutbin
device LU4 \(=\) matbin (created by WRITAB)
device LU5 \(=\) titbin (created by MAKTIT)
Output: \(\quad\) device \(6=\) matpi (listing of the results)
When using MATLS you will get a listing of the contribution of the intermediate sectors to the different final demand sectors. Also here you get absolute values and growth rates, with the restriction that you have to specify exactly five years and five pairs of years, otherwise the listing does not make much sense.

Similar to sumprintdat the control input file matlisdat drives the output of the program MATLIS.

The format of the file is as follows:
\begin{tabular}{|c|c|c|}
\hline line & variable & format \\
\hline 1 & numyr,jahrb,ng, nlinmx, nengp & B(6x, i4) \\
\hline 2 & z1 z2.. 25 & 2014 \\
\hline 3 & y1 x1 y2 x2.. y 5 x 5 & 2014 \\
\hline 4 & head 11 head 12 & 5a4,24x,5a4 \\
\hline 5 & head 21 head 22 & 5a4,24x,5a4 \\
\hline 6 & head 31 head 32 & .... \\
\hline 7 & head 41 head 42 & .... \\
\hline 8 & : & \\
\hline 9 & : & \\
\hline 10 & : & \\
\hline 11 & : & \\
\hline 12 & : & \\
\hline 13 & head 101 head 102 & \\
\hline 13+1 & text 11 text 12 & 5a4,24x,5a4 \\
\hline \(13+2\) & text 21 text 22 & : \\
\hline : & & \\
\hline \(13+\mathrm{ngov}+8\) & text ... & 5a4,24x,5a4 \\
\hline \(13+\) ngov + B+1 & numsec, valmi & 6x, 14, 6x, 44.0 \\
\hline \(13+\mathrm{ngov}+8+2\) & comment card (dummy) & \\
\hline \(13+\mathrm{ngov}+8+3\) & s1 s2 s3 ..sns & 2013 \\
\hline \(13+\mathrm{ngov}+8+4\) & & \\
\hline
\end{tabular}
head i: standard headings which have to be inputted in any case. The second language can be written starting at column 45 .
text i: titles of the different sectors, written in the order in which they are stored in modoutbin, and this is:
gov 1
gov 2
:
gov ngov
exports
imports inventory investment employment gross production assumption
(This is the same order as in sumprintdat, only that gross national product is missing and will not be printed).
numyr : number of years to be printed, has to be 5 in all cases
jahrb: base year of the forecast
ng : number of growth rate pairs to be printed, has to be 5 in all cases.
nlinmx: maximum number of lines that fit on a priting page (e.g.55)
nengp : flag to control the language used, \(=0:=\) language of column \(1,=1:=\) language of column 2 .
\(\mathrm{zi}: \quad\) last 2 digits of the five years to be printed
yi xi : last 2 digits for each pair of years for which the growth rates should be calculated.
numsec : number of sectors which should be printed (at most ns)
valmi: minimum value below which no figures should be printed.
si : sector ifor which a printing should be produced. The order of the sectors determine the order of printing.
In the same way as in SUMPRINT you can input two columns of text in order to produce output in two different languages. The parameter nengp in the input file drives the language. In Appendix 6 a sample input and the resulting output can be seen.

\section*{7. Use of exogeneous variables}

In the programs of SLIMFORP as they are now, a maximum of \(n x\) exogeneous variables can be read in, but they are not being processed or updated. This section of the guide is meant to show the user where these variables are stored so that he or she can use them whenever required.

The exogeneous variables are stored in the array \(\operatorname{xog}(n x)\) which is an element of:
common/comain/kontrl(10), ncfdv, niter, nt, nyr, date, dinpc,fin,
* kurz, lasyr(nname), neco(5), xog(nx), title(10), jahra, jahrz.
* idum(ns1)

This common is transmitted to the different main program by storing it in the first record of the random access file LU1 = fixbin (created with define file).

The content of this first record is:
nwe, kntrl(i), \(\mathrm{i}=1\), nwc
nwc \(=\) number of words in common, calculated in FIXRED, and with kntrl(i) stores the whole content of common/comain/.

The exogeneous variables are initialized only in FIXRED and written to LU1 for the first time.

In the random access file \(L U Z=\) modoutbin the exogeneous variables are stored in the location:
\[
1+(\text { nt*ngov }) \div 8
\]
i.e. the last item after government, final demand and employment. These exogeneous parameters are first written to LUZ \(=\) modoutbin in the subroutine EXOG (in BEGIN). In each year of the forecast the set of exogeneous parameters is written out to LUZ = modoutbin, so that a complete series is available after the end of the forecast.

\section*{8. Use of more complicated equations}

As you may recall, the name SLIMFORP stems from SLIM-Forecast-Program, SLIM has the connotation of simple in the sense that unless fixes are imposed externally, the final demand sectors simply grow exponentially with \(5 \%\). Nevertheless the user can specify more complicated growth patterns (i.e. change the existing patterns) of the economy. One way of doing this is to impose fixes on intermediate sectors, as well as on the final demand sectors.

Another solution would be to change the equation parameters and also to change the equations. The program OTM is written in such a way that it generates the equation parameters for final demand, creating only one parameter, the initial value of final demand in the base year. The parameters resulting from OTM are stored in the file EQS and the program EQRED then makes several mass storage files out of these parameters. You can either change OTM to generate other parameters (the ones you prefer), or you can change the file EQS manually (in the editor).

At the same time you must take care of the program-parameters which refer to the equation parameters of the different final demand sectors,

The next step is to look then at the programs (or subroutines) where the equation parameters are used and make there the changes which correspond to your representation of the economy of the country you are modelling.

In the subroutine EXOG (program BEGIN, or FORE, if you have merged all programs together) the equations for personal consumption expenditure (pce), exports and government are solved.

The capital equations are in subroutine INVEST (program FDVEC of FORE).
In the program IOCOMP (or program FORE) the imports and inventory changes are dealt with. The exact place in the code where the equations are calculated can easily be found.

Finally the employment equations are to be found in the program EMPLOY (or subroutine EMPLOY in program FORE).

The input/output coefficients can be addressed to and changed in MFIXRD, at a later stage there is no "entry" to them.

It is now up to the user as to how the equations of the final demand sectors are dealt with. The data handling routines in SLIMFORP are desig ned so that one can store the equation parameters for all years of the forecast for later use, or to be printed (with routines that the user has to write). By studying the programming code the user can easily find how this is done and so design his or her own pieces.

\section*{1. Appendix 1: Organisation of Random Files}

\subsection*{1.1. Random access file LU1 (fixbin), created in FIXRED.}
define file LU1 (nrlu1, nwlu1, u,m1) nrlu1 \(=3 *\) npmax +40
nwlu1 \(=\) nfxmax*nif
\begin{tabular}{|c|c|c|}
\hline record nr. & variable name & contents \\
\hline 1 & kontrl(10) & size of common, nr. of final demand fixes, nr. of employment fixes \\
\hline 2 & modfio(1-ns,1-2) & mode of fixes of sectors in imports (1) and inventory (2) \\
\hline 3 & isign(1-nfxmax) & position of name of that fix (for xog only 1 and 2) \\
\hline \multicolumn{3}{|l|}{4
5} \\
\hline \(:\)
\(:\) & isg(1-nfxmax) & group 1 to group 30 of fixes (no groups allowed for inventory and imports) \\
\hline \multicolumn{3}{|l|}{32 ( 32} \\
\hline \multicolumn{3}{|l|}{33} \\
\hline 34 & modes(1-nfxmax) & \begin{tabular}{l}
type of fix for each of the fixes \\
1: rest \\
2: constant \\
3: multiplication \\
4: kode \(=\) xog
\end{tabular} \\
\hline 35 & is(1-nfxmax) & position of element to be fixed (in gov(1-ns,1-ncg)), negative for groups \\
\hline 36 & \(y(1,1-n f x m a x)\) & \\
\hline 37 &  & \\
\hline \(:\) & \(y(\mathrm{j}, 1-\mathrm{nfxmax})\) & final demand fixes by year \\
\hline \(36+\) npmax-1 & y(npmax, i-nfxmax) & \\
\hline \(36+\) npmax & modes(1-nfxmax) & type of employment fixes \\
\hline \(36+\) npmax +1 & is(1-nfxmax) & location of element fo be fixed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & (in \(\operatorname{gov}(1-n s .1-2)\) ) \\
\hline \(38+\) npmax & y(1,1-nfxmax) & \\
\hline \multirow[t]{2}{*}{\(38+\mathrm{npmax}+1\)} & & \\
\hline & \(y(j, 1-n f x m a x)\) & employment fixes by year \\
\hline : & : & \\
\hline : & , & \\
\hline \(38+2 *\) npmax-1 & y(npmax, 1-nfxmax) & \\
\hline 38+2*npmax & \(y 1(1,1-n s), y 2(1, n s)\) & \\
\hline \(38+2 * n p m a x+1\) & & \\
\hline - & \[
\mathrm{y} 1(\mathrm{j}, 1-\mathrm{ns})
\] & import and inventory fixes \\
\hline : & y2(j.1-ns) & by sector \\
\hline : & : & \\
\hline \multirow[t]{2}{*}{\(38+3 *\) npmax -1} & y1(npmax, 1-ns). & \\
\hline & y2(npmax,1-ns) & \\
\hline
\end{tabular}
1.2. Random access file LU2 (modoutbin), used in the forecast.
```

define file LUZ (nrlu2,nwlu2,u,m1)
nrlu2 = npmax*(ngov+8)+1
nwlu2 = nsmax*nif

```
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { record } \\
\text { nr. }
\end{gathered}
\] & variable name & content & \\
\hline 1 & \begin{tabular}{l}
jahra,np. \\
title(20)
\end{tabular} & beginning year, nr.of years, title & \\
\hline 2 & \(\operatorname{gov}(1-n s, 1)\) & government-1 & (yr 1) \\
\hline 3 & : & : & \\
\hline : & : & ; & : \\
\hline : & : & : & : \\
\hline \(1+\mathrm{ngov}\) & gov(1-ns,ngov) & government-ngov & : \\
\hline \(1+\) ngov +1 & \(\exp (1-\mathrm{ns})\) & exports & : \\
\hline \(1+\mathrm{ngov}+2\) & pce(1-npceb) & pce (private cons. exp.) & ; \\
\hline \(1+\mathrm{ngov}+3\) & pa(1-npceb) & imports & \\
\hline \(1+\mathrm{ngov}+4\) & ven(1-ns) & inventory (final demand slot) & \\
\hline \(1+\) ngov +5 & v(1-ncaps) & investment (capital) & \\
\hline \(1+\mathrm{ngov}+5\) & (1-ncap) & employment & \\
\hline \(1+\mathrm{ngov}+7\) & : 1 ) & output (gross production) & \\
\hline \(1+\mathrm{ngov}+8\) & \(\operatorname{xog}(1-n x)\) & xog (assumptions) & (yr 1) \\
\hline \(1+(\mathrm{ngov}+8)+1\) & \(\operatorname{gov}(1-\mathrm{ns}, 1)\) & government-1 & (yr 2) \\
\hline \(1+(\mathrm{ngov}+8)+2\) & gov(1-ns,1) & government-2 & (yr \\
\hline : & ; & : & \\
\hline \(1+\left(\right.\) now + B) \({ }^{\text {\% }}\) & xog(1-ns, 1) & & \\
\hline \(1+(\mathrm{ngov}+8) * 2\) & \(\operatorname{xog}(1-\mathrm{ns}, 1)\) & xog (assumptions) & (yr 2) \\
\hline \[
\begin{aligned}
& 1+(\text { ngov }+8)^{*} \\
& (\text { npmax }-1)+1
\end{aligned}
\] & & government-1 & (yr npmax) \\
\hline \(:\) & : & : & : \\
\hline : & : & : & : \\
\hline  & : & : & \\
\hline \(1+(\) ngov +8\() *\) npmax & & xog (assumptions) & (year npmax) \\
\hline
\end{tabular}
1.3. Random access file LU3 (fdvbin), created by FDVRED.
```

 define file LU3 (nrlu3, nwlu3,u,m1)
 nrlu3 = (ngov +6)*npmax +1
 nwlu3 = nxmax*nif
    ```
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { record } \\
& \text { nr. }
\end{aligned}
\] & variable name & content & \\
\hline 1 & \[
\begin{aligned}
& \text { jahr1,nefdv, } \\
& \text { lasyr(1-nefdv) }
\end{aligned}
\] & base yr, nr. of vectors, last yr for which vector is available & \\
\hline 2 & \begin{tabular}{l}
\(\operatorname{gov}(1-n s m a x, 1)\) \\
\(\operatorname{gov}(1-n s m a x, 2)\)
\end{tabular} & fd for gov-1 fd for gov-2 & (yr 1)
\(:\) \\
\hline \(:\) & , & : & \\
\hline i + ngov & gov(1-nsmax, ngov) & fd for gov-ngov & \\
\hline \(1+\mathrm{ngov}+1\) & \(\operatorname{gov}(1-\mathrm{nsmax}, \mathrm{ngov}+1)\) & exports & \\
\hline : & & pce & \\
\hline : & : & imports & \\
\hline ; & : & inventory & \\
\hline \(:\) &  & investment & \\
\hline \(1+\mathrm{ngov}+6\) & \(\operatorname{gov}(1-\mathrm{nsmax}, \mathrm{ncg})\) & employment & (yr 1) \\
\hline \(1+(\) ngov +6\()+1\) & gov1 & : & (yr 2) \\
\hline : & : & : & \\
\hline \(: 10\) & : & : & \\
\hline \(1+(\) ngov +6\() * 2\) & emp & : & (yr 2) \\
\hline \[
\begin{aligned}
& 1+(\text { ngov }+6)^{*} \\
& (\text { npmax }-1)+1
\end{aligned}
\] & gov1 & : & (yr npmax) \\
\hline : & , & : & ; \\
\hline \(:\) & : & : & \\
\hline \(1+(\mathrm{ngov}+6) *\) npmax & emp & : & (yr npmax) \\
\hline
\end{tabular}
1.4. Random File LUZF (matfixbin) , created in MFIXRD and used in FIXMAT.
```

define file LUZF (nrluZf,nwlu2f,u,m1)
nrlu2f = npmax*nmatrx + 7 + 100
nwluZf = matfxm*nif

```
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { record } \\
\text { nr. }
\end{gathered}
\] & variable name & contents \\
\hline 1 & nfixes(1-nmatrx) & nr . of fixes for all matrices \\
\hline 2 & irow(1-nfix) & rows of fixes in B-Matrix \\
\hline 3 & jcol(1-nfix) & columns of fixes in B-Matrix \\
\hline 4 & irow(1-nfix) & rows of fixes in A-Matrix \\
\hline 5 & jcol(1-nfix) & columns of fixes in A-Matrix \\
\hline 6 & irow(1-nfix) & rows of fixes in BR-Matrix \\
\hline 7 & jcol(1-nfix) & columns of fixes in BR-Matrix \\
\hline \(7+1\) & \(y(1,1-n f x)\) & \\
\hline : & & \\
\hline : & : & fixes of B-Matrix for every \\
\hline  &  & year \\
\hline \(7+\) npmax & y(npmax, 1-nfix) & \\
\hline 7+npmax +1 & \(y(1,1-n f i x)\) & \\
\hline 7+2*npmax &  & fixes of A-matrix for every \\
\hline 7+2*npmax & y(npmax,1-nfix) & year \\
\hline 7+nmatrx*2+1 & y(1,1-nfix) & \\
\hline  &  & fixes of BR-Matrix for every \\
\hline 7+nmatrx*npmax & y(npmax, 1-nfix) & year \\
\hline 7+nmatrx*npmax +1 & ne,nsg(1-ne) & group-1 of fixes \\
\hline 7+nmatrx*npmax+100 & ne, nsg(1-ne) & group-100 of fi \\
\hline
\end{tabular}

\section*{\(-39\)}
1.5. Random access file LU5 (titbin) , created by MAKTIT.
define file LU5 (nrlu5, nwlu5, u,m1)
nrlu5 \(=n s+n c a p s+n p c e b+n e m p s+n x+10\)
nwlu5 \(=20\)
```

record variable contents
nr. name
1 title(1-10), etitle(1-10 tit-1 language1, tit-1 language2
title(1-10), etitle(1-10 tit-2 language 1, tit-2 language2
nrlu5 title(1-10), etitle(1-10 tit-nrlu5 language 1, tit-nrlu5 language2

```
1.6. Random access file LU4 (matbin) , created by WRITAB and used in MATLIS.
```

define file LU4 (nrlu4,nwlu4,u,lay)
nrlu4 = ns*nmatrx*nyrmax
nwlu4 = nsmax*nif

```
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { record } \\
& \mathrm{nr}
\end{aligned}
\] & variable name & content & \\
\hline 1 & a(1,1-ncaps) & \multirow{3}{*}{Mass-BM-New} & \\
\hline : & & & \\
\hline ns & a(ns,1-ncaps) & & \\
\hline \(\mathrm{ns}+1\) & \(\mathrm{a}(1,1\)-nca) & \multirow{3}{*}{Mass-AM-New} & \multirow{3}{*}{year 1} \\
\hline & & & \\
\hline \(2^{*} \mathrm{~ns}\) & \(\mathrm{a}(\mathrm{ns}, 1-\mathrm{nca})\) & & \\
\hline \(2 * n s+1\) & a(1,1-npceb) & \multirow{3}{*}{Mass-BR-New} & \\
\hline : & & & \\
\hline \(3^{*} \mathrm{~ns}\) & \(a(n s, 1-n p c e b)\) & & \\
\hline 3*ns+1 & a(1, i-ncaps) & \multirow{3}{*}{Mass-BM-New} & \\
\hline  &  & & \\
\hline 4*ns & \[
a(n s, 1-n c a p s)
\] & & \\
\hline 4*ns +1 & a(1,1-nca) & \multirow{3}{*}{Mass-AM-New} & \multirow{3}{*}{year?} \\
\hline & & & \\
\hline 5*ns & \(a(n s, 1-n c a)\) & & \\
\hline \(5 * n s+1\) & a(1,1-npceb) & \multirow{3}{*}{Mass-BR-New} & \\
\hline & & & \\
\hline 6*ns & \(a(n s, 1-n p c e b)\) & & \\
\hline (numyr-1)*3*ns+1 & a(1,1-ncaps) & \multirow[b]{2}{*}{Mass-BM-New} & \multirow[b]{3}{*}{year-numyr} \\
\hline (numyr-1)*ns & \[
a(n s, 1-n c a p s)
\] & & \\
\hline : & : & Mass-AM-New & \\
\hline : & : & \multirow[t]{2}{*}{Mass-BR-New} & \\
\hline numyr*3*ns & (ns,1-npceb) & & \\
\hline
\end{tabular}
1.7. Order of print-elements in SUMPRINT and MATLS


\section*{2. Appendix 2: Connection of Input and Output Files}

\section*{PREPARATION (1)}

INPUT
PROGRAM OUTPUT \(=\) INPUT PROGRAM



(*) UNIX-solution

PRINTING (1)


PRINTING (2)

OUTPUT \(=\) INPUT PROGRAM OUTPUT


\section*{Notes:}
xxxbin : random access file created with define file Mass-xxx : mass storage file to be accessed with ATRAN checkfile : file with control information

\section*{3. Appendix 3: Main Programs and Subroutines}
\begin{tabular}{|c|c|c|}
\hline Loop & Programs otm & \begin{tabular}{l}
Subroutines \\
setots \\
(only necessary for UNIX) punch5
\end{tabular} \\
\hline & matred & atran \\
\hline & fdvred & - \\
\hline & eqred & atran tuck \\
\hline & mfixrd & linint \\
\hline & fixmat & atran \\
\hline & fixred linint atran & prefix \\
\hline fore: & \begin{tabular}{l}
zero2 \\
zeront
\end{tabular} & \\
\hline & begin & exog atran \\
\hline & fdvec & \begin{tabular}{l}
invest \\
fixfin \\
distri \\
atran
\end{tabular} \\
\hline & iocomp & atran \\
\hline & employ & atran \\
\hline
\end{tabular}

In case the whole forecast part is one program, fore is the main program and all main programs in it become subroutines.
maktit
sumprint
nelm
growth
headr
engl1
engl2
engl3
engl5
\begin{tabular}{cc} 
writab & atran \\
matlis & \begin{tabular}{c} 
growth \\
headm \\
engl1 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
engl4
\end{tabular}
\end{tabular}

\section*{4. Appendix 4: Short Sequence of actions}

\subsection*{4.1. Definitions}
\begin{tabular}{ll} 
RUNxx: \(:\) & \begin{tabular}{l} 
Actions for the program xxx. \\
xxx: name of main program, or name of first program in a set, or \\
name of a set of programs
\end{tabular} \\
Comment: & \begin{tabular}{l} 
Some explanations.
\end{tabular} \\
Compilation:
\end{tabular}

\subsection*{4.2. Programs}

\section*{RUNOTM}
\begin{tabular}{|c|c|}
\hline Comment: & Makes the model table. \\
\hline Compilation: & otm (punch5) \\
\hline Call: & otm.out < otminput > eqs \\
\hline Input: & device \(5=\) otminput \\
\hline Output: & \[
\begin{aligned}
& \text { device } 1=\text { am (A-matrix) } \\
& \text { device } 2=\text { bm (B-matrix) } \\
& \text { device } 3=\text { fdv (fnal demand) } \\
& \text { device } \delta=\text { eqs (equations) } \\
& \text { device } 8=\text { br (BR-matrix) }
\end{aligned}
\] \\
\hline Action: & Prepare the file otminput, check that format 52 is big enough for you figures. If you change it, then format 25 in fdvred should be changed as well. \\
\hline
\end{tabular}

\section*{RUN...MATRED (A, B, BR)}

Comment: Reads the formatted \(A, B\), and \(B R\) matrices and makes mass storage files out of each of them.

\section*{\(-50-\)}

Appendix 4
\begin{tabular}{|c|c|}
\hline Compilation: & matred (atran) \\
\hline Call: & matred.out <am matred.out <bm matred.out <br \\
\hline Input: & device \(5=\mathrm{am}\) device \(5=\mathrm{bm}\) device \(5=\mathrm{br}\) \\
\hline Output: & ```
device 6 = checkfile
device 13 = Mass-BM (capital flow)
device 14 = Mass-AM (intermediate flow)
device 16 = Mass-BR (bridge matrix)
``` \\
\hline
\end{tabular}

\section*{RUNFDVRED}

Comment: Reads the final demand vectors for the base year and any values known beforehand for the future, it then makes a random accessfile out of them.
Compilation: fdvred
Call: \(\quad\) cat yes year 1 fdv|fdvred.out
Input: device \(5=\) yes + year \(1+\mathrm{fdv}\)
Output: device \(6=\) checkfile device LU3 = fdvbin (random access)
Action: Add possible future values for the final demand in fdv; if you had changed format 52 in otm you should change format 25 here.

\section*{RUNEQRED}

Comment: Reads the equation parameters created in otm and writes them on mass storage files.
Compilation: eqred (tuck, atran)
Call: cat yes eqs | eqred.out
Input: device \(5=\) yes + eqs
Ohtput: device \(17=\) Mass-eqs 1 (equations for gov, pce, exp and xog)
device \(18=\) Mass-eqs2 (capital investment)
device \(19=\) Mass-eqs3 (imports, inventory, triang.order)
device \(20=\) Mass-eqs4 (employment, sizes of common-parts)
Action: Possible changes in the equations parameters, or in general a different eqs file (not the one from otm)

\section*{RUNMFIXRD}

Comment: Prepares and makes coefficient changes on \(\mathrm{AM}, \mathrm{BM}\) and BR matrices.
Compilation: mfixrd (linint) fixmat (atran)
Call: cat yearl matfixes |mfixrd.out fixmat.out

Input: for mfixrd: device \(5=\) year \(1+\) matfixes
Output: for mfixrd: device 6 = checkfile device LU2F = random acces fixes and modes
Input: for fixmat: device LU2F = random access fixes and modes device 13 = Mass- BM
device \(14=\) Mass -AM
device \(16=\) Mass- BR
Output: for fixmat: device \(6=\) checkfile device 11 = Mass-BM-New device \(12=\) Mass \(-\mathrm{AM}-\mathrm{New}\) device 15 = Mass-BR-New
Action: Prepare the inputfile matixes which determines the development of the coefficients of the matrices.
Important: You have to run this program in all cases, even if there are no fixes, as all other years of the matrices also are set

RUNFTXRED

Comment: Sets up fixes for the forecast years for the final demand vectors (exp, imp, ven, cap, gov, pce, emp) and initializes the exogeneous vectors (xog).
Compilation: fixred (prefix, linint, atran)
Call: \(\quad\) fixredout < fixes
Input: device 5 = fixes (title of run and fixes) device LU1 = previous fixes (not allowed) device LU3 \(=\) fdvbin (created in fdvred), with last year dates and fdv in the base year. device \(20=\) Mass-eqs4 (size of equations in common)
Output: device \(6=\) checkfile device LU1 = fixbin (title and dates, types of fixes and fixes)
Action: Prepare the fixes for final demand.
Important: This program has to be executed even if there are no fixes,because the file fixbin will be accessed in the forecast and has to be created here.

\section*{RUNLOOP}

Comment: This is the actual forecasting part. It is set up as a shell loop due to the PDP :estrictions, but can be solved differently on different machines (see later).
Compilation: zerod zeront begin (exog, atran)
fdvec (invest, fixfin, distri, atran)
iocomp (atran)
employ (atran)
Call: zero2.out zeront.out
: top
```

    begin.out
        if -w /tmp/nyhus /swef / finn goto quit
        : inv
        idvec.out
        iocomp.out
        if!-w/tmp/nyhus/swef/finn/goto inv
        rm/tmp/nyhus/swef/finn
        employ.out
        goto top
        : quit
    Input: device LU1 = fixbin
device LUZ = modoutbin (forecast for the next year)
device LU3 = fdvbin
device 11 = Mass-BM-New
device 12 = Mass-AM-New
device 15 = Mass-BR-New
device 17 = Mass-eqs1
device 18 = Mass-eqs2
device 19 = Mass-eqs3
device 20 = Mass-eqs4
Output: device LU1 = fixbin
device LUZ = modoutbin
device 17 = Mass-eqs1 (n-th year)
device 18 = Mass-eqs? (n-th year)
device 19 = Mass-eqs3 (n-th year)
device 20 = Mass-eqs 4 (n-th year)
Action: Check for the correct implementation of the loop on your com-
puter.

```

\section*{Note:}

In case RUNLOOP is just one program you have to use RUNFORE

\section*{RUNFORE}

Comment: Main forecast program, has all actions of runloop in it.
Compilation: fore(zero2,zeront,begin, exog, atran,fdvec,invest, fixfin, distri,iocomp,employ)
Call: fore.out
Input: device LU1 = fixbin
device LUR = modoutbin
device LU3 = fdvbin
device 11 = Mass-BM-New
device 12 = Mass-AM-New
device 15 = Mass-BR-New
device 17 = Mass-eqs1
device 18 = Mass-eqs2
device 19 = Mass-eqs3
device \(20=\) Mass-eqs4
Output: device LU1 = fixbin
device LUZ \(=\) modoutbin
\[
\begin{aligned}
& \text { device } 17=\text { Mass-eqs1 } \\
& \text { device } 18=\text { Mass-eqs2 } \\
& \text { device } 19=\text { Mass-eqs3 } \\
& \text { device } 20=\text { Mass-eqs4 }
\end{aligned}
\]

Action: Check that fore really fits on your computer, it might be too large.

\section*{RUNMAKTIT}

Comment: Makes a random access files out of the titles for the different sectors
Compilation: maktit
Call: maktit.out < titles
Input: device \(5=\) titles
Output: \(\quad\) device LU5 \(=\) titbin (random access titles)
Action: Prepare all titles.

\section*{RUNSUMPRINT}

Comment: Makes summary listing of the forecast.
Compilation: sumprint (headr, growth, atran, nelm, engl1, engl2, engl3, eng15)
Call: \(\quad\) sumprint.out < sumprintdat >/tmp/nyhus/swef/sumtab
Input: device \(5=\) sumprintdat (parameters for sumprint)
device LUZ = modoutbin device LU5 = titbin
Output: \(\quad\) device \(6=\) sumtab (listing) device 7 = checkfile
Action: Prepare input for sumprint (sumprintdat).

\section*{RUNMATLIS}

Comment: Prints final demand vectors by sector of the economy.
Compilation: writab (atran)
matlis (growth, headm, engl1, eng14, engl6)
Call: writab.out<matlisdat matlis.out<matlisdat>/tmp/nyhus/swef/matpf
Input: for writab: device \(5=\) matlisdat (parameters for the programs) device 11 = Mass-BM-New device 12 = Mass-BM-New device \(15=\) Mass-BR-New
Output: for writab: device LU4 = matbin (transposed matrices) device 6 = checkfile
Input: for matlis: device 5 = matlisdat (parameters for the programs) device LUZ = modoutbin (forecast) device \(L U_{4}=\) transposed matrices
Output: for matlis: device \(6=\) matpf (listing)
Action: Prepare input for writab and matlis (matlisdat).

\subsection*{4.3. Description of each part in Runloop}

\section*{ZERO2}

Comment: Sets to zero the model output (modoutbin)
Compilation: zeroZ
Input: none
Output: \(\quad\) device LUZ \(=\) modoutbin (forecast)
ZERONT

Comment: set first year to zero
Compilation: zeront
Input: device LU1 = fixbin
Output: \(\quad\) device LU1 \(=\) fixbin

\section*{BEGIN}

Comment: Starts the forecast. Calculates government, export and pee demands, initailizes the exogeneous variable and gives known future values to government.
Compilation: begin (exog, atran)
Input: device LU1 = fixbin
device LU3 = fdvbin
Output: device LU1 = fixbin
device LUZ = modoutbin
device 17 = Mass-eqsi

FDVEC

Comment: Calculate investment, and if available take future values.
Put fixes on government, export, pce and investment and if available future values for government, export, pce and investment.
Distribution of pee, final demand and capital to the different sectors

Compilation: fdvec (invest, fixfin, distri, atran)
Input: device LU1 = fixbin device LUZ = modoutbin device LU3 = fdubin device 11 = Mass-BM-New device \(15=\) Mass-BR-New device 18 = Mass-eqs2
Output: \(\quad\) device LUZ \(=\) modoutbin device \(18=\) Mass-eqs2

10COMP
```

Comment: Makes input-output calculations. Puts fixes on imports and inven-
tory. Takes future values if available for imports and inventory.
Compilation: iocomp (atran)
Input: device LU1 = fixbin
device LUZ = modoutbin
device LUB = fdvbin
device 12 = Mass-AM-New
device 19 = Mass-eqs3
Output: device LUZ = modoutbin
device 19 = Mass-eqs3

```

\section*{EMPLOY}
```

Comment: Calculates employment.
Compilation: employ (atran)
Input: device $20=$ Mass-eqs4 device LUZ = modoutbin
Output: $\quad$ device LUZ = modoutbin device $20=$ Mass-eqs 4

```
5. Appendix 5: Sequence of Actions on the PDP \(11 / 70\) under UNIX
(1) Change the parameters according to your country in param and printparam
(2) Change the names of the output files data statement in atran to match your own directory /tmp/..../....
(3) Check if your directory name is specified in all the run-files.
(4) Prepare otminput to be used as input for otm (this is executed immediately after compilation)
(5) Set the correct names in fdvnames
(6) Compile all programs with FORALL.

This shellfile calls a number of other shells which can also be executed separately.
The set of commands in FORALL is:
```

for punch5 -c
for otm atran -c
mapotm (* this includes runotm)
for matred -c
mapmatred
for fdvred -c
map fdvred
for eqred -c
for tuck-c
mapeqred
for fixred -c
mapfixred
for fixmat -c
map fixmat
for prefix -c
for linint -c
for mfixrd -c
mapmfixrd
for zeront-c
map zeront
for zeroZ-c
map zeroZ
for begin -c
for exog-c
mapbegin
for fdvec invest -c
for distri fixfin -c
mapidvec
for iocomp -c
map iocomp
for employ -c
map employ
for maktit headm -c
for headr sumprint -c
for engll engl2 -c
for engl3 engl4 -c
for engl5 engl6 -c
for nelm growth -c
map maktit

```
```

mapsumprint
for writab matlis -c
map writab
mapmatlis

```

The command FOR is a shell:
f4p -i -id -tr:all -li:2 \(\$ 1 \$ 2\)
MAP is the shell:
linker \$1.obj atran.obj-i-l
(7) Prepare the file year 1 which is the last two digits of the base year of you forecast
(8) Prepare fixes for MFIXRD and FIXRED.

Prepare the titles for the sectors (MAKTIT).
Prepare input for SUMPRINT.
Prepare input for WRITAB.
(9) Run the whole set of programs with RUNALL. This shell file has a number of shell files which can be executed separately (similar to mapall). They are:
```

runamatred
runbmatred
runbrmatred
runfdvred
runeqred
runmfixrd
runfixred
runloop
runmaktit
runsumprint
p-raw -pri:lp/tmp/nyhus/swef/sumtab
runmatlis
p -raw -pri:lp/tmp/nyhus/swef/matpf

```

Normally the programs from RUNAMATRED to RUNEQRED need only to be executed once.
RUNMFIXRD and RUNFIXRED generate the different scenarios.
RUNLOOP is the forecast.
Different inputs to MAKTIT and SUMPRINT generate different listings.
The actions in each RUNxxx command can be seen when actually using the shell programs at IIASA.
(10) The following explanations are meant for computer users who are not familiar with UNIX. Files called F1.OBJ are compiled, unlinked fortran programs (F1 = main program) or subroutine).
Files called F1.OUT are compiled and linked fortran programs. In this case F1 can only be the name of a main program.
Files called FOROOn.DAT, \(n=1,2, \ldots\) are input or output files required by the fortran programs when reading/writing from/to devices \(1,2, \ldots\) (not 5 or 8). Files called \(\mathrm{xxx} / \mathrm{yyy} / \ldots / \mathrm{F} 1\) are just specially long file names for internal use in UNIX (the PDP operating system) and have no special meaning.

The meaning of some symbols and commands:
cp F1 F2
mv F1 F2
rm F1 F2
chmod nnn F1
command < F1
command \(>\) F2
cat F1 F2 ...
cat F1 FR command
p-xxx -yyy F1 FZ
14p-xxx -yyy F1 F'z
linker F1 F2-xxx
make an identical copy of F1, name it F'Z move or rename F1 to F2 remove or delete F1, FR, ... change mode of file F1 (internal use) command takes input from F1 (device 5) command writes output to F2 (device 6) merge F1, F2, ... to one file (this is used in connection with other commands, e.g. merge F1 and F2 and feed it as input (device 5) to command
print on the line printer F1 and FZ observing switches xxx yyy
call of the fortran compiler with options xxx, yyy
call of the linker with option \(X x x\)

\section*{6. Appendix 6: Sample inputs and outputs}

\subsection*{6.1. Sample input for SUMPRINT}

31 Osysselsattning
33 Lantaganden
34 ibrutto national produkt
employment
assumptions
gross national produ
*** exogenous items to be listed, in order for listing....

1 lexogenous \#1 exogenous \#1

\subsection*{6.2. Sample input for MATLIS}
```

numyr 5jahrb 75ng 5nlinmx 55nengp 0
75 76 77 78 80
75 76 76 76 77 77 78 78 B0 75 80
prognos for:
tillvaxttakt for:
inkop - intermediara
summa: intermediara
inkop - investeringar
summa:investeringar
inkop-konsumtion
summa: konsumtion
inkop-slutlig efterfragan
summa: slutlig efterfragan
offentliga investeringar
201allm. off. tjanster
202ratts och polisvasen
:
60naringslivets framjande
local no transla
261vag och gatuvasen
262ofordelat
statistisk residual
export
privata konsumtion
import
lagerinvestering
investeringar
syssel
bruttoproduktion domestic product
assumptions assumptions
numsec Evalmi 1.0
----****
11319181210 7 8 9 101112 1314151617 181920
2122 232425262728293031323334353637383940

```
6.3. Sample Output for MATLIS

\(\sim 1\)
0
0
0
0

FFORIRNS FOH:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1 JORDARIIK OCH JAKT} \\
\hline 5 & SKyIOnan I.jVSMF.OLTSIM \\
\hline 6 & K ONKUHR. I TVSHFUELSI \\
\hline 7 & DRYCKES Och Toraksva \\
\hline 6 & IEXTIL BEKIADH, LADE \\
\hline 9 & Ifavarilillnusipl \\
\hline 12 & Plastvaril nch kellisk \\
\hline 14 & GUPMI IVAKUTNOUSTPI \\
\hline 21 & AINNAN TILLVERKHINESI \\
\hline 20 & GYGGMADSINDUSTRI \\
\hline 25 & FARTI OCH DETALJHAND \\
\hline 26 & HISTAJHANG (ICH HOTEL \\
\hline 27 & SAMF AKOSFI. \\
\hline 30 & Bostansf npval.teing \\
\hline 31 & AMIIAN FASYIGH.FURVAL \\
\hline 33 & OVRITSA PRTVATA TJANS \\
\hline & SIMMHA: JNTERME.OIAYA \\
\hline \multirow[t]{2}{*}{1} & IHVESTERTHTAR \\
\hline & SUMMAIINVESTFRIWIOAR \\
\hline 1 & Arnil \\
\hline 2 & Knty \\
\hline 4 & MJOLKFRUMIKK TER \\
\hline 6 & FRUKT, GAIIISAKER \\
\hline 1 & Putatish \\
\hline 10 & AlJnka livgne. De.l \\
\hline 43 & Finsithotisf ARTIKl.AR \\
\hline & SIMMHA: KDMSUHITInH \\
\hline
\end{tabular}

2GIALLM. OFF. TJAFST
2ARRATTS ORH FOLISVA 203FARSVAR

20511ALSO nrH SJJKVAH 21 INARIHGSLIVETS FRAA
2I IVAF OCH GATUVASEH \(251 A L L H\) OFF: TJANST \(254 U T H I L N I I I I G\)
\(255 H A L S O\) nrII SJUKVAR 256 SIICIAI.VARO
259 KULTUR OCH REKREA STATTSTISK RESIUUAL
EXPGPT
\(\begin{array}{c:c}\infty & 0 \\ \infty & 000 \\ i & 0 \\ \sim & 000 \\ \sim\end{array}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & \\
\hline
\end{tabular}

完
 PROEFINS FOHI

SKOC:SHRUK
FISKF OR.H ISKF.VAMO FISKF Or.H FISKF.VAMN
GKUVOR OPH MIIJRALAR SKYODAD I. IVSHEDELSIIH KONKDRA. I IVSHFDEL.SI DKYCKES OCII TOGAKSVA
IEXIIL IFKLADH, LAOE. dolsincinlngraval o a MASSA FAFPHR OCH PAF GRAFISK IMN. FORLAF, PLASTVARU OGH KI HISK
PETROLEJMRAFFINADERI
 JoRD GCII STEMVALIIIAD
 ELEKTROIHOUSTRI SKEFPSVAKV, RATHYGGEE
 1ヵA HJO Jutva Sv! 73

us HJU Shvid y y yive

FRIGBHOS FOD:
 1978
-3169.
43.
-566.
19894.

\subsection*{6.4. Sample Output for SUMPRINT}

TILLVAXTTAKT FORI BRUTTO PROOUKPIO
627394.
692061.

OIIMnOOHd OLIflat

를 577982.
523479.559283.
SHEDEN - SCENARIO :
497523.

WRITINOS FOR:
\begin{tabular}{|c|c|}
\hline 1 & JOkDHRUK OCH Jakt \\
\hline 2 & SKOGSBRUK \\
\hline 3 & FISKE IICH FISKEVARU \\
\hline 4 & GRUVOR OCH MINFRALAR \\
\hline 5 & SKYOUAU I IVSMF.JELSIN \\
\hline 6 & KOUNKURR. LIVS'4t DELSI \\
\hline 7 & DRYCKES OCH THOAKSVA \\
\hline 8 & TEXTIL AFKLAOH, LADE \\
\hline 9 & TRAVARUIHDUSTRI \\
\hline 10 & hassa fapfer och pap \\
\hline 11 & GRAFJSK IMO., FORLAG \\
\hline 12 & PLASTVARU JJCH KFIHISK \\
\hline 13 & PETRILEHMRAFFIHATERI \\
\hline 14 & glimm I VarliInnustra \\
\hline 16 & JUFD OCH STEHVARUJHIN \\
\hline 17 & JARN STAI, ME.TALIVER \\
\hline 18 & OVHJg VFpkstangihnus \\
\hline 19 & FLEKTROTHDUSTRI \\
\hline 20 & SKEPISVApV, matitughe \\
\hline 21 & ANHAN TIL VEKKHIHGSI \\
\hline 22 & REP. HIISHALLSVARIIR, \\
\hline 2 & EL GAS Varlie ncll vat \\
\hline 24 & BYGGIJAIIS INUISTRI \\
\hline 25 & PAHTI HCH DETALJHAHO \\
\hline 26 & RFSTAURAHf, DCH MISITEL \\
\hline 27 & SAMFARDSFL \\
\hline 28 & POST OGH TELEVERK \\
\hline 29 & BANKER FINANS OCHIFD \\
\hline 30 & BOSTAOSFERVALTNIMR \\
\hline 31 & ANNAN FASTIGH.FORVAL \\
\hline 32 & UPPORAISSV. MASKIHUTH \\
\hline 33 & OVRIGA FPIVATA TJANS \\
\hline 35 & STATLIT, FORSAI.JHING; \\
\hline 36 & KOPMMUNAL FORSALJHIHS; \\
\hline 37 & AROETSHJALT I liEquter \\
\hline 30 & INEELLA FOKEITAGAR \\
\hline
\end{tabular}

FROGNOS FOR:
JORDARUK OCH JAKT

WFORNOS FOH:

SEKTIIV
8 nUs Solvorat

SEKTOR
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SEKTOR} \\
\hline 1 & HHOD \\
\hline 2 & K0t \\
\hline 3 & FISK \\
\hline 4 & M.IMt KPrnollk Trik \\
\hline 5 & SHOR, HAGFARIN \\
\hline 6 & FRIJKT, GPDHISAKEH \\
\hline 7 & POTATISN \\
\hline A & SOCKFR \\
\hline 9 & KAFFE \\
\hline 10 & ANINE I. TVSHEDEI. \\
\hline 11 & ALKOHOLFRIA DRYCKER \\
\hline 12 & ALKOHOLHALTIEA DFYCK \\
\hline 13 & TisBakS Vapith \\
\hline 14 & KI ADER \\
\hline 15 & REP, KLAOFH \\
\hline 16 & SKOR \\
\hline 17 & REP. SKOH \\
\hline 18 & HRITTO HYROR \\
\hline 2И & FL, STRMM \\
\hline 21 & GAS \\
\hline \(2 ?\) & Plytaride nratisie. \\
\hline 23 & ANNAT SRATJSLF. \\
\hline 24 & MO日LER, MATTOR \\
\hline 25 & HEP. MSAPIFR \\
\hline 26 & HHSHALLSYFXTILIER \\
\hline 28 & STORGE HHSHALLSHASKI \\
\hline 29 & HFP. StGphe lllighalls \\
\hline 30 & GLAS \\
\hline 3 ? & HUSHALLSARTIKLAR \\
\hline 33 & HUSHALLSSYSSI.OH \\
\hline 34 & LF.JNa TJAIISTER IISNH \\
\hline 35 & HEOICIISKA PROUUKTER \\
\hline 36 & TERAPEITISKA HJALPHE \\
\hline 37 & HALSOVARD \\
\hline 40 & BILAR \\
\hline 41 & OVRIGA Pradsemrtifonf \\
\hline 42 & DACK \\
\hline
\end{tabular} SEKTOAR

pillvaxttakt fori offentliga inves```

[^0]: 1 There are small differences between both machines, this guide though will concentrate on the PDP 11/70 features.

