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PREFACE

In recent years there has been considerable interest in
developing models for river and lake ecological systems, much
of it directed towards large and complex simulation models.
However, this trend has given rise to concern on several
important counts, notably, for example, on methodological
questions of model validity and credibility and in accounting
for the effects of uncertainty. Task 2 of IIASA's Resources
and Environment Area, on "Environmental Quality Control and
Management", addresses problems such as these. One of the
principal themes of the Task's work is to develop a framework
for modeling poorly-defined environmental systems.

This paper re-assesses some properties of the classical
advection-dispersion model for describing interactions between
dissolved oxygen and biochemical oxygen demand concentrations
in a reach of river. 1In particular, a frequency-domain approach
is used for determining a sufficient accuracy for choosing
approximate transformations of the classical model that are
consistent with corresponding indexes of accuracy related to
the field data available for model evaluation. The approach
is illustrated for the case of the River Cam in eastern England
(see also RR-78-19).
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SUMMARY

This paper deals with the analysis of the structural proper-
ties of simplified river water quality models with time invariant
coefficients. The structure of the simplified models should be
chosen in such a way as to provide a satisfactory compromise
between model accuracy and complexity.

The approach discussed here is based on an analysis of the
dynamic properties of the system as well as on the frequency
characteristics of the input signals. The analysis of the
dynamical properties of the system has been performed for a
one-dimensional (in space) time-invarient distributed-parameter
model. The unsteady solutions for coupled, partial, differential
equations (with two variables: DO and BOD concentrations) with
time-invariant coefficients are considered. The model equations
are transformed in a special way into diffusion equations, whose
solution can be obtained by using the separation of variables
method (SVM). As a result, a linear infinite order, ordinary
differential equation system, with the same eigenvalues as those
of the partial differential equations is obtained. The dynamical
properties of the system are characterized here on the basis of
a transmittance analysis as well as on the basis of a modal
analysis (analysis of eigenfunctions).

The paper concludes with the possibility of choosing a
simplified lumped-parameter (finite-order) dynamic or static
model of water pollution, which ensures a compromise between
accuracy and complexity of the model. It offers, in particular,
answers to the following questions:

- what is the dimensionality of the simplified
lumped-parameter model?

- what is the structure of this model?

The approach is illustrated with results from a case study of
the River Cam in eastern England.
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STRUCTURAL PROPERTIES AND FREQUENCY RESPONSE
ANALYSIS OF SIMPLIFIED WATER QUALITY MODELS:
THE CASE OF TIME-INVARIANT COEFFICIENTS

A. Lewandowska

1. INTRODUCTION

One of the most important points to remember when designing
a water quality monitoring system, is to formulate an adequate
model of the pollutant distribution process. There are several
such models, the most complex being in the form of coupled,
partial differential equations, the simplest one being in the
form of black-box modelsAderived from, for example, a time-series
analysis. Many of them have been examined in the literature on
the subject (Rinaldi et al., 1979; Thomann, 1972; Beck, 1978, 1980;
Vasiliev, 1979).

For practical applications, the following problem must be
solved: what would be the optimal model in this context where
"optimal" is understood in the sense of ensuring a compromise
between accuracy and complexity? In this paper, a method for solving
this problem is presented. This approach is based on a frequency
response analysis of the system and the spectral distribution

of the input disturbances acting on the system. Two
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methods have been applied--the Laplace transform and modal
analysis of the set of partial differential equations. On the
basis of this investigation, it is possible to answer the
following questions:

- is it necessary to apply a static model or a dynamic

one?

- what is the dimensionality of the simplified, lumped

parameter model?

- what is the structure of this model?

Let us examine also the role of the methodology presented
here in system identification. Generally, there are two possible
ways of identifying a model:

- the black-box approach, when it is only assumed that

a general class of models can possibly be taken into
account (for example, those with ordinary differential
equations);

- the physical appraoch, where one starts with the

analysis of physical phenomena.

Both approaches have some disadvantages. The first one has
a large number of parameters that have to be estimated. In
practice, one of the possible canonical forms have to be used
and all the parameters in this canonical form must be estimated.

Very complex models--usually described in terms of partial
differential equations (PDE), namely, distributed parameter
systems (DPS)--are derived from an analysis of physical considera-
tions. It is not a very easy task to solve these kinds of
models and to estimate their parameters. It 1s possible,
however, to utilize the information contained in these models.

Usually they are characterized by a small number of



parameters—-~this number is small when compared to the number of
unknown coefficients in canonical form, in a lumped parameter
system (LPS). On the basis of some theoretical investigations,
it is possible to show that the parameters in lumped model
canonical form are not independent--they depend entirely on
the parameters of the distributed model. In such a way, we
obtain a kind of specialized canonical form--a set of ordinary
differential equations (ODE) depending on a relatively small
number of parameters. This kind of approach can be treated
as structural analysis (or, a priori identification); it makes
the identification process essentially simpler.

It is necessary to point out again, that as all the con-

siderations are for a general model it is not necessary to know

the values of the parameters at this stage of the investigation.
The identification process is performed later, when a simplified

model has been obtained (Figure 1).

2. MATHEMATICAL MODEL

Let us consider the linear, one-dimensional, distributed
parameter dispersion model, with constant coefficients
describing pollution propagation in a section of the river.

This model has been considered in many publications

(Rinaldi et al., 1979; Thomann, 1972; Vasiliev, 1979):

ot X ax? oxX
9c 32c Lo
3t - Px * Tz T Urgx T Kyqr s - kype et kg, (2)
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Parameters Possible parameters

of DPS

Possible responses 7 77\ Possibla responses
of DPS B of LPS

Figure 1. Schematic Synthesis of a Simplified Model
M - set of parameters depending on parameters of
DPS obtained by transformation ¢,
Q - set of responses of the system obtained for
parameters from M.

Comment: LPS has too many degrees of freedom, not all

combinations of parameters are feasible. Only para-

meters in M should be taken into account during
identification; transformation ¢ can be found a priori
e.g. separation of variables method (SVM).




where
s is the pollutant concentration or value of BOD;
¢ is the concentration of dissolved oxygen (DO):;
D, is the longitudinal dispersion coefficient;
u is the velocity of stream discharge along x—-axis;
k, k11, k12, k13 are coefficients of linear approximation
of the function, which generally repre-
sents biochemical and oxygen reaction
rates.
When making a comparison between equations (1), (2) and
the Streeter-Phelps dispersion model (Rinaldi et al., 1979), it
is easy to notice, that
k is the BOD decay coefficient,

k12 the reaeration coefficient,

k11 the deoxygenation coefficient,

k13 = k12 *Cg 7 ko

where Cg is the oxygen saturation concentration,

ko the net rate of addition of DO to the reach due to effects
other than those accounted for in the Streeter-Phelps model (in
which kO = 0). However, it is very easy to extend this model in-
order to consider the influence of solar radiation on algal growth
and photosynthesis.

The assumptions concerning the linearity and the constant
coefficients of the model are usually satisfied. It follows,
that if we only consider short veriods of time, we can assume
time constant coefficients (the stream discharge and therefore,
velocity u, can be constant in time). Similarly, the linear
model can be used for small variations of pollution concentra-

tions (it is a classical assumption in the case of linearization).
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It is possible to consider the DO deficit instead of DO concen-
trations. It is not important for us however, what kind of
state variables are used, because the relationship between con-

centration (c) and deficit (d) is very simple:

Therefore, the equations will have the same form in both cases.
In theinterests of simplicity, we also assume that the dis-
tributed sources and sinks are equal to Zzero.

Consider the boundary conditions for equations (1) and (2).
In the case of a finite section of the river, two boundary con-
ditions mﬁst be taken into account. However, because of the
large influence of the convection terms %% and %%
(1) and (2) the role of the right boundary conditions for

in equations

arriving at the solution can in practice be neglected. This
means that we can assume any reasonable boundary condition,
for example, equal to zero. The simplest way to define the

boundary conditions is as follows:

s(0,t) = W1s(t) (3)
s(2,t) =0 (4)
c(0,t) = ¥, (t) (5)
c(g,t) =0 (6)

where 2 is the length of the river section.

These boundary conditions properly reflect the real situation--
as usual, the point source of the pollutant is on the left side
of the river segment. As was mentioned before, the boundary

condition on the right side can be arbitrarily assumed.
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To complete the problem formulation, we must consider the
initial values for both state variables s(x,t) and c(x, t),

if t e [O,tf]

s(x,0)

I
()]
e
A

(7)
(8)

x € [0,4]
c(x, 0)

]
Q
”

where so(x), co(x) are the given functions.

3. TRANSFORMATION OF MODEL EQUATIONS

Our goal is to investigate the input-output behaviour of
the system defined above. 1In order to simplify our work, we
will introduce a useful transformation which eliminates the
transportation term in equations (1) and (2). It is necessary
to point out that this is only a formal operation without any
physical meaning; moreover the same analysis can be performed
without applying this transformation.

Let us consider the new state variables defined in the

following way

a*X

S(x,t) = s(x,t) - e (9)

a*X

o(x.t) = clx,t) + e (10)

where o is a parameter, acR.
By substituting equations (9), (10) for equations (1), (2)

we obtain

éi = D -é_z.é + (D . 2'(]. - u)- E + (D . 2 - oy - k)o g (‘]1)
3t x 2 3% x ¢ u
_3_6 =D . _8_2_6 + (D ¢ 20 =—- u)o E + (D . 2 - . -k )o . +
ot 8x2 b4 axX x  © ura 12 c

-k, .+ § + k, .+ e "% | (12)



It is possible to choose parameter o in such a way as to satisfy

the equation

D,*2:4-u=20 (13)

4 = =9 (14)

equations (11), (12) can be reduced to a simpler form, without

the convection term (first order derivative)

~ 2~ 2
oS _ .97s u =
38 * DTz~ gtk .S (15)
ax X
. 2~ 2 A
aC _ ,07¢c _ u .= . = . a—0ex
38 - Px T2 7 lgepl Y KRelt e kygr s kgt e - (16)
0X
Let us denote
u2
Bs =~ gop_ K (17)
X
u2
Be = - TD, - kKi2 - (18)

By comparing equations (15) and (16) with equations (17) and (18)

we obtain the resulting system of equations:

38 L %

— =D = + B_- 8 (19)
ot X 8x2 s

€ _p_ . ﬁié + 8+ & -k S + ko e—&.x (20)
3E T Tx 2 c 11° S 13 :

It is necessary to point out that the transformation used does

not change the boundary conditions (3)-(6).



4. DIFFUSION EQUATIONS WITH TIME INDEPENDENT
COEFFICIENTS: THE SEPARATION OF VARIABLES METHOD

Consider equations (19) and (20) in the following form:

2

3 (x,t) 3°s(x,t)
—3t D/ — * fs(x,0) (21)
X
3c(x,t) 2.(x,t)
— Dy 2C 1 4 £ (x,0) (22)
X
where
f_ (x,t) =B +s8 (23)
S S
= [ o~ - L) a -&‘X
fc(x,t) = Bc c k11 s + k13 e . (24)
For the sake of generalization, we shall also consider the
boundary conditions in the following form
s(0,t) = ¢15(t) (25)
s(&,t) = wzs(t) (26)
c(0rt) = ¥, (t) (27)
C(Ret) = by (£) . (28)

Note, that the boundary conditions (3)-(6) are the particular
cases of the ones above.

Let the initial conditions take the form

§(XIO)

@s(x) (29)

¢(x,0) ®C(x) . (30)

There are many possible techniques available to solve these
equations. Our goal however is not to obtain a solution for
specified boundary conditions but to analyze the input-output
properties of the system. The separation of variables method

(SVM) seems to be the best one for this purpose.
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It is well known that it is possible to formulate the solu-
tion of these eguations in the form of a Fourier series expansion
based on eigenfunctions generated by the corresponding Sturm-

Liouville operator (Porter, 1966):

3(x,8) = ] T__(£)+ sin(2]% (31)
m=1

Gix,t) = ] T__(t)- sin(2) (32)
m=1

2 2 ~ ., nllx

Tsn(t) =7 J s(x, t) - SLn(—E—)dx (33)
o
2 {* . nllx

Tcn(t) =7 J c(x, t)- 51n(—E—)dx (34)
o)

for n=1,2,....
By integrating equations (33) and (34) in two stages, we

obtain ordinary differential equations (see Appendix).

2n+ 11 *D

d nll, 2 _ Xr. n,

FeTsn(t) + (7 "Dy » Tgp (B = ——5— 5 (8) = (=GN 7055 (O] +
+ fsn(t) (35)
2n* 11 *D

d nill, 2, . _ X _ (_1\D,

HETcn(t) + (77) DX Tcn(t)- ———zj———[¢1c(t) (-1) ch(t)] +
+ £ _(t) (36)

chn
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The initial conditions for equations (41) and (42) can be

obtained in a similar way

2
T, (0) =% j & (x) - sin(%)dx (43)
(@]
2
T_, (0) =% [ 2 (x) - sin(%’i)dx (44)
(@]

for n=1,2,....

5. TRANSMITTANCE ANALYSIS

During the previous stages of our investigations, we
obtained an infinite-dimensional set of ordinary differential
equations that were strictly equivalent to the original partial
differential equations. One difficult problem arises here; for
purely technical reasons, we are not able to handle an infinite
set of equations and we must truncate the series (31) and (32).
This, however, enables the construction of a siﬁplified model,
since it is sufficient to consider only a finite dimensional set of
differential equations, which is in fact a truncated subset of
equations (41) and (42). The only crucial point is how best to
choose the length N of the truncated series. This number should
be chosen as a compromise between the accuracy of the simplified
model and the related computational effort. Since the assumptions
deal with time-independence system coefficients, it is
possible to propose a more constructive approach for solving
this problem. This approach utilizes a frequency domain
analysis of the system.

For the sake of simplicity, we will consider only the influence
of the left boundary conditions (i.e., the input, upstream distur-

bances), and we will take zero initial values. Due to the linearity
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of the system equations, we can omit the influence of the term
containing k13 and that part of the solution which relates to the
initial values. The superposition theorem holds true in this case,
since those components of the solution that relate to these terms
are not important from the point of view of the transmittance
properties of the system.

Now, we can compute the transmittances between inputs

(boundary conditions w1s(t), w1c(t))and state variables (expan-

sion coefficients Tsn(t), Tcn(t)' n=1,2,...,N).
ksn
G_ (p) = - (45)
sn 1T+ p esn
I
k
_ cn
Gen(P) = 73 p * 6 (46)
cn
n=1,2,...,N, p is the complex variable.

It is possible to observe that equations (41) and (42) are cou-
pled by thedistributed forcing function f.,(t): for this reason,
we should consider two types of dynamic blocks Gsn’ GCn (two
types of denominators).

The structure of the system can be represented using the
block-scheme formalism (Figure 2). Parameters of the individual
blocks have the following values:

- gain coefficients

2n+ I - D

_ X

ksn - 22 esn (87)
I 2n = II - DX

kcn = 2 ecn (48)

L
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IT _ _ .
Ken = 7 K9 ®cn (49)
ITI ann[1-e & F (-1
kcn - k13 ’ ~ 2 2 ) ecn (50)
(G=2) "+ (nl)
and time constants:
_ 1

esn B nll, 2 D
B~ (7)) T By

o = 1

cn

nll, 2

SC_(T) DX . (52)

Pep = Bs - (T D, (53)
_ _ (nl,2
Pen © Bc (77 D (54)

where f%, Bc are determined by equations (17) and (18).

Laplace transforms the output signals, which approximate that

solutions of equations (21) and (22) are equal

N
E8(xy8)) = ] AT (6)] - sin (22E) (55)
] II
A _ . o nllx
Liex t)] n; LiT  (£)1+ sin (5= . (56)
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6. FREQUENCY ANALYSIS
In the previous sections of this paper, we have determined
the transmittances describing the system dynamics. Our goal will
now be to use these results to formulate the simplified model.
This can be achieved by an analysis of the model's frequency
response properties.
Each dynamic block in Figure 2 is, in fact, a low frequency
filter, with frequency characteristics as shown in Figure 3.
On the other hand, every signal acting in a real system has a
finite frequency band - or can be approximated by a finite
frequency band signal. This means that it is possible to deter-
mine a limited frequency fq, with a property such, that all (or
almost all) the signal energy is contained in this frequency band.
In practice, this frequency can be obtained by applying
spectral analysis methods and Fourier series techniques (see,
e.g., Jenkins and Watts, 1968). It is interesting to compare
the two frequencies. fg (signal frequency band), and fp, the
frequency corresponding to the first pole of the system, where
w, = 2If, = n=1'r£z%r'1..'N{|psn.|, |Pegy |} (57)
Only two cases are interesting:
£ >> f
P P
This means that the signal frequency band is so narrow that
we can neglect the dynamic behaviour of the system. 1In this
case, we can consider a static model as sufficiently accurate.
It is necessary to expect, however, that this situation will not
occur very often. The second case is for
fp < fg .
In this case, the dynamic properties of the system should be

taken into account. It is possible to observe however, that
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the characteristic frequency of system transmittances Gsn’ G

cn
increases when n increases. It follows that N is such that
£f < £
g pn
where
= = - 5
“on 2prn {|psn| or Ipcnl} (58)

This means that all dynamic blocks with transmittances Gsnuﬂ
and Gcn(p) can be treated as static blocks, if n > N. These

inertia (dynamic) terms can be replaced by the proportional terms

Gsn(p) = Ksn (59)
N
G, (P) = kg . (60)

Now, we can compute the sums

= - 1 %
ks(x) = NeN+1T ksn sin( 7 ) (61)

o I
. Ix
(x) = 7 k__ »sin(3%) (62)
C N=N+1 cn )

A

and consider the simplified model as shown in Figures 4 and 5.

It is necessary to point out that the best approximation of the
original system has thus been obtained--best in the sense that the
eigenvalues of the lumped parameter system are the same as the
eigenvalues of the distributed parameter system. From this,
it follows that the frequency and time responses of the
approximate system will match well the responses
of the original system. This cannot be expected for other
approaches, for example, that presented by Rinaldi et al., (1979).

There is very poor correspondence between the poles obtained in
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Figure 3. Asymptotic Frequency Characteristic of the Inertia Term
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Figure 4. Structure of the Simplified Model
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Rinaldi's work and the poles of the DPS model obtained in this
paper. It would be an interesting exercise to compare the
frequency characteristics obtained for both approaches.

The above results can be utilized in two ways: to analyze
the qualitative properties of the system and to build a simplified
computer model of the process considered.

It would be interesting to analyze more specifically the

formula describing the poles of the system:

2
_ _ _u _ _ (neI, 2 D
Psn® 7 7D k (=) X (63)
b
2
_ u _ _ (neI
pcn_ - u.Dx k12 ( [ ) DX (6“)

in order to investigate the influence of the diffusion coefficient
D, on system behaviour. It is necessary to point out, however, that
the above formula cannot be utilized for studying the limit behaviour
when Dx tends to zero. This follows from the fact that the partial
differential equations change in this case and therefore further
investigations of this case should be carried out.

It is possible to utilize the present approach to build
a computer model of the process. The only problem, however, is con-
cerned with the properties of the Fourier series, because computing
the sum of a Fourier series is an ill-defined process (see
Tikhonov and Arsenin, 1977). On the other hand, the system
eigenfunctions are egqual to zero at both ends or boundaries of
the interval. For these reasons, the value of 2 should be
determined in an appropriate way (Figure 6) and special methods

should be applied to compute the sum of the Fourier series.
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Measurement point

River section

Source

Figure 6. Schematic Definition of the River Section
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7. NUMERICAL EXAMPLE

The simplified model presented in the previous section
was utilized to describe the distribution of pollutants in a
section of the river Cam, with the input point at Bait's Bite
lock and the output point at Bottisham lock (see Beck, 1978).
This model was used to predict DO and BOD concentrations at the
measurement point 4.5 km distant from the source (see Figure
6) . The parameter values assumed for the model are shcwn in
Table 1. It is easy to notice that these parameter values
are the same as those in Model I (in Beck's paper, 1978)
except for k13, the value of which in Beck's Model I, is equal

to -1.0 for t < t and +1.0 for t > t19. (The influence of

19
this difference is apparent when comparing the plot of DO output
in Model I of Beck's paper (1978) with the plot of the simplified
model's DO output as shown in Figure 14,) DO and BOD concentra-
tions measured at Bait's Bite lock and at Bottisham lock, once

daily through a 3-month period (see Beck, 1978) were taken as the

input and the output signals.

8. CRITERIA FOR MODEL COMPARISON

It is one of the most important and difficult problems to
find adequate criteria for the comparison of models. A number
of possible approaches exist (see Raibman, 1975). Here the
mean value and mean square of the residuals are considered.
These values have been normalized, using average and mean

square values of the system's outputs.
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Table 1. Model Parameter Values

i ! ' '

. Parameter : Definition | vValue
% v Volumetric hold up in the reach j1.51*105 m>
Q Average stream discharge §1.28*1O5 m3/day
!
A Average rectangular cross section: 30.20 m2
U Average velocity of discharge
along x-axis 4228 m/day
k12 Reaeration rate coefficient 0.17 1/day
k = kg BOD decay coefficient 0.32 1/day
= . mg
k! k13 k12 Cg * Ko 1.0 2 « day

9. SIMULATION RESULTS
The most interesting questions deal with the dimensionality

of the simplified model, the length of the river section and the

value for the dispersion coefficient. The simulation experiments
were performed in two stages.

1. Assuming the dimensionality of the simplified model is
equal to 1, the simulation experiments were repeated with
different values for the length of the river section and
for the dispersion coefficient. The mean sguare of the
residuals (normalized by using process mean square) as
a function of the dispersion coefficient for a fixed
value of the river section length, is shown in Figures
7, 8 and 9. The same gquality index of the model, as a

function of the river section length and fixed values for




h
1 N=1; L=26km
z
02— BOD
0.1 —
DO
T 1 | [ T g 5
30 60 100 150 200 250 Dx(km<“/day]

¥ = BOD mean square ratio + DO mean square ratio

Figure 7. Quality Indexes for River Cam, N-1, L=25 km.
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the dispersion coefficient, is shown in Figures 10, 11, and

12. From Figures 10, 11, and 12, it is easy to see that

the smallest values for gquality indexes have been obtained

for a chosen length of the river section equal to 50 km. From

Figures 9, 10, 11, and 12, one can conclude that, assuming

the length { to be larger than 100 km, the fit of the model is

significantly worse. From Figures 7 and 8 it is easy to

conclude that for D, > 100 km2/day the values of the quality
indexes are almost constant (the curves being very flat).

2. Assuming the length £ = 50 km and £ = 100 km and various values
for the dispersion coefficient Dx' simulation experiments

were repeated for fixed dimensionalities of the model equal

to 2 and 5. The results are presented in Figure 13.

From a comparison of the simulation results obtained, it
follows that the best fit of the simplified model for the svstem
is given by a value for the dispersion coefficient of 100 kmz/day,
when we assume the river section length to be 50 km. These
results have been obtained again for various other dimensionalities
as well (Table 2).

It can be seen from Table 2 that for various dimension-
alities of the simplified model, the quality indexes of these
models have almost the same values. The significant conclusion is
that a one~-dimensional model is in fact sufficiently accurate. The
output plots for the best case are shown in Figure 14.

It should be noted that the resulting value of the river
section length of 50 km is a consequence of the compromise
between two effects; (a) the error inherent in the Fourier method,
and (b) the influence of the right boundary condition, which has

been assumed to be equal to zero.



A 2 4‘ 2
Mean square N=1; Dx=30km?%/day N=1; Dx=55.9km*/day
ratio of
residuals
0.3 — -
z
0.2 _
"1 eoo
z
BOD
0.1— ]
DO
DO
T I 1 > T | | >
2550100 300 1000 Llkm] : 2550100 300 1000 L{km}

% = BOD mean square ratio + DO mean square ratio

Figure 10. Quality Indexes for River Cam, N=1, DX=30 kmz/day and Dx=55'9 kmz/day.
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DO output N=1,; Dx=100 kmzlday ; L=50km
?;r;clgr]matlon ® (Observations
10.0-1 d
1.0
S SR S E e S N S RSN SR S B R R N SR E
sop | -
output 2
[ma/R] N=1; Dx=100km /d;y : L=50km
10.0 ’ & Observations

N
>

1~ 71 71T 1 1 1 1 1. 1T/ 17T "1 "1 11
5 10 15 20 26 30 35 40 45 50 55 60 65 70 75 80 85

Time [day]

Figure 14. Input Signals of the Resulting Simplified Model
for the River Cam
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Table 2. Comparison of Quality Index Values for the
Simplified Models

simplified Model D_ = 100 km®/day

2 = 50 km 2

100 km Model I*

ndim Static 1 2 1 2 3
| Model i

av.r.BOD|-0.135 -0.136 =-0.142(-0.118 =-0.119 ~-0.127 | 0.596
av.r.DO 0.061 0.006 0.005| 0.078 0.059 0.011) 0.194

m.sq.r.
BOD 0.102 0.099 0.099 | 0.099 0.098 0.097 | 0.370

m.sqg.r.
DO 0.025 0.022 0.022| 0.028 0.025 0.022 ] 0.054

av.r.BOD = average ratio of BOD residual = average of BOD
residual/average of measured BOD.

m.sqg.r.BOD = mean square ratio of BOD residual = mean square
of BOD residual/mean square of measured BOD.

*
Beck, 1978.

It is known that using the Fourier method for approximation
of the signal generates the largest error near the boundaries of
the space variable, and the smallest one near the middle of
this domain. Consequently, for x = 4.5 km, the resulting
length of the river section ought to be equal to about 10 km.

On the other hand, we cannot take too small a value for %,

because we assumed an arbitrary right boundary condition for the

PDE model (for simplicity, equal to zero). The influence of the -

right boundary condition would be negligible if the length 2%
taken into account is sufficiently large. It follows that the
simplified model fits better for 2 = 50 km than for 2 < 10 km

(with x = 4.5 km in the middle of the length). The question
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arises why DX = 100 kmz/day gives the best fit of the model
even though it appears to be far too large a value. According
to Thomann (1973), the coefficient P = k11 * Dx/u2 characterizes
quite well the main properties of the river. He proposes the
following river classification:
P< 0.01 for upstream feeder streams
0.01 < P< 0.5 for main drainage rivers
0.5 < P< 1.0 for large rivers
1.0 < P<10.0 for tidal rivers
P>10.0 for estuaries.
The Cam approximates a main drainage river, so taking kiq and u
from Table 1 we ought to obtain the best model fit for
1 kmz/day < Dx < 30 kmz/day. The value D, = 100 kmz/day suggests
that the Cam is a tidal river.

It was shown by Beck (1978) that the incorporation of "sus-
tained sunlight effects" into the BOD and DO equations, to represent
the effect of interaction of an algal population with DO and
'BOD dynamics, gives a significant improvement in the model
responses and also in the model fit. Incorporating "sustained
sunlight effects" in both equations (BOD and DO), Beck (1978)
achieved the results shown in Table 3.

The simplified model described above does not include the
term of “"sustained sunlight effects"; although it would be easy
to do so. The omission of this significant effect causes
the responses of the system (especially BOD response) to be
too low, compared to actual measurements. Consequently, in

order to compensate for the influence of sunlight, the gain

coefficient ksn (see equation (47)) must be artificially
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Table 3. Comparison of Quality Index Values for Beck Models

1
i |
! Model I Model II*
' BOD m.sq.r. 0.370 BOD m.sqg.r. 0.169
DO m.sqg.r. 0.054 DO m.sqg.r. 0.025

*Model with "sustained sunlight effect" incorporated

increased. This is the reason why the value of Dx is so
large; when DX increases, then the value of ksn also increases
especially for n=1 and for D, < 150 kmz/day (see Figure 15).

To show that the above statement is valid, sirulation
cexperiments with the simplified model which indicates the effects
of sunlight have been performed. It was assumed that the term
representing the influence of sustained sunlight (hours of sunlight

per day) has the following term:

ky + S(8) (65)
where
S(t) - sunlight incident upon local area (hrs/day);
k3 - coefficient for sustained sunlight effect, same as in

the BOD and DO equations.
The term (65) has been added to the PDE equations (1), (2),
consequently the term:

-3-2 n
k, - s(g) =2nl = [1-e” > =TT | (66)

3 (a*2)2 + (nl)?

has been added to the equations (41), (42).
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The results of the experiments performed for the simplified
model with the sunlight effects and with the parameters taken

from Table 1, are shown in Table 4.

Table 4. Quality Index Values for the Simplified Models with
Sustained Sunlight Effect Incorporated

L Simplified Model with Sustained Sunlight Model
Effect Incorporated II*
ndim =1, 2 = 50 km
D Quality k3
X 2 Indexes
[km "/ 0.1 0.25 0.4 0.5 0.6 1.0
day] L] - . - . L)

Qv.T.BOD|{-0.631 -0.565 -0.500 -0.456 -0.412 -0.238
Qv.T.DO |-0.589 -0.548 -0.507 -0.479 -0.452 -0.342
10 m.sqg.t.

BOD 0.427 0.358 0.301 0.269 0.242 0.187
m.sg.r.
DO 0.357 0.309 0.266 0.241 0.217 0.144

Qv.T.BOD|-0.397 -0.301 -0.204 -0.140 -0.076 -0.181 | 0.239
QV.T.DO [-0.323 -0.265 -0.208 -0.169 -0.131 0.023| 0.037 |
20 m.sqg.r.

BOD 0.205 0.147 0.7112 0.103 0.104 0.215(| 0.169
m.sqg.r.
DO 0.119 0.085 0.059 0.049 0.041 0.055)| 0.025

Qv.T.BOD|-0.286 -0.181 -0.076 -0.007 0.063 0.343
Qv.T.DO |-0.202 -0.143 -0.085 -0.046 -0.007 0.150
30 m.sqg.r.

BOD 0.138 0.095 0.079 0.083 0.100 0.290
m.sq.r.
DO 0.058 0.037 0.025 0.023 0.025 0.077
QV.T.BOD = averade ratio of BOD residual = average ratio of

BOD residual/average of measured BOD.

m.sq.r.BOD = mean square ratio of BOD residual = mean square of
BOD residual/mean square of measured BOD.

*
Model with "sustained sunlight effect" incorporated (Beck, 1978)
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It is easy to see from Table 4, that the best model fit can
be obtained for k3 = 0.4, Dx = 30 kmz/day. In this case the
values of the guality indexes are better than in the case of

the model with the sustained sunlight effects incorporated as

proposed by Beck (1978).

10. FREQUENCY ANALYSIS
Let us consider the input signals, i.e., BOD and DO concentrations
measured at Bait's Bite lock. Using the Fourier expansion
algorithm, we can determine how many harmonic components must
be taken into account to obtain 50%, 75%, and 90% of the signal
energy contained in the frequency band. The results of the
Fourier expansion for both input signals are shown in Table 5.
On the other hand, we should consider the frequency corres-
ponding to the first pole of the system (see equations (53), (54),
and (57)). This frequency for DX = 30 kmz/day, 2 = 50 km and the

values of the other parameters taken from Table 1 is equal to

mp = 2.76 [rd/day] . (67)

Time constants corresponding to the first two poles of the

resulting model (DX = 30 kmz/day) are equal

o, = 1.70 [dayl, o, = 2.27 [day] .

By comparing the BOD and DO (input) signal frequency bands
with the frequency corresponding to the first pole of the resulting
model (DX = 30 kmz/day), we can conclude that the signal frequency
bands are smaller or comparable with the frequency corresponding
to the first pole of the resulting model (see Figures 16 and 17).
In Figures 16 and 17, the dependence of the first two poles on

the values of the dispersion coefficient is shown. It can be seen
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Table 5. Results of Fourier ExXpansion of Input Signals

IInput Number of Energy % Tk[day] Limit Frequency
Signal Harmonic of.Input Period of Band.of Input
component Signal K-th com- Signal
K ponent [rd/day] %E
k
1 78 0.08
2 39 0.16
3 26 0.24
10 50% 7.8 0.81
BOD 25 75% 3.12 2.01
33 90% 2.36 2.66
18 50% 4.33 1.45
DO 29 75% 2.69 2.34
| 36 90% 2.17 2.90
|

that for a rather broad range of values for this coefficient

DX < 20 kmz/day or D, > 60 kmz/day, the system dynamics can be
neglected; in other words, the first order model should be suf-
ficiently accurate for 20 kmz/day < D, < 60 kmz/day. On the other
hand, taking into account the results presented in Table 2, notice
that the quality indexes for a static model are a little bit
worse than for tune simplified model with one inertia term,
although they are better than quality indexes for Model I of

Beck (1978).
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Let us also compare the gain coefficient values for the
dynamic part and for the proportional term of the simplified model
(see Table 6). We can see that corresponding to the first two
inputs, the gain coefficients are more than twice as large for
the proportional terms as for the dynamic part of the model.
These results illustrate the point that the proportional terms
(see equations (61) and (62) have fundamental influence on model
accuracy.

Compare now the models developed by Beck (1978) and the
simplified model for D, = 30 kmz/day, taking into account their
parameters. The results are summarized in Table 6. From this
comparison, it is obvious that the gain coefficients have similar
values for both models (a little bit smaller for the simplified
model with D, 30 kmz/day). The time constants are also very
close, although in Model II in Beck's paper, they are a little
bit smaller. The basic difference arises, however, in the shape
of the frequency characteristic caused by the different structure
of the models. These characteristics are schematically presented
in Figure 18. The frequency characteristic of the simplified
model, which in fact is the parallel connection of one inertia
term and proportional term (see Figure 5) has one pole and one
zero, whereas Model II in Beck's paper contains only one pole.

It is necessary to point out, however, that within the frequency
band of interest, these characteristics are very close.

Computation has been done using the standard version of the
fourth order Runge-Xutta algorithm from the SSP library. The
simulation program was written using a specialized simulation
package (see Computing at IIASA No.2) specially developed for
this purpose. Sums of the Fourier series have been calculated
by Euler transformation, which is realized by subroutine TEUL

from the SSP library.
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Comparison of Gain Coefficient Values and Time

Constant Values in the Resulting Simplified
Model and in Beck's Model

Inputs to BOD

The Gain Coefficients in

The Gain Coeffi-

equation the Resulting Simplified cients in Model
and Model D, = 30 km?/day IT
DO equation (Beck and Young,
Dynamic Proportional Resul- 1975)
Part Terms tant
Gain
BOD in BOD eq. 0.120 0.534 0.654 1.0
DO in DO egq. 0.171 0.580 0.751 1.0
BOD in DO eq. 0.087 0.247 0.334 0.378
1(t) in DO eq. 0.290 0.399 0.689 1.183
Time Constants
®Bop 1.70 1.18
®bo 2.27 1.18
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APPENDIX

By using the separation of variables method (SVM), a linear
partial differential equation of second order can be reduced to
a set of ordinary differential equations. This method is described
by Porter (1966) as a general case.

We then describe SVM for the diffusion equation with the

constant coefficient

3s 825
€ - Py ¢ 5;7 + f(x,t) (A1)

with boundary conditions,

S(0,8) = U (t) (a2)
t e [O,tf]

and initial condition,

s(x,0) = a(x) , x e [0,2] . (a4)
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Consider equation (A1) with f = 0. A solution to this

equation (auxiliary conditions) in the form
s{x,t) = X(x) * T(t) ’ (A5)

is assumed to exist, when X,T are scalar valued functions of a
single variable. By substituting this expression into equation

(A1) with £ = 0 and dividing it by s(x,t), we obtain

T'(t) _ X(x) .
T(t) X(x) Dy (a6)

where the notation

is used.

Consider equation (A6). The leftside is indevendent of x and
the right side is independent of t. So the conclusion is that both
sides are constant. Hence, for the scalar X equation (A6) 1is

replaced by two ordinary differential equations

T'(t) + Dx X - T(t) =0 . (A7)

X(x) + 2 - X(x) =0 . (A8B)

If the function s satisfies auxiliary conditions, then T and X
must inherit equivalent constraints. During the first stage we
consider the case of homogenous boundary conditions, this means

by o= by, = 0. The equivalent boundary conditions on X are
X{(0) = X(2) =0 . (A9)

To solve the original problem, we must locate those values {Xn}

for which equations (A8), (A9) have solutions {Xn} and
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associated solutions {Tn} for equation (A7). A linear combina-
tion ZCn . Xn . Tn must be constructed to satisfy equation (A1)
and the system initial conditions.

The solution of egquation (A8) is given by

X(x) = C, » cos(/Ax) + C, * sin(/Ax) . (A10)

1 2

Taking into consideration the boundary conditions of (A9), we can
compute C1, C, in equation (A10). As a result we obtain Cq = 0,

C2 # 0 and the eigenvalues are equal to

)\ =(—) ’ n=1,2,.... (A11)

The eigenfunctions being the solutions for equations (A8), (A9)

are of the following form

Xn(X) = C2 Sin(T), n = 1,2,.... (A12)

It is easy to notice that the eigen~functions of (A12) create the

orthogonal basis in the L2(0,%) space (for simplicity we can assume
C, = 1).

Each function

- . s onlx _
sn(x,t) = Tn(t) 31n(—z—), n=1,2,.... (A13)
satisfies equation (A1) with boundary conditions (A2), (A3).

From the linearity of problem (A1) it follows, that the function

s(x,t) =

T ()« sin(2E) (A14)

can also satisfy equation (A1) with the conditions in (A2),(A3),

(A4), if the expansion in (A14) converges.
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Notice that equation (A14) represents a Fourier series expan-

The coefficients of this

sion (in x) for the function s(x.t).

expansion have the form

(A15)

2 ')
T (t) = T J s(x,t) °* sin( i Y, n=1,2,....

Integrating the right side of eguation (A15) by varts, we

obtain
'3
_ 2 _ .o\ 0 2 s nllx
T, (t) = oo [y, (t) Uy (B) - (D71 + = J = cos (—g=)dx
o)
(A16)
for n=1,2,....
Once more, integrating
'3
Js nllx

j % cos(—z—)dx

o)
by parts, we obtain

" I ,  {*a%s nllx

95 . cos(BFdx = - == - sin(45)dx (a17)
ax '3 nell "2 '3
oX
o) 0
for n=1,2,....
Now we can compare equation (A17) and equation (A16)
2 n, 2-4% b a%sxe)
= . - . —1 - ———— @
Tn(t) ~ii [¢1(t) wz(t) (-1 nzﬂz 8x2
o)
. ,nellex
*+ sin(—p—)dx (a18)

for n=1,2,....
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Comparing equaticns (A18) and (A1) we conclude that

2 n 2«2 2 1 ,;9s
= . t) - t) - (-1 - 5= —[— - f£(x,t) -
T (0) = gip D) - Uy (0D - g ] 5l :

+ sin(@Fax,  n=1,2,.... (A19)
Differentiating equation (A15) in t we get

L
dT
n _ 2 9SS , :. nlx _

=4 = 1 J = s_‘Ln(-—Q yax, n=1,2,.... (A20)

0

From a comparison of equations (A19) and (A20) it follows that

expansion coefficient Tn(t) must satisfy the following equation:

d n-l,2 | . _ 2+n-Il .
gein(t) + () Py Ta(t) = 02 Py
s LW (E) = Uy (e) s (=171 + £ (8), n=1,2,....
(a21)
whare
g
£(6) =2 J £(x,t) »sin(®) +d_, n=1,2,.... (A22)

o]

The initial conditions can be obtained in a similar way

-

o

il
=N

2
J ®(x)+ sin(2] *)a_, n=1,2,.... (A23)
o)

Summarizing, the infinite set of ordinary differential equations
(A21) together with the initial conditions is equivalent to the

distributed-parameter boundary-value problem (A1)-(A4).
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