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ABSTRACT 

Decision making in a lot of resources supply and resources 
allocation problems is related to sophisticated multiobjective 
analysis. The concept of a man-computer simulation system was 
suggested as a tool for decision making in problems of this kind, 
especially in the case of water resources (Moiseev et al. 1980). 
Within the framework of such a system the analyst and the expert 
employ a full range of operational research methods (simulation, 
optimization, multiobjective, informal and game-theoretical ones) 
to address multiobjective problems by means of the hierarchical 
system of mathematical models of the system under study. Various 
forms of mathematical models can be studied by means of simulation 
experiments. To establish control variables (to formulate 
scenarios) in a simulation study the expert may use optimization 
techniques applied to models simpler than the simulation ones. 
It is reasonable to study the problem of criteria formulation 
in optimization problems (the objectives convolution problem) 
by means of multiobjective techniques and simple (screening) 
models. The multiobjective study is the most important part of 
investigation based on the simulation system, because it is the 
multiobjective investigation that gives a general understanding 
of the system under study. 

This paper treats a new approach to multiobjective problems 
investigation. This approach is called the Generalized Reachable 
Sets (GRS) approach and belongs to generating multiobjective 
methods (Cohon 1978). It employs an explicit representation of 
a set of all reachable objective values. In contrast to dif- 
ferent generating multiobjective methods, the mathematical back- 
ground of the GRS approach is the linear inequalities techniques. 

This approach is used now at the Computing Center of the 
USSR Academy of Sciences in various tasks. 



The structure of the paper is as follows: first the math- 
ematical background of the approach is outlined, and then 
possible applications of the approach to the Skane water re- 
sources management are discussed. 



REACHABLE SETS APPROACH TO MULTIOBJECTIVE 
PROBLEMS AND ITS POSSIBLE APPLICATIONS 
TO WATER RESOURCES MANAGEMENT 
IN THE S K ~ E  REGION 

A.V. Lotov 

INTRODUCTION 

There e x i s t  two main approaches t o  so l v ing  mu l t i ob jec t i ve  

problems ( B e l l  e t  a l .  1977, Cohon 1978, Hwang e t  a l .  1980):  

preference-or iented methods and genera t ing  methods. Pre fe rence 

o r i e n t e d  methods a r e  based on cons t ruc t i ng  a formal process 

which l eads  t h e  d e c i s i o n  maker t o  t h e  s o l u t i o n  of t h e  problem. 

The b a s i c  i dea  of t h i s  approach is  t h e  q u a n t i f i c a t i o n  of t h e  

p re fe rence of t h e  d e c i s i o n  maker (on a p r i o r i  grounds o r  i n  man- 

computer i n t e r a c t i o n ) .  The manner of t h e  q u a n t i f i c a t i o n  d i s -  

t i n g u i s h e s  one preference-or iented technique from another  

(Wierzbicki  1979b) . 
The genera t ing  methods (Cohon 1978) a r e  based on presenta-  

t i o n  of t h e  s e t  of a l l  non in fe r i o r  (nondominated, e f f e c t i v e )  

p o i n t s  (Pare to  s e t )  i n  o b j e c t i v e  space t o  t h e  d e c i s i o n  maker. 

I n  t h i s  case  t h e  dec i s ion  maker i s  being informed on t h e  poss i -  

b i l i t i e s  of t h e  system under s tudy.  The nonformal p rocess  of 

s t r i k i n g  a compromise among t h e  competing o b j e c t i v e s  i s  l e f t  t o  

t h e  dec i s ion  maker. The methods of t h i s  group have e x p l i c i t  

advantages i f  t h e  d e c i s i o n  maker has  no c o n s i s t e n t  p re fe rence 

o r  i f  h i s  concept i s  a convenient  a b s t r a c t i o n  on ly  s i n c e  t h e  

dec i s ion  i s  a product  of compromise between a group of dec i s ion  

makers, each of them having h i s  own goa ls .  



The mathematical presentation of the system under study 

provided with the mathematical formalization of objectives con- 

tains the implicit description of the noninferior set. The 

generating techniques are distinguished by the manner of explicit 

representation of the noninferior set. Four groups of generating 

techniques are described in Cohon 1978: weighting methods, 

constraint methods, multiobjective simplex methods (Zeleny 1974) 

and noninferior set estimation methods. The alternative approach 

discussed herein consists in constructing (or approximating) a 

set of all reachable (attainable) values of objectives by means 

of a finite number of hyperplanes. The set of all reachable 

values of objectives is a particular case of so-called Gener- 

alized Reachable Set (GRS) which is a generalization of the con- 

cept of reachable set in control theory (Lee et al. 1967). This 

is why our approach to multiobjective problems is called GRS 

approach. 

The development of GRS methods began at the Computing Center 

of the USSR Academy of Sciences in the later sixties, first re- 

sults were obtained in the early seventies (Lotov 1972, 1973a), 

other results being presented in (Lotov 1973b, 75a, 75b, 78, 79, 

80, 81, Lotov et al. 1980, Bushenkov et al. 1980, Ognivtsev 1977). 

THE MATHEMATICAL STATEMENT OF THE GRS APPROACH 

We shall investigate mathematical models presented in the 

form 

where y is the vector of the variables of the model, Y is a space 

of vectors y, G is a set of feasible vectors y. We do not 
Y 

specify the nature of the space Y at this moment. In some cases 

it will be the finite dimensional Euclidean space, in others it 

will be a functional space. We shall assume the set G to be 
Y 

not empty. Usually the vector y satisfying (1.1) is not unique. 

m Let the mapping F:Y + E ~  be given, where E is m-dimensional 

Euclidean space. If we treat the vector 



as an objective vector (or vector of performance criteria), the 

mapping defines the consequences of each decision or alternativey. 

Definition. The Generalized Reachable Set (GRS) for the 

model (1.1 ) with the mapping (1 .2) is the set Gf defined as 

follows: 

If vector f is the objective vector the GRS coincides with the 

set of all reachable objective values. The GRS approach to multi- 

objective problems consists in constructing Gf in an explicit 

form 

If the set G is convex and the mapping F is linear, the set G 
Y Y 

is convex as well, and may be, at least approximately, repre- 

sented in the form (1.4). This case will be analyzed in this 

paper. 

The set G presented to the decision maker gives him the 
Y 

information on the set of noninferior values of objectives since 

the noninferior set P is a part of the boundary of Gf (see 

Figure 1). The basic mode of display mechanism in generating 

multiobjective methods consists in providing the decision maker 

with various two-dimensional projections and cross-sections 

(slices) of the noninferior set. The idea to provide the de- 

cision maker with projections and slices was introduced in 

(Meisel 1973, Lotov 1973a). If the GRS is constructed in the 

form (1.4) it takes only a few seconds to provide the decision 

maker with projections and slices on display of the computer 

upon request. So it is possible to present about hundred two- 

dimensional pictures to the decision maker in man-computer 

dialogue investigation of the GRS. By our experience this number 

of projections and slices is sufficient for a proper understanding 

of the structure of a convex set in objective space with five to 

ten dimensions. 



A system of applied programs POTENTIAL was developed 

(Bushenkov et al. 1980) in order to construct the GRS in the 

form (1.4) and to present it to the decision maker. The algo- 

rithms of the system are based on linear inequalities theory. 

The general idea of the method is the following one. The graph 

of the mapping F denoted by Z is defined as 

The set Gf is an orthogonal projection of the graph Z into the 

objective space E ~ .  The POTENTIAL system is based on orthogonal 

projection of polyhedral sets in finite dimensional spaces (con- 

volution methods). Let the polyhedral set M which belongs to 

(k+R)-dimensional Euclidean space E~", be described in the form 

of the solution of a finite system of linear inequalities 

The matrices A and B as well as the vector c are given. We want 
R to construct the set Mw of all points W E E  , for which there 

exists such a point v E E~ that {v,w} E E k+R belongs to the set M. 

The set M being the orthogonal projection of the set M into the 
W 

space E' is to be constructed in the form 

For this the convolution techniques can be used. They consist 

in excluding variables of the systems of (1.6) type. The first 

convolution method was introduced by J.B. Fourier (1890). To 

provide a general understanding of convolution methods we shall 

discuss a simple example. Let the system (1.6) be the following: 



where v and w are scalars. The set M is presented in Figure 2. 

To construct Mw it is necessary to divide each inequality on the 

absolute value of the coefficient by v (if this coefficient is 

not zero) and to sum all pairs of inequalities whose elements 

in the first column have opposite signs. For the system under 

study we obtain (in brackets the numbers of equations being 

combined are given) 

So the set Mw is described by the inequality 

This idea can be applied to any system (1.6). To transform the 

system (1.6) into the system (1.7) it is necessary to fulfill k 

steps described here. 

The main disadvantage of the Fourier method lies in the 

exponential growth of the number of inequalities. But most of 

the inequalities obtained are superfluous in the description of 

the set Mw. In our example we have got seven inequalities but 

only two of them are necessary to describe Mw. In the 20th 

century the Fourier method was modified (Motzkin et al. 1953, 

Chernikov 1965) and some new methods have been developed in order 

to remove part of the superfluous inequalities. The method 

(Chernikov 1965) removes all superfluous inequalities while the 

elements of matrix B and vector c are parameters. Additional 

methods used in the POTENTIAL system remove all superfluous in- 

equalities and construct an approximation of the set Mw if neces- 

sary (Bushenkov et al. 1980). 



In many cases the decision maker may be satisfied with any 

other set gf instead of the set Gf, having the same set of non- 

inferior points that is P (Gf) = p(af), where P (G) is the nonin- 

ferior (Pareto) boundary of the set G. For the set Gf the non- 

inferior boundary is described as follows: 

Let us define the set G: 

It is easy to show that Gf CG: and P(G:) = P(Gf). Let the set 

G: denote the Generalized Pareto-Reachable Set (GPRS) . Some- 
L 

times the set G! is described by a smaller number of inequalities 
I 

than the set Gf but contains sufficient information. 

The methods for the construction of GRS and GPRS are de- 

scribed in the next section of this paper. Herein we shall dis- 

cuss some features of the GRS approach to multiobjective problems. 

First of all, the GRS techniques construct the whole set of 

reachable objective values while the noninferior (Pareto) set 

is part of it. The feature is related to three advantages of 

the GRS approach. It is much easier to imagine a convex set 

(GRS) than a nonconvex Pareto set given by the points in the 

multidimensional space. It is easier to produce two dimensional 

slices for the set (1.4) than for the Pareto set given by the 

points. In many cases the decision maker may be interested not 

only in the Pareto set but also in inferior points (for example, 

in gaming and real situations of game type). 

The second main feature of the GRS approach consists of 

using linear inequalities techniques instead of optimization 

techniques used in multiobjective methods usually. We believe 

the nature of optimization techniques is more related to pref- 

erance-oriented multiobjective methods. Linear inequalities 

techniques proved to be more effective than optimization methods 

in various problems containing about thirty variables, fifty 

linear restrictions and five to ten objectives. In the case of 



two objectives optimization methods (weighting methods, multi- 

objective simplex method and noninferior set estimation methods) 

are usually more effective, but when the number of objectives is 

getting bigger the computational work in the GRS approach is not 

growing exponentially as in the optimization oriented generating 

multiobjective methods. It seems to be very effective to com- 

bine possibilities of noninferior set estimation methods, which 

are now at the early stage of development (Cohon 19781, with GRS 

techniques to construct GRS for problems containing about hundred 

variables and about ten objectives. 

To investigate the problems with hundreds of variables and 

ten or more objectives it is necessary to combine generating 

methods with preference-oriented methods. The combination of the 

GRS and reference objective methods (Wierzbicki 1979a) seems to 

be very effective. In the multiobjective problem with a complex 

model for which the construction of the set of all reachable 

objective values might be too cumbersome, the GRS techniques 

may be applied to a simplified version of the model. Provided 

with projection and slices of GRS the decision maker can choose 

the best compromising solution for a simplified version of the 

model. This solution could happen to be nonreachable for an 

initial model but it might serve as reference objectives (aspir- 

ation levels) in multiobjective studies on the basis of optimi- 

zation techniques (Wierzbicki 1979a) . 

THE CONSTRUCTION OF THE GRS FOR FINITE-DIMENSIONAL MODELS 

First, we shall discuss the problem of constructing the GRS 

for linear static models. Let the space Y be the n-dimensional 

Euclidean space E ~ ,  and let G be 
Y 

where A and b are the given matrix and vector. The mapping (1.2) 

in described in this case by the matrix F, having m rows and n 

columns. The graph of the mapping is a polyhedral set, described 

by the following system of equations and inequalities 



Since the GRS is an orthogonal projection of the polyhedral set 

Z, we have the possibility to construct it in this case using 

the POTENTIAL system. 

Now let us discuss the GPRS construction. Once the set Gf 

is given in an explicit form (1.4) it is sufficient to find an 

orthogonal projection of the set 

1 1 w = {{f,f :~f',d, - f-f 5 0 )  - 

into the space 

It is reasonable to construct the GPRS without intermediate con- 

struction of the GRS. This is possible in the case of the block 

structured model (2.1 ) 

n m 
where yj E E  j, fj E E  j ,  j = 1,. . . ,J. We shall denote the vectors 

yj as block variables and the vectors fj as intermediate objectives. 

Let the objective vector f be dependent only on the intermediate 

objectives 

If we denote 

then the set Gf may be represented as 
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where zj is the output vector for the jth block, yJ is the re- 

source vector for the jth block. 

The upper level equations describe the objective vector f, 

restrictions imposed on the outputs of each block, and the common 

restrictions on the resources. Assuming that no resource is 

produced in the system, we get B. > 0, j = 1, ...,J. 
I = 

Let us introduce the intermediate object vectors 

fJ = I-~' , zj 1 and denote 
I 

F j = [ o ~ I ]  . 

The model has got the appropriate structure to use the theorem. 

Next we shall discuss methods for the construction of GRS 

in the case of dynamical models. For the dynamical multi-step 

model the general description (2.1) has a special structure. 

First, the operation time period of the system is split into a 

finite number of steps by time moments t = 0, ...IT. The 

values of the variables relate to certain moments of time. 

Second, all variables are split into two classes: controls and 

states. We shall denote the control vector at the time momentt 
nu 

as u t € E  , t = 0, ...,T-l. When the control vectors ut, t = 

0, ...,T-l are given it is possible to calculate the state vectors 
n 

x E E"~,  t = 0,. . . ,TI beginning from the given initial state xo t 
on the basis of the equation 

where At and Bt are given matrices, at are given vectors, t = 

O..,T-1. The description of the system also includes re- 

strictions on the state variables and controls 

where Dt and Dt (2) are given matrices, d are given vectors. t 
The initial state vector xo belongs to the polyhedral set TO 



I n  some c a s e s  t h e  set  r0  may have on l y  one i n i t i a l  p o i n t .  Gen- 

e r a l l y  speak ing ,  one may r e p r e s e n t  t h e  system (2 .3)  - (2 .5 )  i n  

t h e  form ( 2 . 1 ) ,  and reduce  t h e  problem o f  t h e  GRS c o n s t r u c t i o n  

t o  t h e  c a s e  d i scussed  above. I n  p r a c t i c e  t h e  system ob ta ined  i s  

t o o  unwieldy, and it i s  p r e f e r a b l e  t o  c o n s t r u c t  t h e  GRS u s i n g  

t h e  u s u a l  r e a c h a b l e  sets of  t h e  system (2 .3 )  - (2 .5 )  . 
F i r s t ,  l e t  u s  d i s c u s s  t h e  c a s e  o f  t h e  o b j e c t i v e  v e c t o r  

hav ing t h e  s t r u c t u r e  

I n  t h i s  c a s e  t h e  set  Gf  c o i n c i d e s  w i t h  t h e  u s u a l  r e a c h a b l e  set 

r t ,  which i s  d e f i n e d  a s  t h e  set of  a l l  r e a c h a b l e  s t a t e  v e c t o r s  

of  t h e  system a t  t h e  t ime moment T. So t h e  problem o f  t h e  GRS 

c o n s t r u c t i o n  i n  t h i s  c a s e  may be  so lved  by c o n s t r u c t i n g  a reach-  

a b l e  set.  

TO c o n s t r u c t  t h e  set  TT w e  s h a l l  use  t h e  method, which con- 

sists of  s u c c e s s i v e  c o n s t r u c t i o n  of  t h e  sets ~ l , ~ 2 , . . . , ~ t , . . . , I ' T ,  

beg inn ing w i t h  t h e  set T o .  We s h a l l  show how w e  can o b t a i n  t h e  

set r t + l  on t h e  b a s i s  of  t h e  s e t  r t  r e p r e s e n t e d  a s  

where Ct and c t  a r e  m a t r i x  and v e c t o r  c a l c u l a t e d  on t h e  p rev ious  

s t e p  of  t h e  method. The equa t i ons  ( 2 . 3 ) ,  (2 .4 )  i n  t h e  t ime 

moment t and (2 .7 )  d e s c r i b e  a po l yhed ra l  set Y i n  t h e  space  
EZnxcnu. The set T t + l  i s  an  o r thogona l  p r o j e c t i o n  of t h e  s e t  Y 

i n  t h e  space  of  s t a t e  v a r i a b l e s  x t+ , .  Thus, t h e  problem i s  r e -  

duced t o  t h e  c o n s t r u c t i o n  of  t h e  o r thogona l  p r o j e c t i o n  of t h e  

f i n i t e  d imens iona l  po l yhed ra l  set  and can be so lved  by POTENTIAL. 

Th is  approach t o  t h e  r e a c h a b l e  sets c o n s t r u c t i o n  was proposed 

i n  (Lotov 1972, 1975b) . 
Now, l e t  t h e  o b j e c t i v e  v e c t o r  f  be 



where F  is  a  g iven  ma t r i x .  I n  t h i s  c a s e  w e  f i r s t  have t o  con- 

s t r u c t  t h e  set  TT and t h e n  t o  c o n s t r u c t  t h e  GRS, us ing  t h e  GRS 

c o n s t r u c t i o n  methods f o r  s t a t i c  models.  Of cou rse ,  it i s  pos- 

s i b l e  t o  reduce t h e  c a s e  of  i n t e g r a l  o b j e c t i v e s  a s  w e l l  a s  t h e  

c a s e  of dependence of t h e  o b j e c t i v e  v e c t o r  upon s t a t e  v e c t o r s  

over  two o r  more moments of t i m e  t o  t h e  problems d i s c u s s e d  above. 

THE GRS CONSTRUCTION FOR DIFFERENTIAL SYSTEMS WITH CONVEX STATE 
CONSTRAINTS 

I n  t h i s  s e c t i o n  w e  s h a l l  d i s c u s s  t h e  problems o f  t h e  GRS 

c o n s t r u c t i o n  f o r  t h e  fo l low ing  model 

n  n  
X u  where x ( t )  EE , u ( t ) E E  , t h e  m a t r i c e s  A ( t )  and B ( t ) ,  a s  w e l l  

a s  t h e  v e c t o r  a ( t )  a r e  g iven ,  t h e  sets Y ( t )  and r ( 0 )  a r e  g iven ,  

and t h e y  a r e  convex. 

F i r s t  w e  s h a l l  exp lo re  t h e  c o n s t r u c t i o n  of t h e  u s u a l  reach- 

a b l e  set  T ( T )  d e f i n e d  a s  a  set of  a l l  p o i n t s  x  E E ~ X ,  which may 

be a t t a i n e d  by t h e  system (3.1 ) - (3 .3 )  by t h e  t i m e  moment T ,  

c o n t r o l  f u n c t i o n  u ( t )  be ing  a  l i m i t e d  measurable f u n c t i o n  on [O,T] . 
Th is  problem was p r e v i o u s l y  d i scussed  i n  (Lotov 197533, 1978, 1979) .  

The system (3 .1)  - (3 .3)  w i l l  be approximated by i t s  mul t i -  

s t e p  ana logues.  W e  s h a l l  s p l i t  t h e  t i m e  pe r i od  [O,T] i n t o  N 

equa l  p a r t s  by t i m e  moments ti = i T ,  i = O , . . . , N .  The d i f f e r -  

e n t i a l  equa t i on  (3 .1 )  w i l l  be  approximated by one of t h e  mu l t i -  

s t e p  equa t i ons  from t h e  fo l low ing  c l a s s  

n  
X 

n  u  where x i E E  is t h e  s t a t e  v e c t o r ,  u i E E  i s  t h e  c o n t r o l  v e c t o r  



over  t h e  t i m e  moment ti, A:') = ~( t : ' ) ) ,  A l 2 )  = A ( t 1 2 ) ) ,  

The fo l low ing  r e s t r i c t i o n s  w i l l  be imposed on t h e  v e c t o r s  xi ,  

ui, i = 1 ,  .. . ,N-1: 

i (5 )  (5 )  where Y i s  a po l yhed ra l  set  approximat ing Y ( t i  , ti ~ [ t ~ , t ~ + ~ ] ,  

f3 E[O,11.  The v e c t o r  xo belongs t o  t h e  po lyhedra l  set  ap- 

proximat ing I '(0) : 

(k  Once t h e  parameters  a ,  f3, ti , k = 1,  ..., 5,  i = 0, ..., T-1, 

a s  w e l l  a s  t h e  method f o r  t h e  c o n s t r u c t i o n  and Yi ,  i = 0,  ..., 
N-1, a r e  f i x e d ,  w e  o b t a i n  t h e  m u l t i s t e p  system approximat ing 

3 . 1 )  - ( 3 . 5 ) .  

The reachab le  set  I'N f o r  t h e  system (3.4)  - (3 .6)  may be 

cons t ruc ted  by means o f  t h e  method, d i scussed  above. The problem 

is  t o  e v a l u a t e  t h e  d isc repancy  between t h e  sets I' and I ' (T ) .  
N 

L e t  p ( Y i , Y ( t 1 5 ) )  - < A , where i = 0 , .  . .,N-1, and p ( T 0 , I ' ( O ) )  - < 6 .  

L e t  u s  c o n s t r u c t  t h e  sequences o f  p o s i t i v e  numbers { T . ) ,  (A.1 ,  
7 7 

{ 6 . 1 ,  f o r  which T 
7 j ,  A j ,  

6 j  + 0, and N = T / r j  
j  

a r e  i n t e g e r  numbers. 

nx 
L e t  u s  denote I' a s  a set  of a l l  p o i n t s  x E E  , f o r  which one can 

f i n d  a sequence x j  E r N  , converging t o  x.  I t  is  p o s s i b l e  t o  show 

t h a t  t h e  set I' is un iq ie .  

Theorem.  L e t  t h e  fo l low ing  c o n d i t i o n s  be s a t i s f i e d :  

1/ t h e  e lements  o f  m a t r i c e s  A ( t )  and B ( t )  a s  w e l l  a s  t h e  

v e c t o r  a (t) a r e  cont inuous on [O,T] ; 

2/ t h e  set  Q ( x , t ) E E  de f i ned  a s  



n 
X 

i s  r e s t r i c t e d  f o r  any x E E  and t E  [ O , T l ;  

3/ t h e r e  e x i s t s  a  cons tan t  K > 0 ,  f o r  which it ho lds  

where and E belong t o  [ O , T ] ;  

4/  f o r  any t E [ O , T ] ,  and f o r  any A > 0  t h e r e  e x i s t s  a  poly- 

hed ra l  s e t  Y A  ( t)  s a t i s f y i n g  t h e  cond i t ion  

6 
5/  f o r  any 6 > O  t h e r e  e x i s t s  a  po lyhedra l  set I' s a t i s f y i n g  

t h e  cond i t i on  

6/ l e t  l" ( E  , T )  denote t h e  reachable set f o r  t h e  system (3.1 ) , 
(3.3)  and Cx ( t)  , u ( t )  1 E Y ,  ( t)  , where Y E  ( t)  i s  t h e  set of 

a l l  p o i n t s  T ( t ) ,  t h e  d i s t a n c e  between each of them and 

t h e  boundary of t h e  set Y ( t )  being more than  E - > 0 ;  

t h e r e  e x i s t s  E > 0, f o r  which I' ( E ~ , T )  # c$. 
0 

I f  t h e  cond i t i ons  1  - 6 a r e  s a t i s f i e d ,  then r ( T )  = r .  
I t  should be noted t h a t  i n  t h i s  theorem t h e  s e t  r ( 0 )  may no t  

be r e s t r i c t e d .  I f  t h e  s e t  r ( 0 )  i s  r e s t r i c t e d ,  a  more p r e c i s e  

theorem may be proved. 

T h e o r e m .  I f  t h e  cond i t i ons  of t h e  preceding theorem a r e  

s a t i s f i e d ,  and t h e  set r ( 0 )  i s  r e s t r i c t e d ,  then  

l i m  p ( r N ( r , 6 , A )  , r ( T ) ) = O  . 
T , 6 ,  A- tO 

The proof of both theorems i s  t o o  lengthy and w i l l  not  be pre- 

sented i n  t h i s  paper.  See proo fs  of t he  theorems i n  (Lotov 1979) .  



MULTIOBJECTIVE ANALYSIS OF WATER RESOURCES ALLOCATION 

IN THE REGION OF SKANE, SWEDEN 

The presence of several objectives is one of the basic 

aspects of water resources management in the Skane region in 

Sweden (Andersson et al. 1979). Decision making on water supply 

and allocation in Malmdhus and Kristianstad counties of Skane 

is related to the treatment of different goals like water supply 

to urban areas, industrial water supply, recreational develop- 

ment, and so on. This is the reason why multiobjective analysis 

is indispensable in any practical investigation of the water 

management problems in Skane. 

In this section we discuss how the GRS method can be applied 

to a particular problem of the Skane region: the water resources 

allocation in the Kavlinge River System during the summer period 

with low precipitation. The difficulties in the water allocation 

problem are combined with water pollution problems arising from 

fertilization practices, since chemicals are partly brought to 

the Kavlinge River by return water. Other environmental problems 

are related to the water allocation as well. This problem was 

studied previously in (Kindler et al. 1980), the model of the 

Kavlinge River System was formulated and investigated by the 

multiobjective method developed by A. Wierzbicki (1979a). 

The scheme of the Kavlinge River System is presented in 

Figure 3. The Kavlinge River is flowing out of the Vomb Lake. 

The Vomb Lake has two minor inflows. The water release to the 

Kavlinge River from the Vomb Lake is regulated. The Vomb Lake 

serves as a source of municipal water supply for the Malmd region. 

For this study three agricultural regions are defined which use 

water from the Kavlinge River System for irrigation, fertilizers 

being partly brought by return flow to the Kavlinge River. At 

control point A near the Baltic Sea the flow and concentration 

of the pollutant in the Kavlinge River are monitored. 

To facilitate the application of the GRS method, the original 

model (Kindler et al. 1980) was slightly modified. The agricul- 

tural production was described by means of N irrigation techno- 

logies. (This form of description is traditional in economics. 



Let xij be the area of the j-th region, j = 1.2,3, with 

i-th type of irrigation (ha), i = 1,. . . ,N. The areas in each 

region are constrained by the total agricultural area of the 

region 

Surely, the variable xij is nonnegative 

The agricultural production in the j-th region is described by 

means of the following indices: 

Yj 1 - yield effect of the irrigation and fertilization 

in the j-th region (kg); 

3 
Yj 2 - irrigation water withdrawals to this region (m ) ;  

Yj3 - amount of fertilizer (kg) ; 

3 
Yj4 - return flow (m ) ;  

Yj5 - chemicals in return flow (kg) ; 

These indices are calculated using specified coefficients akijI 

where k is the number of the index, i is the number of the tech- 

nology and j is the region number. The indices are calculated 

in the following manner: 

The relationships (4.1) - (4.3) describe the agricultural pro- 

duction in the model. The coefficients akij were specified on 

the basis of information presented in (Kindler et al. 1980). 

The values of the coefficients are the following (N = 7 )  : 



Uni t  

k \i 1  2  3  4 5 6 7 Uni t  

The t o t a l  a g r i c u l t u r a l  a r e a s  i n  t h e  a g r i c u l t u r a l  r e g i o n s  a r e  t h e  

fo l l ow ing :  a l  = 3000 ha ,  a 2  = 2500 ha ,  a 3  = 2300 ha. 

Comments. I n  t h e  f i r s t  techno logy t h e  i r r i g a t i o n  and t h e  

f e r t i l i z a t i o n  a r e  n o t  used.  The p o l l u t i o n  c o e f f i c i e n t s  ag i j  a r e  

based on t h e  assumpt ion t h a t  about  15% of t h e  f e r t i l i z e r s  a r e  

brought  t o  t h e  r i v e r  w i t h  t h e  r e t u r n  f low. The c o e f f i c i e n t s  f o r  

t h e  second and f o r  t h e  t h i r d  r e g i o n s  a r e  equa l  (exc lud ing  t h e  

r e t u r n  f l o w ) .  The c o e f f i c i e n t s  o f  i r r i g a t i o n  a r e  s p e c i f i e d  u s i n g  

t h e  assumpt ion t h a t  t h e  v a l u e  of p r e c i p i t a t i o n  i n  t h i s  month 

e q u a l s  10 mm. 

Le t  u s  d e s c r i b e  now t h e  wa te r  and p o l l u t i o n  ba lances .  Le t  
3  

q1 , q 2 ,  q3  and q4 be t h e  i n f l ows  t o  t h e  system ( m  /sec) . The 



values of the inflows are 1.8, 1.5, 0.8 and 0.7 respectively. 

The actual water storage volume in the Vomb Lake S is the fol- 

lowing : 

6 with T being the length of time period (2.59 x 10 sec), So being 
7 3 the initial storage volume of the lake (3 x 10 m ) ,  Zk being the 
3 

release from the lake to the Kalvinge River (m /set), ZM being 
-, 

the water intake for Malmd (m3/sec). Here the assumption is 

made that the values of inflows, releases, withdrawals and in- 

takes are constant during the month-period under study. 

The flow in the Kalvinge River at control point A denoted 
3 by vA(m /sec) is the following: 

The pollution flow at point A denoted by wA(kg/sec) is the 

following 

with $3 and $4 being the initial concentration of pollution in 

the third and the fourth inflow respectively, wV being the pollu- 

tion flow from the Vomb Lake. The value of the wV (kg/sec) is 

calculated in the following manner 

with and Q2 being the initial concentrations in the first and 

the second inflows respectively, @ being the coefficient of the 

pollution reduction in the Vomb Lake. We have = $2 = 10 -3 

3 kg/m , Q3 = 2 x 1 0  -3 3 -3 3 kg/m , Qy = 1.5 x10 kg/m , @ = 0.9. 

We have the following constraint on the water and pollution 

balances variables. First, there are nonnegative constraints 



Second, we have physical constraints on the water withdrawal 

There are constraints related to the environmental requirements 

The constraint (4.13) requires that the flow in the Kalvinge River * 3 
at point A denoted by vA be not less than vA = 6m /sec. The con- 

straint (4.14) shows that the pollution concentration at point A * 3 
must not exceed wA = 10g/m . Furthermore, there exists a con- 

straint showing that the intake for Malm8 must not exceed the * 3 
sufficient level ZM = 2m /sec: 

At last, the water storage volume in the Vomb Lake is not greater * 
than the optimal one S which is optimal from the environmental * 6 3 
and recreational points of view (S = 29x10 m ) 

INDICES 

The indices of the system performance are the same as in 

(Kindler et al. 1980). 



1 .  Yield effects of irrigation and fertilization in the agri- 

cultural regions 

2. Water deficit in Malmd 

3. Excess over minimal flow at point A 

4. The deviation from the optimal level of the Vomb Lake: 

with b being the coefficient connecting the level and the - 

storage volume of the lake (b = 6 x 1 0  
2 -7 l/m 

5. The flow of pollution at point 

The GRS for the objectives listed above was constructed and 

will be described in a special paper. It is possible to present 

the GRS to decision makers in Sweden for analysis which may in- 

clude formal as well as informal methods of decision making. 

Since the POTENTIAL system is only programmed at the Computing 

Center of the USSR Academy of Sciences, the GRS may be presented 

to the decision makers in Sweden in form of its slices and pro- 

jections obtained on a priority ground. The dialogue investiga- 

tion of the GRS which is a most effective mode of application of 

the GRS methods can be provided,after programming the POTENTIAL 

system at IIASA, at the Lund University of Sweden or elsewhere 

in Sweden. 



SOME OTHER APPLICATIONS 

There exist three main different directions of the GRS 

application: 

1 )  aggregation of a mathematical model; 

2 )  coordination of a system of mathematical models; 

3 )  evaluation of potential possibilities of a system 

under study. 

The aggregation of models by means of the GRS techniques 

is based on the following idea. Let us treat the vector f as 

vector of variables of the aggregated model. The mapping (1 .2 )  

describes the correspondence between original and aggregated 

variables. This correspondence is established on a p r i o r i  

grounds by the decision maker. In this case the relationship 

describes an aggregated model while for any y E Gy there exists 

a corresponding vector fEGf.  The main advantage of the aggre- 

gation based on the GRS techniques consists of the fact that all 

the values of variables f which are feasible for the aggregated 

model ( 5 . 1 )  can be pricisely disaggregated into feasible values 

of the original model ( 1.1 ) . 
The disadvantage of the method consists in the form of the 

aggregated model ( 5 . 1 ) :  it may be, and usually is, not con- 

venient for the decision maker. To avoid this, it is possible 

to use another aggregated model 

where the model ( 5 . 2 )  is chosen for convenience to the decision 

maker while 

The parameters b in (5 .2 )  are chosen to obtain the best approxi- 

mation of the set Gf by the set G(b). In this case for some 



feasible values of the original model (1.1) the corresponding 

values of the aggregated model (5.2) may not exist but the 

property of precise disaggregation holds. 

The coordination of a system of models based on GRS consists 

of the linearization of original models (if nonlinear) and of 

the construction of an aggregated description of each model by 

means of the GRS techniques. The aggregated description of the 

system of models is used by the decision maker to choose a fea- 

sible coordinated decision for the whole system in terms of 

aggregated variables. Since the variables of the aggregated 

description can be precisely disaggregated into variables of 

the original model (in the linear case) the decisions in terms 

of the original variables will be coordinated as well without 

additional iterations. This approach could be effective in the 

informal coordination of models where a big number of iterative 

steps of decision making seems to be unrealistic. One of the 

modes of coordination of models based on GRS techniques is pre- 

sented in (Alexandrov et al. 1981). 

The evaluation of potential possibilities of a system is 

based upon the representation of vector f in (1.2) as a vector 

of performance indices of the model (1.1) describing the system 

under study. The set of all reachable values of performance 

indices shows potential possibilities of the system. As an 

example of this approach we can mention the study of global 

biospheric models described in (Alexandrov et al. 1981). 
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