
The Role of Logical Domain Models
in Decision Support Systems

Lee, R.M.

IIASA Working Paper

WP-81-155

December 1981

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33893077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lee, R.M. (1981) The Role of Logical Domain Models in Decision Support Systems. IIASA Working Paper. WP-81-155

Copyright © 1981 by the author(s). http://pure.iiasa.ac.at/1606/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT PERMISSION
OFTHEAUTHOR

THE ROLE OF LOGICAL D O W Y O D E B IN
DECISION SUPPORT S Y S m S

Ronald M. Lee

December 1981
WP-81-155

Wo~king Papms are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

Principal "content" resources of a DSS are regarded as databases,
organized according to data models, and algorithms, representing deci-
sion models.

The use of logical d o m a i n m o d e l s is here proposed as an intermedi-
ate, integrating between data models and decision models. The function
is to provide a framework of qua l i ta t i ve inference providing higher level
interpretations on databases, and provide a qualitative context for inter-
preting quantitative decision models.

CONTENTS

I. INTRODUCTON
11. APPROACHES IN REPRESENTING PROBLEM DOMAINS
111. LOGICAL DOMAIN MODELING

A. Brief Tutorial
B. Logical Representation of Data Objects
C. From Data Objects to Domain Description
D. System Operation: Asking Questions

IV. FURTHER ISSUES FOR LOGICAL MODELING

A. Representation of Aggregate Obje,c ts
B. Representation of Time
C. Change and Process
D. Action and Responsibility
E. Forecasts and Plans
F. Contractual Ob ' ation and Lo ical

Interpretation o v Accounting %ata

V. CONCLUSION
REFERENCES

THE ROLE OF LOGICAL DOMAIN MODELS IN
DECISION SUPPORT SYSTEMS

Ronald M. Lee

I. INTRODUrnON
A generally accepted function of a decision support system (DSS) is

to provide flexible linkage of a variety of computer based resources-e.g.,
databases, decision algorithms, user dialogue interfaces, graphic
displays, etc.--bringing these to bear on the user's problem of the
moment. (See e.g. Sprague, 1980). Two commonly cited characteristics
of the problems suited to a DSS rather than other technologies are irre-
gularity and semi-structuredness. Irregular problems are ones that arise
infrequently. Semi-structured problems are ones not covered by a single
decision model (nor, presumably, by a single database).

In neither type of situation is the usual flow-chart approach to sys-
tems building appropriate. This approach gives to much emphasis to effi-
cient operation and too little to rapid construction for infrequent prob-
lems. Likewise it offers too little flexibility for semi-structured problems
which may require experimentation with a variety of combinations of sys-
tem resources.

The development of effective decision support systems presents a
variety of problems.

First there are technical, software system engineering problems in
designing the various computer-based resources in such a way that they
can be fitted together in arbitrary combinations, passing data and control
from one to the other.

At another level, D S S design presents certain human engineering
problems.These involve determinmg what characteristics make a DSS
interface "friendly" to various user groups, and subsequently, how to
design such interfaces. (see e.g., Melichar 1981 for a survey).

However, there remains still another, what may be regarded as a
more theoretical, level of prob!ems posed by decision support systems.
Within the view of a DSS presented thus far, it is the user that specifies
the selection and combination of the available resources for the problem
at hand.

Thus, from a conventional application system where computer
resources are applied in a determined combination by the program (or
chain of programs), in a D S S these resources are left uncoupled.

Yet, while the D S S will not be used only for problems of a single type,
it will generally be dedicated to a certain problem d o m a i n (e.g., produc-
tion scheduling, financial planning). Within this problem domain, there
are certain combinations of resources (e.g., certain sets of data fed to
certain programs) that are sensible and useful, while others are not.
F'wther, there will be certain resource combinations that are used often
enough that one would like to "chunk" them into a higher level concept.
Lastly and most importantly, i f we are aiming at building a support sys-
tem, rather than simply a collection of computer resources, then we need
a way of re-orienting these resources into the language and concepts of
the user's problem domain.

The mechanism to accomplish this integration and translation of
computational resources and user problem orientation is what we call a
d o m a i n m d e l . This paper discusses the use of formal logic as the frame-
work for representing such domain models. The potential value of such
an approach is examined both from the practical standpoint of DSS
operation as well as from the theoretical perspective of a DSS as a bridge
between computational theories and applications disciplines.

11. APPROACHES IN REF'KESENTING PROBLEM DOMAINS
The notion of a domain model is implicit in many computational

resources. For instance, in a database system, names of files and fields
of data are chosen which reflect their external interpretation. For
instance a file called EMPLOYEE has fields NAME, AGE, SALARY, etc. Of
course, as regards database retrieval and update, any arbitrary label
would suffice. These may thus be viewed as memory aids for the pro-
grammers and other users.

However, the labeling conveys somewhat more, namely that impor-
tant characteristics of each employee are his or her name, age, and
salary. The file design implicitly reveals an abstraction (modeling) of the
environment regarded as useful for various organizational tasks.

Obviously a program which interacts with a user will print messages
and prompts which the user can understand. However, even if the pro-
gram doesn't do input-output, names of variables and other data struc-
tures are of ten chosen which reflect their applications oriented interpre-
tation.

These aspects are all, in a sense, domain models. That is, implicit in
data file/data base structures and application program code there is a
vocabulary of terminology that has generally understood references in
the environment, and by these computational mechanisms, a certain
interdependence between this terminology. The choice of terminology
and this inter-dependence are the domain model.

However, this mode of modeling the environment has several prob-
lems from the DSS standpoint.

First, the method of describing environmental characteristics with
programs and data files tends to be ad hoc, That is, terminology is
invented and used within these computational resources to solve specific
applications problems without a general coordinating view of how this fits
in a larger, integrated view of the environment.'

A second problem is that t h s form of domain representation is
mixed, and therefore confounded by, other computational considerations.

In an applications programs, the central task is generally some
transformation of data. This is organized as a procedure consisting of
smaller computational steps. Domain representation is therefore rnixed
with considerations of data types and structures, computational opera-
tions and procedural control. These are aspects specific to the program's
operation which do not necessarily model aspects in the environment.

Somewhat similarly, the design of data files and databases is
motivated by various data storage and retrieval factors which do not
model environmental aspects. In the case of data files, these factors
include access methods, physical data storage arrangements, etc. The
data controlled by a data management system is presented in a more
abstract form, but non-modem considerations are still present. Even in
the mathematically abstracted "relational model" of Codd (1970), the
concept of data structure introduces factors in addition to that of
environmental modeling.

A t h rd problem, related to the other two, is the accessibility of the
domain model information, by other computational resources: For the
modeling aspects embedded in program code this is especially difficult.
I t is very hard, for instance, for a human to learn about the structure of
the external environment by reading a COBOL or FORTRAN application
program. It is much harder still to create other programs which can do
this.

Accessibility of modeling information is somewhat less of a problem
in data files and data bases. With a database, there is usually a separate
specification (the database schema) which indicates the inter-
relationshp of data structures and hence, implicitly some modeling
aspects of the environment. Also data dictionaries are sometimes pro-
vided for data file and databases. These however are usually informal
explanations of how the data is defined, an not (easily) interpretable by
other software.

This is also a point of major concern in the database management literature on conceptual
schemas. See for instance the survey (van Griethuysen e t d. 1981).

In decision support systems, where resources are uncoupled, fre-
quently modified or replaced, and combined in a variety of ways, a form
of domain representation which avoided these problems would be espe-
cially valuable.

Several attractive candidates for such representation are emerging
from artificial intelligence research in knowledge representation and
expert systems (Elam et aL. 1960, presents a good survey and discussion
from a DSS standpoint).

An important point of debate are the advantages of so-called declara-
tive vs. procedural representations of domain knowledge. A procedural
representation is the strategy implicit in most programming languages-
i.e., that knowledge is conveyed as a series of ordered steps in performing
some task. In a non-procedural or declarative representation this
sequencing information is left out. For instance, to take a mundane
example, we could convey the concept of a chocolate layer cake by a
recipe giving the procedure for how to make one. Alternatively, we could
describe the concept of a cake declaratively by indicating the properties
of a finished cake.

If all you want to do is make a cake, the procedure is probably the
more useful representation. But if for instance the cake figures in other
types of problems-e.g., how it will taste in relation to other items in the
meal, how it should be stored and shipped, how it will look on the table,
its dietary characteristics-a declarative description has more flexibility.

In computer based representations a similar choice exists. The pro-
cedural representations have the advantages that they are easier to for-
mulate computationally, and are as well more efficient in computer time
and storage space. Declarative representations have the corresponding
disadvantage that domain modeling is typically much more difficult and,
because use of these representations often involves non-deterministic
search, they can be quite inefficient.

On the other hand, they have several key advantages, especially for
use in DSS domain modeling. The foremost of these is that because the
knowledge does not depend on a particular sequence of interpretation,
they offer a great deal more flexibility in usage. In a procedure one par-
ticular path of deduction is determined. However, in a declarative
representation this is left open and may thus be used for inferences in a
variety of directions.

In providing flexibility of usage, t h s also addresses the problem of
accessibility mentioned above. Further, since these are abstract formal-
isms, they also have the advantage of providing a robust framework for a
consistent, non ad-hoc modeling of the environment while at the same
time avoiding extraneous computational aspects.

For a good discussion of declarative vs. procedural representations
see Winograd (1975). A survey of ongoing research in such representa-
tions is provided in Brachman et al. (1980). One popular type of declara-
tive representation scheme are the so-called "semantic nets," first intro-
duced by Quillian (1968). For a current evaluation and proposal for
semantic networks, see Brachrnan (1978). Another popular formalism is
that of "frames," introduced by Minsky, (1975).

One additional class of declarative representation frameworks are
those based on formal logic. Unlike the others, these representations do
not originate in artificial intell~gence/computer science but nonetheless
are researched there from a computational standpoint. At the level of
first order predicate calculi, there now exists fairly solid computational
approaches (see Nilsson (1980) for a survey), and in fact a programming
language, PROLOG (= programming in logic) now exists in several imple-
mentations which is based on the first order predicate calculus. (See
Coelho et al. 1980 for a more tutorial presentation and a bibliography as
well as a survey of applications and implementations.)

I t is a matter of continuing debate which of these representations is
most advantageous from a computational standpoint.

However, from the standpoint of modeling, representation based on
formal logics have one clear advantage: since they originate outside the
field of computing, their scope of application tends to be much broader,
not being biased by the Limitations of current technologies. For instance,
model logics, temporal logics, deontic logics, multi-valued and fuzzy log-
ics, intensional logics, etc. do not as yet have a well developed computa-
tional interpretation.

Thus, through the use of logical representations we may concentrate
on formal modeling of application domains in advance of the development
of computational frameworks to support these models.

This leads us to consider what we may call DSS theory as opposed to
DSS state of the art. As expressed in a recent DSS conference (Fick and
Sprgue, Jr. 1981), the goals of DSS research are specifically application
oriented, i.e., placing a priority on aiding important areas of decision
making rather than on technical problems. DSS research thus focuses on
decision applications for which there do not yet exist complete computa-
tional solutions, and some sort of cooperative problem solving between
system and user is therefore required.

Thus, theoretically, DSS research involves a balanced contribution
between computer science capabilities and application discipline require-
ments.

In actual fact, however, most work in decision support systems has a
distinct technical bias. The research is largely case study and tool
oriented and typically presents a package of computational functions and
shows how these can be applied to assist in a given area of semi-
structured decision making.

This is st111 "technology push." If we are going to succeed in arriving
at a "application pull" orientation in DSS, we need ways of imagining and
analyzing decision support applications that are not bounded by
currently available technology.

h e way of doing this is to conceive of a DSS abstractly, as a logical
system whose criteria for feasibility is logical tractabihty rather than
computability.

The role of a logical representation of a problem domain area in
these cases is thus to serve as an intermediate specification between the
theories of applied disciplines (such as production, finance, accounting)
and computation. Through t h s approach, computational issues can be

prioritized from an applications standpoint.
In summary, logical domain models have now been introduced from

two motivating perspectives.
Insofar as the logic used is implemented computationally, the logical

domain model provides a qualitative framework for integrating and
orienting various computational resources (e.g., databases, algorithms)
to a particular problem domain. As a declarative representation, a logi-
cal domain model provides a flexible framework that may be used for a
wide variety of inf erencing purposes.

However, insofar as we make use of logics not yet computational in
designing domain models, this allows us an application oriented specifica-
tion of a potential DSS, encouraging an "application pull" computer sci-
ence research.

One other distinction is implicit here, namely, the scope of the
domain in question. In the first case, where we are considering opera-
tional systems, the problem domain we have in mind is also fairly
specific-i.e., confined to a functional area of a specific firm.

In the second case, where we consider logical domain modeling as a
theoretical tool for describing abstract DSS's in advance of current tech-
nology, the domain we generally associate to this is likewise much more
broadly defined-e.g., logical representation of production control
processes, financial transactions, accounting theories, etc.

However, one additional merit of a logical representation scheme is,
by the addition of increasingly more specific axioms, it allows a smooth
transition from broad based theories to specific application contexts.
The approach thus has the potential to serve not only as a bridge between
application and technology but also as a bridge from theory to actual
practice.

k Brief Tutorial
So far we have hscussed the concept of logical domain modeling only

in broad terms, without mentioning specifics. In this section we present a
brief and somewhat superficial sketch of logical domain representation
for decision support systems. The presentation here is tutorial, and does
not presume background in'formal logic. However, it is not meant as an
introduction to logic in general, but rather highlights certain aspects of
logic particularly relevant to DSS domain modeling.

The concepts and syntax presented here are part of a larger logical
modeling formalism called CANDID, originally developed in Lee (1960).

1 . Proposi t ional Logic
The simplest level of logics is the proposi t ional Logic. Here a vocabu-

lary is introduced, called the u n i v e r s e of d iscourse , consisting of com-
plete statement's (propositions), corresponding to declarative sentences
in English or some other natural language sentences. We denote these as
single capital letters.

For instance,
A = the world is flat
B = two plus two is four
C = three plus three is six
D = Ronald Reagan is bald.

We assume, without defense, that A and D are false and B and C are true.
Compound propositions can be formed from these elementary ones

using the logical connectives:

N not (negation)
& and (conjunction)
V or (disjunction)
3 implies (implication)
H if and only if (bi-conditional)

Here we have used an English gloss (interpretation) of the logical symbol.
This is useful to convey a general intuition as to how these symbols are
used, but i t is important to emphasize that the correspondence is not
exact. For instance, using the previous example propositions, (B V C) is
true though its gloss "two plus two is four or three plus three is six"
sounds false in natural language. This is because the logical symbol is an
inclusive or while the English "or" is usually used exclusively. Likewise
(A 3 D) is logically true though its gloss "the world is flat implies Ronald
Reagan is bald" would be considered false by most people.

However, the logical connectives have the advantage that they offer a
precise interpretation of the truth of compound propositions given the
truth values of its elements. This is given by the so-called "truth tables"
illustrated in E f i b i t 1. For two arbitrary propositions, P and Q, the table
shows the truth value of their various compounds depending on the truth
values of P and Q.

Exhibit 1.

P

T
T
F
F

"P

F
F
T
T

Q

T
F
T
F

P & Q

T
F
F
F

P - Q

T
F
F
T

P V Q ' P - + Q

T
T
T
F

T
F
T
T

I t should be noted that compound propositions, composed of elemen-
tary ones, can be used in forming still hgher level compounds. In doing
this, it is often convenient to add further proposition symbols to
represent these compounds. To indicate this, we introduce another sym-
bol, "e," as a defining bi-con&tional. This acts just as the ordinary bi-
conditional (" - "), but conveys the additional notion of definition-i.e.,
that its left hand term is derived from the more primitive propositions in
the right hand expression. For instance, we may define a new proposi-
tion, E, as

which has the logical force of

plus that of definition. Note however that this notion of definition is
imposed on and not explicitly controlled by the logical syntax.

2. Red ica te Logic
The next level of logical sophistication is what is called a predicate

calculus . Here, propositions are dec omposed to distinguish individual
objects which the statements are about and the properties and relation-
ships that are asserted of these objects. To distinguish the individual
objects under discussion, we adopt an internal naming scheme consisting
of the character "@" followed by one or more lower case letters-e.g., @a,
Qron, @bill. In a computer implementation these would be internally gen-
erated identifiers. It is assumed that each such logical name corresponds
to one unique object (though an object may have multiple logical names).

The concept of a universe of discourse is somewhat different a t this
predicate calculus level. It amounts to specifying the set of individuals
considered in the logical discussion; for instance the set of living people,
the set of people at this conference, the set of integer numbers, etc. This
universe is designated informally, i.e., in English or some other natural
language, and it is presumed that all parties involved in using the logical
application agree about what is contained in the universe.

Once this universe has been defined and a naming scheme adapted
for the individuals in it, further properties and relationships on these
individuals are ascribed by means of predicates. A predicate will be
denoted as one or more capital letters followed by an argument list.

For illustration, suppose a universe consisting of a small group of
people named as follows:

U = I @bill, Qgeorge, @sue, @mary {

A useful property to identify within t h s universe might be the predicate
FEMALE, e.g.,

A multi-place predicate is used to indicate a relationshp between more
than one individual, e.g., that two are married:

MARRIED(Qbil1, Qmary)
MARRIED(Bgeorge, @sue)

The pairs, or more generally, the tuples satisfying a given multi-place
predicate describe a relation (in the mathematical sense). A restricted
case of t h s is a function, where one of the arguments is uniquely deter-
mined when the others are specified. An alternative notation is used to
indcate this, which uses the notation as for an individual, but followed by
an argument list. For instance, suppose we have the predicate FATHER
and

FATHER(@bill, Qsue)

then we might refer to bill indirectly as the father of sue as follows:

Qfather(@sue)
In addition, let us adopt a new predicate, "=", for equality. Unlike

the other predicates which have an argument list, it is more common to
use "=" in an infix notation. Thus, to indicate that bill is sue's father; we
write

Qfather(@sue) = Qbill.
This is equivalent to the previous predicate,

Qfather(Qsue) = Qbill t.r FATHER(Qbi11, Qsue).
However, since the result of this function is a reference to a unique

individual, such functions can appear as arguments to other predicates,
e.g.,

Likewise, we may sometimes use one function in the definition of oth-
ers. For t h s we use the notation ":=" to indicate a "defining equality."
Like the defining bi-conditional used earlier, this carries the logical con-
notation of equality, plus the extra logical notion of definition. For
instance, the function "grandather on father's side" can be defined as
father of father:

grandfather-on-father-side(x): = father(father(x)).
Predicates applied to individuals constitute propositions in the sense

explained earlier. We may therefore use the same truth connectives to
construct more complex statements. For instance,

We need however, one more construct to obtain a reasonable level of
descriptive power in this calculus: that of a logical variable, We will
denote logical variables as single lower case letters optionally followed by
an integer subscript, e.g., x, y, z l , zz, 23, etc.

Syntactically, these may appear in any context where a logical con-
stant appears. However, one must in addition indicate the range of these
variables, i.e., how many individuals in the range of these variables, i.e.,
how many individuals in the universe may potentially be represented by
the variable.

The typical way of doing t h s is by using the symbols, Wand 2, called
respectively the universal and existential quantifiers. To illustrate their
use, suppose P is an arbitrary one place predicate. Then

asserts P is true of all individuals in the universe, whereas

asserts P to be true of at least one (but possibly more) individuals in the
universe.

Recall from the earlier discussion of propositional logic that we intro-
duced the symbol "-"to indicate the definition of hgher level proposi-
tions. With the notion of a logical variable and quantifier, we are now able
to correspondingly define higher level predicates. For instance, suppose
we adopt the following three predicates as primative:

FEMALE (x)
MARRIED(% y)
PARENT(x,y)

We may then for instance define a male as a non-female:

a father as a male parent

a child as the converse relationship to parent:

a husband as a male individual married to someone

A sibling relationship as having common parents:

(Vx Wy) SIBLING(x,y) - 3 u g v PARENT(u,x) & PARENT(u,y) &
PARENT(v,x) & PARENT(v,y)

A grandparent relationship:

(WX)(WY) GRANDPARENT(X,~) - (3 Z) PARENT(X,Z) & PARENT(Z,Y)
In similar fashion such other familial relationships as son, daughter,

brother, sister, aunt, uncle, niece, grandson, etc. etc. can be defined. We
thus see that a very rich vocabulary can be defined from a very restricted
set of primitive qualities.

B. Logical Representation of Data Objects
In the predicate calculus illustrated thus far, the individual objects

represented by the logical variables and constants were individuals in t h e
e n v i r o n m e n t . By contrast, the basic objects in a computer system are
d a t a objects. This distinction is fundamental to the role of a logical data
model: .to describe how data objects correspond to external objects and
their properties.

To elaborate this, we need to extend the predicate calculus to recog-
nize not one universe of discourse, but two. This involves what is called a
multi-sorted logic. The first universe, as before, consists of objects in the
problem domain environment. The second consists of data objects as
they are generally regarded in programming languages and file and data-
base management systems. Following the usual views, we assume ele-
mentary data objects to be of two basic types: character strings and
numbers. Numbers are often further distinguished between reals and
integers, but we can ignore that for our purposes here.

To represent these in the calculus, we need some additional notation.
Character string constants are denoted as a list of letters, dlgits or other
punctuation between double quotes-e.g.,

"this is a character string"

Numeric constants are denoted, as usual as Arabic digits, with or without
a decimal point-e.g., 1, 2.0, 3.5, ,315.

Variables for character strings and numbers are denoted as for
external individuals, i.e., as a lower case letter followed by zero or more
lower case letters or digits.

A numeric function is one which results in a number, though its argu-
ments may or may not be numeric. Similarly, a character string function
is one which results in a character string.

Functions once again will be denoted by a lower case name followed
by an argument list.

However as we are now discussing several universes at once we will
introduce an (extra logical) convention in t h s naming scheme as a visual
reminder: numeric variable and function names will have a "#" appended,
whereas character variable and function names have a " 8" appended.

For notational convenience we will represent the standard arithmetic
functions by their usual infix notation: +, -, +, / .

Data objects, however, are often collected into structured collec-
tions, called data structures. We therefore need to introduce some sim-
ple structuring devices in our calculus. Whle used mainly to describe
collections of data, these apply as well to collections of external objects.

A set is an unordered collection of objects. A set constant can be
defined in two ways--extensionally, as a list of individuals between brack-
ets, e.g.,

or intensionally, by indicating a predicate whlch defines the criterion of
membership, e.g.,

read the set of all x (individuals in either universe) satisfying the predi-
cate P.

Here P is a single place predicate. A set defined intensionally by
means of a multi-place predicate is called a relation. Here, the set has an
internal structure corresponding to the place positions in the predicate.
Each member of a relation is called a tuple and is indicated within angle
brackets: e.g., for a two place predicate Q, its corresponding relation is
denoted:

Relations can as well be defined extensionally by listmg the tuples-e.g.,

[<Qa,Qb>, <@c,@d>, <@e,Bf>].
As proposed by Codd (1970), a relation is a useful way of abstracting

the structure of a database. We will therefore adopt this as a simplified
view of data files and databases. Codd's notation for a relational database
is the relation name followed by a parenthetical list of "attributes"
corresponding to tuple positions. For instance, for a file of employee data

In the notation here, t h s becomes:

Qemp = f<id#, names, salary#>]

Here we adapt the convention of identifying the relation itself as a logical
in&vidual.

It should be observed that this is a relation of data values, not of log-
ical individuals. Furthermore, it is a relation defined extensionally, by
the listing of data tuples. For instance, @emp might appear as

@emp = t <12, "SMITH", 30000><25, "JONES", 25000>< 18, "ABLE", 40000> 1

The expression <id#, names, salary#> is thus a tuple of variables that
range over the tuple constants in the database.

Elements of a database relation are therefore data tuples. To refer
to a data element within a tuple we use a dot notation analogous to that in
Codds (1971) relational calculus, e.g.,

While thls gives a fairly adequate logical characterization of the data-
base resources in a DSS, we need also to characterize the data structure
commonly used in various types of analysis programs.

Here, two faily common structures are vectors and matrices. (Other
structures are also used'but these are at least representative.)

These are basically mathematical concepts, though we will here use
these terms in a more general sense, applying to any type of individual.

A vector is, logically speaking, a linear ordering of individuals. This
ordering is indicated by an integer index. We may thus describe a vector
as a two place relation associating some set of individuals with the posi-
tive integers. Denoting the integers by the predicate I, and the vector
association as V, a vector therefore has the form:

Similarly, a matrix is a two dimensional ordering of individuals, i.e., each
individual is associated with two integers. This is therefore described log-
ically as a three place relation, e.g., for a matrix predicate M,

I<i,j,x> (I(i) & ~ (j) & ~ (i , j , x)]
By a similar method, lugher order structures can be defined, e.g.,

three or four dimensional arrays.
For convenience, let us abbreviate a vector, v, of length n as

and a matrix, w, of order m by n as

w[mxnl
Using these logical structuring devices as applied to the universe of

data objects, most types of quantitative analysis programs can be
described as functional transformations from one or more (possibly ele-
mentary) structures to another.

For instance the function, average (avg#) maps from a set of
numbers to a scalar:

A correlation routine (corr#) maps a two place numeric relation to a
scalar correlation coefficient:

A multiple regression routine (mv#) maps a dependent variable vector
and a matrix (independent variables) to another vector of beta coeffi-
cients:

A linear programming (lp#) routine maps two vectors, and a matrix
to another vector

C. From Data Objects to Domain Description
Earlier, it was indicated how the properties and relationships of

objects in the DSS problem domain are represented in the predicate cal-
culus. Next, by including a universe of data objects and adding certain
structuring devices to the calculus, we indicated how data structures and
transformations thereon could be represented logically.

In this section we indicate how these two universes are related.
As discussed so far, we might classify the problem oriented

resources of a DSS as databases , which provide data or facts about the
environment, and analy t i c rout ines , which provide specific ~nferences on
certain, usually quantitative data. The purpose of t h s paper has been to
propose a third class of resource, a Logical domain model . From a model-
ing perspective the functions of these three types of these three types of
resource in a DSS are as follows:

a) a database provides t a c f s about the existence of objects in the
problem environment and their elementary properties and rela-
tionships.

b) an analysis routine provides a particular type of inference from
. an given set of input facts. The input and output of these rou-

tines is in most cases quantitative.

c) a Logical domain model describes qualitative inter-relationships
in the problem domain. I t provides the apparatus for defining
higher level qualitative concepts from those used in the data-
base, and provides a qualitative context for the quantitative
inferences performed by analysis routines. As proposed here,
the logical domain model also serves as point of contact for user

, interface languages and display routines. These translate the
logical notation of the logical model into a form more under-
standable to the user. This integrating role is diagramed in
Exhibit 2.

The purpose of a logical domain model is to translate from the data
orientations of databases and analytic models to those of the problem
domain. We now examine how this is done.

DATABASES r l ANALYTl C 1 MODELS 1
I I I I

LOG1 CAL
DOMAIN
MODELS

USER
INTERFACE

Exhibit 2.

1. Databuses
The first problem is how the logical domain model is to "know" about

the existence of individuals in the environment. This information is pro-
vided by the database, however not explicitly.

For instance, tuples in a database relation are often meant to
correspond to distinct individuals in the environment, however this is not
always the case nor is the interpretation explicit in the database struc-
ture. For example, using the earlier notation we might have the relations

Qemp = ! <id#,name$, salary#>{
Qmarried = ! <husband-id#,wife-id#> {

Qpart = !<part-id#, qty#> j
In the relation Qemp, each tuple corresponds to a specific person in

the environment. In the @married relation, each tuple represents a
husband-wife pair, whereas in the @part relation, each tuple represents a
set of parts whose cardinality is given by qty#.

Essentially, what is required is a series of logical assertions describ-
ing the "existential claims" of each database relation, i.e., what the pres-
ence of a tuple indicates about the presence of individuals in the environ-
ment. For the previous three relations, these assertions would be as fol-
lows:

Wx (x E @person) -+ j y PERSON(y)
Wx (x E Qmarried) 4 j y 3 z MARRIED(y,z)

Wx (x E Qpart) --, z y y = fz (PART(z)j

Note that in their logical interpretation, database relation names
take on the role of predicates on these logical individuals.

The next problem is how the character and numeric data in the data-
base convey logical properties about these individuals.

a. Character data
Character strings seem to have two general uses in characterizing

static problem domains. In one use they convey qualitative properties
-e.g., colors, shapes of objects, organizational rank, skills of people.
These translate in a straightforward way to predicate names, as described
above. The other major use of character strings is a labels. These do not
indicate properties of the object, but rather are used by members of the
organizational environment to identify these objects (and one another).
Examples of labels for people are first and last names, social security
numbers, similarly vehicles have license and serial numbers, companies
have names and SEC number etc.

Numeric data is often used in these same two ways as well. For
instance, some labels consist entirely of numeric digits (e.g., a part
code), though these are used essentially as character strings, without any
associated arithmetic operations.

Likewise numbers are often used as classification codes, i.e., abbrevi-
ations for the names of predicates, expressing qualitative properties and
relationships. For instance

MARITAL STATUS
0 = slngle
1 = married
2 = divorced

In this case, too, the numbers are used basically as other alphabetic sym-
bols, without any associated arithmetic. Sometimes, these two uses are
combined as "meaningful" identification codes, e.g., where the first two
digits of a product code indicate its generic category, the second two a
subcategory, and the remaining digits are an arbitrary assignment to dis-
tinguish the individual within this sub-class.

The other major uses of numeric data in static domains is to express
measurement.

Measurement is a scaling of the intensity or magnitude of some
feature on a number line. These scales are distinguished by the infer-
ences that can be drawn. A nominal scale corresponds to a simple clas-
sification scheme--i.e., numbers are essentially abbreviations for predi-
cate names as was just described. With an ordinal scale, objects are
ordered along the line but intervals and absolute position are not mean-
ingful. On an interval scale, inferences comparing interval lengths are
allowed, but not between absolute magnitude (e.g., temparature--20°C is
not twice as warm as 10°C, but a rise of 20" is twice as much as a rise of
10"). Lastly, in a ratio scale, inferences comparing absolute position are
also permitted. Here, when speaking of measurement a ratio scale is

generally implied. Logical formalization of the other scales is however
straightforward.

A measurement typically involves a measurement dimension, indicat-
ing the property being scaled (e.g ., height, weight) plus a unit of measure,
indicating calibration of the scale (e.g., centimeters, kilograms).

One type of measurement is of course volume measurement, e.g.,
barrels of oil in a s h p , bushels of wheat in a baxcar. Maintainmg our
assumption that the objects in the logic are discretely identifiable, we
assume that such liquid or granular materials are contained in a
discretely identifiable container.

A special case of volume measurement is cardinality, indicating the
count of elementary objects in a set, erg., the number of bolts in a bin. In
this case, the unit of measure is one such elementary object.

To summarize, as a tentative taxonomy of the uses of character and
numeric data to describe static domains, we have

character strings used for labels
character strings used for predicate names
numbers used for labels
numbers used for predicate names
numbers used for measurement

For more detailed illustration, let us consider a more elaborate form
of the PERSON file, with the following rows of data:

PERSON (LAST-NAME, ID, SEX, MARITAL-STATUS, SALARY, HEIGHT, WEIGHT)
SMITH 12 M 0 25 1.5 8 0
JONES 27 F 1 50 1.55 52
ADAMS 52 F 2 20 1.7 6 5

Since each row of the file corresponds to an individual person, we
may assign logical names to these individuals by placing arbitrary labels
on each row, e.g., @a for row 1, Qb for row 2, Oc for row 3.

The each column of the file can be regarded as a functional mapping
from each of these individuals to a character string or number, e.g,

last-namet(Qa) = "SMITH"
id#(Qa) = 12

sex$(@a) = "Mu
marital-status#(Qa) = 0

etc.
In this form, each of these functional maps serves merely in the role

of a label, i.e., it associates a character string or number to the indivi-
dual, but allows no further inferences.

However, as discussed above. certain of these mappings may be re-
interpreted as predicates, allowing further logical inference to be
described, whereas others may be interpreted as measurements, ena-
bling us to do certain quantitative mferences.

Note that last-name$ and id# (identification number) are data specif-
ically used for (external) identification purposes. These have Little
further value for inferencing.

However the next two, sex$ and marital-status#, do indicate qualita-
tive properties that may be used in further deductions. We therefore
indicate their re-interpretation as a predicate in the following way:

(Vx)sex$(x) = "M" - MALE(x)
(Vx)sexf!(x) = "F" - FEMALE(x)

(Vx)marital-status#(x) = 0 - SINGLE(x)
(Vx)marital-status#(x) = 1 - MARRIED(x)
(Vx)marital-status#(x) = 2 - DNORCED(x)

The interdependence of the marital status predicates can be indi-
cated as follows:

(Vx) "MARRIED(x) - SINGLE(x) V DNORCED(x)
Further predicates can likewise be defined. For instance, we may

want to indicate that two people are candidates for marriage:

(VX) (VY)CAN-MARRY(X,Y) - MALE(X) BL FEMALE(Y) BL "MARRIED(X) 8r -MARRIED(Y).
The function salary# is implicitly an annual salary in thousands of

dollars. We can make this unit conversion specific by converting to to a
measurement function:

year-salary#(x, Qdollar) := 1000 * salary#(x)

We can likewise define a monthly salary as:

month-salary#(x,unit):= year-salary#(x,unit) / 12
Note that thls relationshp is true regardless of the currency, the

unit of measure has been left as a variable.

As observed, most analytic models do transformations on quantita-
tive data. For simplicity, we consider only this kind. In these cases, the
numbers input to and output from the model are interpreted logically as
measures, i.e., as a numeric scaling of some qualitative feature. Thus the
quantitative transformations are always regarded as transformation of
measure functions.

A very simple example are the arithmetic functions, +, -. *. /, as
used in the preceding examples.

As further examples, these can be used to define transformations of
measurement units, e.g.,

Vx LENGTH#(x,@cm) = 2.54 * LENGTH#(x, Qin)

Higher level measurements can also be defined, for instance the area of a

rectangle

(Note that area involves a double measurement unit.)
However, most interesting analytic models involves features not of

single objects, but of collections. For instance, the function average is a
property of a set of objects. Consider, e.g., the average height of all
males in the population.

n = avg#(f ht#(x) I MALE(x)l)
A correlation routine, corr#, takes as an argument a two place rela-

tion. Suppose we want to find the correlation between the heights of mar-
ried couples. This is expressed

n# = corr#(I< ht#(x), ht#(y)> 1 MARRIED(x,y)])
In these cases, the result of the analysis routine was a scaler

number. To illustrate a case where the result is a tuple, suppose we want
a multiple regression (mr#) of weight of people as a function of height and
age.

<a#,b#,c#> = mr#)<wt#(x),ht#(x) ,age#(x)> I PERSON(x)]
To illustrate a function whose result is a set, consider the function,

sort which orders a relation

D. System Operation: Asking Questions
Logical representations, such as we have shown, are generally

oriented towards ma- assertions--i.e., expressing facts or generaliza-
tions. What is missing in this from the standpoint of DSS operation is the
ability to express questions about the problem domain.

Here we consider two general types of questions-"true/false" ques-
tions and " w h c h questions.

A truelfalse question has the general form "Is it the case that P?,"
where P is an assertion. Possible responses are true (T), false(F) or don't
know(?). Logically, the question is simply an assertion which is t o be
compared for compatibility with existing assertions. We therefore need
to distinguish between assertions taken as axiomatic and others taken as
goals to be proven. For this we use the simple device of a question mark
preceding the assertion, e .g.,

is read "Is it the case that P?."

'Which questions ask for a list of objects whch may be either logical
individuals, character strings or numbers. One way to do this is to specify
a function which selects the objects in question. Recall that functions are
always used in assertions as an argument to a predicate, typically as one
of the arguments to the predicate "=". Outside of this context they sim-
ply result in a n individual-whch was the goal of the which question. For
instance, the question "who is Mary's father?" is given by:

father(@mary).
Ths results in a logical constant name, whch may be printed out

directly or passed to a user interface. However, logical constants are
used here as internal identifiers. Normally a user interface would want to
refer to external identifiers--e.g.,

returns Mary's father's last name.
More often, however, we are interested in identifying a set of indivi-

duals, for instance the set of females:

Again this would return their internal logical names. To obtain their last
names, we specify

or if we want first and last-name pairs, we write:

(<first-namet(x),last-name$(x)> I F'EMALE(x)J
To identify all married couples, we specify:

to request their names and ages we write

I<namet(x>,nmet(~>,age#(x),age(y)> I MARRIED(x,y)j
As is evident, t h s is constructing a data relation of an intensionally

identified set of individuals. Note that t h s method of querying is "data
structure independentH--i,e., the retrieval does not depend on the struc-
ture of the database retations from which the data originally came, but
rather on the association of t h s data to logical in&viduals.

Other types of analytic routines, regarded as functions, can likewise
be specified drect ly. For instance, to obtain the correlation of height
and weight of males we specify

to get the correlation in heights of married couples we specify:

lV. FURTHER ISsUES MIR LOGICAL MODELING
As mentioned, the logical syntax presented here is part of a larger

formalism called CANDID, first developed in Lee, (1980). hsted here are
some additional logical modeling issues addressed in that work.

A Representation of Aggregate Objects
The predicate calculus, as we have described it is commonly cqlled

"first order," that is the logical individuals within it are presumed to be
elementary, with no internal structure. We commented earlier that a bin
or package of smaller objects could nonetheless be indicated provided
the bin is considered as an individual in the calculus and its cardinality
regarded just as any other numeric measurement. This is probably satis-
factory for describing static views of inventories, but leads to problems
when we wish to refer to properties and relationships withn the
aggregate--e.g., we may wish to refer to the collection of employees asso-
ciated with a department, yet make assertions about separate employees
within this collection as well.

The aversion for mixing assertions about individuals, sets, sets of
sets, etc. in the same calculus is due originally to Russell, and has been
commonly accepted witbn logic. More recently, Goodman (1977) has pro-
posed an alternave, more natural framework he calls the "calculus of indi-
viduals" that treats elementary and collections of individuals all withn
the same first order framework. Adopting this view we may write expres-
sions like

where the brackets are now re-interpreted from designating sets to being
what Goodman calls a "summation" of these individuals. Interestingly,
within this calculus the two concepts of "element of" and "subset of" are
discarded in favor of a single alternative, "part of ."

In the calculus presented in this paper, we have followed Goodman's
suggestion as far as representing non-elementary objects (sets, relations)
as other logical individuals. To keep the discussion based on familiar con-
cepts, we did not however include his part-of and logical summation con-
structs. These are however useful in m o d e m objects constructed out ot
others. For instance--it is common in production to have parts combined
to form sub-assemblies which in turn combine to form larger assemblies,
etc. In a theory of sets these are each increasingly lugher order sets
whereas in the theory of individuals these are all objects of the same
ontological status, which is more natural from the modeling standpoint.

Thus a bolt whch is part of a carburetor is as well part of the engine and
part of the car itself. In a theory of sets the car would thus be a third
order set, whereas in th calculus of individuals, it is merely another first
order object.

B. Representation of Time
Earlier, we limited our discussion to databases containing only

current facts about the environment. An obvious extension is to consider
databases containing not only current but historical data. Logical
interpretation of these databases involves so-called temporal logic. One
formulation, proposed by Rescher and Urquhart (1971), introduces the
concept of "realization"--i.e., the time in whch a particular assertion is
true. For instance, if S(Qvienna) is the assertion "there is snow in
Vienna," then

expresses the assertion that it is realized at time t that there is snow in
Vienna. When time is conceptualized as a series of discrete intervals, e.g.,
days, then this reduces to a predicate calculus in a straight forward way,
by adding extra predicate places, e.g.,

S(@vienna, to, t l)

where tO and t l are the starting and ending days of the interval. When
time is conceptualized as a continuous dimension (the more common
interpretation), certain additional complications arise. This problem is
analogous to that of dealing with liquid objects--the predicate calculus is
basically oriented towards objects that can be discretely named.

The method of dealing with it is also analogous. One may identify
liquids, grains, etc. by reference to individual containers that holds them.
Continuous time can also be treated by reference to individual time
spans-e.g., the days, months, years named by the Gregorian calendar.

C. Change and Process
A concept related to realization is that of change. Logically this can

be reduced to the changing in truth value of a predicate or proposition.
A useful notation is that of von Wright (1 965):

read PI "and then" P2, where PI and P2 are propositions. The advantage
of this construct is to be able to refer to changes generically, without

specifying when they occurred. For instance, if we assume a predicate
OWN(x,y) indicating that x owns object y, we can then define a change in
ownership, from x to z as:

A specific change of ownership is described by identifying the particular
individuals involved and when it occurred, e.g., for Bill giving Tom a book
in July 1, 1975

A change is usually regarded as instantaneous or taking place during
the, shortest interval on the time scale. A p r o c e s s , by contrast, is a
change of longer duration. Often in organizational environments we are
concerned with production processes. This is described formally simply
by replacing the elementary time of realization by a longer interval. An
interesting aspect here is that, typically, the process does not merely
transform the object, but rather several input objects are absorbed (des-
troyed) by the process while others are created. This necessitates the
predicate of "temporal existence," say E(x).

Destruction and creation are thus expressed, respectively:

D. Action and Responsibility
An action is a change "caused" by somebody. Von Wright (1967) for-

malizes this as a change that would not otherwise have occurred without
the intercession of this agent. In combination with the previous T opera-
tor, this is denoted as

read P1 and then P2 "instead of" P3. The identity of the intervening agent
is however not indicated in t h s notation. Suppose we add a third place in
the I connective, i.e.,

P1 T (P2 Ix P3)
We now convey the notion that partly x is r e s p o n s i b l e for the

occurrence of state P2. This notion of responsibility is an extremely
important one from the standpoint of organizational control systems.

E. Forecasts and Plans
The temporal logic discussed thus far is used for describing temporal

facts, i.e., observation in th past or present. However, when dealing with
descriptions about future states, these are generally not regarded as
facts (we cannot observe the future), but rather as speculations, inten-
tions, etc.

Usmg the constructs thus far, we can describe a fwecas t as a state
or change assertion realized in the future. Correspondingly, a plan is an
action assertion realized in the future.

A contingent plan is a plan whose actions are conditional on some
forecast.

While probabilities are sometimes associated with forecasts, this is
seldom done with planned actions. However, in either case we can speak
of whether or not the forecast or plan was realized--i.e., when current
time reaches the time of the plan or forecast. In this way, assertions
about the future can be related to the deductive framework of first order
logic.

F. Contractual Obligation and Logical Interpretation of Accounting
Data

The concept of contractual obligation extends naturally from that of a
plan. It is essentially a plan promised to some other party.

This notion of promise can be convened using a so-called "deontic
logic." Again with reference to von Wright (1968), the following operators
are introduced. For an action, a:

Oa means a is obligatory
Pa means a is permitted
Fa means a is forbidden.

Interestingly, these three concepts are inter-definable--for instance
that a is obligatory is equivalent to it not permitted not to do a , which in
turn to forbid not doing a.

When dealing with contracts we are basically concerned with the con-
cept of obligation. However, in commercial transactions this is not
merely a relationship created between two individuals, but as well an
object in itself which can for instance be bought and sold (e.g., factoring
of receivables, trading of bonds).

Recognizing this gives certain logical insights into the structure of
accounting data, namely that many of its assets (receivables, investments
in securities, licenses) and all of its liabilities (notes, bonds, grades of
stock) can be elaborated as so-called promissory objects. Interestingly,
this logical interpretation supports emerging views in theoretical
economics and finance of the firm as a locus of contingent obligation.

V. CONCLUSION
The concept of a logical domain model was proposed as a qualitative

interencing framework for integrating the database and analytic model
resources in a DSS. This has certain practical possibilities in enabling the
DSS to incorporate certain types of "knowledge" about the problem
domain.

It as well serves as a proposal for a theoretical basis .of DSS
research--using logical representations as an intermediate, formal specif-
ication of application related knowledge independent of computational
limitations.

Brachman, R.J. 1978. Theoretical Studies in Natural Language Under-
standing. Report No. 3888. Cambridge, Massacliusetts: Bolt, Beranek
and Nevman.

Brachman, R.J. and B.C. Smith. eds. 1980. Special Issue on Icnowledge
Representation. SIGART Newsletter 70.

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communica t ions of the ACM. 13: 377-387.

Codd, E.F. 1971. A Data Base Sublanguage Founded on the Relational Cal-
culus. Proceedings of ACM SIGFIDET Workshop on Data Description,
Access, and Control. San Diego, California.

Coelho, H., L.C. Cotta and L.M. Periera. 1980. How to Solve It with PRO-
LOG. Lisbon: Laboratorio Nacional de Eng enharia Civil.

Elam, J.J., J.C. Henderson and L.W. Miller. 1980. Model Management Sys-
tems: An Approach to Decision Support in Complex Organizations. In
Proceedings of the First International Conference on Information
Systems, Philadelphia, Pennsylvania, December 8-i3, 19BC;, pp.98-
i 10.

Fick, G. and R.A. Sprague, Jr. eds. Decision Support Systems: Issues and
Challenges, iIASA Proceeding Series No. 11. Oxford: Pergamon

Press.

Goodman, N. 1977. The Structure of Appearance. 3rd Ed. Dordrecht,
Holland: D. Reidel Publishing Co.

Lee, R.M. 1980. CANDID--A Logical Calculus for Describing Financial Con-
tracts. Ph.D. dissertation. Philadelphia: Department of Decision
Sciences, The Wharton School, The University of Pennsylvania.

Melichar, B. 1981. Nonprocedural Communication Be tween User and
Application Software. RR-81-22. Laxenburg, Austria: International
Institute for Applied Systems Analysis.

Minsky, M. 1975. A Framework for Representing Knowledge. In P.H. Wins-
ton, ed, The Psychology of Computer Vision. New York: McGraw Hill.

Nilsson, N.J. 1980. Principles of Artificial Intelligence. Palo Alto, Califor-
nia: Tioga Publishing.

Quillian, M.R. 1968. Semantic Memory. In Semantic Information Process-
ing, pp.227-268. Cambridge, Massachusetts: MIT Press.

Rescher, N. and A. Urquhart. 1971. Temporal Logic. Vienna: Springer-
Verlag .

Sprague, R.A., Jr. 1980. A framework for research on decision support
systems. In G. Fick and R.A. Sprague, Jr. eds. Decision Support Sys-
tems: Issues and Challenges, pp. 5-23. Oxford: Pergamon Press.

van Griethuysen, J.J. et al , eds. 1981. Concepts and Terminology for the
Conceptual Schema. IS0 /TC97 /SC5/WG3 Preliminary report by
International Organization for Standardization.

von Wright, G.H. 1965. And Next. Acta Philosophica Fennica Fasc. XVIII:
293-301.

von Wright, G.H. 1967. The Logic of Action--A Sketch. In N. Rescher, ed,
The Logic of Dec-ision and Action, pp.121-136. Pittsburgh: Uni-versity
of Pittsburgh Press.

von Wright, G.H. 1968. An Essay in Deontic Logic and the General Theory
of Action. Acta Philosophica Fennica Fasc. XXI. Amsterdam: North
Holland.

Winograd, T. 1975. Frame Representations and the Declarative-
Procedural Controversy. In D.G. Bobrow and A. Collins, eds,
Representation and Understanding, pp. 185-220. New York:
Academic Press, Inc.

