
Nonprocedural Communication
between Users and Application
Software

Melichar, B.

IIASA Research Report
October 1981

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33893018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Melichar, B. (1981) Nonprocedural Communication between Users and Application Software. IIASA Research

Report. Copyright © October 1981 by the author(s). http://pure.iiasa.ac.at/1547/ All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage. All copies

must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or

to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

NONPROCEDURAL COMMUNICATION BETWEEN USERS AND
APPLICATION SOFTWARE

Boiivoj Melichar
International Instihcte for Applied Systems Analysis, Laxenburg, Austria

RR-8 1-22
October 1981

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
Laxenburg, Austria

lnternational Standard Book Number 3-7045-0016-X

Research Repora, which record research conducted at IIASA. are independently reviewed before
publication However. the views and opinions they express are not necessarily those of the Institute or
the National Member Organizations that support it.

Copyright O 1981
Intcrnationsl Institute for Applied Systems Analysis

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical. including photocopy, recording, or any information storage or
retrieval system, without permission in writing from the publisher.

PREFACE

Boyivoj Melichar participated in the Junior Scientist Progralii held at the International
Institute for Applied Systems Analysis during the sumlner of 1979, working with the
Management and Technology Research Area in its study of the impact of small-scale
computers on managerial activities. ?'he difticulty of developing suitable software has
been identified as one of the major obstacles to a healthy balance between cheap hardware
and user-friendly software in this field. The use of nonprocedural languages is often sug-
gested as one possible way of overcoming this problem, but as yet there has been no c o ~ n -
prehensive survey of the subject. This report. written while the author was working at
IIASA. represents one of the first attempts to compare different methods ofnonprocedural
communication between users and their application software in interactive data-processing
systems.

Ciiran Fick
Management and
Technology Area

CONTENTS

SUMMARY

I INTRODUCTION
1.1 Basic Concepts
1.2 Interactive Systems
1.3 Interface between the User and the Application Software

2 NONPROCEDURALLY ORIENTED ACTION LANGUAGES
2.1 Answer Languages
2.2 Command Languages
2.3 Query Languages
2.4 Natural Languages
2.5 SpeciaI-Purpose Languages
2.6 Two-Dimensional Positional Languages.

3 MAIN FEATURES O F DISPLAY LANGUAGES
3.1 Formatting the DiaIogue Document
3.2 Assisting the User to Input Data and Commands
3.3 Responding to the User after Receiving VaIid Input
3.4 Providing Error Messages
3.5 Providing "Help" Facilities

4 CONCLUSION

REFERENCES

Research Report RR-8 1-22, October 1981

NONPROCEDURAL COMMUNICATION BETWEEN USERS AND
APPLICATION SOFTWARE

Bo3voj Melichar
International Institute for Applied Systems Analysis, Laxenburg, Austria

SUMMARY

This report is a survey of nonprocedural communication between users and applica-
tion software in interactive data-processing systems. It includes a description of the main
features of interactive systems, a classification of the potential users ofapplication software,
and a definition of the nonprocedural interface. Nonprocedural languages are classified
into a number of broad groups and illustrated with examples. Finally, future trends in
user- -computer interfaces and possible developments in manager-oriented languages are
discussed.

1 INTRODUCTION

1.1 Basic Concepts

Advances in semiconductor technology during the past decade have dramatically
increased the availability of low-cost computer hardware. One of the results of thisgreater
availability has been the development of cheap but powerful small-scale computer systems.

According to Fick (1 980), the power of computer systems has recently been doubling
every two years, while the price of computer systems has remained approximately con-
stant. With the "real" cost of computing capability declining, it is nevertheless apparent
that low-cost computer hardware does not necessarily mean "cheap" computing - the
cost of the software should also be considered. Computer software is a labor-intensive
product, generally designed specifically for a small group of users or even for an individual
(Fick 1980), and it is therefore more expensive than the mass-produced hardware. There
are a number of areas in which development should take place if low-cost hardware is to
be matched with suitable software, and these areas are outlined below.

1. Development of theoretical and methodological tools for software design in
different fields of application.

B. Melichar

2. Development of tools for software realization (programming languages, auto-
matic program generation, program debugging and verification, etc.).

3 . Development and production of media for software distribution (semiconductor
read-only memories. magnetic tapes, magnetic discs. punched cards, punched
paper tapes, books. journals. etc.).

4. Development of means for communication between users and the application
software (input/output devices, new languages, etc.).

In this article we survey problems of communication between users and their applica-
tion software. The manner of communication between users and application software is
highly dependent on the users' access to the computer system. In recent years there has
been much discussion of the issue of "indirect access" vs. "direct access", e.g., batch-
processing systems vs. time-sharing systems. The communication between user and com-
puter is very slow in a batch-processing system; the user can neither influence the way in
which the program is run nor intervene while it is being run. The issue of batch-processing
systems vs. time-sharing systems has therefore been resolved in favor of time-sharing sys-
tems. This means that communication between user and computer is now generally inter-
active in nature. The rest of this paper assumes the use of interactive systems anddiscusses
the most interesting features of these systems.

1.2 Interactive Systems

Many of the problems associated with batch-processing systems may be overcome
by the opportunity to communicate directly with the computer using an interactive sys-
tem. However. the use of interactive systems has helped to create various new problen~s,
which are now receiving considerable attention; the main requirements of interactive
systems and the basic principles of the interactive dialogue are still under debate (Miller
and Thomas 1977, Watson 1976, Fitter 1979, Gaines and Facey 1976). Here we provide
a list of facilities which we think could and should be provided by interactive systems and
some principles which should be followed in an interactive dialogue. Some of the follow-
ing points may also be relevant to a batch-processing (noninteractive) environment, but
we consider only their importance in interactive systems.

System response rime. System response time is the time spent in processing the
input and in producing a response. It is difficult to know exactly how long or short the
response time should be, and there is no general agreement on this subject. There are sev-
eral arguments for short response times:

- - human response times are of the order of two seconds
- long response times decrease throughput
- long delays are usually disruptive and disturbing

On the other hand, there are arguments against short response times:

- short response times require high investment in the system
- long response times might be helpful for more complex tasks
- fast responses may encourage users to expect the same level of service at all times

Nonprocedural communication 3

It has been observed that the variability of the system response time can be very annoying
to the user.

Rohlfs (1979) proposed that systems should be designed so that their response
time may be adjusted to the activity of the individual user:

> 15 sec intolerable
> 4 sec too long in most cases, possibly tolerable after termination of a major step
> 2 sec too long for very involved work
< 2 sec necessary for work consisting of more than one step
< 1 sec immediate reaction

Availability and reliabilily. The computer system should be available for use at any
time; this would be possible if each user had histher own computer. Because the user will
be unhappy with any system performance error or degradation regardless of good normal
performance, reliability is also a very important feature of an interactive system. For
many computer applications almost no degradation or loss in availability can be tolerated.

Commonalily. A software system is usually composed of a number of subsystems.
In this case, the system should be organized such that terminology does not change be-
tween subsystems. This implies that the input language of each subsystem should be an
extension of the common base language. Thus, the user will only need to learn additional
functions or statements when using a new subsystem and not have to learn a completely
new "foreign" language. When the user is in trouble, he/she can use standardized "help"
functions to extricate himtherself from the situation.

Adaptability to user proficiency. It should be possible to design the interface between
user and computer to suit users with different amounts of knowledge about a particular
subsystem. A sophisticated user may prefer to use mathematical or formalized notation
in histher dialogue. On the other hand, a novice user is likely to prefer less formalized
notation and use simpler system functions.

The newer systems have been adapted for users with various levels of proficiency
by designing different user interfaces. As the user becomes more proficient, he/she can
use more sophisticated functions or a more formalized interface.

Immediate feedback. A system should make an unambiguous response to each of
the user's requests. This response should be sufficient to identify the activity and state of
the system. In situations where system response times are longer than usual, it is highly
desirable to confirm receipt of the user's command immediately. It is very useful to let
the user know when the computer will produce a response, for example, by displaying a
countdown clock on the terminal.

Observability and controlability. A system can be regarded as an automaton. It is
important that the user should feel in control of the system, and in order to make this
control possible helshe must have some knowledge about the current state of the system.
Thus, when the user's input is processed, the user should be informed about the current
state of the system. The display of this information may be regarded as a transition from
one state to another.

Use the user's model. Everybody rationalizes their experiences in their own terms,
and in the same way each user will model a computer system according to histher experi-
ence of it. This cannot be prevented and should be made as easy as possible. The system

4 B. Melichar

should use a model of computer activity which corresponds to that perceived by the user,
so that the interactive dialogue resembles a conversation between two users accepting
the same model. Given that we can somehow determine the user's model of the computer
system, we should make the underlying processes reflect i t , and design the dialogue to
reveal it as clearly as possible.

Validation. All input commands and data must be validated by checking syntax,
semantics, and, if possible, values. The system must inform the user about any errors or
ambiguities in the input data and let the user update the values in question before the
system acts upon them.

Query-indepth. Information and advice on the system should be categorized ac-
cording to possible user requests and should be available to the user through a simple
standard mechanism.

Extensibility. There will never be enough professional programmers and system
developers to provide all the tools that users may desire for their work. It should there-
fore be possible for users to develop new tools or to extend the functions already present
in the system.

Written documentation. In some cases it is necessary to produce high-quality doc-
uments as a result of interaction between user and terminal. Text processing is one of
the most important examples.

System activities. It is necessary to maintain records of system performance and
user's activities to evaluate and improve the behavior of the system.

1.3 Interface between the User and the AppIication Software

The nature of a user-application software interface is largely determined by the
medium used for communication. The most basic means of communication are alpha-
numeric texts and graphics. More advanced methods of communication, such as speech,
eye movement. brain-wave control, and handwritten script (Watson 1976) are currently
being investigated.

In this survey we concentrate on alphanumeric texts as a medium for user-computer
communication. It is assumed that a normal keyboard and alphanumeric display (with or
without hard copy) are available to the user.

The user--software interface has two sides (Watson 1976, Sprague 198 1): the input
side, through which the user inputs information by means of an action language; and
the output side, through which the computer provides feedback and other assistance t o
the user by means of a display language.

Let us first survey the action languages. A wide range of action languages has been
designed to accommodate a wide variety of users. The selection of a particular action
language determines the communication mode that should be used. We can classify action
languages and/or communication modes as follows:

- low-level machine-like programming languages
- high-level universal programming languages
- high-level programming languages with new syntax and semantic forms (such

languages can be used as special-purpose languages)

Nonprocedural communication

- self-contained special-purpose languages
- answer languages

command languages
-- query languages
- natural languages
- - two-dimensional positional languages

This classification of communication modes covers the complete range from artificial
machine-oriented languages to natural human-oriented languages.

Different types of user may wish to communicate with the computer in different
ways, and so it is very important during software development and implementation to
select the communication modes appropriate to the end-users.

According to Schneiderman (1978), we can categorize users into three groups
with respect to their skills, the frequency with which they use application software, their
degree of knowledge of the problem under investigation, and their professional fields.

1 . Nontrained intermittent users who infrequently use application software. A
user in this category is called a "casual user" by Codd (1977) and a "general
user" by Miller and Thomas (1977). These people are not computer profession-
als. have no syntactic knowledge, and have little knowledge of the organization
of the application software. At the same time it is assumed, however, that these
users have sound professional knowledge in their own particular fields and,
therefore. that the system should allow them to express themselves in their
own specialized terminology (Lehmann 1978).

2. Skilled frequent users who make daily use of application software. These users
can learn the simple syntax of a communication action language, but they are
more interested in their own work than in computer programming. This cate-
gory includes skilled secretaries, engineers, and managers.

3. Professional users whose main task is to develop and maintain the application
software. They are highly trained in this field and are concerned with the
efficiency and the quality of the computer system. This category includes data-
base administrators and software system programmers.

Although programming and communicating with a computer in high-level program-
ming languages like ALGOL, FORTRAN, COBOL, PL/ l , and PASCAL represents a major
advance over the use of machine-like low-level programming languages, high-level languages
are becoming less appropriate now that cheap hardware is available. With the rapid diffusion
of cheap computer hardware it is expected that the numbers of people in the nontrained
intermittent and the skilled frequent user categories will grow very quickly. These users
have little or no experience of data-processing, and would find it very difficult and very
time-consuming to learn how an algorithm may be constructed and described in a pro-
gramming procedure-oriented language. Therefore, it is highly desirable to find some
means by which these users may con~municate with application software in a nonprocedural
manner.

There is very great interest in the development of nonprocedural languages, not
only to facilitate communication between the user and the application software, but also
in connection with the implementation of application software.

6 B. Melichar

According to Winograd (1 979), it is useful to distinguish three ways in which com-
putational processes may be specified:

1. Program specification. A formal specification which can be interpreted as a set
of instructions for a given computer. This is the imperative mode characteristic
of traditional procedure-oriented programming languages.

'2. Result specification. A process-independent specification of the relationship
between the inputs (or initial state), internal variables. and outputs (or final
state) of the program.

3 . Behavior specification. A formal description of the activity of a computer
over time. A description of this type selects certain features of the machine
state and action without specifying in full the inechanisnls which generate
them.

We can divide an algorithminto two components (Kowalski 1979), a logiccomponent,
which specifies the knowledge to be used in solving the problem, and a control compo-
nent, which determines the way in which the knowledge will be used. For example. con-
sider an algorithm for computing factorials. The logic component of the algorithm is
given by the definition of a factorial:

1 i s the f a c t o r i a l of 0

1 u i s the f a c t o r i a l of x i f v i s the f a c t o r i a l of

x - 1 and

u i s v times x

This is an example of result specification. For comparison, consider the following pro-
cedure in ALGOL 60:

procedure f a c t o r i a l (x); value x; i n teger x;

i f x = 0 then f a c t o r i a l : = 1 e l se

f a c t o r i a l : = f a c t o r i a l (x - 1)*x

In this procedure the logic component is blended with the control component.
According to McCracken (1 978), we can characterize nonprocedural languages in

two ways.

Nonprocedural comrnunicotion 7

1. The user cannot control the storage of data. Decisions that relate only indirectly
to the calculation are considered to be part of the internal functioning of the
system. These include decisions about the internal representation of numbers
(fued point, floating point, octal, decimal), dimensions of quantities that occur
only as intermediate results, and input and output formats. The representation
of data is selected by the system itself, and the description of the data repre-
sentation is stored with the data. This is called data independence.

2. The user cannot tell the computer how t o obtain the desired results. Rather,
helshe tells the computer only what helshe wants. This means that the user
does not become involved in the loops and branches which make up most of
the computational steps in a program written in procedural language. This we
can call control independence.

The following query on the data stored in a data base provides a nice illustration of
the nonprocedural approach.

RETRIEVE (AGE > 40 AND < 6 5) AND SALARY >3000;

FOR EACH

I F WEIGHT > TABLE (HEIGHT - 5 0)

THEN SET OVERWEIGHT = "TRUE"

PENSION = S A L A R Y / ~ ;

ELSE SET PENSION = S A L A R Y / ~ I

We can now give a working definition of a nonprocedural language:

In a nonprocedural language the computational process is specified by the
desired result (or behavior). This specification is data independent and control
independent.

We shall consider a nonprocedurally oriented language to be a language which does
not fulfill all of the conditions necessary for classification as a nonprocedural language,
but which does not require program specification. Of the nine comlnunication modes
listed earlier. we can consider answer languages, command languages, query languages,
natural languages, two-dimensional positional languages, and some special-purpose lan-
guages as nonprocedurally oriented action languages.

In the next section we examine the nonprocedural action languages available fol-
communication between nontrained intermittent or skilled frequent users and application

8 B. Melichar

software. Communication in the reverse direction (from the system to the user) takes place
through display languages. the main features of which are described in Section 3 .

2 NONPROCEDURALLY ORIENTED ACTION LANGUAGES

In the last section we defined nonprocedural action languages and sketched the
arguments for using them for user-application software communication. In this section
we shall give the basic characteristics of each type of language and illustrate them with
examples taken from the literature.

2.1 Answer Languages

An answer language is the set of words, phrases, or sentences which may be used to
answer questions asked by the computer. This type of language is introduced first because
it is the simplest means of usercompute r communication.

The answer languages used as action languages are very closely related to display
languages. The display language in this case contains, among other things, the set of ques-
tions which are asked and which the user is obliged to answer. We can categorize answer
languages with respect to the number of different questions that can be answered in each
user response: tliis may be one, or more than one. Languages in which the user may answer
only one question at a time can be divided into three classes: binary answer systems,
menu selection systems, and instruction and response systems.

Binary answer systems only recognize two answers, Y E S and N O , often repre-
sented by the abbreviations Y and N. The binary answer languages are used in software
systems in which the internal structure corresponds to a binary oriented graph. In the
binary oriented graph two branches leave each edge. Edges correspond to states of the
system; in each such state the system asks a question, and according to the answer (NO
or Y E S) a branch is selected which leads to a new state. The binary answer language is
used mostly in simple systems such as computer games.

As an example we use the popular game blackjack (Thompson and Ritchie 1975).
The dealer (simulated by the computer) might ask the following questions:

NEW GAME?

H I T ?

I N S U R A N C E ?

SPL IT P A I R ?

D O U B L E DOWN?

Each question is answered by Y E S or N O .

Nonprocedural communication 9

It is clear that binary answer language may be used only in systems in which a limited
number of questions may be asked. For cases in which the answers Y E S or NO are not
sufficient t o answer all the questions which may arise, we can use a menu selection system
(n-ary answer language).

In a menu selection system the set of possible answers to each question is defined.
Each set must be finite, and from a practical point of view should consist of only a small
number of answers.

The set of answers to a particular question is called the "menu". There are two
ways in which the menu may be presented to the user. First, the menu of answers for
each question may be given in the description of the software system, and the user is
thus obliged to learn these menus before using the system. Much better is the second way,
in which the menu and the question are provided together. This method has a number of
advantages, the most important of which is that the user need not learn the menus for all
possible questions.

Menu selection systems, like binary answer languages, are used in software systems
in which the internal structure corresponds to an ordinary oriented graph. In such a graph
a varying number of branches leave from each edge, the edge representing the question
and the branches corresponding to the set or "menu" of possible answers.

As an example we use some menus from Teitelman (1 979), who describes a system
designed to help the user to develop programs. In this system, for example, the user may
be presented with the following choice:

MENUS :

WINDOW

DOCUMENT

E D I T

LOOK

H I S T O R Y

B R E A K

O P E R A T I O N S

This menu is then used to select further menus.

B. Melichar

WINDOW:

GROW

S H R I N K

P U T ON BOTTOM

K I L L

1 MAKE I N V I S I B L E

E D I T :

I N S E R T

R E P L A C E

MOVE

1 D O N E

Questions with menus are displayed on a screen, and the user can select an answer
by means of the cursor.

When the number of possible answers to a particular question is very large, it is inef-
ficient (or sometimes impossible) t o display all possible answers with the question. This
situation may arise if the answer contains a number. In such cases we nlay use an instruc-
tion and response system.

In an instruction and response system an explanation of the answer required is
included in the question. The following example of an instruction and response dialogue
is taken from Hebditch (1979).

O R D E R O R C R E D I T ? 0

C U S T O M E R NUMBER? 848923

C U S T O M E R I S B R O W N ' S S T A T I O N E R S L T D .

H I G H S T R E E T

WATFORD

P L E A S E C O N F I R M (Y / N) ? Y

D E L I V E R Y A D D R E S S I S A S A B O V E

, P L E A S E C O N F I R M (Y / N) ? Y

Nonprocedural communication 1 1

O R D E R N U M B E R ? 77/34

D I S C O U N T ? 1 2 . 5

* * * 1 2 . 5 P E R C E N T I S H I G H E R T H A N NORMAL T E R M S

P L E A S E C O N F I R M B Y R E - E N T R Y ? 1 2 . 5

E N T E R P R O D U C T C O D E . Q U A N T I T Y (E N D A F T E R

L A S T I T E M)

? B 0 4 , 2 4 24 D O Z P E N C I L S (H B)

? A 6 8 , 1 0 1 0 R E A M S BANK P A P E R

? B 6 1 ,36 36 D O Z B A L L - P O I N T P E N S

***36 D O Z I S ABNORMAL Q U A N T I T Y F O R T H I S I T E M .

P L E A S E C O N F I R M

? B 6 1 , 3 3 DOZ B A L L - P O I N T P E N S (B L U E)

? Z 1 5 , 1 1 D I S P L A Y S T A N D (BALL-POINT PENS)

? E N D O R D E R C O M P L E T E D (4 I T E M S)

DO Y O U W I S H T O SEE I N V O I C E P R I O R T O P R I N T I N G

(Y / N) ? N

Systems in which a user can answer more than one question at a time require some
type of fixed format user input. This format can be used, for example, to separate single
answers in user input. and may be described in the question. Such a system is called a
displa-ved format system.

The following simple and selfexplanatory example of a book-ordering system
(Hebditch 1979) shows a question containing the format description and the resulting
answer.

E N T E R AUTHOR / T I T L E / P U B L I S H E R / I S B N /

N O . O F C O P I E S / C U S T O M E R NAME /

C U S T O M E R A D D R E S S / P O S T O R C O L L E C T ?

12 B. Melichar

HEBDITCH / DATA COMMUNICATIONS: AN

INTRODUCTORY GUIDE / ELEK SCIENCE LTD. /

NK / 4 / A. WISEMAN / NA / COLLECT

2.2 Command Languages

Command languages in one form or another have been in use since the earliest
operating systems first came into existence in the late 1950s. The name "command
languages" was used in the past to describe the job control languages used as interfaces
between users and operating systems. Today the term includes a wide variety of languages
employed as user-computer interfaces in many types of software systems.

A command language consists of a set of commands. A typical command is com-
posed of four elements: the command prefix, the operation specification, the parameter
part, and the command completion.

The first part of the command, the command prefix, contains

- a command indication (a symbol or string of symbols to distinguish the com-
mand from other inputs)

- a command identification (a label or number used for reference purposes in
other commands)

- a condition, which must be satisfied before the command is executed (for ex-
amp1e: IF TIME < MAXTIME THEN)

A command word is frequently reserved for use as an operation specification
(Miller and Thomas 1977). Watson (1976) proposes an operation specification in the
form of a verb-noun pair. In this case we obtain a verb--noun matrix as, for example,
in an editing system:
I I I I
I

I
1 I I

I
I I I I I
I 1 charac ter I I l i n e I Page I

I I
I

I
I

I de le te I I I I
I I I

-1 I
I

I I I I
I

I
i n s e r t I I I I

I I I I I
1 I I I

I
I

I I I I I change I I I I
I

I I
I I I

I I
I I I

I
I move I I I I I

Nonprocedural communication 13

Each element of this matrix is a normal English command.
Displaying the operation specification in this form seems to be very helpful for

users with no experience in data processing (Keen and Hackathorn 1979). Hebditch
(1973) proposes a more structured format, using adjectives (J) in addition to nouns (N)
and verbs (V), t o .create an operation specification with three forms:

v J ' : - (P R I N T C O N D E N S E D R E C O R D)

1 V N J (FIND EMPLOYEES W I T H A DEGREE)

V J N J (P R I N T A L L L I N E S B E G I N N I N G W I T H +) I
Further, Hebditch (1973) proposes that a set of basic verbs could be used as an

interface with a data base, as shown in Table 1.

TABLI: 1 Computer functions, verbs colnmonly used to specify the function, and alternative speci-
fications.

Function Verb (abbreviation) Alternative forms

Initiation S T A R T (S) Begin, Sign-on, Initiate,
Go, Set-up, Evokc

Location of
logical record

Display of
data item

Amendment of
data item

Addition of new
record or item

Movement of
record (or data)
from onc logical
location to another

Obtain
assistance

F I N D (F) Locate, Get, Search,
Read, Obtain, Pick (good
for inventory data base?)

P R I N T (P) Display (for VDUS),
(for hard copy) Show, Query, Give, List,

Present

A L T E R (A) Change, Amend. Modify,
Replace, Convert. Set

I N S E R T (I) Add. New, Assign,
Include, Originate, Form

MOVE (M) Transfer, Shift, Relocate,
Convey, Reallocate,
Transpose

E X P L A I N (E) Assist, Why?, Expand,
Clarify, Help, Interpret

Termination H A L T (H) End, I:inish, Done, Close,
Terminate, Conclude

B. Melichar

The parameter part specifies the operand and suggests various ways in which the
command could be executed. There are two distinct methods of formatting the argu-
ments for commands: positional format and keyword format.

In the positional format, particular pieces of data must appear in fixed relative or
absolute positions in the parameter part.

In the keyword format the parameter part is a permutable string of arguments,
each argument containing a keyword which indicates the argument type and, sometimes,
its value.

Both types of argument format occur in current systems. From the user's point of
view the keyword format is more acceptable, because it requires the user to memorize
less information.

The arguments in the parameter part may be composed of several different elements;
these may include keywords, constants (numerical, boolean, etc.), text strings, andexpres-
sions (regular, arithmetical, boolean, etc.).

There remains the question of what to do when the user does not specify some in-
formation that either could or should have been provided. There are several ways of
prompting the user for missing information:

1. Listing the missing argument names with all their possible values so that the
user may choose the correct values.

2 . Assigning a default value automatically to some of the missing arguments and
asking the user for agreement.

3 . Supplying missing information on the basis of the arguments provided to previ-
ous commands.

The problem of choosing argument delimiters is related to argument specification.
Delimiting functions may be delimiting command words, delimiting arguments, or delimit-
ing optional arguments (arguments with default values) (Watson 1976). It is generally
advisable to use the same synlbol for delimiting command words and arguments and to
use a different symbol for delimiting optional or default arguments.

The last part of the command is the command completion. According to Watson
(1976), there are three types of command completion:

1. Command accept: a command conlpletion indicating that the command should
be executed and the system should then return to the base state to receive the
next command.

2 . Repeat: a command completion indicating that the command should be exe-
cuted and the system should then return to an intermediate command state
for quick repetition of the command with or without request. This mode is
useful when an operation must be repeated several times.

3. Insert: a command completion indicating that the command should be exe-
cuted, the system should then enter insertcommand mode for insertion of
some new parameters, and then the command should be repeated.

A different symbol should be used for each type of command coinpletion.

Nonprocedural communication

2.3 Query Languages

According to Olle (1973), there are four levels on which a user might come into
contact with a data base. At the highest level is the data administrator, that is, the person
responsible for the data base. The applications programmer occupies the second level,
and at the next level is the application specialist, who is able to formulate questions about
the data stored in the data base but is not a programmer. Finally, people who are unable
to formulate questions occupy the lowest level in this hierarchy.

Data administrators and applications programmers generally use programming
languages in their work. Users who are unable to formulate questions may use the simpler
answer languages discussed previously. Query languages are designed to be used by the
intermediate group of people, users who are not programmers but who understand how
to formulate questions for a particular application.

Query languages are high-level nonprocedural data-base languages, which allow the
user to perform operations such as insertion, deletion, and retrieval on the data base. Strong
emphasis is placed on retrieval operations and, in view of this fact, a finer categorization
of retrieval operations seems appropriate (Schneiderman 1978). There are four main
retrieval operations which may be performed on a data base:

1. Simple verification of the presence, absence, or acceptability of a specified item.
2. Retrieval of a single record when a key is provided.
3. Retrieval of a number of records when a key or boolean predicate is provided.
4. Total listing of all information stored.

The list below indicates how query languages may be used to sort and retrieve data,
and gives some examples of the type of queries which may be asked (Schneiderman 1978).

1. Simple mapping produces data values from one field when a known value for
another field is supplied. Example: Find the names of all employees in depart-
ment 50.

2. It is possible to select all of the data associated with a specified key. Example:
Give the entire record for the en~ployee whose name is John Jones.

3. In a relational model it is possible to select any domain of a relation. Example:
Print the names of all employees.

4. Boolean queries permit AND / OR / N O T connections. Example: Find the
names of those employees who work for Smith and who are not employed in
department 50.

5. Set operation queries involve set operations such as intersection, union, and
symmetric difference. Example: Find the names of the employees who work
for Smith and the addresses of the employees who work for Black.

6. Built-in functions such as MAXIMUM . M I N I M U M , A V E R A G E , S LM,
make it easier for the user to formulate questions. Example: Print the sum of
salaries of employees in department 50.

7. Combination queries are produced by using the output of one query as the in-
put for another. Example: Find the names of all departments which have more
than 30 employees and then find the names of the department managers.

16 B. Melichor

8. It is possible to group items with a common domain value. Example: Print the
names of departments in which the average salary is greater than $15,000.

9 . Universal quantification corresponding to the "for all" (V) concept of the first-
order predicate calculus. Example: Find the addresses for all employees.

The features listed above are available in most query languages designed for data
bases using relational, hierarchical, or network models of data.

As an example, consider the following data base, which is built on a relational
model (Chamberlin 1976):

PRESIDENTS

NAME PARTY HOME-STATE

E i senhower R e p u b l i c a n Texas

Kennedy Democrat M a s s a c h u s e t t s

J o h n s o n Democrat Texas

Nixon R e p u b l i c a n C a l i f o r n i a

Carter Democrat G e o r g i a

Reagan R e p u b l i c a n C a l i f o r n i a

This relation PRESIDENTS has domains NAME, PARTY, and HOME-STATE.

ELECTIONS-WON

YE AR WINNER-NAME
- -

1956 E i senhower

1960 Kennedy

1964 J o h n s o n

1968 Nixon

1972 Nixon

1976 Carter

1980 Reagan

Nonprocedural cornrnut~ica~ion 17

This relation ELECT I ONS-WON has domains YEAR and W INNER-NAME . The
two relations PRESIDENTS and ELECTIONS-WON are the only relatiolrs in our
sample data base.

According to Chalnberlin (1976). there are four classes of query language: relational
calculus-based languages; relational algebra-based languages; mapping-oriented languages;
and graphics-oriented languages. Languages in the first three categories may be distinguished
by their matheluatical basis. The fourth category includes certain two-dimensional
languages.

One example of a relational calculus-based query language is the language QUEL
(Stonebraker et al. 1976). A typical query in QUEL has three parts:

- a result name, which is the name of the relation from which data will be re-
trieved

- a target list, which specifies the particular domains of the relation from which
data will be retrieved

-- a qualification, which specifies certain conditions that the retrieved data must
fulfill

A QUEL interaction must include at least one RANGE statement to specify the
relation over which each variable ranges. Two examples of queries in QUEL are given below.

I . What was the home state of President Kennedy?

RANGE OF P I S PRESIDENTS

RETRIEVE INTO X (STATE = P.HOME-STATE)

WHERE P.NAME = "KENNEDY"

2. List the years in which a Republican from Illinois was elected President!

RANGE OF E I S ELECTIONS-WON

RANGE OF P I S PRESIDENTS

RETRIEVE INTO Y (YEARS = E-YEAR)

WHERE P .PARTY = "REPUBLICAN"

AND P .HOME-STATE = " ILL INOIS"

AND P .NAME = WINNER-NAME

18 B. Melichar

Relational algebra-based query languages use a variety of operators that deal with
relations, yielding new relations as a result. Among the most important of these operators
are projection, restriction, and set-theory (union, intersection, and symmetric difference)
operators. Translating the two queries given above into relational algebra-based query
language we obtain:

1. What was the home state of President Kennedy?

PRESIDENTS [N A M E = "KENNEDY"] [HOME-STATE]

The above example uses projection and restriction operators.

2. List the years in which a Republican from Illinois was elected President!

In this example we use union, projection, and restriction operators.

The basis of mapping-oriented query languages is the operation of "mapping",
in which a known domain or set of domains is "mapped" into a desired domain or set of
domains by means of some relation. Our two examples are now in the mapping-oriented
language SEQUEL (Astrahan et al. 1976).

1 . What was the hoine state of President Kennedy?

SELECT HOME-ST ATE

FROM PRESIDENTS

WHERE NAME = "KENNEDY"

2. List the years in which a Republican from Illinois was elected President!

Nonprocedural communication

SELECT YEAR

FROM ELECTIONS-WON

WHERE WIIYNER-N AME =

SELECT NAME

FROM PRESIDENTS

WHERE PARTY = "REPUBLICAN"

AND HOME-STATE = " I L L I N O I S "

Graphics-oriented query languages are mentioned later in this survey in the section
dealing with two-dimensional positional languages.

The mapping- and graphics-oriented query languages are designed for users with no
experience in data-processing and offer power equivalent to relational algebra- or relational
calculus-based languages while avoiding difficult mathematical concepts.

2.4 Natural Languages

The idea of communicating with computers using a natural language has provoked
much discussion from the early years of machine translation. However, though this con-
cept is obviously very attractive to the user, the implementation of a natural language
interface presents considerable difficulties to the programmer.

Natural language is the technique of verbal communication between people. Accord-
ing to Addis (1977), natural languages have an extremely complex structure because they
reflect the way in which people think.

The use of a natural language for user-computer communication has several major
advantages (Infotech International Ltd. 1979).

1. It provides a familiar way of forming questions. This means that the natural
language interface would be available to a large number of users without the
need for special training.

2 . There are often many ways to extract the same data. The user can usually
communicate histher knowledge in a natural language augmented by specific
notation and vocabulary characteristic of histher specialist field.

3 . It may be easier to formulate complicated queries using a natural language
than using formal languages or menu selection methods.

4. The user does not have to learn a formal syntax and histher departures from
accepted grammar may be tolerated without comment.

20 B. Melichar

At the same time we must note the following disadvantages:

1. The use of a natural language interface encourages an unrealistically highexpec-
tation of systenl power.

2. The linguistic limitations of such a systenl are not as well-defined as they are
within a formal language. Confusion can arise as the result of an unknown
word, an unknown grammatical construction, or a misunderstanding.

3 . Sentences in natural languages are frequently ambiguous. Implementation is
difficult if all the possible meanings of a sentence must be considered.

4. Because much of the vocabulary may be specific to the particular application,
the system has to be partially recast to deal with each new application.

5. A system with a natural language interface is inherently much more com-
plicated to implement than systems using more formal languages.

Besides these disadvantages there is one additional problem: the great variety of
natural languages in the world. These problems do not imply that a natural language inter-
face is useless, only that it is not as generally applicable as is sometimes thought.

Natural language communication with computers falls into two major categories
(Kraegeloh and Lockemann 1978): communication with systems designed t o understand
natural language as part of the development of artificial intelligence, and communication
with data-base systems.

In developing artificial intelligence the main goal is for the system to understand a
natural language by the simulation of natural language perception. The resulting systems
are highly complex, because the semantics of the natural language must remain unre-
stricted. One of the characteristics of Man is his ability to produce a mental image of his
environment, a model of the real world. During a conversation, statements about his envi-
ronment are related to this cognitive model and can modify it. Simulation of this process
requires some system in which the real world, or part of i t , may be modeledin a computer.

One system capable of understanding a natural language is GUS (Genial Understander
System), which is described in more detail by Bobrow (1977). This system is restricted t o
the role of a travel agent in a conversation with a client who wants to make a trip to a
single city in California. The following is a simple dialogue between a client and GUS.

GUS : H e l l o . My name i s GUS. I c a n h e l p y o u

p l a n a s i m p l e t r i p by a i r . Where do

y o u want t o g o ?

C l i e n t : I want t o go t o S a n D i e g o o n May 21.

GUS : What t i m e do y o u want t o l e a v e ?

I C l i e n t : I m u s t be i n S a n D i e g o b e f o r e 10 a m . I

I Thank y o u f o r c a l l i n g . Goodbye. ~

Nonprocedural communication

GUS : Would y o u l i k e P .S .A . f l i g h t 1 0 2 t h a t

a r r i v e s at 9.15 am?

C l i e n t : What is t h e n e x t f l i g h t ?

GUS: Air C a l i f o r n i a f l i g h t 310 t h a t l e a v e s

at 8.30 a m a n d a r r i v e s at 10.00 a m .

C l i e n t : I ' l l t a k e t h e f i r s t o n e .

GUS: I n w h a t name s h o u l d I make a r e s e r v a -

t i o n , p l e a s e ?

C l i e n t : Dan Bobrow.

GUS : I h a v e c o n f i r m e d t h e f o l l o w i n g f l i g h t :

P .S .A . f l i g h t 1 0 2 o n Wednesday May 2 8

f r o m S a n J o s e t o S a n D i e g o t h a t l e a v e s

at 7.30 a m a n d a r r i v e s at 9.1 5 a m .

What d a t e d o y o u w a n t t o r e t u r n on?

C l i e n t : On F r i d a y i n t h e e v e n i n g .

GUS : Would y o u l i k e t h e f l i g h t t h a t l e a v e s

at 7 . 4 5 pm?

C l i e n t : T h a t ' s f i n e .

GUS: I h a v e c o n f i r m e d t h e f o l l o w i n g f l i g h t :

P.S.A. f l i g h t 307 o n F r i d a y May 30

f r o m S a n D i e g o t o S a n J o s e t h a t l e a v e s

a t 7 . 4 5 pm a n d a r r i v e s at 9.30 pm.

21

2 2 B. Melichar

The second important area in natural language communication with computers is
the use of natural languages to provide an interface between the user and data-base sys-
tems. This is a subject under much discussion because it could provide easy data access to
users unfamiliar with query languages. In this case the computer's understanding of a natural
language is not based on a simulation of the cognitive process; the data base itself serves
as a model for understanding. Consequently, the input language should be restricted to
the vocabulary necessary to use the data base. Under these conditions the natural lan-
guages used as interface languages in data-base systems may still be considered formal
languages.

As an example of a natural language interface between user and data base we
use the system PLANES (Waltz 1978). This system was developed with the following
aims:

1 . T o accept the user's natural English
2 . To provide explicit, clear answers to questions (possibly using graphics)
3 . To tolerate minor errors (such as misspelling and grammatical errors)
4. To use clarifying dialogue for several purposes:

- t o increase its understanding of the user's request
to ask the user about parts of the request which it does not understand

- to add new words, phrases, and sentences to its vocabulary
- t o provide appropriate assistance to the user
- to provide information about the capabilities of the system

5. T o be convenient to use, i.e.,
- to be on-line and interactive
- t o operate rapidly
- to require a minimum of typing
- t o answer a substantial percentage of questions

6. T o be relatively easy to develop further

An ordinary dialogue between a user and the PLANES system is given below.

P L E A S E E N T E R YOUR Q U E S T I O N .
> > H o w many f l i g h t s d i d p l a n e 3 m a k e i n J a n 73?

PLANES searches the MONTHLY F L I G H T AND M A I N T E N ANC E SUM-
M A R I E S and paraphrases the answer required as the value of T O T A L F L I G H T S
for plane S E R I AL # 3 during January 1973.

Nonprocedural communication

SHOULD I EVALUATE THE QUERY? TYPE Y OR N

1 PLEASE ENTER YOUR QUESTION.. 1

For our second example we give a clarifying dialogue involving a spelling correction.

> > W h i c h S k y h a w k s l o g g e d l e s s t h a n 10 h o u r s ?

PLEASE ENTER A SPECIF IC TIME PERIOD

> > B e t w e e n J a n . 1 a n d J u l e 1 ' 73

I DON'T KNOW THE MEANING OF JULE.

PERHAPS I T ' S MISSPELLED?

PLEASE ENTER A NUMBER CORRESPONDING TO THE

FOLLOWING:

1 . JUNE

2 . JULY

3. NONE OF THE ABOVE

O . K .

A natural language may not provide the best interface in every situation. Schneider-
man (1978) describes a "natural versus artificial query language experiment" concerning
communication with data bases and concludes that the user must have some knowledge

24 B. Melichar

of the application domain if a natural language interface is to be used; i.e., the user has to
be familiar with the semantics of the information in the data base. When a user learns a
query language, he/she automatically learns the semantics of the information stored in
the data base at the same time.

2.5 Special-Purpose Languages

In some fields, specific formalisms are used to describe particular problems. It seems
reasonable to use these formalisms directly as special-purpose languages to interface with
specialized software systems.

As an example, we consider one class of formalisms used widely for language design
and implementation. Special-purpose languages based on formalisms of this type are used
as interfaces in written translation systems. These languages are based on the idea of a
context-free grammar, i.e., a set of rules of the form:

left part : right part

where the left part is one nonterminal symbol called a syntactic category and the right
part is a string of nonterminal and terminal symbols.

The way in which sentences, composed of terminal symbols, may be derived from
one particular nonterminal symbol, known as the start symbol, is first defined. The set
of all sentences which can be derived from the start symbol may be described as a formal
language generated by the grammar.

The following example illustrates the use of a language based on context-free gram-
mar. In this case nonterminal symbols are represented by mnemonic names between angu-
lar brackets (); the terminal symbols are 0, 1,2,3,4,5,6,7,8,9, and 1. The rules are:

Nonprocedural communication 25

The start symbol is < d a t e > , and we shall use the symbol + to represent one
step in the derivation.

The language generated by this grammar is a set of sentences of the form number/
number/number/, which can be read as dates.

Context-free grammars are often used to describe the syntax of formal and natural
languages and, as mentioned above, they can also be used as a basis for the special-purpose
languages used in written translation systems. The following is an example of text input
to the YACC written translation system (Johnson and Lesk 1978).

$ t o k e n D I G I T

$$

1 d a t e : number ' / I number '1' number I
{ d a t e ($ 1 , $3, $5) ; I ;

1 number : D I G I T I
1 number : number D I G I T I

26 6. Melichar

The nonterminal symbols in this grammar are d a t e and number ; the termi-
nal symbols are D I G I T and /. A program fragment is given at the end of each gram-
mar rule, and these program fragments compute the meaning or value of the nonterminal
symbols. The variable $$ refers to the nonterminal symbol on the left-hand side of each
rule, while $1, $2, . . . , $n refer to the first, second, or nth symbols on the right-hand
side of the rule, respectively.

This input text may then be processed by a YACC parser generator, which generates
a program able to read dates. convert them into a suitable form, and store them in the
computer, provided that the digits are first read by another program returning the value
of each digit.

2.6 Two-Dimensional Positional Languages

In two-dimensional positional languages the input information corresponds to a
given position in two-dimensional space. This space is displayed on a screen. The correct
position of the information is generally indicated by means of a cursor controlled by a
keyboard, through a joystick, or a mouse. Other methods include use of a lightpen or
touch-sensitive screens.

Two-dimensional positional languages have many uses, the most important of
which include systems for filling in forms, systems for screen editing, and two-dimensional
query systems.

In form-filling systems the user is provided with a format map displayed on a screen
and helshe can then insert the appropriate data in free areas. The format map is protected
and cannot be inadvertently altered from the keyboard. After filling in the form the user
presses a special key and all input data are transmitted to the computer. This type of
technique is very easy to use. A typical "form" is shown below; note that the user can
only put data between the square brackets [1 .

NAME [1
F I R S T NAME [1
B I R T H D A T E

DAY [] MONTH [1 Y E A R [1
P E R S O N N E L C O D E [1

The second type of two-dimensional positional system involves editing on a screen.
A screen editing system displays part of a file on the user's screen and allows him/her to
make changes at the position indicated by the cursor. There are three principal types of

Nonprocedural communication 2 7

command in a typical screen editing action language (Pearson 1980): cursor movement
commands, text movement commands, and text modification commands. In some cases
cursor movement commands can be replaced by the use of special keys on the keyboard
(Altair Software Distribution Company 1977).

As our final example in this section we consider a two-dimensional query system,
known as the Query-By-Example system (Zloof 1976), which is used as an interface be-
tween user and data base. In order to query the data base the user inserts a possible
answer in the skeleton of the data base displayed on the screen.

As an example, the skeleton of the data base used earlier is given below.

P R E S I D E N T S 1 NAME I PARTY I HOME-STATE I

Here P R E S I D E N T S is the name of the relation,and NAME , PARTY, and HOME-
S T A T E are the names of the domains. To obtain information the user should fill in
the skeleton using an example element (a variable), which must be underlined, and a
constant element, which should not be underlined. In addition, the function "P." (print)
must be inserted before the example element to indicate that this class of data forms the
output.

As an example, assume that the user wishes to print out the names of the Democratic
Presidents of the USA since 1956 using the relation P R E S I D E N T S ; helshe just fills
in the skeleton with P .NIXON (the name of any President would do) and DEMO CRAT.

--

P R E S I D E N T S I NAME 1 PARTY I HOME-STATE I
I P . NIXON I DXMOCRAT (

The answer of the system should be:

1 KENNEDY 1
1 JOHNSON 1
1 CARTER I

28 B. Melichar

3 MAIN FEATURES OF DISPLAY LANGUAGES

In this section we consider the output side of the user---application software inter-
face. The information produced by the computer to provide the user with feedback and
other assistance we shall call the display language.

The display language must be able to perform a number of distinct functions. It
should be able to:

- format the dialogue document (the printed record or screen display of the state-
ments made by both user and computer)

- assist the user to input data and commands
- respond to the user after receiving valid input
-- provide error messages
-- provide "help" facilities

In this section we discuss the ways in which a display language can best fulfill
these functions.

3.1 Formatting the Dialogue Document

There are a number of factors which help to produce a well-formatted dialogue doc-
ument (Hebditch 1979).

1. Logical sequencing. The dialogue document contains several different types of
information, and this information should be arranged in as logical a sequence
as possible. One example of bad sequencing would be to blend input and out-
put text.

2. Distinguishing input from output. It is very useful and improves legibility to
distinguish inputs (action language phrases) from outputs (display language
phrases). The ways in which this can be done depend on the type of terminal
available. Possible methods include the use of lower-case characters for input
and upper-case characters for output; underlining either input or output;
using different colors or different line densities for displaying input and out-
put, and so on.

3. Spaciousness. The whole two-dimensional space of the dialogue document can
be used for output. Use of a tabular format can improve legibility; for example,
if a menu is included in the output it could be presented as a table.

3.2 Assisting the User to Input Data and Commands

The assistance given to the user depends on the user---computer interface. For ex-
ample, if an answer language is used as an action language, the form of the desired input
is specified in the question asked by the computer. Another possibility is that the input
language may contain keywords; in this case the system can be designed to assist the user
through rapid keyword recognition. There are five forms of keyword recognition.

Nonprocedural communication 29

1. The whole keyword mode. In this case the user is obliged to type the whole
keyword.

2. The anticipatory mode. This mode requires the user to type just enough char-
acters for the command to be uniquely specified. The system then automatically
fills in the remainder of the keyword.

3. The fixed mode. The keywords are chosen such that it is possible to recognize
each keyword in a fixed number of characters.

4. The demand mode. This mode requires the entry of a special character to
initiate recognition after the first part of the keyword has been typed.

5. The single-character mode. This mode allows high-speed single-character recog-
nition of the most commonly used keywords. This mode may be used only
when the keywords begin with different characters.

Another method of system assistance involves the use of noise words. When the sys-
tem recognizes the first part of an input phrase, i t can generate some words, called noise
words, to tell the user what information is awaited by the system. For example, in the
input command

C R E A T E LINE from x l t o x2

the words from and to could be generated by the system as noise words on recognizing
the phrase C R E A T E LIME . The noise words prompt the user into entering data in
the correct manner.

As mentioned earlier, the system may be designed t o help the user by assigning de-
fault values to missing arguments, or by supplying missing information on the basis of
previous commands. Whenever this happens the system should inform the user and ask
himlher for confirmation.

3.3 Responding to the User after Receiving Valid Input

The system should provide regular feedback to the user on receiving valid input.
The response should contain the following information:

1. Confirmation that input has been received. The systenl should confirm that
the input is valid and has been accepted. In cases where misunderstanding is
possible, as, for example, with natural language interfaces, the system can out-
put a question and ask the user for confirmation.

2. Information about the unavailability of resources. If a process requested by a
user involves the use of resources such as files or peripheral devices, the user
must be informed if these resources are not available and,if necessary, why they
are not available.

3. Output data. The output data can either be displayed on the user's terminal
or by means of some other output device. In the latter case the user should be
told where and how to obtain his/her results.

B. Melichar

4. End information. When the process initiated by the user comes to anend, infor-
mation about the mode of termination (normal, failure of the system, error in
input, etc.) is useful.

3.4 Providing Error Messages

The system must anticipate errors in every piece of the input; sophisticated tech-
niques must be used to handle these errors. There are three possible levels on which errors
can be handled:

1. Error detection. The system must take great care to ensure that every error is
detected.

2. Error recovery. After an error has been detected in the input text it is desirable
to continue processing the remainder of the input without "pseudo-error" in-
dications.

3. Error correction. Some errors may be corrected automatically, but in this case
the system must ask the user for confirmation because it is possible to intro-
duce insoluble problems through automatic error correction.

After an error has been detected the system must inform the user exactly and clearly
of the nature of the error. Hebditch (1979) provides some guidelines on error-reporting
techniques:

1. Avoid giving error messages in code and thus the need to refer to manuals.
2 . Make error messages as self-explanatory as possible.
3. Error messages should be specified by the system designer, and the ease with

which they may be understood and used checked with the potential users.
4. Errors should be detected as quickly as possible.
5. Avoid the need to rekey valid input during the error-correction process.
6 . Recheck everything after correction.

3.5 Providing "Help" Facilities I

I I

Any software system must be properly documented in order to be usable (Cohen 1 I

1976). T o document a large system is not an easy task, and it is made more difficult if 1
I

the system is designed to be expanded by its users. Any printed documentation of such
a system would be outdated before it was published and therefore the system itself must
be capable of providing documentation that is guaranteed to be up to date. i

In general, the user needs to know three things (Watson 1976): I

what he/she has already done
- what he/she is doing now
- what he /she can do next

Nonprocedural communicarion

The system should therefore provide information in the following three areas:

1. Information space. The user needs to know where he/she isin information space
and which part of the information available is being displayed t o him/her. The
user arrived at his/her present position from a series of previous positions, and
he/she may want to be able to return to these positions as well as to be able to
move on. It is possible to achieve this by organizing help facilitiesin a tree struc-
ture. Each information node in the tree contains an explanation of a specific
part of the system. The tree structure provides easy access to information
about a specific topic.

2 . Subsystem or tool space. In systems containing many tools (or subsystems),
the user needs to know which tools are active, which tools he/she has used
previously, and which subsysten~s can be entered from the present position.
Each subsystem has a name and contains a number of related commands. In
an ideal case all of the tools would operate on information in the same file
because this would make it easier to move from one tool t o another.

3 . Input syntax space. Several ways in which the conlputer may help the user to
formulate input have been described in a previous section. If, however, there is
still some uncertainty about the basic concepts or the vocabulary, the user can
employ the help facilities described above, either by specifying the concept
causing difficulty or by making a more general request for help. In the latter
case the system could make use of the information input up to this point to
select the information required by the user.

In data-base management systems the user should be kept informed about the se-
mantics of the data stored in the data base. I11 the data-base management system INGRES
(Stonebraker et al. 1976) information about relations is available and may be used in the
same way as help facilities which specify the names of the relations only.

4 CONCLUSION

Although we have discussed many of the issues concerned with user-application
software interfaces, there are numerous aspects which we have not mentioned. This is
largely because we have concentrated on interfaces in which alphanumeric texts are used
as a means of communication. The main problem in communicating with a computer using
alphanumeric texts is the great difference between the speed of the input and the speed
of the output. While the output speed can be very high (thousands of characters per second),
the speed of input via a keyboard is very low (less than ten characters per second). This
drawback can be partly reduced by using single letters in an action language, for example,
'I" for F I N D , 'P' for P R I N T , and so on. However, this reduces the legibility of
the dialogue document and can only be used by frequent users.

Graphics provide another promising medium for user-computer interfaces. Graphics
can be used within display languages, action languages, or both. We have already discussed
two-dimensional positional languages, in which simple graphics are used as part of a
display language. Communication in such systems is both simpler and faster than using

3 2 B. Melichar

alphanumeric texts, as can be seen by comparison of a line-oriented editing system with a
screen-oriented editing system.

The second problem in communication between users and application software is
the selection and design of an appropriate language. Computers, especially small-scale
computers, are increasingly being used as everyday tools in offices, businesses, and man-
agement. Most people using these systems have little or no knowledge of data processing.
It is therefore desirable to design software systems with a nonprocedural interface for
these applications, and a natural language seems to be the most appropriate. However,
because of the problems involved in implementing natural language interfaces even on
large-scale computers, we must suppose that formal languages will remain widely used in
the future. Thus it is very important to design any language to be used by nonskilled
operators so that it follows the natural language as closely as possible. The interested
reader may find a more extensive discussion of languages designed for use in offices in
Rohlfs (1979); the design of languages to be used in managerial systems is treated in more
detail in Keen and Hackathorn (1979) and Blanning (1979).

ACKNOWLEDGMENTS

I am grateful to Goran Fick for many useful and valuable suggestions during the
preparation of the manuscript, to Ronald Lee and Michael Dempster for critically review-
ing the manuscript, and to Miyoko Yamada for her help in preparing this report.

REFERENCES

Addis, T.R. (1977) Machine understanding of natural language. International Journal of Man-Machine
Studies 9:207-222.

Altair Software Distribution Company (1977) Altair Word Processing Package. Altair Software Distri-
bution Company, Atlanta, Georgia, USA.

Astrahan, M.M., M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Griffiths, W.F. King,
R A . Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, J.L. Traiger, B.W. Wade, and V. Watson
(1976) System R: Relational approach to database management. ACM Transactions on Data-
base Systems 1:97-137.

Blanning, R.W. (1979) A language for describing decision support systems. Informal Workshop o n Deci-
sion Support, Department of Decision Sciences, The Wharton School, University of Pennsylvania,
USA.

Bobrow, D.G. (1977) GUS, a framedriven dialog system. Artificial Intelligence 8: 155- 173.
Chamberlin, D.D. (1976) Relational data-base management systems. Computing Surveys 8:43-63.
Codd, E.F. (1977) Seven steps to rendezvous with the casual user. In Data Base Management, edited

by J.W. Klimbie and K.L. Koffeman, pp. 179-199. North-Holland Publishing Company,
Amsterdam.

Cohen, S. (1976) Speakeasy - A window into a computer. AFIPS National Computer Conference and
Exposition, Conference Proceedings 45: 1039- 1047.

Fick, G. (1980) The challenge of lowcost computers to the organization. In Human Choice and Com-
puters 2, edited by A.Mowshowitz,pp. 17- 19.North-HollandPublishingCompany,Amsterdam.

Fitter, M. (1979) Toward more "natural" interaction systems. International Journal of Man- machine
Studies 11:339-350.

Gaines, B.R. and P.V. Facey (1976) Programming interactive dialogues. In Computing and People,
proceedings of a conference held a t Leicester Polytechnic. Edward Arnold, Leicester, England.

Nonprocedural communication 33

Hebditch, D.L. (1973) Terminal languages for data basc access. In Data Base Management, lnfotech
State of the Art Report 15. lnfotech lnternational Ltd., Maidenhead, Berkshire, England.

Hebditch, D.L. (1979) Design of dialogues for interactive commercial applications. In Man/Computer
Communication, Infotech State of the Art Report 2, pp. 17 1 1 9 2 . lnfotech International Ltd.,
Maidenhead, Berkshire, England.

lnfotech International Ltd. (1979) Man/Computer Communication, lnfotech State of the Art Report
1: Analysis and bibliography. lnfotech lnternational Ltd., Maidenhead, Berkshire, England.

Johnson, S.C. and M.E. Lesk (1978) Unix time-sharing system: Language development tools. Bell Sys-
tem Technical Journal 57:2155-2175.

Keen, P.C. and R.D. Hackathorn (1 979) Decision support systems and personalcomputing. Working Pa-
per 79-01-03. Department of DecisionSciences,TheWhartonSchool, University of Pennsylvania,
USA.

Kowalski, R. (1979) Algorithm = Logic + Control. Commun~cationsof the ACM 22:424-436.
Kraegeloh, K.-D. and P.C. Lockemann (1978) Access to data base systems via natural language. In

Natural Language Communication with Computers, Lecture Notes in Computer Science 63, pp.
49-86. Springer Verlag, West Berlin.

Lehmann, H. (1978) Interpretation of natural language in an information system. IBM Journal of
Research and Development 22:560- 572.

McCracken, D.D. (1978) The changing face of applications programming. Datamation 24: 25-30.
Miller, L.A. and J.C. Thomas (1977) Behavioral issues in the use of interactive systems. lnternational

Journal of Man-Machine Studies 9:509-536.
Olle, T.W. (1973) A summary of the state of the art in data basemanagement. In Data Base Management,

lnfotech State of the Art Report 15, pp. 215-223. Infotech International Ltd., Maidenhead,
Berkshire, England.

Pearson, M. (1980) Using the Computer to Communicate: An Introduction to Text Processing at
llASA - The "edx" and "nroff' Programs. WP-80-111. lnternational Institute for Applied
Systems Analysis, Laxenburg, Austria.

Rohlfs, S. (1979) User interface requirements. In Convergence: Computers, Communications and
Office Automation, Infotech State of the Art Report 2, pp. 165-199. lnfotech lnternational
Ltd., Maidenhead, Berkshire, England.

Schneiderman, B. (1978) Improving the human factors aspect of data base interactions. ACM Trans-
actions on Database Systems 3:417-439.

Sprague, R.H. (1981) A framework for research on decision support systems. In Decision Support
Systems: Issues and Challenges, edited by C . Fick and R.H. Sprague, pp. 5-22. Volume 11 in
the IlASA Proceedings Series, Pergamon Press, Oxford, England.

Stonebraker, M., t. Wong, P. Kreps, and C . Held (1976) The design and implementation of INCRES.
ACM Transactions on Database Systems 1: 189-222.

Teitelman, W. (1979) A display oriented programmer's assistant. lnternational Journal of Man-.
Machine Studies 11: 157-187.

Thompson, K. and D.M. Ritchie (1975) Unix Programmer's Manual. BeU Telephone Laboratories.
Waltz, D.L. (1978) An English language question answering system for a large relational database.

Communications of the ACM 22:526-539.
Watson, R.W. (1976) User interface design issues for large interactive systems. AFlPS NationalCom-

puter Conference and Exposition, Conference Proceedings 45:357-369.
Winograd, T. (1979) Beyond Programming Languages. Communications of the ACM 22:391-407.
Zloof, M.M. (1976) Query-By-Example - Operations on hierarchical data bases. AFlPS National Com-

puter Conference and Exposition, Conference Proceedings 45:845-853.

THE AUTHOR

~ o h v o j Melichar studied electrical engineering and control engineering at theCzech University of
Technology and received a diploma in electrical engineer~ng in 1964. In 1978 he completed a disserta-
tion on the translation of cooperative lists into programming languages. Since 1964 he has been an
assistant professor in computing at the Czech University of Technology in Prague. Dr. Melichar's
present interests include the syntax and semantics of computer languages and the design and imple-
mentation of computer language compilers.

