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ABSTRACT

This paper suggeststhe applicability of a method recently
developedby systemsengineersto the estimationof the state
transition matrices involved in the constructionof increment-
decrementlife tables. Relevant to the case of piecewise-
constant force functions, this method comes out as an alter-
native to the usual truncationof the infinite seriesobtained
from the exact expansionof the state transition matrices. It
generatesa sequenceof formulas which, interestingly enough,
subsumesthe linear formula of Rogers and Ledent (1976) as a
special case. An illustration of the method is provided with
applicationsto the analysis of marital status, labor force
participation, and interregionalmigration.

-v-





TABLE OF CONTENTS

INTRODUCTION, 1

1. THE INCREMENT-DECREMENT LIFE TABLE MODEL: CONTINUOUS
FORMULATION AND EXISTING PROCEDURES FOR ITS DISCRETE
APPROXIMATION, 2

2. THE MATRIX CONTINUED FRACTION (MCF) METHOD OF DISCRETE
APPROXIMATION, 7

3. APPLICATION OF THE MCF METHOD TO THE ESTIMATION OF INCREMENT-
DECREMENT LIFE TABLES: AN EMPIRICAL EVALUATION, 12

DISCUSSION, 19

REFERENCES, 20

-vii-





DISCRETE APPROXIMATION OF A CONTINUOUS
MODEL OF MULTI STATE DEMOGRAPHY

INTRODUCTION

Just as in natural sciences,analytic models used in social

sciencesare commonly formulated in terms of differential equa-

tions rather than difference equations, i.e., relying on a

continuousrather than discrete specification. For example, in

mathematicaldemography,all the columns of the ordinary life

table model originate from the simple differential equation.
i(x) = ＭｾＨｸＩｩＨｸＩＬ where ｾ Ｈ ｸ Ｉ is the force of mortality at age

x applicable to a cohort whose number of survivors at age x is

f.(x) •

In all branchesof applied science, including engineering

as well as demography, the data necessaryfor the application

of such continuousmodels usually come in discrete form.

Consequently, two recurring methodologicalproblems in applied

scienceare (1) discretizationof a continuousmodel to fit

the data, and (2) smoothing the discretedata to fit a continuous

model.

Despite the commonality of these problems, the difficulties

of communicationbetweendifferent disciplines result in either

the rediscoveryof the "wheel" several times or, more unfor-

tunately, many decadesof delay for a useful method to be
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transmitted from one discipline to another. In this paper, we

would like to avoid another manifestationof such events.

Specifically, we want to introduce to other demographersa

method of discrete approximationof a continuousmultistate

linear model, which has been discoveredrecently by systems

engineers (Shieh et al. 1978). This method lends itself a

useful application in the emerging field of multistate demography

(for an enlighteningreview of this field, see Keyfitz 1980).

We intend to make this method as immediately useableas the

spline method for data smoothing presentedby McNeil, Trussell,

and Turner (1977).

We will first recall the continuous formulation of the

demographicmodel of particular interesthere, namely the

increment-decrementlife table model (see Rogers 1973; Schoen

1975), and review briefly the methods currently in existence

for its discretization. ｔ ｨ ･ ｾ Ｌ we will introduce the basic

ideas underlying the engineeringmethod of discretizationwith

the help of an easily understandableexample and presentthe

sequenceof approximdtion formulas they lead to. Finally, we

will demonstratethe applicability of this method to the esti-

mation of increment-decrementlife tableswith examplesrelating

to various demographic ｰ ｨ ･ ｮ ｯ ｾ ･ ｮ ｡ and, in such a way, empirically

evaluatethe goodnessof these formulas.

1. THE INCREMENT-DECREMENT LIFE TABLE·MODEL: CONTINUOUS
FORMULATION AND EXISTING PROCEDURESFOR ITS DISCRETE

APPROXIMATION

The increment-decrementlife table model is a generalization

of the ordinary life table model which allows for entries into

(increments) as well as withdrawals from (decrements)different

states. (The state space is assumedto have n+1 states,one

of which is an absorbingstateof death whereasat least two

of the remaining statesintercommunicate.) Becauseof its

general nature, this model is valuable in analysesof marital

status, labor force participation, ｩ ｾ ｴ ･ ｲ ｲ ･ ｧ ｩ ｯ ｮ ｡ ｬ migration,

etc. In studies of marital :.:tatus, the non-absorbingstates

may number to four: single, married, widowed, and divorced

(see Krishnamoorthy 1979). :::n studies on labor force partici-
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pation, the statesmay be active and inactive (see Hoem and

Fong 1976 and Willekens 1980). In studies of interregional

migration, they are the regions of the geographicalpopulation

systemunder consideration(see Rogers 1975).

In general, let ｾ Ｈ ｹ Ｉ be an n x n matrix of transition

forces relating to an infinitesimal age interval (y, y+dy)

such that

a) its (i,j)-th off-diagonal element is equal to minus

the force of transition from state j to state i and

b) its i-th diagonal element is the sum of all the forces

of transition (including death) out of state i.

Also, let l(y) be an n x n matrix of transition probabil-z_
ities whose Ｈ ｩ Ｌ ｪ Ｉ ｾ ｴ ｨ element is the probability for a person

presentat age x in state j to survive to age y in state i.

Then, assuminga Markovian-generatedmobility process,we have

the following Kolmogorov forward differential equation (see

Schoen and Land 1979; Willekens 1980)

l(y) = ＭｾＨｹＩ l(y)
z- - z-

( 1 )

.
where ｺ ｾ Ｈ ｹ Ｉ is the derivative of ｺ ｾ Ｈ ｹ Ｉ with respectto y.

Concentratingon the evolution of the cohort of people

correspondingto the choice of z equal to zero and then omitting

this subscript, we obtain the solution of (1) as:

(2)

where l(O) is the diagonal matrix showing the initial state

allocation of the cohort considered. As for ｾ Ｈ ｹ Ｉ Ｌ whose (i,j)-th

element representsthe proportion of the individuals in the j-th

radix who survive to age y in state i, it can be shown to be

equal to (Krishnamoorthy 1979)



ｾＨｹＩ = J
y
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o
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ｾ (t) J
t

ｾＨｳＩ､ｳ dt ...

o
(3 )

The property of this matrix or matricant (see Gantmacher1959)

is such that, when the interval (0, y) is divided into k inter-

vals of length h, we can write

ｾ Ｈ ｹ Ｉ = ｾＨｫＭＱＩｨ ｾＨｫＭＲＩｨ ... ｾ ｏ (4 )

where each P is a proper transition probability matrix relating
-x

to interval (x, x+h) (see Ccx and Miller 1965).

Then letting l denote the value of l(y) at the equally
-x

spacedages x = O,h,2h,.•. , we have that the exact discrete

representationof the contiruous model describedabove is

(J = P l
':-x+h -x-x

(5)

in which all the ｾ ｘ ｉ ｓ can be derived from-the knowledge of ｾ ｯ

and the set of P '5.-x
Thus, in practice, the estimationof the increment-decrement

life table model reduces to the estimationof a set of transi-

tion probabilities from which all the multistate life table

functions (see Rogers 1975) constituting the output of such

model originate. In most situations, such estimation is per-

formed through a linkage with the observedvalues of the discrete

equivalentsof ｾ Ｈ ｸ Ｉ Ｌ denotedas M. Note that the observation
- -x

of ｾ ｸ is only possible when the data come in the form of counts

of moves rather than transitions (for a contrastbetween these

two notions, see Ledent 198(').

In brief, there exist three main proceduresof estimating

P in equation (5). The first (linear) procedureintroduced
-x
by Rogers and Ledent (1976) is basedon the assumptionthat

ｾ Ｈ ｹ Ｉ is linear for x s y S }+h. The resulting approximation

formula is
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P = (I + ｾｍ )-1 (I - ｾｍ )
-x 2 -x 2 -x (6 )

The second (exponential) procedureshown in Krishnamoorthy

(1979) is basedon the assumptionthat the forces of transition

are piecewise constant. That is, ｾ Ｈ ｹ Ｉ is constantand equal to

M for x $ y $ x+h. ｾ ｨ ｩ ｳ leads to the exact formula
-x

p
-x

e
-hM

-x
(7 )

For computation, P is generally approximatedby-x

. 1 ( _hl-1 ) (k- 1 )
(k-1)! -x (8 )

In other words, the tail of the Taylor series beyond the first

k terms is discarded.

- The third (cubic) procedureis more elaborate. Essentially,

it relies on the assumptionthat ｾ Ｈ ｹ Ｉ is a third degreepoly-

L0rnial for x-h $ y $ x+2h. The procedure,detailed in full in

Ledent and Rees (1980), startswith the calculation of an initial

set of matrices l from equation (5) where P is computed
-x -x

according to equation (6). It is continuedwith the calculation

J
h

of L = _l(x+t)dt from-x
o

which, using the flow equation (Rogers and Ledent 1976)

l - l = M L-x -x+h -x-x

(9)

( 10)
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leads to a new set of matrices t. The procedureis repeated-x
until consistencyof (9) and (10) is achieved. Then ｾ ｸ is

estimatedfrom

p = t t- 1
-x -x+h-x

( 11)

Although equation (6) is exactly of the same form as the

correspondingestimation formula in the ordinary life table,

the matrices P obtainedwith the linear procedure'are not-x
necessarilyproper transition probability matrices (see Ledent

1980), especially if the magnitude of the off-diagonal elements

of Mx is large. The interpretationof P then becomes impos-
- -x

sible. As for the cubic procedure, it makes the age profiles

of the elementsof t less irregular than those producedby-x
other procedures,a property which makes it particularly suitable

for less reliable data base. Nevertheless,the transition

probability matrices obtainedwith this proceduremay also be

improper. In contrast to the linear and cubic procedures,the

exponentialprocedureavoids, in principle, producing improper, -
transition matrices. In practice, this simply requires an

adequateestimationof the Exponential matrix in (7), i.e.,

the calculation of the sequenceof matrices ｾ ｫ Ｇ as defined by

(8), until a predeterminednumber of digits, for all elements,

remains unchanged.

Actually, an alternativesequenceof formulas, basedon

the matrix continued fraction method recently discoveredby

system engineers (Shieh et ale 1978), can be used for the same

purpose. In the next section, we will introduce this sequence

which, interestingly enough, subsumesthe estimation formula

of the linear approachas a special case and moreover converges

"quicker" than the sequenceｾ ｫ does. (Note that the quickness

of convergencerelates to the index of the sequencesrather

ｴ ｨ ｡ ｾ ｬ to actual computing tirr.e.)
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2. THE MATRIX CONTINUED FRACTION (MCF) METHOD OF
DISCRETE APPROXIMATION

To make the basic logic of the MCF method transparent,

we will start with a simple numerical example and then present

the matrix results that were obtainedby Shieh et ale (1978).

We begin by consideringthe expansionof a number, say, 1.2345

into a continued fraction in the following manner:

After a few divisions we get

1.2345 = 1 +

4 +
3 +

1

1

1 +

1
1

3 + •••

( 12)

By letting H. be the integer before the i-th division line,
ｾ

equation (12) can be written as

1.2345 =

or, more compactly,

1 ( 13)

1. 2345
-1 -1 -1 -1

= Hi + [H 2 + [H 3 + [H4 + [H S + ..• ] ] ] ] ( 14 )
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The important point is that the retention of only the first

few H. in equation (13) will result in a fairly good approxima-
J

tion of the original number. For example, consider the approx-

imation

=

=
H1H

2
H3 + H1 + H3
H

2
H

3
+ 1

-1 .= [H 2H3 + 1J [H 1H2H3 + H1 + H3J

( 1 5 )

where only the first three H. in equation (13) are preserved.
J

Substituting the H. by their values, equation (15) becomes
J

G
3

= (4) (3) ｾ U-1 (1) (4) (3) + 1 + 3J = 16/13 .;. 1.2308

The estimation ｾ ｲ ｾ ｯ ｲ is only 0.3%.

( 16 )

It is useful to consider the right-hand side of equation

(14) [or ･ ｱ ｵ ｩ ｶ ｡ ｬ ｾ Ｚ Ｑ ｴ equation (13)J as a systemwhich is designed

for the approxim.lcion of the left-hand side. That is, when a

unit input is applied (i.e., multiplied) to the system, the

ｲ ･ ｳ ｵ ｬ ｾ ｾ ｮ ｳ output becomesthe estimatedvalue. The system is

diasramat.icallyshm,m in Figure 1a and is in the form of a

multi-fe,,=dback ! :'11ti-feedfmward control system. It has been

observedthat ｴ ｾ ･ behavior of such a system is relatively

insensitive to the changesor omissionsof the inner paths (for

an elernentlry explanation, sae Melsa and Schultz 1969:86-91).

A simplifjed systemusing only the first three outer paths is

shown in ｾ ｩ ｧ ｵ ｲ ･ 1b, and we have seen it through equations (15)

and (16) that it performs well for our admittedly trivial

example.
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Hi

H3

+ ++
+0-

+ +
HS + ...

Input - - Output

H
4

H
2

(a)

Hi

+
+ +

Input
H

3 Output-

H2

(b)

Figure 1. Block diagrams for (a) H1 + [H 2 + [H 3 + [H 4 + [Hs +
-1 -1 -1 -1 -1 -1 -1... ] ] ] ] and (b) H1 + [H2 + H3 ] ] • For a

good explanationof block diagrams, see Schwarz and
Friedland (1965) or Melsa and Schultz (1969).
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The procedureof going from equation (12) to equation (16)

demonstratesthe basic logic of the MCP method that was used

by Shieh et al. (1978) to derive a sequenceof estimation

formulas for ･ ｾ ｨ Ｌ where we may let A = -M for the increment-
o - -x

decrementlife table model. The only difference is that now

we have matrices rather than just numbers. The outline of

derivation is as follows.

P ' . Ah 1 'd' 'd d b1rst, we wr1te e- as a Tay or ser1es 1V1 e y an

identity matrix. That is,

e ｾｨ = [I + Ah + iT (Ah) 2 + ... ] [I] - 1 ( 17 )

Next, we apply the techniqueof continued fraction to equation

(17) to obtain a sequenceof matrices ｻ ｾ Ｑ Ｇ ｾ Ｒ Ｇ ｾ Ｓ Ｇ ... } such that

(18)

which is exactly in the same form as equation (14). The matrices

ｾ ｪ could be obtained by Routh's algorithm (see Schwarz and

Priedland 1965:406-408),which is a tabular way of carrying out

the type of divisions used jn equation (12). It is shown in

Shieh et al. (1978) that

H I !22
(Ah) -1

!23 -21 ｾ Ｔ
_3(Ah) -1

--I -

ｈｾ 21 !26
5(Ah)-1

ｾ Ｗ -21 ｾ Ｘ = -7 (Al'l)-1
-:J

H.
-J

21 H. 1-J+
j(Ah)-l H 0 ..,

-J+.:.
-21 H. 3-J+

-1
-(j+2)(Ah)

for j = 5,9,13,... ( 19)
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N t 1 t G b h . f Ah b .. 1 th f'ex, e . e t e est1mate0 e- y reta1n1ngon y e 1rst
-J

j H matrices in equation (18). Then, just as we did in equations

( 15) and (16), we get

ｾ Ｒ = ｾＱ
+ H- 1

= I +Ah = I - hM (20)
-2 -x

ｾ Ｓ ｛ ｾ Ｒ
-1 -1

｛ ｾ Ｒ ｾ Ｓ
I]-1 H= ｾＱ + + ｾＳ ] = ｾＱ + +
- -3

= ｛ｾＲｾＳ + I]-1
｛ Ａ Ｎ ｉ Ｑ ｾ Ｒ ｾ Ｓ + ｾＱ + ｾＳ｝

= [ (Ah) -1 (- 2I) + I]-1 [I (Ah) -1 (-2I) + I - 2I]

= [-2(Ah)-1 + 1]-1 [-2(Ah)-1 - I]

= [I _ ｾＨｾＩ ]-1 [I + ｾＨｾｨＩ｝

[I + Q M ]-1 [I h (21)= - -M ]
2 -x 2 -x

Clearly, equation (21) is identical to the estimation formula

obtainedby Rogers and Ledent (1976) using a different assump-

tion. To avoid cluttering the text, all G. up to j = 13 are
-J

shown in Appendix A.

There is a basic difference between ignoring the higher

ｾ ｪ in the MCF method and the chopping-off of the tail of the

original Taylor series. For illustration, Shieh et al. (1978)

sho\-; t.hat

00

93 = I + Ah + ｾＨａｨＩＲ + I ｾＨａｨＩｪ
2. - j=3 2J-1 -

and

00

G_
4

= I + Ah + ｾＨａｨＩＲ + ｾＨａｨＩＳ + 1 I .1_(Ah)j
2. - 3. - (1.5)(4!) j=4 3J-4-
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It is argued that the retentionof the first three (or four)

H. must be preferableto discarding the tail of the Taylor series
-J
beyond the first three (or four) terms, becausethe MCF method

(for j > 2) preservesa systematicallymodified tail--not a

single term in the original serieshas been discarded. The

demographicexamples in the next section support this argument

strongly.

3. APPLICATION OF THE MCF METHOD TO THE ESTIMATION OF
ｉｎｃｒｅｍｅｎｔＭｄｅｃｾｭｎｔ LIFE TABLES: AN EMPIRICAL EVALUATION

For evaluationpurposes,the MCF method has been applied

to the estimationof the age-specifictransition probabilities

underlying the constructionof three empirical increment-decrement

life tables. A comparisonwas then made with the more popular

method basedon the Taylor seriesexpansionof formula (7).

The first application takes advantageof data originally

used by Krishnamoorthy (1979) to construct a marital status life

ｴ ､ ｢ ｾ ･ for US females in 1970 on the basis of 18 age groups:

0-4, ｾ Ｍ Ｙ Ｌ ... , 80-84, 85+. The secondone utilizes data employed

by Hoem and Fong (1976) to calculate a working life table for

Danish males on the basis of 59 age groups (16, 17, •.. , 74).

ｆ ｩ ｮ ｡ ｬ ｬ ｾ Ｌ the third application makes use of interregionalmigra-

tion data in the Netherlandscollected for 18 age groups (0-4,

5-9, ... , 80-84, 85+), by Drewe (1980) in view of the calculation

of a ｦｾｵｲＭｲ･ｧｩｯｮ life table.

Tables 1 through 3 illustrate our computationalresults by

presenting, for young adult age groups, the elementsof the

ｦ ｯ Ｚ ｬ ｯ ｷ ｾ ｮ ｧ estimatedmatrices:

a) ｾ Ｓ and ｾ Ｓ

b, ｾ ｫ and ｾ ｫ where k is the smallest integer for which

the elementsof ｾ ｫ Ｇ for any k 1 > k, has the same first

f3ve digits as in ｾ ｫ

ｾ Ｌ ｴ ﾷ ｾ "exact" solution defined as the first matrix in

ｾ ｲ Ｎ Ｘ series ｾ ｫ or ｾ ｫ such that all elementsof ｾ ｫ and

Gk have their first five digits in common.
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Table 1. Marital status life table for US females, 1970:
transition probabilities betweenages 20 and 25.

Transition

From To ｾＳ ｾＳ ｾｏ ｾＱＰ ｾＱＳ & ｾＱＳ

S S .53175 .23001 .28593 .28593 .28593
S M .38646 .74260 .68218 .68213 .68213
S W .00678 .00325 .00380 .00380 .00380
S D .07137 .02040 .02435 .02440 .02440
M S 0 0 0 0 0
M M 1.00530 .93465 .94323 .94327 .94327
M W .00763 .00846 .00830 .00830 .00830
M D -.Q1667 .05314 .04473 .04468 .04468
W S 0 0 0 0 0
W M .31493 .34950 .34275 .34274 .34274
W W .65607 .63715 .64219 .64219 .64219
W D .02526 .00960 .01132 .01133 .01133
D S 0 0 0 0 0
D M -.31479 1.00341 .84451 .84369 .84369
D W .01155 .00439 .00517 .00518 .00518
D D 1.29950 -0.01155 .14657 .14739 .14739

S = single M = married W = widowed D = divorced

SOURCE OF INPUT OATA: Krishnamoorthy (1979) .

Table 2. Table of working life for danishmales: transition
probabilities between ages 20 and 21.

Transition

From To ｾＳ ｾＳ ｾＶ ｾＶ ｾＸ ＦｾＸ

I I .66750 .64019 .64712 .64715 .64715
I A .33128 .35859 .35166 .35163 .35163
A I .06678 .07228 .07089 .07088 .07088
A A .93200 .92650 .92789 .92790 .92790

I = inactive A = active

SOURCE OF INPUT DATA: Hoem and Fong (1976) •
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Table 3 . Multiregional life table for the Netherlands: transi-
tion probabilities between ages 20 and 25.

Transition

From To ｾ Ｓ ｾ Ｓ ｾ Ｕ ｾ Ｕ ｾ Ｖ & ｾＶ

1 1 .81193 .80886 .80977 .80976 .80976
1 2 .07186 .07472 .07391 .07392 .07392
1 3 .09096 .09180 .09153 .09153 .09153
1 4 .02151 .02086 .02104 .02103 .02103
2 1 .04061 .04218 .04174 .04175 .04175
2 2 .77242 .76554 .76750 .76747 .76747
2 3 .12614 .12994 .12885 .12887 .12887
2 4 .05706 .05856 .05813 .05814 .05814
3 1 .02412 .02438 .02430 .02430 .02430
3 2 .05553 .05722 .05674 .05674 .05674
3 3 .87103 .86852 .86925 .86925 .86925
3 4 .04631 .04689 .04671 .04671 .04671
4 1 .01068 .01036 .01045 .01045 .01045
4 2 .04660 .04774 .04741 .04741 .04741
4 3 .09382 .09510 .09472 .09472 .09472
4 4 .84505 .84295 .84357 .84357 .84357

SOURCE OF INPU'1' DATA: Drewe (1980) .

It turns out that:

a) ｾ ｫ gives better estimates.than does ｾ ｫ especiallywhen

k is small (see also Figure 2)

b) the higher the off-diagonal elementsof the matrix

-hM , i.e., the higher the propensity to move out of
-x

a state and ｴ ｾ ･ higher the width of the age groups

considered,the greater the value of k necessaryto

reach the "exact" solution

c) even in the most favorable situations, ｾ Ｓ (equivalent

to the linear forT.ula) fails to produce more than a

couple of significant digits (see Table 3).
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DISCUSSION

Of the three main procedurescurrently existing for the

estimationof increment-decrementlife tables--theso-called

linear, exponential, and cubic procedures--,only the exponential

procedure (basedon piecewise-constantforces of transition)

ensuresthat the age-specificsurvival matrices P are proper
-x

transition probability matrices.

In this paper, we have proposedfor its implementationa

sequenceof estimation formulas, basedon the method of matrix

continued fraction, which a) subsumesthe estimationformula

of the linear procedureand b) converges"quicker" than the

commonly-usedsequencebasedon the Taylor seriesexpansionof

the exact survival matrices P .
-x

Actually, the method of continued fraction and its matrix

generalizationhave wide applicability in the analysis of linear

control systemsand may become more useful to mathematical

demographersas we broadenour scope of investigationto control

mechanismsin population systems. Besidesbeing a good way of

discretizing continuous-timelinear control systems, these

methods have been used to determineconveniently (i.e., without

finding the roots of the characteristicequation) the stability

of a system (see Schwarz and Friedland 1965:404-408) and to

transform a difficult high-order linear differential equation

into a relatively easy low-order one without losing the essential

dynamic propertiesof the physical system (see Shieh and Gaudiano

1975) .

Finally, let us observe that, to date, the developmentof

multistate mathematicaldemographyhas dependedheavily on

extending the approachof the classical life table analysis.

Recent progressin multistate analysisdemostratesthe fruit-

fulness of this researchstrategy. Actually, progressin other

scientific disciplines also relies heavily on extending and

generalizingold analytic methods. The developmentof the MCF

method is a good example in engineering. However, to avoid

wasting much time in rediscoveringthe methods w.hich have already

been found in other disciplines, mathematicaldemographersshould

be alert to methodologicaldevelopmentsin mathematicallyadvanced

fields such as systemsengineering.
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APPENDIX A: THE MCF FORMULAS FOR ESTIMATING P
-x

[Source: Shieh et ale (1978)]

ｾ Ｒ = I - hM
-x

[I 1 -1 [I 1
ｾＳ = + - hM ] . - - hM ]

2 -x 2 -x

[I 1 -1 (I 2 + !.(hM ) 2]
ｾ Ｔ = +-hM] • - - hM

3 -x 3 -x 6 -x

ｾ Ｕ = [I + !. hM + ｾＨｨｍ )2]-1 • [I - !. hM + 11
2

(hM_
x

)2]
2 -x 12 -x 2 -x

G_
7

= (I + ! hM + 11
0

(hM_
x

)2 + __1__(hM )3]-1 •
2 -x 120 -x

1 1 2 1 3
[I - -2 hM + 10(hM) - 120(hM) ]- -x -x -x

ｾ Ｘ
[I + l hM + ｾＨｨｍ )2 + __1__(hM )3]-1 •

7 -x 14 -x 210-x

1 3 2 1 3 1 4 -1
ｾ Ｙ = (I + 2" ｾｸ + ＲＸＨｾｸＩ + ＸＴＨｾｸＩ + ＱＶＸＰＨｾｘＩ｝ •

(I - ｾ ｾｸ + ＺＸＨｾｸＩＲ - ＺＴ＼ＧｾｸＩＳ + ｬｩＸＰＨｾｸＩＴ｝

G_
10

= [I + ! hM + 11
2

(hM_
x

) 2 + .....!..-(hM ) 3 + _1_(hM ) 4] -1 •
9 -x 126 -x 3024-x

[I - ｾ hM + 2-(hM )2
9 -x 36 -x

1 5
ＱＵＱＲＰＨｾｘＩ ]

1 5
ＳＰＲＴＰＨｾｸＩ ]

* Note that the coefficient of the fifth power terms in ｾ Ｑ Ｑ as given in Shieh
et al. (1978) is incorrect.
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[1 +2....hM
1 2 1 3 1 4 1 5 -1

ｾ Ｑ Ｒ = + 11 Ｈ ｾ ｸ Ｉ + 99 Ｈ ｾ ｸ Ｉ + ＱＵＸＴＨｾｸＩ + 55440Ｈ ｾ ｸ Ｉ ]
.

11 -x

[1
6 3 2 _ ｾＨｨｍ ) 3 1 4 1 5 1 6

- - hM + -(hM ) + 528 Ｈ ｾ ｸ Ｉ - ＹＲＴＰＨｾｸＩ + ＳＳＲＶＴＰＨｾｘＩ ]11 -x 22 -x 99 -x

[1
1 5 2

+ 6
1
6 ＨｾｸＩ 3

1 4 1 5 1 6 -1
ｾ Ｑ Ｓ = + - hM + ＴＴＨｾｸＩ + ＷＹＲＨｾｸＩ + 15840Ｈ ｾ ｸ Ｉ + ＶＶＵＲＸＰＨｾｘＩ ]2 -x

[1 152_ .l...(hM ) 3 1 4 1 5 1 6
- - hM + -(hM ) + ＷＹＲＨｾｘＩ ＱＵＸＴＰＨｾｸＩ + 665280Ｈ ｾ ｸ Ｉ ]2 -x 44 -x 66 -x


