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ABSTRACT

The purposeof the paper is to presenta complete theory of
optimal control of piecewise linear and piecewisemonotone pro-
cesses. The theory consistsof a descriptionof the processes,
necessaryand sufficient optimality conditions and ･ ｸ ｩ ｳ ｴ ･ ｾ ｣ ･ and
uniquenessresults, as well as extremal and regularity properties
of the optimal strategy. Mathematicalproofs are only outlined
(they will appearelsewhere),but hints concerningefficient
determinationof the optimal strategyare included.

Piecewiselinear (monotone) processesare discontinuous
Markov processeswhose state componentsstay constantor change
linearly (monotonically) between two consecutivejumps. All pro-
cessesof inventory, storage,queuing, reliability and risk
theory belong to these classes. The processeswill be controlled
by feedback (Markov) strategiesbasedon complete stateobser-
vations. The expectedvalue of a performancefunctional of
integral type with additional terminal costs is to be minimized.

The semigroup theory of Markov processeswill be used as
the uniform mathematicaltool for the whole theory, and the
control problem will be reducedto the integrationof a system
of ordinary differential equations. Special emphasiswill be
given to the descriptionof the processesby their infinitesimal
characteristicswhich are available explicitly in applied models--
no finite dimensionaldistributions are used.
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INTRODUCTION

The classical theory of risk, reliability, inventory,

queueingandstorageconstitutean almost unified branch of

applied (or rather, applicable) probability. They are charac-

terized by a uniform methodologywhich makes use of limit

theoremsof probability theory-in order to arrive at explicit

formulae for one or other asymptotic characteristicsof the

processes. Using theseexplicit expressionsone can make an

appropriatechoice of parametersappearingin the formulae to

achieve a reasonablelimit behaviour. The processesoccurring

in the above theory are very similar, they are continuous-time

random processeswith step or saw-tooth shapedtrajectories,

and in handling them there is a strong trend towards application

of Markov processtheory. Abstracting the common propertiesof

these processes,Gnedenkoand Kovalenko (1966) have defined the

very useful class of "piecewise linear processes"which contain

almost all processesof applied probability.

Under conditions of growing intensificationof economic,

technological, etc., competition, current interest is however

declining in systemswhich offer only reasonableperformance

after the passageof the considerabletime representedby
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asymptotic results. Instead, systemsare neededwhich them-

selves perform "optimally" in any situation. Moreover, such pro-

cessesshould flexibly follow the changesof their economic,

technological, social, etc., environment. In order to be able

to design systemsmeeting these requirementsone needs first

of all a detailedquantitativedescriptionof performance

criteria. Further, one needs the freedom to make decisions (to

change the values of the free parameters)at any time at which

the state of the systemdemands. One thus arrives at the

optimal dynamical control problem: in view of the current state

of the systemdetermine the necessarydecisionswhich result

in optimal future performance. Of course, it is too much to

require that the optimal state-decisioncorrespondencebe given

an explicit analytical expression. But it is a cardinal re-

quirement that any algorithm governing this correspondencecan

be efficiently processedby the presentgenerationof computers.

In this paper we presenta complete theory of optimal

control of piecewise linear (and piecewisemonotone) processes.

Piecewise linear processes(PLPs) are discontinuousstochastic

processeswhich have one class of state componentschanging

linearly betweenconsecutiverandom jumps, while the remaining

state componentschange only by jumps--i.e. they remain constant

between two neighbouringdiscontinuities. Piecewisemonotone

processes(PMPs) differ from PLPs only in the respectthat a

single state componentcan change in an arbitrary monotonic way

｢ ･ ｴ ｷ ･ ｾ ｮ two consecutivejumps. For examplesof PLPs we refer

to Gnedenkoand Kovalenko (1966) and Kalashnikov (1978). The

performanceof these processeswill be characterizedby a cost

functional of integral form with an additional term for the

termination costs. The aim is to find a strategywhich ensures

minimal expectedcosts from every initial state. Decisions

will be made on the basis of complete observationof the current

state of the process, in other words one uses Markov (feedback)

control strategies. As PLPs and PMPs are Markov processes,

strategiesusing information about the past evolution of the

processescan be supposednot to give better results than Markov

strategies(cf. Yushkevich, 1977).
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The complete theory of optimal control includes necessary

and sufficient optimality conditions (§4), existenceof the opti-

mal strategy and unique solvability of the differential equation

systemappearingin the optimality condition (§5), extremal

propertiesof the optimal strategyand a regularity property of

its possible jumps (§6). Special emphasisis given to the des-

cription of processesby their infinitesimal characteristics

(§2) which are available explicitly in real-life problems,

Finite-dimensionaldistributions--whichare extremely hard to

compute--arenot needed.

The fundamental uniform tool of the whole theory is the

linear semigroup theory of Markov processes. The optimality

criteria will be given in terms of the infinitesimal operators

of the processesas in the author'sprevious papers (1973, 1974,

1980). As the infinitesimal operatorsof PLPs and PMPs are

first order ordinary differential operators, the determination

of the optimal strategy is reduced to the solution of a system

of nonlinear ordinary differential equations. The methodsof

the paper use repeatedlythe characteristic property of

continuous-timecontrol that the value of the strategycan

change at any moment. This freedom makes the world of continuous

time processesmuch richer than that of their discrete-time

analogs, so that one is in a position to prove results which

have no discrete time counterparts(e.g. the whole of §6). The

author is convinced that these are precisely the results which

make the optimal strategyefficiently computableand easily

realizable. (Contrast this with the poor computationalper-

formance of the backward algorithm of discrete-timedynamic

programming.)

The paper is addressedto specialistswishing to solve

concretereal-life problems using mathematicalmethods. There-

fore it contains a precise, compact, self-containeddescription

of the theoretical results with special emphasison the deter-

mination of the optimal strategy. The results are statedin

rigorous form, but mathematicalproofs are omitted--theywill

appearelsewhere. Instead, explanationsand app1ications-

oriented hints are included. Potential applicationsof the
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theory presentedare dynamical problems in the classical fields

of risk, reliability, inventory, queuing and storage. But the

author hopes that the theory will also give accessto such vital

modern fields as dynamic capacity expansion,control of natural

resourcereserves,investmentand project phasing, temporal

managementof financial, manpower and natural resources,pest

managementand dynamic traffic control problems.

1. PIECEWISE LINEAR PROCESSES

1.1. Defini tions

We start with a somewhatrestricteddefinition of a piece-

wise linear process (PLP). Later we shall show that this class

of processesmay be consideredwithout loss of generality since

every PLP can be reduced to this form by a simple state-space

transformation.

As time-axis for our problems we take the non-negative

real line [0,00). The state x t of our processat time t E [0,00)

will be the two dimensionalvector x t = (v t' 1;t) where the primary

(or fundamental) componentv t takes its values in a finite or

infinite setL%of nonnegativeintegers, while 1;t is a real

variable. The range of the secondary component 1;t dependson

the actual value of the fundamental componentv t . If vt=n

then 1;t lies in the internal Zn = [an,bn ]. Consequently,the

set E:= {(n, z) : Z E (an ,bn ], n E..A'} will serve as state space

for our processes. Subsequently,we shall denote by E* the

right-side boundary E* = {(n,b ) : n Ev'Y' a I- b } of the staten n n
space, while EO:=E\E*. We assumethat the state spacecon-

tains a terminal subset ｾ with the property that the process

is killed if it reaches ｾ Ｎ

The dynamicsof the processcan be describedas follows.

The primary state changesby jumps at random times. The

secondarystate changesby jumps at jump-momentsof v t and it

increasescontinuouslywith unit velocity between jumps. If

(v t ,1;t) ｾ E*, then the jump intensity of the fundamental com-

ponent process is (V t ,1;t), Le. P(vt+hl-vt ) =h· A(v t ,1;t) +O(h).

This situation is called continuous influence of choice
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(Gnedenko, 1966). If (vt,St) reachesthe right-boundaryE* then

a jump in both componentsoccursnecessarily (this situation is

termed discrete influence of choice). If the process jumps from

the state x = (n, zn) E E, then the probability that after the jump

the evolution begins from a point of the set ACE is given by

the probability measureTI (A). We shall sometimesuse the termx
jump intensity measuremeaning Q (A) =.A (x) TI (A) for x E EO. Inx x
the sequel we shall always assumethat our processesare regular,

i.e. that there are only finitely many jumps in finite time

intervals. Criteria for regularity can be found in Kalashnikov,

(1978) .

Other authors (Gnedenko and Kovalenko (1966) and Kalashnikov

(1978) define PLPs somewhatmore generally. They do not'ex-

plicitely assumethat ｾ is one dimensional and that St increases

with unit velocity. Instead they supposethat for constantv

the secondarycomponentSt moves in a d-dimensionalEuclidean
v . h t 1 . v ZV d vspace Z W1t constan ve OC1ty vector v . Here an v

can dependon v. But it is easy to see that if we rotate ZV

so that its first coordinateaxis lies in the direction of vV

and rescalethis axis appropriately, then in the new coordinate

system St will again move with unit velocity along the first

coordinateaxis and the remaining dim ZV_1 coordinatesmay be

ignored. Notice that if v
V = 0 (the case of a homogenous

Markovian jump process) then ZV shrinks to a single point and

(v,Zv) does not belong to the boundary E*, i.e. no discrete

influence of choice is possible. Thus we have shown that our

simpler definition leads to no loss of generality.

By similar--but nonlinear--statespace transformations,

processesfor which the secondaryvelocity dependsnot only v

but also on s can be reduced to our definition. Such processes

occur, for example, in the theory of dams with controlled

releaserate (cf· de Marais (1976) and Pliska (1977)). A

different approachto such problemswill be given in §7.2.

1. 2 • Exa1"7pl es

We will give three very simple examplesof PLPs, which will

be used throughout the paper as illustrations of the concrete

form of the general results. Our aim in this is not to
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demonstratehere the broad applicability of the PLP concept, but

rather to presentthe most simple and transparentspecial cases.

1. Non-homogenousMarkovian jump proaess. The processis

characterizedby the state and time dependentjump intensity

A(n,t) and the jump measurerr t. If we include time as then,
secondarycomponent in the state space the processwill become

a homogenousPLP. Its specific property is that the secondary

componentmakes jumps of a saltus, i.e. it never jumps.

2. Semi-Markov proaess. It is well known that a homogenous

pure jump processis Markovian if and only if the times between

neighbouring jumps are exponentiallydistributed. If this is

not the case, e.g. if the interjump times have distribution

function B (t) with density b (t), then one can constructa
n n

Markovian equivalentof the original processas follows. Adjoin

the times already spent in the current state since the last

jump as secondarystate component. The resulting PLP with jump

intensity A(n,s) =b (s)/[l-B (s)] will be Markovian, and its
n n

primary componentcoincideswith the original process. Notice

that since l-B (s) can tend to zero faster than b (s), it cannotn n
be generally assumedthat A is bounded.

3. Virtual waiting-time proaess. We have a non-negative

valued one-dimensionalprocesswhich has positive jumps at

random times. Between the jumps the processdecreaseswith

unit velocity if its value is not zero, and does not change

until the next jump once level zero is reached. The times

between the jumps are exponentiallydistributedwith state

dependentintensity ｾ Ｈ ｸ Ｉ Ｌ and the independentmagnitudesof the

jumps have a common distribution function Bx . The processis a

PLP with the special property that its state space is

E = {(O,O)} U {I} x [0,00), and from state (1,0) there is an

immediate jump to (0,0). Otherwise the jump intensity is A(X).

Such a PLP describesthe virtual waiting time of a customer

arriving in an M/G/l queue. Similar processesoccur in the

theory of water-reservoirsand in risk theory.
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2. MARKOV PROCESSESAND INFINITESIMAL GENERATORS

2.1 Definitions

It is not difficult to show that any PLP {x
t

} is a Mapkov

process (Dynkin, 1963; Gihman & Skorohod, 1973) and that if x t
is regular then the tpansition funation p(x,t,r) is uniquely

determinedby the intensities A(X) for XEE\E* and the jump

measures1T for x E E. On the other hand, it is not easy to
x

find an explicit expressionfor p(x,t,r) in terms of A and 1T

(af. Gihman & Skorohod, 1973). Therefore, we shall describe

the transition behaviourof our processesby their infinites-

imal operators,which are closely connectedto the transition

probabilities but can be expressedin terms of A and 1T.

Denote ｢ ｹ ｾ Ｈ ｅ Ｉ the spaceof boundedmeasureablereal-valued

functions on E. The norm ｩ ｮ Ｎ ｾ is defined by II f II = sup I f (x) I •
xEE

We say that the sequencef k in ｾ convergesstpongly to f E 3B

if II f k -f II -+- 0, while f k convergesweakly to f E g{J if f k (x) -+- f (x)

for any x E E and the sequenceis uniformly bounded, i. e.

sup II f II < K. We call two functions f and g a. e. equal (or
n n-

equivalent )on E if for every n, f (n, z) =g (n, z) for almost every

Z E zn (with respectto Lebesquemeasure).To the Markov process

xt with the transition function p(x,t,r) we adjoin the semigpoup

Tt of linear operators mappingeginto itself, with

Ttf(x) : = ff(y)P(x,t,dy)
E

(2.1)

Correspondingto each of the different types of convergence

in ,qg we can define different "infinitesimal opepators" of the

semigroupT
t

by the formula

Af : = lim ｾ Ｈ ｔ ｴ ｦ Ｍ ｦ Ｉ
t-l-O

(2 .2)

In this paper we shall say that a function f E&iJ belongs to

the domain ｾ Ｈ ａ Ｉ of the infinitesimal opepatop (or generator) A
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if the limit in (2.2) exists in the senseof weak convergencein

ｾ Ｎ This notion of generatoris somewhatweaker than the weak

infinitesimal operators (Dynkin,1963) but it is the appropriate

definition for our purposes. For the later developmentit will

be of fundamental importance that Dynkin's formula holds true in

the following form.
1"

Let 1" be a Markov time and f Epj) (A) such that Ex 6Af (xt ) dt

is bounded. (Here Ex denotesthe expectationwith respectto

the measurePx .) Then

1"
E f (x ) - f (x) = E f Af (xt) d t

x 1" X a (2.3)

Notice that the infinitesimal generatoris an unbounded

linear operator, it is determinedby formula (2.2) and its domain.

It can be seen from subsequentconsiderations,that besidesthe

actual expressionof Af the relation f E.@(A) also contains

essentialinformation about the functions f and Af.

2.2. ｇ ･ ｮ ･ ｾ ｡ ｴ ｯ ｾ ｳ of PLPs

The fundamentalmethod for the determinationof the infini-

tesimal operatorof a PLP was developedby Vermes (1974). Al-

though only PLPs which arose from semi-Markovianprocesseswere

considered,the method of elaborationof the generatorcan be

applied without essentialchange to general PLPs. Taking into

account that--contraryto the situation for the usual definition

of the weak infinitesimal operator--forour generatorsno weak

｣ ｯ ｮ ｴ ｩ ｮ ｾ ｩ ｴ ｹ is needed, we have the following.

THEOREM 1. The domain of the infinitesimat operator

of the PLP defined in §1 consistsof those functions {f}

which are uniformly Lipschitzian and right differentiabte

with respect to the secondaryvariable and for which, for

smatt enough t and some constant K,

sup ｉ ｔ ｴ ｦ Ｈ ｶ Ｌ ｾ Ｉ - ｦＨｶＬｾＩＱ < Kt
v,n

(2.4)

For these functions the generator is given by the formuta



- 9 -

if (v,l',;JEE\E* .

From (2.4) it follows that for (v,r,;) EE*, the "boundary condition"

f(v,l',;) = ff(n,z) 1T ,..(dn,dz)
E \), ｾ

holds true for any f ｅｾ (A) •

(2. 6)

If A is bounded on all of E, then ｾ Ｈ ａ Ｉ consistsof all uni-

formly Lipschitzian right differentiable functions which satisfy

the boundary condition (2.6), and Af is given by (2.5).

If A (v,l',;)+oo as r,; +bv then (for regular processes) (2.4)

is satisfied for those functions for which the second term on

the right hand side of (2.5) remains bounded. In this case,

in addition to the boundary condition (2.6), the asymptotic

equality

If(v,l',;) - f(v,bv ) I-l/A(v,r,;)

also characterizesthe relation f Efi) (A) .

(2.7)

We would like to call the attention to a property of the

generatorsof PLPs. Namely that g = Af always has the regularity

property

-1 h
g(n, z) = lim h fa g (n, z+t)dt

hi-a
(2.8)

if (n,z) E E\E*. Sometimesit will be convenient to make use

of formulae by which Af is determinedonly up to equivalence.

In such casesequality and inequality relations will be under-

stood as relations holding in every point provided that every

equivalenceclass of functions is representedby its regular

element, for which (2.8) holds. A typical example is formula

(2.10) •



- 10 -

2.3. Examples

It is easy to see that if A(n,t) is bounded, then for the

first example of §1.2 the generatoris defined for any function

having bounded right derivatives and AF is given by

+Af (n,t) = f (n,t) + A(n,t) r [ f (k,t) - f (n,t)] 'IT t(k) .
k n,

(2.9)

For the seaond example A(n,s) remains bounded if, for large
-kss, b (s) > e ,for some k > o. In this case the generatoris

n
defined for every function having bounded right-derivative and

is given by the formula

+Af (n, s) = f (n , s) + (bn (s) / [1-Bn (s) ]) r [f (k, 0 ) - f (n,s) ] 'ITn , s (k) .
k

(2.10)

If the duration time distribution is supportedby an infinite

interval, i.e. if bn =+ 00 for any n, but b (s) is not minorized
. n

by an exponential function, then only functions satisfying con-

dition (2.7) are in the domain of the generator,but as no

discrete influence of choice takes place, the boundary condition

of type (2.6) is not necessary. However, if the duration time

distribution is supportedby the finite interval [an,bn] with

bn < 00 , then all functions in the domain of the generatormust

satisfy conditions (2.6) and (2.7) at bn •

For the third example, if A is bounded, Af is given by

Af(x) = f+ (x) + A(x) r [f (y) -f (x)] B (dy)
o x

(2.11)

for any bounded right-differentiable function ｦ ｅ ｾ Ｎ

3. OPTIMAL CONTROL OF PLPs

3.1 Controllable proaesses

Up to now we have been dealing with single processesonly;

now we shall consider families of processeswhich contain a
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free parameterin their characteristics. By appropriatechoice

of this free parameterwe can single out that processfrom the

family which has good dynamics from some point of view. If the

choice of this parameterdependson the evolution of the process

then we term the family of PLPs a controlled process. Since

PLPs are uniquely determinedby intensities>..and jump measures

n we can control such a processby these two characteristics.

Problems in which control acts only on the jump measures

at the boundary point x E E* are essentiallyequivalent to the

control problem for discrete time Markov chains. The funda-

mental tool for solving such problems is dynamic programming.

Even if there are some serious computationaldifficulties

connectedwith the application of dynamic programmingprocedures,

the theory can be regardedas closed. The interestedreader

should consult the extensive literature (Dynkin, 1963 and

Howard,1964) and referencescontainedtherein.

In the presentpaper we shall treat the polar case,

namely when the terms connectedwith the continuous influence

of the choice can be controlled. In other words, we shall deal

with processesfor which the intensity measureQ dependsnot only

on x but also on a free parametery. (Recall that Qx is defined

only for x E: EO by Q
x

= >..(x) n
x

.) More precisely, let Y be a

closed bounded subsetof Rn , the so-calledaction ｳ ｰ ｡ ｣ ･ ｾ and

let x y be a continuousmeasure-valuedfunction on EOXY. Here
x

the ｳ ｰ ｡ ｣ ･ ｾ ｾ ｯ ｦ finite measuresis endowedwith its usual weak

(mere precisely w*) topology. In order to set off the charac-

teristic featuresof this "continuously acting" control, we

do not allow the discrete jump measuresnx (xE E*) to dependon

the control parametery.

Since a regular PLP is uniquely defined by its intensity

measuresand discrete jump measures,for any fixed y E Y we get

a unique PLP on the same state spaceE. But we shall in fact

study a much broader class of processes,where the value of

the control parametery can be chosen to depend on the actual

state of the process. We denote by U the set of all measurable

mappings u of E into Y, and call it the set of all feedback
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(or Markov) strategies. To every uEU there belongs an intensity

ｭ ･ ｡ ｳ ｵ ｲ ｾ function ｑ ｾ Ｈ ｸ Ｉ Ｌ which togetherwith the discrete jump

measuresdetermine a new PLP. We say this processis governed

by the strategyu. The transition functions, probability measures,

expectationsand generatorsbelonging to the Markov process
. u u u ugovernedby u ｷｾｬｬ be denotedby P (x,t,r), Px ' Ex' A respec-

tively. For random variables, as XU,T
U

, the upper index u
y

will be used only if confusion would otherwise arise.

In many problems it is not reasonable to considerall

measurablestrategies,since a generalmeasurablefeedback law

can be very difficult to realize. Sometimeswe wish to consider

only piecewiseconstantor piecewise continuous ｳ ｴ ｲ ｾ ｴ ｾ ｧ ｩ ･ ｳ Ｌ or

feedback laws taking values only in a subsetof Y (cf.§6J. In

order to treat this situation generally, we define a subset

UC Uo to be the set of all admissablestrategiesif it satisfies

the following conditions:-

a) All constantstrategiesare in U.

b) If u and v are in U, v is an arbitrary primary

state and Jan interval from ZV , then the strategy

defined by

={,u(n,z)
w(n,z) :

v(n,z)

is also admissable,i. e. wE U.

3.2. Cost functionals and optimality

In order to estimatethe effectivenessof different control

strategieswe have to specify the ｣ ｯ ｳ ｴ ｾ which arise in the course

of the evolution and termination of the process. We assumethat

the whole cost is the sum of a terminal cost componentp(x),

x E: 6, which dependson the statewhere the processis killed,

and an evolutionary component--the expenserate--which increases

at a state and control dependentrate q(x,y) along the trajec-

tories of the process. Our aim is thus to minimize the expected

cost
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T

JX(U) ］ ｅ ｾ ｻ ｐ Ｈ ｘ ｔ Ｉ + bq(xt,u(Xt))dt} . (3 • 1)

Here p and q are assumedto be boundedcontinuous functions of

their arguments. (For problems with unboundedq see §7.1.)

Clearly J (u) dependsalso on the initiaZ state x. Wex
shall call a strategyu* optimaZ, if for every initial state

x E E it minimizes the expectedcost, i. e. if J (u*) = inf J (u)x x
for every x E E. Of course the existenceof a sole universal

strategywhich minimizes J for all initial statesis by nox
ｾ･｡ｮｳ a trivial matter. But in Section 5 we shall see that in

fact there ey.ists such a uniformly optimal strategy.

In many practical problems--especiallyin those arising in

economics-it is adequateto consider a cost structurewith a

discounting factor. The disaount rate a(x) can even depend on

the statesx visited by the process, i.e. we have a more general

cost functional

J (u) = E
U

x x

T

- f a (x ) dsa s
p(xT)e

t
-fa(x )ds

T a s
+ Jq(xt,u(xt))e

a
dt

(3 • 2 )

If x is a constant, we have the usual constant rate dis-

counting.

(3. 3)

Observe that such a discountedproblem can be reduced to

the original undiscountedproblem, we have only to kill our pro-

cess with the (variable) rate a(x). In other words the new

terminal time will be T: =min (i ,a), where a and x t have the

cornmon distribution'

It is easy to see that by killing in this manner from a process

with infinitesimal generatorA we obtain a processwith generator

A - a, and the domains of both operatorscoincide.
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Consequentlythe following two problems are equivalent:

a) To solve the discountedproblem for processeswith
ugeneratorsA .

b) To solve the undiscountedproblem for processes
. h uW1t generatorsA -a.

For simplicity, we shall assumein the sequel that the cost

functional is uniformly bounded, i.e. sup JU T < /Xl. This is al-:-
x",u x

ways the case if p and q are bounded and the expectedlifetimes

of the processesare bounded, i.e. sup EU
T < /Xl. This is al-

. x u x
discount rate a is strictly ｰ ｯ ｳ ｩ ｴ ｩ ｶ ･ ｾ The assumptionis not

seriously restricting since if there exists one strategywith

boundedcost, then clearly the optimal cost must remain below

this bound. Those strategieswhich lead to costs exceeding

the bound cannot be candidatesfor optimality, i.e. they can be

deleted from the set of admissiblestrategies. Problemswith

unboundedcost rate and consequentlywith unboundedcost func-

tional, will be investigatedin §7.l.

4. OPTIMALITY CRITERIA

In this section we state the fundamental result of the paper,

a necessaryand sufficient optimality condition. In order to

include some explanationsand refinementswe treat sufficiency

and necessity separately.

4.1. Sufficient optimali ty condition

THEOREM 2. Supposewe have a function ｾ belonging

to the intersectionof the domains of the infinitesimal

generators AU for all u E U and a strategy u* E U which

satisfy the equation

u* YA ｾＨｸＩ ＫｱＨｸｾｵＪＨｸＩＩ = min A ｾＨｸＩＫ ｱＨｸｾｹＩ

yEY

with boundary ｣ ｯ ｮ ､ ｩ ｾ ｩ ｯ ｮ

ｾ Ｈ ｸ Ｉ = p(x)

= 0 Ｎｾ E EO
1.-J X

x E 6

(4. 1 )

(4. 2)
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Then u* is optimal in U and ｾ is the corresponding
*optimal cost function ｾ Ｈ ｸ Ｉ = J (u ) = m&n J (u).

x u x

Notice that (4.1) can be rewritten in the form

*ａｕｾＨｘＩ + q(x,u*(x)) = 0 (4 • 3 )

and ａ ｙ ｾ Ｈ ｘ Ｉ + q(x,y) > 0 for any y E: Y • (4 .4)

Theorem 2 concernsthe analog of the Hamilton-Jacobi suffi-

cient condition of the calculus of variations for the case of

stochasticPLPs. Being a sufficient condition it is adequateto

decide whether a strategy (found by some other method) is opti-

mal. Taking into account the actual form of the generatorfor

PLPs, we have only to check whether u* and ｾ satisfythe differen-

tial equation (4.3), inequality (4.4) and boundary condition

(4.2).

The proof of Theorem 2 is contained in Vermes (1973) and

is basedon the application of Dynkin's formula. We remark that

the proof does not use the property (a) and (b) of the set of

admissablestrategies ( see §3.l), hence the theorem is valid

for any class of strategies.

4.2. Necessaryoptimality condition

THEOREM 3. Supposethat the domains of the

infinitesimal generators corresponding to all admissible

s-crategies u E: U coincide. If u* is an optimal strategy

and ｾ Ｈ ｸ Ｉ = J (u*) is the correspondingoptimal cost ｦ ｵ ｮ ｣ ｴ ｩ ｯ ｮ ｾ
x

then ｾ is in the common domain of the generators and u*

and ｾ together satisfy (4.1)-{4.2).

Moreover ｾ is continuously differentiable with

respect to the secondary variable and ｾ ｮ ｾ Ｈ ｶ ｾ ｮ Ｉ is uni-

formly Lipschitzian in n on E.

The proof of Theorem 3 is accomplishedalong the follow-

ing lines. First we prove that ｾ E.@(Au
*) and that it

satisfies (4.2), (4.3). From ｾ EQJ(Au
*) it follows
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immediately that Il' E n.@(AU *) and that Il' is uniformly

Lipschitzian and right-differentiable. Next we prove

the validity of (4.4); this critical step is basedon

the following lemma.

Lemma. Let G CE denote on arbitrary open set and let

0= 0G be the first exit time from G. If u(x) :: v(x)

for X E ｇｾ and for any x E E

(4. 5)

ｨ ｯ ｬ ､ ｳ ｾ then J (u) < J (v) for all x E E. If strict in-
x - x

equality holds in (4.5) for some ｸ ｯ ｾ then also JxO(v).

In the third and final step of the proof of Theorem 3 we

use (4.1) to prove the additional regularity property of Il'.

Theorem 3 uses only the condition that the domains of the

generatorscoincide. It follows from Theorem 1 that this con-

dition is automatically satisfied if A is bounded. Notice that

the discrete jump measuresn describing the discrete influence
x

of choice (x E E*) do not by assumptiondependon the control;

hence the same boundary condition(2.6) holds for any strategyu.

If A is singular, i.e. if ａ Ｈ ｖ Ｌ ｾ Ｌ ｕ Ｉ ｾ 00 as ｾ ｾ bV, then the

validity of the asymptotic equality (2.7) is also necessaryfor

f E Qi (Au). Consequently,in order to have'@(Au)=EnIlJ(Av ),
u U

we must additionally demand that for every y E Y the intensities

ａ Ｈ ｖ Ｌ ｾ Ｌ ｹ Ｉ tend to the infinity with the same order, i.e. for any

pairs Yl' Y2 E Y and for any v

as (4.6)

From the theoreticalpoint of view, Theorems 2 and 3 leave

something to be desired. Namely, since in Theorem 3 the existence

of the optimal strategyu* is explicitly assumed,the theorems

cannot be used to prove existenceof the optimal strategy. At

the expenseof a laborous proof, this defect can be remedied

as the following theorem shows.
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THEOREM 4. Suppose the domains of the infinitesimal

generators AU coincide for any u E U. Denote by

llJ(x) = iY!f J (u), then
u E U x

inf [AYIlJ(x) + qY(x)] = 0
yEY

(4. ? )

is valid

tiable in

satisfies

ofor any x E E • Moreover IlJ is continuously differen-

n with uniformly Lipschitzian derivative, and IlJ

(4.2) and (4.4).

The first two steps of the proof of Theorem 3 cannot be

repeated for the presentcontext since the fundamental relation

IlJ E .@(Au*) is now meaningless. The bulk of the work neededto

prove Theorem 4 is included in the proof of the rigorous version

of the invariant imbedding theorem for our problem. As it is

interesting in itself, we formulate this result as an independent

theorem.

THEOREH 5. (Invariant imbedding). Let G CE be an

arbitary open set and let a =a G be the first exit time

from G. Then we have for every xE E

llJ(x) = inf
uE U

(4. 8)

4.3. Computation of the optimal strategy.

Besides their theoretical significance (see also §§5 and 6)

the practical value of Theorems 2 and 3 is that they give a con-

structive method for the ､ ･ ｴ ･ ｾ ｭ ｩ ｮ ｡ ｴ ｩ ｯ ｮ of the optimal strategy

Piecing together the results of Section 2.2, 4.1, and 4.2, we

see that the optional strategy u* and the optimal cost IlJ together

satisfy the difference-differentialequation system

d u*(n z)
d Z

'¥ (n , z) = A (n, z , u * (n , z) ) f ['¥ (n , z ) - '¥ (\) , 1:; ) 11T ' ( dn, d z )n,z

+ q (n,z,u* (n,z))

= in f { A (n , z ,y) f ['¥ (n , z ) - '¥ (\) , L; ) ] 1T Y (dn, dz) + q (u , z ,y) }
Y

n,zy€

(4 .9)
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for z E (an,bn) and each n E,.;y' with boundary conditions.

nIf/(n,b ) = flf/(v,z)iT n(dv,dz)
n,b

(4.10)

and If/(n,z) = p(n,z) if (n,z) E t::. (4.11)

Equation 4.9 is nothing but an ordinary (nonlinear) differential

equation. Notice that though the optimal strategyu* can have

jumps, the right-hand side of (4.9) remains not only continuous

but even Lipschitzian in z for u* and fixed n : consequentlyit

can be solved by any method of discretizationand convergence

is ensured.

The value u*(x) of the optimal strategy is that control y*

which minimizes the right-hand side of (4.9) for the actual state

(n,z). Consequently,simultaneouslywith the solution of the

differential equationwe have to carry out a minimization in y

at every step.

In many important cases,especiallyif the intensity

measuresｑ ｾ = ａＨｘＧｙＩｩｔｾ depend linearly (or affine linearly) on
y, the minimizing control can be expressedexplicitly in terms

of If/. In such cases,we have only to determine the solution If/

of the ordinary nonlinear differential equation, which does not

contain any step by step minimization, and after that we may

elaborateu* from If/.

If no explicit formula is available for u* in terms of If/

then the minimization at every step over the whole action space

can considerablyincreasethe computationaleffort. There

arises the danger that plaguesdiscrete time dynamic programming;

namely, that we have a generalmethod--theoreticallyapplicable

for all complicatedprocessesarising in applications--butthe

necessarycomputationaleffort increasesso rapidly with the

complexity of the system that it restricts the applicability of

the method to the most simple problems only. Further theoretical

work is necessaryto show that this is not the case. In Section

6 we shall show that one need not carry out the minimization at

every step over the whole state space. We shall see that only

a very few distinguishedactions determine the optimal strategy,

and even switching betweenthesedistinguishedactions cannot

be arbitrary.
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5. EXISTENCE AND UNIQUENESS

Recall that according to §3.2 we call a strategyu* optimal

if it minimizes the expectedcost J (u) for any initital statex
x E E. It could occur that for different starting points x

different strategiesare optimal. This would mean that our de-

clared task, to find one universal strategywhich is optimal

for any initial state, is impossible. In this case all results

of Section 4 would remain formally correct, but they would be

practically useless(i.e.involve empty conditions). Even if

there were a universal optimal strategy, it is not sure that

it could be chosen from the relatively simple class Ua of

Markovian feedback strategies. It is possible that it might

also dependon the past of the processand not only on the

current state. The following theorem shows that the problem

formulatedin Section 3 is solvable, and the class Ua of

ｾ Ｑ ｡ ｲ ｫ ｯ ｶ ｩ ｡ ｮ feedback strategiesis broad enough to contain an

optimum.

THEOREM 6. There exists an optimal strategy in

the cI,ass UO.

This result can be deducedfrom Theorem 4 by the measurable

choice theorem.

In the last sectionwe have seen that an optimal cost

function ｾ satisfies the differential system (4.9) with boundary

conditions (4.10)-(4.11). But there arises the question of

whether this is the only solution. Is it possible that we might

find another solution of (4.9)-(4.11) which differs from J x ?

This case would be dangerous--evenfrom the point of view of

numerical methods, since different approximatingsequencesmight

converge to different solutions dependingon the choice of dis-

cretizing points. Notice that becauseof the nonstandardboundary

conditions and the possiblediscontinuitiesof the right hand

side, the classicaluniquenesstheorems from the theory of dif-

ferential equationscannot be used. However, from Theorem 3 we

can deduce the following.

THEORE!1 7. The differentia l equation system (4. 9)

has only one bounded solution with boundary conditions

Ｈ Ｔ Ｎ Ｑ Ｐ Ｉ ｾ (4.11).
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Notice that Theorem 7 statesonly the uniquenessof the

optimal cost function, but does not exclude the possibility

that several alternative strategies might result in the same cost.

Recall that according to §3. we seek the optimum in some

class U of admissiblestrategiessatisfying condition (a) and

(b). One might expect that in different classesof admissible

strategiesthere are different optima, especiallysince a

strategywhich is optimal in a small strategyclass is not

necessarilythe best which can be found in a broad class. But

this is not true. Our uniquenessresult shows that if we find

a strategyoptimal in some class satisfying (a) and (b), then

the same strategy is optimal even in the broadestclass UO•

6. ｾ ｘ ｔ ｒ ｅ ｍ ａ ｌ PROPERTIESOF THE ｏｐｔｉｾｾ STRATEGY

6.1. Bang-bang principle.

As we saw in §4.3, in order to determine the optimal

strategywe must solve a differential equation systemand

simultaneouslyin any statecarry out a minimization over the

whole space. The integration of a differential equation is

a standardnumerical procedure,which even for large systems

can be accomplishedin reasonabletime. But the necessary

minimizations are extremely time-consuming,since generally

the action space consistsof infinitely many points.

One of the fundamental results of the control theory of

linear deterministic systemsis the bang-bangprinciple. It

statesthat any admissiblestrategycan be substitutedby

anotherwhich ·takesvalues only from the extremal points of

the action space and which is equivalent to the original

strategy from the point of view of time optimality. This means,

seeking for the time-optimal strategyone needs to take into

account only the extremal points of the action space. For

example, if Y is the unit square, then one has to minimize

only amongst its four vertices insteadof the infinitely many

points of the square. The result is an essentialsaving of

computationaleffort. Unfortunately, the bang-bangprinciple

is not valid for nonlinear systemsor for discrete time
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deterministicprocessesin general.

In the presentsection we shall see that the analog of the

bang-bangprinciple holds true for PLPs. First we state the

result for PLPs dependingin some senselinearly on the control

and for a time optimality criterion, then we state the best

result for general PLPs and performancecriteria.

Supposethat the intensitiesare of the following form:

A(x,y) = AO(x) + y Al(x) and that the jump measuresｾ ｸ do not

depend on y. Further let the criterion functions be q :: 1 and

p :: 0, i. e. \'le look for the strategywhich controls the process

to reach the target set ｾ in the shortestpossible time. Then

we have the following result.

THEOREM 8. (Linear bang-bangprinciple). The values

of the optimal strategy can always be chosen from the ex-

tremal points of the action set.

The benefits arising from Theorem 8 are obvious. In equation

(4.9) we can write inf E yinsteadof inf EY' and since gener-. y ex y
ally there are only a few extremal points, we can save a large

amount of computationaleffort. Also the realizationof the

control strategywill be much simpler. We need not memorize a

complicatedfunction, only the points where we have to switch

over from one extremal point to another.

Contrary to the deterministic case, this result can be

generalizedto nonlinear systemsand to general performance

functionals as well. For this we have to introduce an auxiliary

notion. The set of all possiblepairs of intensity measures

and cost rates .;r(x) : = { (QY ,q(x,y»: y E y} is called the indicatrixx
of the problem at the point x E E. .;r(x) is a compact subsetof

the cartesianproduct.4'fxR
l , where ｾ ､ Ｂ denotesthe set of all

boundedmeasureswith the weak* topology induced from C(E). It

is easy to see that in the linear case, the indicatrix is iso-

morphic with the action space (since q :: 1)--that is why in that

case this extra notion is superfluous. We can formulate the

general bang-bangprinciple for controlled PLPs in terms of the

indicatrix.
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THEOREM 9. (Nonlinear bang-bangprinciple). The

value u*(x) of the optimal strategy at the state x can

always be ahosen from the extremal points of the in-

dicatrix S(x) at x.

Thus a strategycannot be optimal if its values lie in the

interior of the convex hull of the indicatrix on a subsetEIC E

of nonzero measure.

The proof of Theorem 8 and 9 use a balayagetechniquecom-

bined with a sharpenedversion of the measurablechoice theorem

(see Vermes 1980).

Our results show that in Markovian continuous time stochastic

control problems the optimal strategyis much simpler than a

general nonoptimal strategy. Therefore, we cannot share the

views of those authorswho suggestfinding a nearly optimal solu-

tion in lieu of the true optimum in order to simplify algorithms

for constructionand realization of the strategy. In our view,

an optimal bang-bangstrategy is much simpler than a nearly opti-

mal continuousone--evenif the continuity assumptionis comfort-

able for the theory.

We would like to emphasizethat the bang-bangprinciple is

an essentiallycontinuous-timeresult. It is closely connected

with the notion of intensity and intensity measureswhich cannot

even be defined in discrete time. For the validity of the bang-

bang principle it is essentialthat the controller is in the

posi1 ion to switch at the correct instant (af. Property (b) of

3..1). If this freedom is restricted--e.g.by requiring that

switchings are allowed only at some fixed moments (e.g. points

of discrete time scale}--thenthe optimal strategy looses its

bang-bangproperty.

Translating this property to the languageof the realization

of the strategy, we could say that a continuous time process

model is justified if the technologicalor organizationalstruc-

ture of the processenablesits controller to intervene

operationally in its evolution at any moment when the necessity

arises. For example, if a managercan change the production
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structureonly at the beginning of a year, then the continuous

time processmodel is inadequateeven if production itself runs

continuously. According to the bang-bangprinciple, the

optimal processruns in some sensewith extremaZ veZocity; con-

sequentlyrelatively small errors in the choice of the points

when we change its direction can have disasterousconsequences.

6.2. RandomizedStrategies.

Up to now we have treatedonly pure feedback strategies.

We controlled the processon the basis of its (current) states,

and our aim was to find the best such strategy. One might

expect that in a larger strategyclass one can find a better

optimum.

A pure feedback strategymeans that if we observe that our

system is in state x then we necessarilyapply control u(x). One

could control in such a way that if we are in state x then with

some probability we apply action Yl' with some other probability

Y2' etc. In.other words, to every state x there correspondsa

probability measure ｾ on the action space and we control thex
processby an action chosenrandomly according to the measure

ｾ ｸ ﾷ

These form the class of so called randomizedstrategies.

Of course, this class is much larger than the class of pure

strategiesand the question ariseswhether randomizedstrategies

are more effective. The answer is negative and follows from the

bang-bangprinciple.

THEOREM 10. To every randomized strategy corresponds

a pure one which yieZds a criterion vaZue not worse than

the originaZ one.

This means that randomizedstrategieshave no advantageover

pure feedback strategies;hence it is enough to deal with the

latter simpler class.

6.3. Jump conditions

The optimal strategyand optimal cost function together
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satisfy the fundamentaldifferential equation (4.9). We already

know that it is enough to take into considerationonly the ex-

tremal points of the indicatrix. But there arises the question

whether or not the optimal strategycan jump arbitrarily between

the extremal points or if there is some further regularity in

its evolution.

Supposefirst that the intensity measuresdepend linearly

on the control and that the action space is an n-dimensional

cube. We call two vertices (extreme points) neighbouring if

they lie on a common edge. Then we have the following result.

THEOREM 11. The optimal strategy can always be

chosen so that depending on the secondaryvariable,

with the primary variable held fixed, its value jumps

betweenneighbouring extremal points of the action

space.

This result further simplifies the solution algorithm of

(4.9)-(4.11). Equation (4.9) is a differential equation in the

secondaryvariable with the primary variable held fixed.

Numerically, we must solve it forward or backward along the z

axis. Theorem 11 says that in order to determine the value of

the optimal strategy ｵ Ｊ Ｈ ｮ Ｌ ｺ ｏ Ｋ ｾ ｺ Ｉ we need not minimize over all

extremal points of Y, but only over those which are neighbouring

to u*(n,zO)' Since the discretizing points ｡ ｮ Ｋ ｫ ｾ ｺ are much more

dense along the z axis than the jumps ofu*, in fact no stepwise

minimization is necessary. We solve the differential equation

(4.9) without "inf", with the value of u* from the last step.

Simultaneouslywe also compute the value of the right-hand side

for the neighbouring extremal y values and check whether they

are still larger than the right-hand side for ｵ Ｎ Ｈ ｮ Ｌ ｺ ｏ Ｋ ｾ ｺ Ｉ Ｎ We

have to carry out the minimization only in the case when the

latter condition is not satisfied. Otherwise we go on with the

integration without any change.

Theorem 11 can be generalizedto nonlinear problems as well,

we have only to define what we mean by neighbouringpoints. If

the indicatrix is finite dimensional, then two extremal points

are called neighbouring if they have a common supporting
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hyperplane. That means there exists a hyperplanesuch that

the whole indicatrix lies on one side of it and both extremal

points are on this plane. If the indicatrix does not vary with

z, more precisely if all 5(n, z) are isomorphic for z E (an,bn ) ,

then Theorem 11 remains valid; one has only to write neigh-

bouring points of the indicatrix instead those of the action

space.

In the general case theindicatrix is not finite dimen-

sional, consequentlywe have to use linear functionals instead

of hyperplanes. Moreover, if the indicatrix varies with z,

then it can occur that points which are neighbouring for one

z are not neighbours for another z. To be precise, we can say

in this case that in any state (n,zO) there is a hyperplane

in vlxR
1 such that all limit p6ints of the sequence

(Qu*(n,z), q(n,z,u*(n,z)))
n,z

lie on it as z + zo' and in a neighbourhood

ｴ ｲ ｩ ｾ ･ ｳ lie on one side of the hyperplane.

have the following result.

of Zo all indica-

In other words we

THEOREM 12. For any pair (nJzO) there exists a

continuous linear functional onAf and a constant c

such that for some E: > 0

£ (QY ) + q (n , z , y) > Cn,z

for any yEY and Iz--zol < E:. Moreover if (zk) is an arbitrary

sequencetending to zo' then

Theorems 11 and 12 have important implications regarding

the continuity propertiesof the optimal strategy. If the

optimal strategy is unique, then it necessarilyhas the bang-

bang property and satisfies the jump condition. Supposethat

we have a linear system, then if the action space is a cube

or a polyhedron, the optimal strategy is a pure jump function.

If on the other hand the action spacehas no neighbouring
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extremal points, then the optimal strategyaannot have jumps

and must be continuous. This, for example, is the case if the

indicatrix is a disc. Then all points of the boundary circle

are ･ ｸ ｴ ｲ ･ ｾ ｡ ｬ Ｌ but there are no two points with common tangent.

Consequentlythe value of the optimal strategycan only vary

continuouslyalong the circle. Analogous results can be formu-

lated for nonlinear systems in ｴ ･ ｲ ｾ ｳ of the indicatrix.

The information that the optimal strategy is continuous

also simplifies the computations,since in this case it is

enough to seek for the minimum in a small neighbourhood.

7. EXTENSIONS

7.1. Unbounded expenserates

In §3.2 the expenserate q and the terminal cost p were

assumedto be bounded. There are several real-life applications

in which these functions are finite but not bounded. In this

subsectionwe investigatethe changesin the theory which are

necessaryif we want tq include discountedproblems with finite

but unboundedexpenserate.

For simplicity, we assumea constantdiscount rate and zero

terminal costs. In this case our cost function will be of the

form

(7 • 1 )

The inclusion of an arbitrary stopping ｴ ｩ ｾ ･ T and a bounded

terminal cost ｣ ｯ ｾ ｰ ｯ ｮ ･ ｮ ｴ would make no difference.

The fundamentaldifficulty is casedby the fact that for

unboundedq the equation (af. §4.3)

Af - af + q = 0 (7.2)

has in general no bounded solution although it has several

different solutions in the class of finite but not necessarily

bounded functions. Even for boundedq such extra finite but

unboundedsolutions exist, but J is the unique bounded solutionx



- 27 -

of (7.2). Consequentlyfor unboundedq one must determine a

class of unboundedfunctions in which the cost J is the onlyx
solution of (7.2).

Let A
a

and A
O

denote the generatorsof the discounted

(killed) and of the undiscounted (permanent) processesrespec-

tively. They are defined for all finite functions such that

the respectivelir.1its ｴ Ｈ ｔ ｾ f-f) exist as t.j. O. Then we have the

obvious relation Aaf = AOf-af. We are ready to state the

fundamental result of this subsection.

THEOREM 13.

aJ Equation Aaf + q = 0 has at most one solution

f such that AOf remains bounded.

bJ If II Tt q- q II remains bounded on some finite inter-

val t E [0., tOJ., then there exists a function f

such that AOf is bounded and Aaf + q = o.

The condition in part (b) means that sup[E q(xt)-q(x) I mayx x
not be infinite for arbitrary small t. It is interesting to

note that this condition is equivalent to the seemingly more

stringent assumption

(7.3)

holding for all t where c
O
,c

1
are constants.

By Theorem 13 we can extend the whole control theory of

PLPs developed in §§3-6 to unboundedexpenserates q with the

property (7.3), provided that the discount rate is bounded away

from zero. The only necessarychangesare that in the conditions

of Theorem 2-12 we must use the domains of operators ａ ｾ while in

Equation (4.1) one has to consider AU and AY insteadof AU anda a
AY respectively. Here we give only the reformulation of

Theorem 7 in which the largest number of changesare necessary.

THEOREM 7'. Supposethe domains of the operators

AU coincide and thato
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u u dfor some constants ｣ ｏ ｾ ｣ ｬ ｾ an every t. Then the equation

inf ｛ ａ ｾ Ｇ ﾥ Ｈ ｘ Ｉ - ｃｌＧﾥＨｘＩＫｱＨｸｾｹＩ｝ = 0 xEE\E*
yEY

has exactZy one soZution '¥ E GＮ｀ＨａｾＩＮ This soZution is

7.2. Piecewisemonotone processes

(7. 4)

As we saw in §1.1 the assumptionthat the secondarycom-

ponent increaseswith unit velocity results in no loss of generality

comparedwith the original definitions of Gnedenkoand Kovalenko

(1966) and Kalashnikov (1978), where the velocity may dependon

the primary component.

But there are other problems where the velocity of the

secondarycomponentdependsnot only on the primary component

but on the secondarycomponentas well. A typical example is

the control of a storagesystemwith content dependentrelease

rate, where the secondarycomponent is the dam-contentitself

(cf. de ｍ ｡ ｲ ｡ ｩ ｳ ｾ Ｑ Ｙ Ｗ Ｖ Ｉ Ｎ If the secondaryvelocity is bounded

and has constantsign, then we arrive at piecewisemonotone

processes(PMPs) to which our theory has a straightforward

extension.

Supposewe are given the control problem defined in §§1-3

with only the change that the secondarycomponent increases

with velocity v(n,z,y) >0 dependingcontinuouslyon both state

componentsaswell as on the control variable y.

If v is not zero then Theorem 1 remains valid with the

only change that in the expressionof the generator (2.5) the

first term is v(n,z)df+(n,z)/dz insteadof df+(n,z)/dz. All

further expressionscan be divided by v I:- 0 and the entire theory

remains valid. In other words the control problem for a PMP with

velocity v> 0 is equivalent to the control of a PLP with ex-

pense rate q(x,u(x)/v(x,u(x».
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If v(x,y) = 0 for some xEE, yEY, then the situation is

complicatedby the following two facts:-

1. The domain of the generatorsAU do not coincide for

all uEU
O

' as at points where x(x,u(x)) =0 the functions

f ｅｾＨａ u) need not be differentiable.

2. The velocity function v(x,u(x))doesnot uniquely

determine the path of the secondarycomponentbetween two jumps,

as vU(x) = v(x,u(x)) is in general not then Lipschitzian.

Observe that the coincidenceof the domains was needed

only to ensure that If = inf J (u) as in ｾ Ｈ ａ u) for all u, and that
u

If is absolutelycontinuous. Thus the first difficulty can be

resolved by substituting for d+If/dz a regularizedversion of

the Radon-Nikodymderivative If'RN'

The seconddifficulty is causedby the fact that while

PLPs can be uniquely defined by infinitesmal characteristics,

when zero velocities are allowed, the infinitesmal generator

does not determine a unique PMP. We have to specify which

points (n,z) with vU(n,z) = v(n,z,u(n,z)) are ｩ ｮ ｳ ｴ ｡ ｮ ｴ ｡ ｮ ･ ｯ ｵ ｳ ｾ

i.e. from which the processXU exits continuously, and which

ones are stable in the sensethat the processexits from them

only by jumps. ｾ ｩ ｊ ･ define

and Vr(u):= E\Vs(U)' and supplementthe definition of the process

XU by the requirementthat the points (n,z) EVr(U) are exactly

those where the state of the processremains unchangeduntil the

next jump.

In order to promote an easier formulation of the conditions

and results in the sequel we assumethat there exists a yo E Y

such that v(n,z,yO):: 0 and for all other, Le. yEY\{yO}, we

have that v(n,z,y»O for all (n,z) EE.

THEOREM 14. The statementsof Theorems 2-13 remain

valid with the following changes.
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1. We require only the coincidenceof the domains

ｾ Ｈ ａ ｙ Ｉ for ｹ ｾ ｙ ｏ Ｇ

2. ｾ does not necessarilybelong to the common domain

of the ｧ ･ ｮ ･ ｲ ｡ ｴ ｯ ｲ ｳ ｾ it is generally not continuously

right differentiable.

3. In each formula ､ Ｋ ｾ Ｏ ､ ｺ is to be substitutedby

1 h ,
lim h- f

O
ｾｒｎＨｮＬｺＫｴＩ､ｴ

h1-0
(7.5)

(At th08e points where ､ Ｋ ｾ Ｏ ､ ｺ ･ ｸ ｩ Ｘ ｴ Ｘ ｾ in coincides
ｾ

with ､ Ｋ ｾ Ｏ ､ ｺ Ｎ Ｉ

4. In Theorem 2 the condition that ｾ belongs to the joint

domain is meaningless. Instead we have to require that

ｾ is uniformly Lipschitzian with respect to the

secondaryvariable and that it satisfies such boundary

conditions (2. 6) - (2. 7) as arise from the domains£i)( AY) ｾ

Y ｾ YO'

5. The statementsof Theorems 11-12 do not hold in so far

as jumps to 01' from Yo are concerned.
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