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PPEFACE 

Evolution and growth of natural and manmade processes 
have impressed human beings from the very beginning. What is 
evolution? Is it the passage from an initial to a higher 
stage? What does "higher" mean in a world of many objectives? 
Is "higher" bound to the existence of monotonous indicators 
like entropy, or is it "gambling" within a predetermined com- 
binatoric multifold of possibilities? 

Questions of this kind arise from the phenomena in our 
environment, from the spring-off of new species, but also from 
processes in our manmade technological world. How is the 
transition of basic innovation to technology and use of the 
corresponding products by society, what forecast can be made 
from increasing C02 in the atmosphere on the impact on climate, 
from features of seismologic waves on future events etc. That 
means there is a strong connection between evolution processes 
and the emphasis of systems analysis as a help for strategic 
actions. 

This paper deals with general considerations about possible 
growth mechanisms as a base for creating valid growth models. 
Rut the main goal is to show how the parameters in growth models 
can be estimated using on one hand a fuzzy approach together 
with vector optimization and on the other hand a Bayesian 
approach. It can be seen that both approaches are useful and 
applicable and we get informations from one approach which the 
other one cannot give us. We studied already the growth of 
:racks in materials, processes well described in [ l o ] .  Pre- 
liminary results are contained in [ I  31 . 

Research will be continued to identify the superposition 
of driving forces and of coupled systems in which oscillations 
can arise because of time delays between their driving-force 
pulses. 
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DYNAMIC PROBLEMS OF EVOLUTION 

M. Peschel, W. Mende, N. Ahlbercndt 
M. Voigt, U. Grote 

1. SAUSAGE MODEL AND DRIVING FORCES 

1 .1 Basic Notions of Growth Theory 

We assume that the growth of any system is connected with 

increasing values of one or more corresponding state variables, 

as for example the number of individuals in a population, the 

GNP in an economy, the number of cells in an organ, or the bio- 

mass in a plant. Thus we demand the existence of a monotonous 

indicator of growth. Every growth has on the one hand autono- 

mous features manifesting driving forces from inside of a system; 

on the other hand a growth process reflects environmental fea- 

tures arising from exogenous influences. 

We consider as a first approximation a growing system within 

a uniform environment. The environment supplies the system with 

resources and takes off the "garbage" from the system (heat, 

excreta, outputs in the form of products, etc.). It makes no 

difference if we include the restricted resources within the 

system and thus consider the whole system to be autonomous. 

However, we obtain a more fruitful insight into the interaction 

with the environment if we also consider the environment as a 

growing system and try to consider evolution processes in two 



coup led systems i n  which one o f  them i s  dominant.  More compl i-  

c a t e d  e v o l u t i o n  p rocesses  occur  i f  w e  c o n s i d e r  a network o f  

coup led sys tems.  The g e n e r a l  demands on t h e  behav io r  o f  such 

networks a r e  fo rmu la ted  i n  S e c t i o n  4 .  The most impor tan t  prop- 

er t ies  of  growing systems depend on t h e  i n t e r a c t i o n  of  s t o c h a s t i c  

and d e t e r m i n i s t i c  i n f l u e n c e s  (growth under u n c e r t a i n t y ) .  

W e  assume t h a t  t h e  whole phenomenon of  growth can be  de- 

composed i n t o  a d e t e r m i n i s t i c  t r e n d  (us ing  a r e f e r e n c e  model f o r  

t h e  t r e n d  d e s c r i p t i o n )  and a s t o c h a s t i c  i n f l u e n c e .  The decompo- 

s i t i o n  is t h e  i n v e r s e  t o  t h e  i n t e r a c t i o n  o f  bo th  components; 

t h e r e f o r e  i n  g e n e r a l  w e  need a n  i n t e r a c t i o n  model. I n  t h i s  paper  

w e  assume an a d d i t i v e  s u p e r p o s i t i o n  depending on t h e  unknown 

parameters  of t h e  r e f e r e n c e  model. I n  g e n e r a l  t h e  i n t e r a c t i o n  

shou ld  be d e s c r i b e d  w i t h  t h e  h e l p  o f  a n  agg rega t i on  r u l e  from 

fuzzy  set t heo ry .  How t h i s  can be  done w e  show f o r  t h e  example 

o f  g e n e r a t i n g  d r i v i n g  f o r c e s  f o r  t h e  t r e n d .  (/8/,/9/) 

The d r i v i n g  f o r c e  i s  g e n e r a l l y  unders tood  a s  t h e  complex o f  

a l l  p h y s i c a l  r easons  l e a d i n g  t o  t h e  "observed"  growth r a t e s  o f  

t h e  d e t e r m i n s t i c  t r e n d .  I n  o u r  c a s e  w e  always d e s c r i b e  t h e  t r e n d  

by a n  o r d i n a r y  d i f f e r e n t i a l  equa t i on  of  f i r s t  o r d e r ,  t h e  r i g h t  

s i d e  o f  which i s  cons ide red  a s  a model o f  t h e  p h y s i c a l  d r i v i n g  

f o r c e .  Th is  d i f f e r e n t i a l  equa t i on  shows u s  a q u a l i t a t i v e  be- 

h a v i o r  i n  t h e  phase space  o f  t h e  d i f f e r e n t i a l  equa t i on .  W e  be- 

l i e v e  t h a t  impor tan t  f e a t u r e s  o f  t h e  growth,  e s p e c i a l l y  b i f u r c a -  

t i o n  phenomena, where o u r  t r a j e c t o r y  can s p l i t  up i n t o  some 

d i f f e r e n t  t r a j e c t o r i e s ,  can  be w e l l  unders tood  by t h e  cor respond-  

i n g  q u a l i t a t i v e  behav io r  of  t h e  d i f f e r e n t i a l  equa t i on .  But i n  

g e n e r a l  it might  a l s o  be t h e  c a s e  t h a t  s t o c h a s t i c  i n f l u e n c e s  

e s s e n t i a l l y  i n f l u e n c e  t h e  b i f u r c a t i o n  behav io r ;  t hen  it would be  

necessa ry  t o  c o n s i d e r  t h e  b ranch ing  o f  s t o c h a s t i c  p r o c e s s e s .  

These q u e s t i o n s  a r e  connected w i t h  t h e  problem o f  model ing 

w e l l  t h e  con t inuous  and d i scon t i nuous  phenomena o f  growth pro-  

c e s s e s ,  which a r e  ve ry  impor tan t  f o r  a b e t t e r  unders tand ing .  

Sometimes d i s c o n t i n u i t i e s  a r e  produced by t h e  changing c h a r a c t e r  

o f  t h e  d r i v i n g  f o r c e s .  Th i s  i s  o f t e n  t h e  c a s e  when growth i s  

produced by i n t r o d u c i n g  b a s i c  i nnova t i ons  i n t o  t h e  u s e  o f  s o c i e t y .  



The difference between driving forces is an expression of the 

use of quite different technologies. 

Consideration of experiences with the evolution of real 

systems leads to the hypothetical Sausage Model of Evolution. 

A 
X 

Monotonous 
indicator 
of evolution 

L 

Variation from 
nondeterministic 
influences n 

Deterministic reference 
trend curve x *  

FIGURE: 1: A SCHEMATIC REPFESENTATION OF THE SAUSAGE MODEL OF EVOLUTION 

Sources of the nondeterministic influences: 

- autonomous stochastic variations from internal processes; 

- variations from internal control processes (internal 

feedbacks) to stabilize the motion between two equi- 

librium stages (steady states); 

- from the area of trajectories of local bifurcations; 

- stochastic influences from the environment; 

- constraints from the environment. 

General features of the dynamic evolution process: 

- The motion between two steady states is in general a 

nonequilibrium motion with large exchange of resources 

(matter, energy, etc. ) with the environment. Resources 



constraints are important with a moderate influence 

of stochastic factors from the environment. 

- A more or less reliable decomposition of the motion 

into a deterministic trend 

and a stochastic disturbance n seems to be possible. 

Very often an additive decomposition is assumed 

In general we should use an appropriate model of the interaction * 
between x and n. Dynamic models of evolution thus consist of: 

- a deterministic trend model f(t,p); 

- a model for the stochastic influences n as a stochastic 

process n = n(t,q); 

- a model of interaction between the trend and the sto- 

chastic influence. 

The parameters p of the trend and q of the stochastic process 

must be identified from measurements with the help of an efficient 

fitting procedure. 

The trend between two steady states passes through the 

following three stages: 

( 1 )  Internal growth; organization within the system for 

exploring all environmental resources, which seem to 

be unrestricted. 

(2) Acceleration of the use of all possibilities; the 

growth process manifests itself in increasing growth 

rates. The system streams into the space of possibi- 

lities like a compressed gas into an empty volume. 

(3) Saturation; the constraints from external resources 

are felt more and more. The growth rates are decreasing 

and the system approaches a steady state. In this phase 

the system tries to find new and qualitatively different 

possibilities for a new evolution shift in the future. 



Very o f t e n  t h e  e q u i l i b r i u m  reached i s  u n s t a b l e  i n  t h e  

fo l l ow ing  sense .  The f u t u r e  e v o l u t i o n  can s p l i t  i n t o  a  f i n i t e  

number of  q u i t e  d i f f e r e n t  t r a j e c t o r i e s  ( b i f u r c a t i o n  p o i n t ) .  

From a  d e t e r m i n i s t i c  model f ( t , p ) ,  under f a v o r a b l e  c o n d i t i o n s  

t h e  d i f f e r e n t  p o s s i b i l i t i e s  can be f o r e s e e n ,  b u t  a  mechanism 

f o r  t h e  cho i ce  o f  t h e  f u t u r e  t r a j e c t o r y  i s  unknown. The e x t e r n a l  

s t o c h a s t i c  i n f l u e n c e  now p l a y s  an  impor tan t  r o l e  and i n  f a c t  de- 

te rm ines  what i s  going t o  occur  i n  t h e  n e x t  f u t u r e .  

Thus any growth p rocess  has  a  phase o f  con t inuous  e v o l u t i o n  

fo l lowed by a  d i s c o n t i n u o u s  sw i t ch ing ,  a  phase o f  r e v o l u t i o n .  

I f  w e  want t o  model t h e  sw i t ch ing  p r o c e s s ,  w e  need a  model o f  t h e  

p a r t  o f  t h e  envi ronment  engaged i n  t h e  i n t e r a c t i o n  w i t h  t h e  sys -  

t e m  cons ide red .  

What a r e  t h e  r e a l i s t i c  p o s s i b i l i t i e s  o f  f o r e c a s t i n g ?  Every 

f o r e c a s t i n g  p rocedure  assumes t h a t  t h e  f o l l ow ing  c o n d i t i o n  i s  

f u l f i l l e d :  t h e  i n t e r n a l  law o f  growth must i m p l i c i t l y  be expressed  

i n  t h e  measurements. Any p rocedure  t o  f i n d  t h e  law w i t h  t h e  h e l p  

o f  which t h e  f o r e c a s t  i s  done can o n l y  amp l i f y  t h e  c o n s t r a s t  be- 

tween t h e  law and t h e  non impor tant  secondary  i n f l u e n c e s .  

For  t h i s  c o n t r a s t ,  enough i n fo rma t i on  i n  t h e  form o f  con- 

s e c u t i v e  measurements must be g i ven .  There fo re  w e  can c o n t r a s t  

t h e  t r e n d  f  ( t , p )  a g a i n s t  n o i s e  n  ( t , q )  and v i c e  v e r s a  t o  u s e  t h i s  

i n f o rma t i on  du r i ng  t h e  d u r a t i o n  of  one t r a n s f e r  f o r  f o r e c a s t i n g ,  

bu t  w e  cannot  c o n t r a s t  t h e  law o f  sw i t ch ing  w i t hou t  obse rv i ng  

t h e  environment i n  d e t a i l .  

The problem o f  f i n d i n g  models f o r  d r i v i n g  f o r c e s .  

W e  c o n c e n t r a t e  on f i n d i n g  and " e x p l a i n i n g "  t h e  t r e n d  t r a -  * 
j e c t o r y  x  = f ( t , p )  of  an e v o l u t i o n  p rocess .  W e  assume t h a t  t h e  

t r e n d  i s  gene ra ted  by a n  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  

* 
x  (one-dimensional  o r  m u l t i v a r i a t e )  i s  t h e  growth i n d i c a t o r  

( a  s t a t e  v a r i a b l e ) .  

1 dx* - - 
x* d t  i s  t h e  growth r a t e  and 
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* 
F(x ,y) is the driving force (a production function) for the 

stimulating and inhibiting influences on the growth. 

AND INHIBITING AUTONOMOUS AND EXTERNAL DRIVING FORCES 

* * 
With increasing y+,x+ the state x increases, and with increasing * 
Y - ~ x -  the state x* decreases. 

The problem is how to find a relevant model for the produc- 

tion function of an existing growth process. We are convinced 

that for the solution.of this problem the fuzzy set theory can 

make a valuable contribution. 

1.2 Generation of production functions 

with the help of fuzzy sets 

A production function is a static relationship between an 

output variable u and some input variables u1,u2, ..., uk: 

FIGURE 3: PRODUCTION FUNCTION AS A STATIC INPUT-OUTPUT RELATIONSHIP 



W e  suppose someth ing i s  known o r  r easonab l y  assumed abou t  t h e  

i n d i v i d u a l  i n f l u e n c e  of  i n p u t  u  on t h e  o u t p u t  u .  T h i s  'knowl- 
j 

edge' is modeled by a  s c a l a r i z i n g  f u n c t i o n  

w i t h  t h e  f o l l o w i n g  p r o p e r t i e s :  u  i s  a  r e f e r e n c e  l e v e l  o f  u  
j r j 

cor respond ing  t o  maximal e f f e c t  on u  ( s t i m u l a t i n g  o r  i n h i b i t i n g ) .  

t Stimulation I Inhibition I I  

FIGURE 4: FUZZY DESCRIPTION OF A STIMULATION AND AN INHIBITION 

W e  i n t e r p r e t  t h e  s c a l a r i z i n g  f u n c t i o n  p .  ( u  - u  ) a s  a  member- 
I j jr 

s h i p  f u n c t i o n  o f  u  which i s  cons ide red  t o  b e  a  fuzzy  set .  
j r 

I n  c a s e  I w e  m e e t  t h e  fuzzy  set  u  and i n  case I1 t h e  
jr 

f uzzy  complement u o f  t h e  r e f e r e n c e  l e v e l  u j r .  
j r 

Then p .  ( u  - 
I j 

u  ) is a  measure o f  t h e  deg ree  t o  which t h e  c o n c r e t e  v a l u e  u  
jr - j 

be longs  t o  t h e  co r respond ing  fuzzy  se t  u  o r  u  
jr jr' 

The o u t p u t  

u  i s  produced by t h e  c o o p e r a t i o n  o f  u I , u 2 ,  ... , uk .  

The f uzzy  se t  ure f ,  t h e  f a v o r a b l e  o u t p u t ,  must  t h e n  be  t h e  

c o n j u n c t i o n  o f  a l l  f uzzy  sets u  a s  components 
j r 



In the language of membership functions, the membership function 

p(uref) is then 

The production function is a monotonous increasing function of 

P (uref) : 

In the simple case, g(p) = p t  we obtain the following production 

function model: 

Very often the component functions p depend on parameters p 
j j 

which must be adjusted or which are used with exponents e > 0 
j 

(relative weights of the different influences). Sometimes it 

is convenient to use a threshold function for the generation of 

the individual membership functions p.(u.). Let u be a lower 
I I j a 

level, and u an upper level of u 
ju I 

Both levels are unwanted, 

i.e. should be described by complementary fuzzy sets: 

U~ Uu U 

FIGURE 5: FUZZY THRESHOLDS. 



Some possible realizations of fuzzy conjunctions: 

- n min (pil ,pi2. . I P ~ ~ )  conj (pl ,p2, d k )  - 
(il ,i2, ... ,is) 

- 1 conj (pl ,p2, . r ~ k )  = [ T [  '(pi)] 

where Y (u) is any monotonous function. 

Remark: The form F(ul,u2, ..., uk) must be consistent with the 

measurement procedure and the estimation process for 

the components' membership functions. 

2. DRIVING FORCES OF POWERFUNCTION PRODUCT TYPE 

2.1 Hyperbolic and Parabolic Growth Laws 

Special case of univariate autonomous growth 

We get 

Stimulated srowth 

5 =  x - X R  d5 k 
= KC 

1Ak-1) 
K /  (tg - t) for k > 1 hyperbolic 

for k = 1 exponential 

'41-k) 
for k < 1 parabolic 



Hyperbo l i c  and p a r a b o l i c  growth d i f f e r  remarkab ly  because  hyper-  

b o l i c  growth approaches  i n f i n i t y  i n  a  f i n i t e  t i m e  t . Both modes 
g 

o f  b e h a v i o r  a r e  s e p a r a t e d  by t h e  e x p o n e n t i a l  g rowth  l a w .  

S a t u r a t e d  a rowth  

c = X - X  - dc = - K c  R - 
d t  5 0  - xu 

- X u 0 

K /  (tg + t )  Q f o r  R > 1 h y p e r b o l i c  

- k t  f o r  R = 1 e x p o n e n t i a l  

r ( t g  - t )  7 -  f o r  e < 1 p a r a b o l i c  

Hyperbo l i c  and p a r a b o l i c  s a t u r a t i o n  d i f f e r  remarkab ly  because  

p a r a b o l i c  s a t u r a t i o n  r e a c h e s  t h e  s t e a d y  s t a t e  i n  a f i n i t e  t i m e  

t 
I 

Both modes o f  b e h a v i o r  are s e p a r a t e d  by t h e  e x p o n e n t i a l  

s a t u r a t i o n  law.  

E x p o n e n t i a l  g rowth  combined w i t h  e x p o n e n t i a l  s a t u r a t i o n  - 
t h e  l o a i s t i c  a rowth  l a w  



FIGURE 6 :  THE DRIVING FORCE OF THE L O G I S T I C  GROWTH CURVE 

If the exponents k and R have physical significance, and we are 

convinced they have, then the exponential growth law is unstable 

and separates into two stable modes: the hyperbolic and para- 

bolic modes. 

2.2 Growth Behavior of Chain Structures 

FIGURE 7 :  CHAIN-COUPLED SYSTEMS 



Assumptions 
X 

i s  monotonously i n c r e a s i n g .  

i s  monotonously i n c r e a s i n g .  

where f  ( u )  converges a g a i n s t  f  ( u )  . 

where g . ( u )  converges a g a i n s t  g ( u )  . 
1 

( 5 )  
i For t h e  i n i t i a l  c o n d i t i o n s ,  xo  on t h e  d i f f e r e n t  

l e v e l s  must ho ld  

i 
w e  demand t h a t  xo  converges a g a i n s t  x o .  

Then w e  can conc lude:  

i +  1 i i -1 From x ( t )  < x ( t ) ,  it f o l l ows  t h a t  x i ( t )  G x ( t ) .  
n n 

L e t  u s  s t o p  t h e  c h a i n  on l e v e l  n p u t t i n g  x ( t )  E xo and deno t ing  

t h e  cor respond ing s t a t e  v a r i a b l e s  by x i n ( t )  . Then w e  have 

- 
and t h e r e f o r e  

n n n- 1 x 1" 
X o  t . G x ( t )  G x ~ " ( t )  . 



Let us now stop on the next higher level n +1 and compare 

X 
i n+l (t) with xi (t). Now we have 

From x i+l n+l > xi+' it follows that 

What is occurring on level n? 

i n With a growing stop-level index n, x (t) can only increase. 

This means that on every level i. xi (t) is a nondecreasing 

sequence of functions 

As a result we get the following diagram: 

i n x (t) G x i u+l 
(t) 

A\ A\ 

i-1 n (t) x i-1 n+l 
X (t) . 

For very large n we have 



I f  t he  "convergency" of xi ( t )  a f t e r  index n  fo l lows from t h i s  

cond i t i on ,  then  t h e  l i m i t  fo l lows t h e  equat ion  

Thus consecut ive systems decouple, and expose a  behavior  descr ibed 

by t h e  equat ion  *. Consequently,  a  cha in  of coupled exponent ia l  

systems : 

f o r  n  + a, approaches t h e  behavior  of 

on h igher  l e v e l s  i. Thus hyperbol ic  growth a r i s e s  ou t  of ex- 

ponen t ia l  growth. I f  we combine such a  cha in  wi th  an exponent ia l  

system 

we g e t  a r b i t r a r y  hyperbo l i c  growth. 

3 .  GROWTH I N  THE LONG RUN AND COUPLED GROWTH PROCESSES 

I n  t h e  long run we have t o  expect  t h e  re fe rence  s t r u c t u r e  

of t h e  kind shown i n  t h e  f i g u r e  below tak ing  i n t o  account b i -  

f u r c a t i o n .  



. 
FIGUE 8: SCHEMATIC REPRESENTATION OF BIFURCATION PHENOMENA IN EVOLUTIqN 

PROCESSES 

The d i f f e r e n t  t r a j e c t o r i e s  can be cons idered  a s  "middle cu rves "  

of q u i t e  d i f f e r e n t  c l u s t e r s  of f u t u r e  behav ior .  

A p o s t e r i o r i  w e  observe  one of  t h e s e  p o s s i b l e  t r a j e c t o r i e s  

o r  s e v e r a l  i f  we have a popu la t ion  of a  l a r g e  number of  s i m i l a r  

systems. The nex t  f i g u r e  shows one such t r a j e c t o r y  t o g e t h e r  

w i th  t h e  corresponding curve f o r  t h e  d r i v i n g  f o r c e .  

PIGUE 9: A SEQUENCE OF GROWTH PUSHES TOGETHER WITH THE CORRESPONDING 
SUPERPOSITION OF DRIVING FORCES 



For t h e  de te rm ina t i on  o f  t h e  " b e s t "  r e f e r e n c e  curve  w e  have t o  

s o l v e  t h e  wellknown "peak- reso lu t ion"  problem. 

Obviously t h e  d r i v i n g  f o r c e  F ( x )  i s  an agg rega t i on  o f  t h e  

d r i v i n g  f o r c e s  'Pi(x) o f  t h e  d i f f e r e n t  s h i f t s .  I n  g e n e r a l ,  t h e  

fo l lowing q u e s t i o n s  a r i s e .  

( 1 )  What k ind  o f  d r i v i n g  f o r c e  de te rmines  a  s i n g l e  growth 

per iod?  

W e  a r e  convinced t h a t  i n  many c a s e s  g e n e r a l i z e d  l o g i s t i c  

cu rves  

a r e  of importance.  I n  many c a s e s  of e x i s t i n g  so f twa re ,  espec i -  

a l l y  t h a t  coming from s t a t i s t i c s ,  Gaussian d r i v i n g  f o r c e s  a r e  

assumed: 

2  
K exp [ - ( x - a )  K ]  . 

From prev ious  expe r i ence  i n  fuzzy c l u s t e r i n g ,  t h e  fo l low ing  p u l s e  

form can be recommended 

Dr iv ing f o r c e s  t h a t  a r e  o f t e n  used i n  a g r i c u l t u r e  b u t  a l s o  i n  

economics a r e  

( 2 )  What k ind of agg rega t i on  r u l e  shou ld  be a p p l i e d  t o  com- 

b i n e  t h e  i n d i v i d u a l  d r i v i n g  f o r c e s  'Pi(x) w i t h  t h e  o v e r a l l  

d r i v i n g  f o r c e  F ( x )  ? 

The r e l e v a n t  agg rega t i on  r u l e  shou ld  r e f l e c t  i n  t h e  c o r r e c t  

manner t h e  p h y s i c a l  i n t e r a c t i o n  between consecu t i ve  phases o f  

t h e  e v o l u t i o n  p rocess .  



If we interpret 'Pi(x) as a membership function of the 

"fuzzy set" optimumindividualdriving force, we should use an 

appropriate disjunction rule: 

F(x) = v 'pi (x) . 
i 

very often indicated by + or max: 

F(x) = max vi(x) . 
i 

Very frequently it is assumed that the growth in adjoining phases 

is qualitatively of the same kind. Then we should use for 'Pi(x) 

a standard form specialized only by a set of parameters: 

F(x,p) = max Aiq(x,pi) 

( 3 )  How is a reference model in the long run fitted to the 

set of measurements? 

We follow two different routes which are described in de- 

tail in Section 5. 

(a) Fuzzy approach with vector optimization; 

(b) Bayesian approach. 

Up to now we have considered only univariate growth. Now 

we continue with a more complex system consisting of two coupled 

growing nodes. 



FIGURE 10: INTERACTION OF TWO COUPLED GROWING SYSTEMS 

How must the  autonomous and i n t e r a c t i v e  d r i v i ng  fo rces  be 

combined t o  g e t  t h e  a c t i n g  d r i v i ng  f o r ces  of the nodes? Obvious- 

l y  w e  can apply con junc t ion ,  tak ing  i n t o  account t he  f a c t  t h a t  

t h e  f o r ces  work s imul taneously ,  b u t  w e  can a l s o  apply d i s junc -  

t i o n  i f  w e  t h ink  of a  superpos i t i on  of t h e  corresponding fo rces .  

I t  is  appropr ia te  a t  t h i s  t i m e  t o  s tudy t h e  behavior of t h e  

fo l lowing re fe rence  system: 

Expectat ions of t h e  r e s u l t s  of ou r  research:  

( 1 )  The system should expose a  b i f u r c a t i o n  s t r u c t u r e  of 

poss i b l e  t r a j e c t o r i e s  i n  t h e  phase space.  

( 2 )  Under c e r t a i n  cond i t i ons  f o r  t h e  parameters every s i n g l e  

node should show a  c h a r a c t e r i s t i c  long term run of a  

growing system (sequence of s-formed t r a n s f e r s ) .  



( 3 )  The long t e r m  runs  o f  t h e  two nodes shou ld  show u s  a  

c e r t a i n  de lay  t i m e .  

( 4 )  Under c e r t a i n  c o n d i t i o n s  f o r  t h e  parameters  t h e  evolu-  

t i o n  p rocess  of t h e  whole system shou ld  show o s c i . l l a t i o n s  

(comparable w i t h  t h e  Kondr jatev c y c l e  i n  economics) .  

P o s s i b l e  examples o f  coupled e v o l u t i o n  p rocesses :  

( 1 )  produc t ion  system and s o c i a l  system i n  macroeconomy; 

( 2 )  i n  a n  ecosystem t h e  i n t e r a c t i o n  between a  u s e f u l  popu- 

l a t i o n  and p e s t  system; 

( 3 )  t h e  i n t e r a c t i o n  o f  d i f f e r e n t  p rocesses  i n f l u e n c i n g  a  

heavy d i s e a s e  f o r  example, co ronary  h e a r t  d i s e a s e ;  

( 4 )  i n t e r a c t i o n  between t h e  growth o f  c r a c k s  i n  a  m a t e r i a l  

and t h e  accompaying a c o u s t i c  emiss ion .  

4 .  DEMANDS OF A SOFTWARE INSTRUMENT FOR THE IDENTIFICATION, 

SIMULATION AND ANALYSIS OF COMPLEX SYSTEMS EVOLUTION 

Law f o r  autonomous e v o l u t i o n  o f  nodes. 

Mechanism of  how t h e  environment o f  a  node i s  prepared 

f o r  i n t e r a c t i o n  w i t h  o t h e r  nodes. 

I n t e r a c t i o n  between nodes and t h e  format ion o f  c l u s t e r  

s t r u c t u r e s  ( v i r t u a l l y )  under t h e  a c t i o n  o f  t h e  d i a l e c t i c s  

of a f f i n i t y  and ave rs ion .  

S t a b i l i z i n g  o f  some c l u s t e r s  a s  new p a r t i c l e s  ( e n t i t i e s )  

i f  c e r t a i n  r e a c t i v i t y  c o n d i t i o n s  a r e  f u l f i l l e d .  

D e s t a b i l i z i n g  mechanism c o n t r a - a c t i n g  an i n c r e a s i n g  

complexi ty .  

Occurrence o f  d i f f e r e n t  t ypes  o f  p a r t i c l e s  on a  g i ven  

l e v e l  of  agg rega t i on  because o f  b i f u r c a t i o n  phenomena. 

By i t e r a t i o n  of  t h i s  p rocess ,  t h e  g e n e r a t i o n  o f  aggre-  

ga ted  p a r t i c l e s  of  d i f f e r e n t  l e v e l s .  

The t r a j e c t o r y  o f  t h e  whole system i n  every  of i t s  

agg rega t i on  l e v e l s  can a l s o  be cons ide red  a s  an e v o l u t i o n  

p rocess .  

Study and ba lance  o f  t h e  dynamic equ i l i b r i um on every  

agg rega t i on  l e v e l .  



5. IDENTIFICATION OF THE PARAMETERS IN EVOLUTION MODELS 

We deal first with a special case of this general problem. 

A trend of the form 

is taken as a reference. If the measurements are the growth 

velocities (or the growth rates) @)= at points xi. we use an 

additive reference model 

with noise variables ni. 

If the measurements are sampes of trajectories yi = x(ti), 

we have to integrate the differential equation. The generally 

unknown initial condition should be included in the set of un- 

known parameters p. Then we use the following reference model: 

In general we allow that we have at every point xi or ti some 

information about the distribution of the corresponding noise ni. 

If this is not the case we should combine consecutive measure- 

ments or apply moment methods. 

Thus the information is given in the form shown in the 

following figures. 

FIGURE 11: CHARACTER OF A PRIOR1 INFORMATION FOR GROWTH-RATE RESP. TIME 
TRAJECTORY MEASUREMENTS 



In this paper we assume that the different noise variables ni 

are "independent" of each other. Because this assumption leads 

to some problems we will eliminate it further on. 

5.1 Fuzzy Identification Approach 

(Peschel, Voigt, /1/,/2/,/3/) 

We interpret the a priori information to each sample point 

as an elementary membership function uAi (n.ni) belonging to the 
I 

noise variables ni. V . (n.ni) is a measure of the degree to A 1  I 

which the concrete value is expected to occur. It is a relative 

measure and therefore only the ratios 

are of interest. 

Area 

Fi 

Position 
nr 

F I G U R E  12: FUZZY D E S C R I P T I O N  O F  A N O I S Y  VARIABLE 

* 
The position ni is a substitute for the deterministic value; 

the uncertainty r is a measure of fuzziness: the force Ki and 

the area Pi are both reliability measures often occurring in 

combination with each other. 

We assume a priori knowledge about the reliability of our 

measurements and transform first all elementary membership 

functions in such a way that they reflect this a priori knowledge 



We prefer to use a standard concept for the elementary member- 

ship function with a set of adjustable parameters: 

* 
ai are given and reflect the reliability; ni,qi are given or 

estimated. Taking into account the additive reference then 

Now we consider all ni to be comparable with each other and 

replace them by a common variable ni n;, i.e., we consider 

them as different descriptions of the same fuzzy variable n. 

Gathering all the information contained in these different 

descriptions of the same fuzzy variable n using the disjunction 

rule of fuzzy sets we obtain the membership function of the 

fuzzy model-error estimation: 

This is not the best error model because it still depends on 

the adjustable parameters 

With max. aggregation 1 / @ * ( n , ~ )  

F I G U R E  13 :  AGGREGATION O F  ELEMENTARY MEMBERSHIP FUNCTIONS TO THE MODEL- 

ERROR MODEL 



Now w e  fo rmu la te  some reasonab le  demands on a "good" e r r o r  

model i n  t h e  language o f  o b j e c t i v e s  ( /4 / , /5 / , /6 / , /7 / )  . 
( 1 )  The asymmetry o f  t h e  model e r r o r  r e l a t i v e  t o  n = O 

shou ld  be ve ry  sma l l :  Q 1 .  

( 2 )  The b read th  o f  t h e  model e r r o r ,  t h e  r e s u l t i n g  unce r ta i n -  

t y  of  t h e  model, shou ld  be ve ry  sma l l :  Q2.  

( 3 )  The s t e e p n e s s  of t h e  s l o p e  o f  t h e  model e r r o r  p u l s e  

shou ld  be ve ry  h igh:  Q3. 

( 4 )  The t o p  o f  t h e  model e r r o r  p u l s e  shou ld  be e q u a l l y  f l a t  

a s  w e l l  a s  p o s s i b l e :  Q4 etc. 

Having agreed  on t h e  cor responding c r i t e r i a  w e  have t o  i n i t i a t e  

a seek ing  procedure a f t e r  t h e  set  of  unknown parameters  P t o  

a r r i v e  a t  a set  o f  e f f i c i e n t  s o l u t i o n s  i n  t h e  s e n s e  o f  P a r e t o  

o p t i m a l i t y ;  w e  have t o  s o l v e  a v e c t o r  o p t i m i z a t i o n  t a s k  

Qi(P) + extremum . 

For t h i s  concept  w e  have e l a b o r a t e d  a f i r s t  v e r s i o n  o f  a s o f t -  

ware package /11/,  t h e  f i r s t  modules o f  which have been success-  

f u l l y  checked and a p p l i e d ,  b u t  a t  t h e  moment on l y  f o r  t h e  c a s e  

of o u r  s-form e v o l u t i o n  w i t h  a power-product d r i v i n g  f o r ce :  

5.2.  Bayesian I d e n t i f i c a t i o n  Approach 

5 .2 .1  Genera l  Approach 

For t h e  r e f e r e n c e  p o i n t s  xi (1 <i <N) w e  assume t h e  measure- 

ments q i j  
( 1  < j  m ) These a r e  used t o  f i t  a d e t e r m i n i s t i c  t r e n d  

T j T f ( x i , B  ) = f .  ( B  ) w i t h  unknown parameter  v e c t o r  B = (b l  ,b2, . .  .,b ) . 
1 Q - 

An a d d i t i v e  r e f e r e n c e  between measurements and e r r o r  samples 

Zi j  i s  assumed: 

W e  suppose t h a t  t h e  e r r o r s  Eij a r e  s t a t i s t i c a l l y  independent ,  and 





that they have a common but unknown expectation nE and unknown 
- 1 

non-stationary variances Ri . 
To simplify the estimation problem for the Rijr we assume 

that they are constant in intervals: 

5.2.2 Description of the Method 

In the Bayesian approach, the a posteriori probability 

density function of the unknown parameters is determined on the 

basis of an assumed a priori probability density of these param- 

eters and the common density of all measurements. The measure- 

ment errors Bij are supposed to be independent Gaussian vari- 

ables with a density 

n and Rn, with n = 1,2, ..., M are to be estimated. E 
T 

The unknown parameters B , nEt R1,  ... ,% are assumed to be 

independent stochastic variables, i.e. 

with the following concepts fcr the a priori densities 



I O 
else 

Making u s e  o f  t h e  Bayesian r u l e ,  t h e  a  p o s t e r i o r i  d e n s i t y  o f  a l l  

unknown parameters  i s  g i ven  by 

w i t h  Eij = y i j  T - fi ( B  ) a s  t h e  r e f e r e n c e  s i g n a l s .  

F i r s t  w e  c o n c e n t r a t e  on e s t i m a t i n g  t h e  t r e n d  parameters  B 
T 

and t h e  common b i a s  n  E 

Th is  l e a d s  t o  

w i t h  

x2 = < ( Y i j  - f i  - n  



where w e  have i n t r oduced  t h e  n o t a t i o n s  

W e  can  i n t e r p r e t  t h e  f u n c t i o n s  f n  a s  group membership f u n c t i o n s  

by comparison w i t h  t h e  fuzzy  set  approach.  They co r respond  t o  

t h e  f r e q u e n t l y  used concep t  

-En/2 
I f  w e  p u t  p n  = E n  and bn - 

- Yn , bo th  t y p e s  of  membership 

f u n c t i o n s  have t h e  same p r o p e r t i e s :  same amp l i tude  i n  x  = 0 ,  

n e a r l y  t h e  same h a l f  l i f e t i m e  and t h e  same s l o p e  f o r  x  + a. 

From t h e  above d e r i v e d  e x p r e s s i o n  f o r  

w e  g e t  t h e  c o s t  f u n c t i o n  

Comparison o f  t h e  po l yop t im i za t i on  approach w i t h  t h e  c o s t  

f u n c t i o n  c o n c e ~ t  

W e  approx imate  

< (yi - ii - nE 1 2>n] <(yi - f i  - nE) 2 >n 
En [1 + % 

Yn 'n 

which co r responds  t o  



Thus we obtain the following cost function 
9 

with an = tn/yn. 

Changing the notation a little, the cost function can be written 

in the following way: 

Q1 and Q 2  are the measures of asymmetry and breadth respectively, 

of the error model in the polyoptimization concept. 

with 
1 + S K  

P = L 

2 + S K E  

The minimum with respect to n gives the estimation 
E  



In comparison with the polyoptimization method, the Bayesian 

approach gives us by variation of the a priori parameters that 
1 

part of the efficient set defined by y E [2,11. 

However, the simplification applied holds only in the case 

where 

2 
Xn - <(Ti - fi - nE) 2>n 
- - for all n = 1,2, ...,I4 
Yn Y n 

is sufficiently small. This is the case only when the fluctua- 

tions of all yij around the trend are small. For the given 
T 2 values of B , nE and Xn, the cost function accepts its minimum 

by variation of the coefficients an in the point 

For 

which is very often the case, 

- 
a R n .  n 

This means that the complete Bayesian objective contains a ten- 

dency to a uniform weighting which in the polyoptimization 

approach can only be realized by introducing an additional ob- 

jective. 

5.2.3 The Case of Partial Linear Trends --Superposition of 

Driving Forces 

Supposing 



Having already estimated sn (bTf nE) from the partial interval 

with 

we can write 

For the complete Bayesian objective we now get 

with 

We must determine the minimum of the cost function Q after b T 

with an appropriate seeking procedure leading to an estimate 6. 
The other parameters can be determined analytically from 



It should be mentioned that this result was obtained after 

the following simplification. We substituted in the cost func- 
2 tion Ln ( 1  + x  ) by x2 and obtained the expression 

Assuming equally distributed aT a priori and optimizing after 
T a and nE we get 

with the following objectives: 



The weighting coefficients will be determined at the point * 
n = n  
E E 

* T in * a; (bT) * * - an(b 1 = * T ?n - s = Lan . 
yn(b tKE) S* 

5.3 Checking the Two Approaches 

5.3 .1  Checking the Fitting Procedure (Fuzzy) 

We generated "measurements" for an ideal system 

with the ideal parameter values 

and determined a set of efficient solutions by vector optimization. 

Two of these are represented on Figure 1 5  

l u l  + min (bias) I( = 5 ,25  x = 21.3  R = 1.07  xR = 1.22 xR= u 

6 + min (variance) K = 1 .09  xu = 19 .9  R = 0.98  = 1 - 0 3  xQ= 

Figure 16  analyzes the error between the measurements and the 

adapted trend curve. It shows that we can not be sure to get a 

uniformly distributed error signal for all efficient solutions. 

We see that the case u + min is especially bad in comparison to 

a + min. This effect is clearly shown in Figure 17,  + min and 

Figure 18 a + min, where we have drawn the accumulated mean error 

and the mean quadratic error 



- rnin 

-.-.- o min 

FIGURE 15: THE CORRECT CURVE TOGETHER WITH TWO APPROXIMATELY EFFICIENT 

SOLUTIONS 



FIGURE 16: - THE ERROR DISTRIBUTION ALONG TIME-AXIS FOR TWO EFFICIENT SOLUTIONS 



F I G U R E  1 7 :  ACCUMULATED ERROR S I G N A L S  F O R  THE SOLUTION p + min 

F I G U R E  18: ACCUMULATED ERROR S I G N A L S  F O R  THE SOLUTION U + min 



FIGURE 19: THE RELATIONSHIP BETWEEN THE TWO ACCUMULATED ERRORS FOR p + m i n  

FIGURE 20: THE RELATIONSHIP BETWEEN THE TWO ACCUMULATED ERRORS FOR cJ+rnin 



FIGURE 21: FITTING BY BAYESIAN APPROACH 

FIGURE 22: THE PARAMETER SENSITIVITY AS FUNCTION OF THE LOWER THRESHOLD 



The case a + min is very smooth compared with p + min. Figure 19, 

p + min, and Figure 20, a + min, prove the same effect by exposing 

the relationships 

We can draw the conclusion that in the polyoptimization approach 

it is necessary to introduce an additional objective which 

measures the uniformity of the model error distribution. 

5.3.2 Checking the Fitting Procedure (Bayesian) 

We generated "measurements" for an ideal system 

The "linear" coefficients IInK,k,II were determined by linear re- 

gression on the basis of assumed values xIIfxU for the 'nonlinear" 

coefficients. xII,xU were iteratively determined using a one- 

dimensional extremum seeking procedure for each. Thus in this 

case we were only concerned with a two-dimensional seeking problem. 

We generated "measurements" for a system with the parameter 

set 

and obtained the following result: 

So by eye the identified reference curve cannot be distinguished 

from the assumed correct curve. (Figure 21). Figure 22 shows how 

the Bayesian optimum parameter values vary for every assumed 

value of xi. One critical point of this identification problem 

follows from it: the parameters K and II are relatively sensitive, 

but the parameters k and xu can be considered to be robust. This 

is reasonable because a variation of xII can be compensated by a 



corresponding change.of K in a wide range, and II takes informa- 

tion only from measurements at the end of the motion. 

6. SOME CONCLUDING REMARKS 

The nonlinear model 

with a single growth push can be reiiably identified not only by 

a fuzzy approach and vector optimization, but also by the Bayesian 

approach. The following problem arises: if we already have 

measurements at the points where the reference driving force is 

still zero, we have to set the reference to zero. In such a case 

the step of taking the logarithm of the driving force is forbidden 

and we have to pass to a higher dimensional search; this is also 

true in the Bayesian approach. 

In our example we had a two-dimensional seeking space in the 

Bayesian approach, but a five-dimensional seeking space in the 

fuzzy approach. 

The parameter identification process is a socalled inverse 

problem. We had already observed irregularities in the fuzzy 

case in the identification of K, x and 2 .  In the future we must u 
introduce additional regularization measures; in the Bayesian 

case this was not so, since the linear regression for K, k, 2 

already has a regularization impact. 

Depending on the agreed set of objectives in the polyoptimi- 

zation approach me can meet valleys for some of the criteria, for 

example, for Q2 = a in the (p,a) - approach and we have to apply 

ravine steps. 
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