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PREFACE

Water resource systems have been an important part of
resources and environment related research at IIASA since its
inception. As demands for water increase relative to supply,
the intensity and efficiency of water resources management must
be developed further. This in turn requires an increase in the
degree of detail and sophistication of the analysis, including
economic, social and environmental evaluation of water resources
development alternatives aided by application of mathematical
modelling techniques, to generate inputs for planning, design,
and operational decisions.

During the year of 1978 it was decided that parallel to the
continuation of demand studies, an attempt would be made to in-
tegrate the results of our studies on water demands with water
supply considerations. This new task was named "Regional Water
Management" (Task 1, Resources and Environment Area).

Although this paper does not refer explicitly to water
resources, it is concerned with the problems of primary impor-
tance to water resources planning. In several countries very
significant capital investments are being made and contemplated
for the future for water supply projects of increasing size.

The purpose of these projects is to satisfy future water demands
which often are estimated (predicted) on the basis of statis-
tically derived demand relationships.

The paper examine some of the major problems and difficul-
ties involved in the use of statistically derived relationships
for long-term inference into the future.

Janusz Kindler
Task Leader
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BASIC PROBLEMS OF LONG-TERM
INFERENCE INTO THE FUTURE

Zbigniew Pawlowski

1. THE DEFINITION OF LONG-TERM
INFERENCE INTO THE FUTURE

We shall consider the problem of long-term inference into

the future. Let
Y = f(x1,x2,...,xk,g) (1

be the model which is to be used for this purpose. In (1) Y
denotes the endogenous variable whose value at the future time

T is to be foreseen while the Xi's are the explanatory variables
and £ is the random component of the model. Let t1 denote the
present time period and let TO be the time interval from which
statistical data were used for the estimation of model (1).

It must be observed that the problem of long-term inference
into the future occurs not only when the difference T - t, is
large but such may be also the situation when T - t1 is relative-
ly small, provided T is very distant from T,- In the latter case

we are confronted by a special case of long~term inference into

the future due to the fact that the model to be used is outdated.
-1~



Long-term inference into the future creates special prob-
lems because very often one can doubt if in fact it will
fulfill the basic preconditions for such inference. For the
saké of clarity of exposition let us remind the reader these
five preconditions (see Pawlowski (1973a)).

1) If prediction or forecast1) for Y is sought then a model
must be had, such that Y plays the role of the endogenous
variable of that model.

2) The model must be wvalid not only for To but for the
whole time interval from the beginning ofvTO up to the
end of T.

3) The probability distribution of £ must be the same in
T, and in time T.

4) The values of the explanatory variables X.l,Xz,...,X,k
at time T must be known at time ty -

5) The model used for inference into the future can be
extrapolated outside the sample-observed range of

variation of its explanatory variables.

Obviously, when the distance between T and To is large,

it is quite likely that a number of these preconditionsz) will not
be met, and this is especially true of preconditions (2), (3)
and (4). As it will be shown in the subsequent sections of

this paper, long-term inference into the future is still

1)The distinction between a prediction and a forecast is connected
with the type of model used for inference into the future and
will be explained in section 3.

2)Let us note that these preconditions can be looked upon as
the necessary conditions for making any inference into the
future. While they do not guarantee a good result, one can
see that the inference will be void of logical and probabil-
istic grounds if at least one of these preconditions is not
fulfilled.



possible if the model gets obsolete in a slow way, i.e. when
the changes which occur in the true relation between Y and

X1,X2,...,X and in the distribution of £ are rather regular

k
and smooth. Also the problem of precondition (4) reguiring an
exact knowledge of the values of explanatory variables at time
T can be circumvented. For this reason it is sometimes said

that the long-term inference into the future from a model can

be made under relaxed basic preconditions.

2. SOME MAJOR PROBLEMS AND DIFFICULTIES
There is a number of pitfalls a statistician is confronted
with when using a model of type (1) for long-term inference
into the future. Restricting our attention to the most impor-
tant ones, one must take into account the following possibilities:
a) The functional form of the model, i.e. the type of
function £, may change in time.
b) While the type of function represented by f remains the
same from To up to time T, there are changes in the
values of the parameters which enter function f£f.

c) The values of the explanatory variables X1,X .o X

2'°
{or of some of them) are not known at time t1 when
3)

k

inference is made.
d) The probability distribution of the random component ¢

of the model may change in time, changing thus the

degree of accuracy with which the model describes the

behavior of Y.

3)Let us observe that this precondition is automatically

satisfied when (1) reoresents a trend model since the only
explanatory variable is then time variable whose value at
time T is obviously known.



e) New factors may arise and influence Y while some of

the explanatory variables appearing in the model may
cease to be relevant.

In any practical circumstances the statistician may be
confronted with just one of the dangers elicited here or he
may be faced with a combination of a number of them. Unfor-
tunately, one cannot tell in advance which of the situations
is most likely to occur nor it would be correct to claim that
there is any general relation between the size of probability of
such a danger and the distance between To and T. There are
variables whose behavior in time is very regular and there are
variables so erratic that it is most difficult to foresee their

values even in the case of short-run inference.

3. TERMINOLOGY

Before we start to discuss the five cases listed in the
previous section, we shall introduce a number of terminological
definitions which will facilitate our exposition.

By prediction or forecast will be denoted hencefofth the
numerical result of inference into the future, the term "predic-
tion" referring to the case when the model (1) is a causal one
and the term "forecast" referring to all other types of

models.u)

Accordingly, the variable to which refers the pro-
cess of inference into the future will be called the predicted

(or the forecast) variable.

4 . : . .
)These may be, for instance, trend- and periodic-movement

models, stochastic process models, adaptive models, etc.



Future time period T for which prediction or forecast is
sought will be referred to as the predicted time period.

The distance between the predicted time period and the
present one, i.e. the difference T - t., 1s known as the predic-

1

tion (or forecast) lead while the distance between T and TO will

pbe termed the pnredictive delay of the model.s)

4. VARIABILITY OF STRUCTURAL PARAMETERS

First, we shall discuss the problem of variability of
structural parameters of the model. Three typical situations
must be considered, namely: a) structural parameters exhibit
continuous and rather regular shifts in time, b) time-changes
of parameters are so erratic that they can be considered random,
c) structural parameters change in time, in relation to changes

of a third (observable) variable.

4.1. Regular Shifts of Parameters in Time
For the sake of easier argument let us assume model (1) to

be a linear one, so that there is

3
Y =) B.X. + & . (2)

The simplest way to cope with this type of parameter shifts is
to assume Bi's to be some explicit function of time. Most often

linear changes are assumed

Bi = Bio * Bjit (3)

5)To shorten the argument we shall use henceforth only the term

prediction unless the model explicitly has the form which
permits using it for forecasting only.



where t denotes time variable. Substituting (3) into (2) leads

to a new model

(4)
or

k

k
Y= ) 8. X. +
1=

L Pio%i PigtXy + & . (3)

1

As is easily seen, this is again a linear model in which,
besides the original explanatory variables Xi's, appear new
ones, namely txi's which can be interpreted as interaction of
time and Xi‘ Once the model (5) is estimated, the estimates
bi1'S of Bi1's provide information about the direction and mag-
nitude of structural parameter changes.

For prediction purpose the structural parameters must be

adjusted for time T and hence, prediction value is computed

from the model

K k
Y= ) BioXip L 854TXyp v £ (6)
i=1 i=1
where XiT denotes the value of Xi assumed for period T. If the

6)

principle of unbiased prediction is used then prediction is
equal to the right-hand side of (6) in which £ has been put
equal to zero.

Sometimes one does not have enough a priori grounds to

assume linear (or any other specific) time variation of para-

meters. If the length of time series used for estimation of

6 L . L
)The principle of unbiased prediction consists in setting

prediction equal to the expected value of the predicted
variable in time T.



the model is large enough one can infer about the character of
such changes by analyzing sample data.

Let n be the number of sampleobservations and let m be a
positive integer much smaller than n. The existing time series
data are then used to generate n-m+1 subsamples. The first sub-
sample includes the data referring to m periods of time - from
the first to the m-th sample period, the second subsample includes
the data from the second tili‘the (m+1)th sample period, etc.,
and the lést subsample is based on the data from the (n-m+1)th
period up to the last sample period.

Each subsample is used to estimate the model (2). Thus,
for every parameter Bi there are n-m+1 estimates ordered in

time. Plotting these estimates against time can usually give

an idea as to how the various Bi's change in time - if they
change at all.7)
4.2. Random Variation of Structural Parameters

Such variation can best be detected by using the approach
of consecutive subsamples, described above. If the sequence of
parameter estimates 1is erratic and the variance of observed
estimates is highs) then one can conclude that the corresponding
structural parameter changes its value from period to period in

a random way.

7)

It is quite conceivable that while some structural parameters
vary in time other remain constant. i

8)The assumption of high variance is essential. In the case of
small differences of consecutive estimates one should rather
conclude that these estimates vary in a random way while the
true parameter value remains constant in time.
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prediction can then be made using one of the following
two approaches: 1) averaging prediction with respect to random
variation of parameters, 2) using the optimistic and pessimistic

The two approaches will be briefly outlined in

)

section 6 of this paper.

predictions.

'u:3. Variation Induced by a Third Variable

There are cases when a structural parameter is a function
(deterministic or stochastic) of a third variable. In practice,
such variable can be usually identified by theoretical argument
using available subject-matter knowledge or empirical evidence
referring.to the area to which belongs the predicted variable.
Once such third variable has been identified -~ let us denote it
by Z - the p;oblem reduces to a simple one.

One may either use the approach similar to that described

in (a) using, instead of equation (3) a similar model, namely

which eventually leads to the rodel with interactions of Xi's

with 2

k

1Bioxi + iLs“xiz + & . (8)

<
I
[
[ty

Al ternatively - and this is especially useful in non-linear
models - one can assume a structural parameter to be propor-

tional to variable Z. As an example, we present a simple

9)

The method of puild§ng0ptimistic and pessimistic predictions
has been described in a detailed way in Pawlowski (1978a).



modification of Cobb-Douglas production function (see Pawlowski,

1970) where there are two auxiliary variables Z1 and 22:

Q=28,L° "K , (9)

where Q denotes output, L is labor input, K stands for capital,
ZTfor technical equipment of labor and Zzis a variable measuring
the level of managerial ability. As is seen, contrary to the
classical Cobb=-Douglas production function, the exponents of L
and K are not constant but vary according to changes of Z1and~22.

As in the case of time-variation of parameters, when making
prediction, one must set the values of third-variable-dependent
parameters at the level corresponding to the value assumed for
Z variable in time T.

5. UNCERTAINTY ABOUT THE FUNCTIONAL
FORM OF THE MODEL

While there are usually few reasons why the functional

form of the model (i.e. the class of f function) should change
in time, one is very often confronted with the serious problem
of uncertainty if the estimated functional form is really the
correct one. The problem is ever present in any econometric
analysis but it is especially important when a long-term infer-
ence into the future is sought. With large prediction (or fore-
casting) lead even small estimation errors of function f within
the observed sample variation of explanatory variables may become
very substantial when using the model well out of the observed

region of variation of explanatory variables.1o)

10) . .
And this precisely happens quite often when long-term infer-

ence is'needed. As most of the explanatory variables exhibit
monotonic trends, their values corresponding to periods in

a distant future will obviously coincide with values observed
in the sarmnlieae.
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Since the situation is especially typical when a trend model
is used the following arguments will assume the model to have the

form
Y = £(t,8) . (10)

Generalization of the results to other classes of models is
straightforward.

Two approaches at least can be recommended to cope with
the problem. The first of them consists in constructing the
region of functional uncertainty of inferencé. Let us suppose
that using sample data it is possible to find a number of trend
functions which fit these data with roughly the same degree of
accuracy. Let these trend functions be f1(t),f2(t),...,fs(t).

The next step is to seek among these trend functions such
a one which gives the highest forecast of Y at time T and
another trend function which, for the same predicted time period,
gives the lowest forecast. Since the way the fi(t) functions

are allotted their numbers 1is arbitrary, Wwe can assume the

function giving the highest forecast to be f1(t) and that giving
* %

the lowest one to be fs(t). Let us now put f1(T) = Yo and
* * * %
fs(T) = Yqp - The interval [yT, Yop ] is the region of functional

1)

uncertainty of inference and provides the rance of values of
the predicted variable which one must take into account because
of doubts as to the right form of the trend function. Obviously,

the situation is the better as the interval is narrower.

11)The term "region of uncertainty" is due to the fact that,

generally speaking, one may consider a number of predicted
time periods T,,T,,...,T_ and one is lead to consider then
a region comprised betweé&n the graphs of functions giving

for T1,T2,...,Tp the highest and the lowest values of forecasts.
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12)

Let §T denote the average forecast “’ computed by using

the functions fi(t)' The ratio

can be regarded as a measure of accuracy of information.
The second approach applies again to trend functions
f

() ,£,(t),...,£_(t). For each one of them, the corresponding

1 S

2

difference or differential equation is obtained. Once this is
done, such equation is subject to theoretical and empirical
analysis. The purpose of the first one is to find if the
equation is consistent with the existing theoretical knowledge
about the predicted variable. This theoretical analysis is
supplemented by an empirical one, the aim of which is to provide
information if the embirical data are consistent with the dy-
namic characteristics resulting from the correspondinag difference
(or differential) egquation.

Two short examples will supplement the theoretical argument.
First,let us suppose the trend function to be exponential. A
well-known property of exponential function is that for At =
constant, the corresponding relative changes of f(t) are also
constant. Hence, the empirical analysis should consist in the
application of an appropriate statistical test for the hypothesis
that the observed relative changes of the endocenous variable of

the model differ among each other only in a random way.

12)On the other hand Y, can be thought of as synthetic forecast

based on the various considered trend functions fi(t).
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The second example refers to power function Y = atB. As

can easily be verified for this class of function, there is

) =B_ . (12)

Hence, to check if the trend is represented by this type of
function one may test if the relative changes of Y are inversely
proportional to the value of time variable.

The approach consisting in the analysis of dynamic proper-
ties of various functions, derived from their difference or dif-
ferential equation, resu;ts in an a priori elimination of a num-
ber of f;(t) functions. This usually leads to narrower region
of functional uncertainty of inference.

6. UNCERTAINTY ABOUT THE VALUES OF

EXPLANATORY VARIABLES OF THE MODEL

Here, a number of different approaches are possible, their
character varying according to the amount of information avail-
able about the predicted time period and to the desired level
of sophistication of the anélysis.

The simplest procedure which can be used when the exact
values of the explanatory variables are not known consists in
computing a set of predictions, each of them corresponding to
a different assumption about XiT's. Although very simple, this
procedure is not to be highly recommended since, in fact, it
does not provide a straightforward answer to the question:
what will be the value of the predicted variable at time T?
Instead, this approach provides a number of answers leaving

open the question of the determining conditions for YT.
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Another simple approach, used often in econometrics, is to

13)

rely on the observed trends of explanatory variables. Let
g1(t),g2(t),...,gk(t) be the observed trends of the variables
Xy entering model (1). By extrapolating these trends for

t = T, one gets the approximate values of Xi Obviously,

T's.
the efficiency of this method depends on the fit of trend func-
tions gi(t) with real data and on the validity of such trends
also for periods posterior to sample interval To’ and this in turn
depends on the predictive delay of the model.

In countries with planned economies one uses sometimes

plan targets as XiT values. A better approximation, however, is

. (pe) (p2)
provided by products ciXiT ' i

where X denotes plan target
for period T and cy is a positive coefficient expressing the
expected decree of fulfillment of such target.

If the explanatory variables (or at least some of them)

14)

can be considered as random and their probability distribu-
tions in time T is known, it is possible to build the so-called
predictions averaged with respect to the distribution of ex-
planatory variables. For the sake of simplicity, let us assume

the model to be linear (and hence of form (2)) and let GT(x)

be the probability distribution function of the explanatory

13)The relatively common use of this approach in econometrics

stems from the fact that economic variables very often
exhibit well pronounced trends.

1u)In particular, only some of the explanatory variables may

be random. Let us note also that, as a rule, a lagged endo-
genous variable appearing as explanatory must be treated as

a random one since in time t-L it is influenced by gt_L - by
definition a random variable.
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variables in time T. Prediction averaged with respect to this
distribution is defined as (see Pawlowski (1968))

k
Yrp,x ~ fo ;[(1_2_1 1%3) 0 d6p (2 (13)

where Ax denotes the region of possible variation of the ex-
planatory variables of the model. After a number of easy
transformations (13) can be expressed in the following simple

form

y E(.»(

1
“FAW

Tp, X i iy (14)

This means that getting an unbiased prediction in the
presence of random explanatory variables consists in substi-
tuting for these variables their expected values at time T and
equating the random component to zero. It can be shown also
(see Pawlowski (1973b)) that the variance of prediction (14)

is equal to

D2(_ X 2 2 ‘ k
Yop,x)= ] 8,;0%(x,0) + 2] ] B,8.Cov(X X)) +

i=1 i=1 j>1 J ]
k

+ ZD(b)[E(x )]2+2§ ZCOV(bb)E(X ) -
i=1 i=1 9>1

2
E(XjT) + OT (15)
In this formula D2(XiT) stands for the variance of X, LT’ D2(bi)

is the variance of the estimate of Bi while the symbol Cov(-)

denotes covariance. Finally 02

T represents the variance of the

random component & in time T.
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By similar argument as that leading to prediction (13) one
can also build predictions in the case when XiT's are known while

the structural parameters are random.15)

If H(B) is the prob-
ability distribution function of structural parameters then
prediction averaged with respect to variation of parameters is

defined as

k
YIp,g = [...{(izfixﬂ). dH (B) , (16)
AB

which finally leads to the formula

yTp,B = XiT . E(Bi) . (17)

| 1 7

i=1

The variance of prediction in this case is provided by the
obvious modification of (15). One might consider also predic-
tions averaged both with respect to random variation of struc-

tural parameters and of explanatory variables

it ( }é ~
yTp = -.f(’i B.X.)dG,(x)+ dH(B) . (18)

The search for the variance of prediction leads now, however, to
a very complicated formula.

Finally, two other approaches can be mentioned. If the
values of the explanatory variables in time T are unknown when
prediction is made, one can also make use of the concept of

Optimistic and pessimistic prediction or that of alternative

15 . . . .
)The situation of random variation of parameters has already

been introduced in subsection 4b of this paper.
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predictions. These two methods have been described in detail
by Pawlowski (1978b) so there seems no point to repeat the
respective algorithms in full details.

It must be pointed, however, that the rationale of optimistic
and pessimistic predictions can also be used in the case of ran-
dom structural parameters. To this generalization, we shall
devote now some space.

Since the explanatory variables assume positive values
there is no need - as in the classical case of pessimistic and
optimistic predictions - to subdivide the set of explanatory
variables into two subsets. In order to build an optimistic
prediction such values are substituted for structural parameters
which are favorable from the viewpoint of formation of the
predicted variable, the probability of getting still "better"”
values for each of these parameters being equal to a predeter-
mined number €. Similarly, for building a pessimistic
prediction such values are4substituted for structural parameters
that the probability of getting still worse value for each
parameter is equal to €.

For the sake of example let us assume the model

Y = B,X+ B, +E (19)

in which 81 and 82 are assumed to be random wvariables with
rectangular probability density functions over the intervals
(0.4, 0.8) and (1.0, 2.0), respectively. Let us assume further
that € = 0.1 and that the value of X for time T is assumed to
be equal to 5.0 and that utility is an increasing function of y.

Since under the assumed distributions there is

P{B1' > 0.76} = 0.1 and P{62 > 1.9} = 0.1 »
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hence, the optimistic prediction is
Yopr = 0:76 x 5 + 1.9 = 5.7

On the other hand, as one finds that

P{B1 < 0.44} = 0.1 and P{B2 <1.1}

il
o
—_

~

so the pessimistic prediction is

ypeSS = 0.44 x 5+ 1.1 = 3.3

Thus, the interval of uncertainty of prediction is (3.3, 5.7).
7. THE EFFECT OF NON-~STATIONARITY OF
THE PROBABILITY DISTRIBUTION OF Et

Another difficulty one is likely to come across when making a
long-term inference into the future is the risk of coming across the
non-stationarity of distribution of the random éomponent of the
model. This non-stationarity does not preclude computing a pre-
diction but interferes with getting a correct information about
the level of its accuracy. Especially serious is the situation
when the variance of Et increases in time since this means that
the accuracy of prediction will decrease steadily as the pre-
dictive delay of the model becomes greater.

If, for some reason, the model cannot be changed so as to
achieve the stationarity of distribution of Et’ one should at
least attempt to estimate how the main distribution character-
istics depend on time. Since among these characteristics the
most important one is the variance of Et we shall concentrate
on various methods of analysis of time-dependence of D2(£t).

The first method consists in observing the residuals

u - §t’ where Ye denotes observed value of Y variable in

£t = Y
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time t e To and Qt is the corresponding theoretical value com-

puted from the model. Once the residuals are computed and

ordered according to their sequence in time, their absolute
values are then considered

T PR T (20)

If the sequence (20) can be accepted as a random one 6) there

is no ground to reject the hypothesis that Dz(gt) is constant.
If on the contrary, this sequence shows an increasing trend
one rwust conclude that the variance increases in time. Time
trend fitted to the elements of (20) provides then information
about the relation of standard deviation of Et with respect to

time variable. Extrapolation of this relation provides an

estimate of D(Et) for the predicted time period.

The second possible approachto the analysis of time behavior

of the variance D2(£t) consists in using consecutive subsamples,

as it was explained in subsection 4a. Sincé the model is estimated
for each subsample, an estimate of D2(Et) is also available

and the statistician gets a sequence Sy» sg, ey si_m+1 of

such estimates. An appropriate analysis of this sequence per-
mits to infer if the sequence can be regarded as a random one

17)

or if it exhibits a time-dependence of subsample variances.

Discovery of such dependence allows for extrapolation of the

variance for time period T.

16)There are many tests for testing the hypothesis of random-
ness of a sequence of observations, such as, for instance,
the various run tests (see A.M. Mood [1940] or any major
text-book of mathematical statistics).

17)When looking for a trend in the s%, sg, ceey Si-m+1 sequence it is

sometimes more advisable to consider the sequence of standard

deviations SqrSyr-vesSy_ iy since the latter is less subject

A ranrnAAam Flaramdmsimdd e
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If Dz(gt) does increase in time it may sometimes happen

that Dz(gt) will prove to be so large that the prediction is
virtually useless. This calls for a change of the model and for
substitution of the former one by another with smaller random

variance.

8. EMERGENCE OF NEW FACTORS

This is certainly the most difficult problem since it can-
not be dealt with by statistical methods. The best method
known so far to cope with it is to use experts' judgeients and
to introduce accordingly an appropriate correction to the
prediction obtained from the formal model.

The weak point of this method consists in the impossibility
to measure a priori ‘the degree of accuracy of surh corrected
prediction which may prove later - when the period T occurs -
to be very poor. If a practical action is based on prediction
the danger of such situation is obvious.

From the formal point of view the corrected prediction is

defined as

(corr)

Tp ' (21)

= +
YTp ecorr

corr

where YTp

denotes the corrected prediction, YTp is the pre-
diction computed by using the model and © orr stands for ex-
perts’' judgements about the impact of the new factor which is to
influence the behavior of the predicted variable. Alternatively,

if experts formulate their opinion with reference to relative

changes, the corrected prediction is defined as

corr _ (1 + | 22
yTp - yTp Ccorr : (22)
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9. HORIZON OF PREDICTION

To conclude the argument about long-term inference iﬁto
the future, one should emphasize the fact that such inference
cannot go indefinitely far into the future. To have any prac-
tical meaning predictions must have an adequate level of
accuracy.18) Although there are many ways to measure this
accuracy, the most commonly used method of measurement in the

case of unbiased prediction consists in using the variance of

prediction defined as

D2<yTp) = E(Y, - YTp>2 . (23)

In most practical cases this variance increases with prediction
lead and for most types of commonly used models it is found that
Dz(yTp) increases as far as the square of prediction lead.19)
In consequence , beginning with a future time period Y the
variance is larger than a predetermined number 4 corresponding
to the limiting admissible order of prediction error. Besides,
for very distant future time periods also the basic precondi-
tions of prediction, even in their relaxed form, are not met,
precluding thus the possibility of rational inference into the
future. These two limitations call, therefore, for a care ful
choice of the model to be used for prediction. Such model must
not only include all the relevant (or decision) factors but

must be time-robust in the sense of ensuring the possibility of

prediction even for distant time periods.

18)This level is obviously determined a priori by the user of

prediction.

19)This is, for instance, the case of volynomial trend models.
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The set of all such future time periods for which simul-
taneously two conditions are fulfilled, namely: a) the basic
preconditions of prediction are true, b) the degree of accuracy
of prediction is admissible, determines the so-called

horizon of prediction (see Pawlowski, 1978b).
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