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Numerical experiments with decomposition of LP on a small 
computer 

E.Marin5ki 

IIASA 

ABSTRACT 

Results of numerical experiments with decomposition of linear program- 
ming pmblems are reported. 

1. Introduction 
There are many cases at IIAS-A- where pzticular models deve!oped in one I- ~ ~ r o b c t  J- or 

program have natural connections with other models developed in different programs, areas or 
projects. The linkage of such models is of Feat  interest m d  may !ezd to more comprehensive 
results. Che of the hinderances on the way to integrating such models is the modest size of the 
IIASA computer- DEC PDP-11/70. As a rule every model deveioped at IIASA uses the com- 
puting power of the PDP-11/70 to its limit and some of them even beyond this limit. Natur- 
ally, it is very difficult to unite sucl-I models witliirut substantial clianges and tliis, tir a great 
extent, prevents such linkage. 

m e  purpose of this paper is to present some experimental results on the numerical 
effectivness of a decomposition approach. Decomposition of the original largescale problem is 
in fact a specific way of linking subproblems or submodels to reach a coordinated solution. A 
substantial advantage of this approach is in a distributed manner of solving the original prob- 
lem. In this case computations are performed with each subproblem separately, possibly even 
on different computers located at different institutions. 

Experiments were conducted with LP  but neither linearity nor the optimization nature of 
submodels are crucial for the approach. 

2. Test problems 

In an experimental application of the algorithm described in Nurminsh ( 1979), randomly 
generated linear progrm~mirig pro tiems  we^ sirlved ~ ~ i l i g  the DEC ~ninicomputer ?DP-I 1/ 70 
under the UNIX (Ritche,Thompson, 1978) operating system. These pmblems consist of two 
blocks with 39 rows and 100 cciomns each w,d with a twodimensional iink between t:?ese 
blocks. These subproblems are referred to below as subproblems A and B respectively. Taken 
as a whole, this problem has 78 constraints arid 193 variables, which is a rather modest size by 
today's standards. However, the PDP-11/70 has only 28K of core available to the user in regu- 
lar mode under the UNlX t i r n e ~ h a i n g  operating system, sir it is unable to handle a problem of 
this size without a special means of operating system. It is worth noting that to store this 
matrix in the core in double precision one needs about 124K Even if only non-zero elements 
of the original matrix are stored one still needs about 64K  

Coefficients of the constraint marrix and costs associated with variables were generaced by 
the IMSL (IMSL 1977) subrou tine ggub providng pseudo-random numbers uniformly dstri- 
buted on [o, 11. To avoid occasional degenereiacy a special constraint on linking variables has 
been added 

to guarantee the boundness of the feasible set. 



A Fortran text of the matrix generator is given in the Appendix. To avoid a trivial solution 
some elements of the constraint matrix and costs were made negztive 3s shown in the Fortrm 
text of the matrix generator. 

n o  problems of this kind were generated and solved The initial integers (iseed) for gen- 
erator ggub of random numbers w r e  chosen as given in Table 1. 

Table 1. Initial values for a random generator. 

roblem 
test 1 

I. Method 
Generally speaking, the method applied for solving this problem consists of calculating 

some specific approximation of a coordinating function. This approximation provides enough 
information to &fine optimal values for linking variables leaving the decisions for choosing 
local variables to subpmblems. The approximating function depends only on linking variables 
and a fairly simple st~ucture of it can be made. For one of the test problems this function is 
shown in Fig. I .  The particular advantage of this function is that it has the same minimum as 
the original one and it reduces the initial problem to a problem of calculating this approximating 
function ar a few test points. Actual calculation of the numerical value of approximation and 
its s u w e n t  ( this appmximation is essentialy nondflerentiable ) can be done in a decom- 
posed way restricting computational efforts to those performed with subpmblems separately. In 
this way rather large problems can be solved on small computers like the PDP 111 70. 

An approximation of the coordinating function is to be calculated in a few basic points of 
the space of the linking variables. These points are further referred to as rep7 points to distin- 
guish them from basis points of L P  problems. 

A t  every r e p  point it is necessary to solve a pair of master problem -subproblems of the 
kind which is typical for the Dar~zig-Wolfe decomposition scheme (Lddon 1972). The n l s t e r  
problem sends prices to the subproblems for linlung variables and receives optimal values of 
linking variables and optimal values of objctive funaiofis in each of the subproblems. This 
process continues for some time until stopping criteria is satisfied After completion of this 
cycle the value of appmximation and ds subgradlent are used for computing new repr points 
or, if the number of  these rep7 points is large enough, for computing the optimal solution. 
'The essential clffennce with the Dmtzig-Wolfe decom position scheme is t h a  local variables 
are controlled by subproblems exclusively. The optimal solution is reached by fixing optimal 
levels of linking variables rather then by directly prescribing optimal plans for subproblems 

4. Results 
The full set of results is given in the Appendix;  her^ we wi!! discuss only some particular 

features of the method and its performance for given test problems. 
In accordance with the theory pair "masterscbpmblems" should be solved for a set of 

rep7 points which may be chosen in a different way. Here we choose this set as follows: 
rl=  ( 0 . 0 ,  0.0) 
n= (2 .0,  0.0) 
r3- (2.0 , 2.0) 

I t  is worth noting that points R2  and R3 are not feasible. Nevertheless, the method pro- 
vides a finite vaiue of approximation at these points as we1 3s finite subg-radients which show 
directions of possible changes in linlung variables. Then a certain set of extreme prices was 
fixed for which the subproblems provided a bounded solution in a master problem. This set 
was chosen the same for all wpt points and it consists of a few large price vectors. Generally, 
the master problem sends shghtly different prices to the subproblems in the sense that their 
sum is not equal to zero. 



Figure 1 .  Approximating function. 



During this initial phase this feature of the method was neglected and the sum of the 
prices W ~ S  put equal to :em. So far s these initial results xe necessary only to iniLiate t!:e 
whole process, it does not influence the final results. An assumption about prices and results of 
computations in the subproblem are given in the following tables. 

Eb le  2. Starting results for subproblem A. 
- - - 

Table 3. Starting esults for subproblem R 

, 

For a decomposition approach the number of cycles between master problem and sub- 
problems is an important characteristic. For problems under consideration the following results 
were obtained 

Table 4. Number of cycles. 

test 2 

. 

This table shows that the number of cycles between master problem and subprob- 
lems are actually &her small. Moreover, so far as only cost coefficients of objective functions 
have been changed in local problems, the samp sol~~tion of subproblems remained opti-ma1 in  
many cases. 

For instance for test problem 1, a ts@r point rl i ~ i  subprobleril A oniy 5 disti!lit 
solutions we= generated and in subproblem B the actual number of different values for linking 
variables is 4. 

After setting some initial framework for master problems, the process of trade-off 
between master problem and subproblems continued zs 1s shown In 6eta.d In the Appendix. Iii 
the next two tables the final results for correspon&ng reper points are given. 

Table 5. Test problem 1. 

test 1 
value 

4.381d00 
-0.467d 00 

where g( 1) and g(2) are components of the subgradient of the approximating function with 
respect to linking variables. The next table has the same structure and relates to test problem 2. 

Table 6. Test problem 2. 

x 1 
0. ld00 
0.Od 00 

p 1 
-1.0d05 

test 1 

0.W 00 -1.0d 05 -0.861d 00 , O.Od 00 0. Id 00 

x 1 
0.ld01 

x2 
O.Od00 
0. Id 00 

test 2 - 

x2 
0.M01 

p 2 
O.Od00 

value 
4.612d00 
4.943d 00 

p l 
1.0d05 
0. Od 00 

value 
4.481d00 

x 1 
0.M00 
0. Id 0 1 

x2 
0.1dOl 
0. Od 00 

x 1 
0 . 0 d 0 0  

0. Id 0 1 

p2 
O.Od00 
1.0d 05 

x2 
0.ldirl 
0. Od 00 

value 
-1.090d00 
4404d  00 



The final step of the method consists of solving a linear system of the size defined by the 
number of linking vari;ibles. In the case under cor~sideration these systems have the fol!owing 
form s: 
Test 1: 

Test 2: 

-0.13092d01 + 0.1 (x, -2.) = L 

and their solutions are 
Test 1: 
X( l )= 0.013 x(2)= 0.987 
Optimal value: -2.078 
Test 2: 

X( l ) =  0.627 x(2)= 0.373 
Optimal value: -1.473 

5. Conclusions. 

1 The decomposition approach provides an efficieilt algorithmic tool for solving latgescale 
problems. It consists of a separate consideration of submodels m d  offen a theoretical 
foundation for linkage procedures. In this approach local variables are treated l o c a l l y '  and 
exchange is restriced to global variables. 

2 Numerical experiments showed that the approach requires small information exchange 
between different subsystems and gives rapid convergency in coordinating process. 

6. Appendix 

6.1. Matrix generator 
The matrix gener&tr w.a written for a-I FTN cirmpiier on the UNK operating system. 

C 

c g e n  m at--4- 
C 

c function: generate m atnx for subproblem 
c and recode it in the file 1 
c usage: call ger~mat(ma,na,nx) 
C 

c parameters: ma -num ber of rows 
c na number  of columns 
c nx number  of lnks 
C 

c subroutines: ggu b (IMSL library) 
C 

c files: 1 write a 5d16.8 
C . 

subroutine genmat(ma,na,nx) 
dimension a (4000) 



double precision aa (4000) 
data iseed 153681 
format(5d16.8) 
form at(3i4) 
call ggub(iseed,ma*na, a) 
do 10 ii- 1 , m a n a  
aa( ii) = a( ii) 

slack part of matrix 

negative prices 

do 6 0  ii= l,nx*ma 
aa(iO+ ii)= aa(iO+ ii) 

binding x4in ks 

write (1,25) ma,na,nx 
write( 1,15) (aa(ii),ii= l,ma*na) 
re tu m 
end 

6.2. Output h r  the test problems. 
This p m  presents d l  m a b r  information &out detzils of computztion for both test prob- 

lems. It was obtained by combining outputs of subproblems and master problem in such a way 
that any information related to the computational process at some r epr  point can be looked 
through easily. 

Test 1 

for  subproblem A iseed= 5368 
for  subproblem B iseed- 3558 

reper point x- 0.0 0.0 

master problem: 
sequence of runs fo r  master problem: 

new run 



function value 0.13684301d 01 
new run 
function value 0.19649653d 0 1 

new run 
function value 0.197 11405d 01 

new run 
0.20 140482d 0 1 

function value 0.19752512d 01 
new run 

0.20 140482d 0 1 
0.19822402d 0 1 

function value 0.19764435d 01 
new mn 

0.20 140482d 0 1 
0.19822402d 0 1 

function value 0.19789357d 01 
new mn 

0.20 140482d 0 1 
0.19822402d 01 
0.19792230d 01 

function value 0.19791 136d 01 *****0(1***** final value at reper point 
subproblem A 

va X( 1) X( 2) 
-0.48095952d 00 0.100000006 01 0.000000006 00 
-0.86140775d 00 O.OOCn70000d 00 0.100000006 01 
-0.93308574d 00 0.128123186 00 0.87127682d 00 
4.8689593fd 00 0.4 1.1970 1 W 00 0.585029906 00 
-0.91 1422806 00 0.280229486 00 0.7 1977052d 00 
-0.925777556 00 0.192417?9d 00 0.80758221d 00 
-0.93308574d 00 0.128723 186 00 0.87 127682d 00 
-0.9327767Sd 00 0.15258144d 00 O.86741856d 00 

subproblem B 
va X( 1) 4 2) 

-0.109047 106 0 1 0.000000006 00 0.100000006 0 1 
4.40402 197d 00 0.10000000d 01 0.00000000d 00 
-0.11297777d 01 0.15609161d 00 0.843908396 00 
4.10913288d 01 0.18997125d42 0.99810029d 00 
-0.llS31024d 01 0.12753056d 00 0.87246944d 00 
-0.1 1331024d 01 0.12753056d 00 0.87246944d 00 
4.1 1331072d 01 0.13904334d 00 0.86095666d 00 
6 1 133 1024d 01 0.12753056d 00 0.87246944d 00 

PT* 
0.00000000d 00 0.10041724d 00 

P ~ B  
0.000000006 00 -0.4 17240006-03 

reper point x= 2.0 0.0 

master problem: 
sequence of runs for master pmblem: 

new run 
0.1268450 1 d 0 1 

function value 0.12184301d 01 
new run 



function value 0.175484 17d 01 
new run 

0.19190572d 01 
function value 0.177692CAd 01 

new run 
0.191905723. 0 1 
0.18161 194d 01 
0.17888807d 0 1 

function value 0.17858024d 01 
new run 

0.19190572d 01 
0.18161194d i l l 

function value 0.17926578d 01 
new run 

0.19190572d 01 
0.18161194d 01 
0.17943773d 01 

function value 0.17928175dOl 
new run 

0.19190572d 01 
0.18161194d 01 
0.17943773d 01 

function vdt;e 0.17929SSd 0 1 w*w+w*wr final vdue at reprr point 
subproblem A 

va x( 1) 4 2) 
-0.48095952d 00 0.1 OOOOOOW 01 0.000000006 00 
-0.86 14 0775d 00 0.00000000d 00 0.100000006 0 1 
-0.93308574d 00 0.12872318d 00 0.87127682d 00 
-0.86895934d GO 0.4 14970 1 GO 0.58502990d 00 
-0.9 1546 184d 00 0.26407347d 00 0.73592653d 00 
-0.93309574d 09 0.12Sf2319d 00 0.57127682d 00 
-0.92577755d 00 0.19241 7796 00 0.80758221d 00 
-0.932'7'76783. 00 0.13258 144d 00 0.867418566 00 

subproblem B 
vb x( 1) x( 2) 

-0.109047106 01 0.000000006 00 0.1000000~ 01 
-0.40402197d 00 0.100000006 01 0.0000000W 00 
-0.1 1 17516W 01 0.20460 1496 00 0.79539851d 00 
-0.11273768d01 il.l(j28191W 00 U.89718081d cf0 
-0.1 1331072d 01 0.13904334d 00 0.86095666d 00 
-0.1 133 1072d 0 1 0.1 3904334d 00 0.860956666 00 
-0.1 1331072d 01 0.13904334d 00 0.86095666d 00 
-0.1 133 1072d 01 0.13904334d 00 0.86095666d 00 

P'* 
4.100000006 00 0.1697275W41 

P ~ B  
0.00000000d 00 0.8302725 W-01 

reper point x= 2.0 2.0 

master pmblern: 
sequence of rcrn j f o r  master prcblem: 

new run 
fur~ctior~ vdue 0.126M3013 01 



new run 
function vdue 0.16749014d 01 

new run 
function value 0.18771815d 01 

new run 
function value U.lt37849Md 01 

new run 
0.18916476d 01 

function value 0.18788532d 01 
new run 

0.189 16476d 0 1 
0.18802 174d 0 1 

function value 0.18789358d 01 
new run 

0.18916476d 01 
0.18802 174d 0 1 
0.18792230d 01 
0.1879 1373d 0 1 

function value 0.18791 l%d 01 
new run 

0.18916476d 01 
0.18802 174d 0 1 
0.13792230d 01 

function value 0.18791394d 01 ***r***r***r final value at reper point 
subgrnhlem A 

va X( 1) X( 2) 
-0.48095952d 00 0.lOOOOOOM 01 0.000000006 00 
-0.86 140775d 00 0.000000006 00 0.100000006 0 1 
-0.93308574d 00 0.12872318d GO 0.87127682d 00 
4.868959346 00 0.414970106 00 0.585029906 00 
-0.90532595d 00 0.30289433d 00 0.697105 17d 00 
-0.91900322d 00 0.243623006 00 0.756377006 00 
-0.9257'7755d 00 0.19241 779d 00 0.80758221d 00 
-0.93277678d 00 0.13258 1446 00 0.86741856d 00 
-0.9327767M 00 9.132581446 OCl 0.86741856d 00 

subpm blem B 
vb X( 1) x( 2) 

-0.10904710d 01 0.000000006 00 0.100000006 01 
-0.4040'2 197d 00 0.100000006 01 0.0000WU0M 00 
-0.1 133 1072d 01 0.139043346 00 0.86095666d 00 
-0.1091 3288d 0 1 0.18997 125d-02 0.9981 0029d 00 
4.113310246 01 0.12753056d 00 0.872469446 00 
4.113310246 01 0.12753056d 00 0.872469446 00 
-0.11331024d 01 0.12753056d 00 0.8V46944d 00 
-0.113310246 01 0.12753056d 00 0.872469446 00 
-0.11531072d 01 0.139343346 00 0.86095666d 00 

P'* 
-0.1004 1698d 00 O.O0CK)C)OO0d 00 
P ~ B  

0.4 1698321d43 0.000000006 00 
ssss 
Test 2 

for subproblem A iserd= 23368 



for subproblem B iseedm 31057 

reper point x= 2.0 0.0 eps- 0.1 

rn aster problem: 
sequence of runs for master problem: 

new run 
function value 0.9662696Od 00 

new run 
function value 0.12870340d 01 

new run 
0.13284151d 01 
0.13282297d 01 

function value 0.129621 32d 01 
new run 

0.13565428d 01 
0.13373668d 01 
0.13126873d 01 
0.18105898d 01 
0.13067007d 01 

function value 0.12970694d 01 
new run 

0.13555425d 0 1 
0.13373668d 01 
0.13126873d 01 
0.13105398d 01 
0.1S067007d 01 

function value 0.12972768d 01 
new run 

0.13565428d 01 
0.134754W 01 
0.13403215d 01 
O.l"s44263d 01 
0.13126872d 01 
0.13105397d 01 
0.13067006d 01 
0.12977036d 01 

function value . 0.12973135d 01 *w**********s*r(l*** final value at reper point 
subproblem A 

va X( 1) x( 2) 
4.310854986 00 0.100000006 01 0.00000000d 00 
-0.46719693d 00 0.000000006 00 0.10000000d 0 1 
-0.45362591d 00 0.72 178433d 00 0.27821 567d 00 
4.48793737d 00 0.50 157846d 00 0.498421 54d 00 
-0.48793737d 00 0.50 1578% 00 0.498421 54d 00 
-0.45362591d 00 0.7217843Sd 00 0.27821567d 00 
-0.48795737d 00 0.50 1578% 00 0.498421 54d 00 

subproblem B 
vb X( 1) x( 2) 

-0.6 1186347d 00 0.000000006 00 0.10000000d 0 1 
-0.942623'75d 00 0.100000006 0 1 0.00000000d 00 
-0.100238~1~ 01 n . ~ m m 5 d  cm 0.353435 1 M 00 
-0.99032386d 00 0.82120677d 00 0.17879323d 00 
-0.99927 1556 W 0.7 195 1552d 00 0.28MS448d 00 



reper point x- 0.0 0.0 eps= 0.1 
master problem: 

sequence of runs for master problem: 
new run 
function value 0.111626%d 01 

new run 
function value 0.3 3856466d 01 

new run 
hnction value 0.13954441d 01 

new run 
function value 0.14030701d 01 

new run 
function value 0.14092139d 01 

new run 
0.140924 12d 0 1 

function value 0.14092 139d 0 1 *w**********t* final vahe  at reper point 
subproblem A 

va X( 1) x( 2) 
-0.3 1085498d 00 0.lOOOOOOOd 01 0.000000006 00 
-0.467 1969M 00 0.000000006 90 0. lOOOOOO06 0 1 
-0.45362591d 00 0.72178433d 00 0.27821567d 00 
-0.48535826d 00 0.13878891d 00 0.86 121 109d GO 
-0.48793737d 00 0.50 157846d 00 0.498421 54d 00 
-0.48793737d 00 0.50 157846d 00 0.49342 154d 00 
-0.48793737d 00 0.50 157846d 00 0.498421 54d 00 
-0.48793737d 00 0.50 14'1846d 00 0.498421 5-M 00 

subproblem B 
vb X( 1) x( 2) 

-0.61 186347d 00 0.000000006 00 0.100000006 0 1 
4.94262375d 00 0.1 00000006 01 0.000000006 00 
-0.10023808d 01 0.64656685d 00 0.353433 15d 00 
-0.lOv.L3808d 01 0.64656685d UO 0.35343315d 00 
-0.10023808d 01 0.64656685d 00 0.353433 15d 00 
-0.96975616d 00 0.493716006 00 0.506284006 00 
-0.96975616d 00 0.493716006 00 0.506284006 00 
-0.100042306 01 0.63738617d 00 0.36261383d 00 

pr* 
0.000000006 00 0.1 1345308d 00 

P ~ B  
0.100000006 00 -0.1 1345308d 00 

reper point x= 2.0 2.0 eps= 0.1 
master problem: 

sequence of runs for master problem: 
new iun 
function value 0.12620896d 0 1 

new run 



0.12974379d 0 1 
function vzlue 0.12892198d 01 

new run 
0.13266922d 0 1 

function value 0.13055873d 01 
new run 

0.13266922d 0 1 
function value 0.130921 !38d 01 **************** final value at reper point 

subproblem A 
va X( 1) X( 2) 

4.31085498d 00 0.100000006 01 0.00000000d 00 
4.46719693d 00 0.000(3000Cd 00 0. l00000006 0 1 
4.45362591d 00 0.72178433d 00 0.27821567d 00 
4.48535826d 00 0.13878891d 00 0.86121 1096 00 
4.48793737d 00 0.50157846d 00 0.49842154d 00 
4.48793737d 00 0.50 157846d 00 0.498421 54d 00 

subproblem B 
vb x( 1) x( 2) 

4.6 1 186347d 00 0.0000000~ rn 0.1000000~ 0 i 
4.94262375d 00 0.100000006 01 0.00000000d 00 
4.959756 16d 00 0.4937 160M 00 Q 505284006 00 
4.10023808d 01 0.64656685d 00 0.3534331 5d 00 
4.10029808d 01 0.646%685d 00 0.3594331Lx1 00 
4.96975616d 00 0.4937 16006 00 0.506284006 00 

P'A 
4.2 1345307d 00 -0. lOOOOOOOd 00 

prE 
0.21 345307d 00 0.0000OOOM 00 

optimal point x= 0.627 0.373 
master problem: 

sequence of runs for master problem: 
new run 
function value 0.1 1408696d 01 

new run 
function value 0.144391756 01 

new run 
0.1458 144 Id 0 1 

function value 0.145611374d 01 
new run 
function value 0.145984746 01 

new run 
function value 0.14665991d 01 

new run 
0.14666028d 0 1 

function value 0.146659976 01 
new run 

0.14666028d 01 
function value 0.146659994 01 

new run 
0.14666028d 0 1 

function value 0.14@33007d 01 ******ljl**** final vdue at the optimal point 



subproblem B 
vb x( 1) x( 2) 

-0.61 186347d 00 0.000000006 00 0.100000006 01 
0.94262375d 00 0.100000006 01 0.000000006 00 
-0.10023808d 01 0.64656685d 00 0.35343315d 00 
-0.10023808d 01 0.64656685d 00 0.353433 15d 00 
-0.S97561M 00 0.493716006 00 0.506284006 00 
-0.10023808d 01 0.64656685d 00 0.553433 15d 00 
6 100042306 01 0.63738617d 00 0.36261383d 00 
4lS975616d 00 0.493716006 00 0.506284006 00 
6100042306 01 0.63738617d 00 0.36261383d 00 

pr* 
0.000000006 00 0.15581 537d 00 

P ~ B  
0.57637704d-01 -0.15581537d 00 
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