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FOREWORD

Declining rates of national population growth, continuing
differential levels of regional economic activity, and shifts
in the migration patterns of people and jobs are characteristic
empirical aspects of many developed countries. In some regions
they have combined to bring about relative (and in some cases
absolute) population decline of highly urbanized areas; in
others they have brought about rapid metropolitan growth.

The objective of the Urban Change Task in IIASA's Human
Settlements and Services Area is to bring together and synthe-
size available empirical and theoretical information on the
principal determinants and consequences of such urban growth
and decline.

The study of the redistributional demographic consequences
of declining rates of natural increase is complicated by the
fact that virtually all of the mathematical theory of stable
population growth is founded on an assumption of fixed rates of
fertility, mortality, and migration. Dr. Kim suggests in this
paper how the relaxation of such an assumption reveals new in-
sights about multiregional population dynamics.

A list of publications in the Urban Change Series appears
at the end of this paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

The theory of stable population dynamics is relatively well
developed in the demographic literature, but virtually all of it
is founded on the assumption of unchanging rates of fertility,
mortality, and migration. The case of changing rates is relatively
underdeveloped and little is known about the influence of changing
rates on age composition and regional distribution. This paper
considers how multiregional zero growth populations evolve over
time when exposed to changing birth, death, and migration rates.
It illuminates the ways in which an age-by-region composition is
influenced by the pattern of recent rates and how the influence
of an initial composition is lost over time.
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MULTIREGIONAL ZERO GROWTH POPULATIONS
WITH CHANGING RATES

I. INTRODUCTION

In recent years, fertility in most developed countries seems.
to be reaching or have already reached near-replacement levels,
with perturbations from time to time resulting from social and
economic conditions. We are interested in describing mathemati-
cally the dynamics of such populations. To do this we begin with
the result of the weak ergodic theorem, which states that the
age structure of a popuiation subject to an arbitrary sequence
of fertility and mortality schedules over time eventually loses
its dependence on the initial age distribution and comes to be
a function only of its relatively recent history of fertility
and mortality rates (e.g., Lopez, 1961). Nothing is said in
this theorem, however, about how age structure is determined by
recent vital rates or how the effect of an initial age structure
is lost. This has led us to examine the dynamics of populations
with arbitrarily changing vital rates but restricted to have a
net reproduction rate (NRR) of unity (Kim and Sykes, 1978).

As levels and changes in levels of fertility and mortality
diminish, in- and outmigration play an increasingly important
role in determining the dynamics of regional populations. Rogers
(1975) has developed a model of multiregional population dynamics

in which migration schedules as well as mortality and fertility
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schedules play an important role. He thereby has extended stable
population theory to include multiregional populations. Analo-
gous to stable population theory, multiregional stable population
theory states that if regional age-specific schedules of fertil-
ity, mortality, and migration are fixed for a long time, the pop-
ulation evolves into a multiregional stable population with fixed

regional shares and regional age compositions.

Stable theory for populations with fixed rates does not ex-
tend to populations with arbitrarily changing rates over time in
a predictable way. We can, however, obtain specific formulas for
different attributes of such populations and see how weak ergo-
dicity works explicitly for populations close to stationarity but
with otherwise arbitrary rates. To do this we restrict the number
of age groups to two for a closed population and the number of
regions to two for a multiregional population without age struc-
ture. The results obtained are true qualitatively for populations
with an arbitrary number of age groups and regions. We also fol-
low the usual restriction of a one-sex model when age structure

is considered.

In the next section we review the dynamics of closed popula-
tions with changing rates and NRR = 1. We then show how the
argument can be applied to two-regional populations and, after
formulating a model of biregional population dynamics with
changing rates in the third section, we discuss the dynamics of
populations with age groups and regions in the fourth section,
and conclude with a brief discussion of several new interpreta-

tions of old concepts.

IT. DYNAMICS OF CLOSED ZERO GROWTH POPULATIONS

In this section we summarize the results of Kim and Sykes
(1978) . However, the vectors and matrices describing population
dynamics are here transposed back to the more conventional forms.
This change makes the generalization to multiregional dynamics
easier allowing one to retain the representation usually used by

demographers.



We consider a closed population with two age groups expres-

sed in vector form

X, = (X

X, t=0,1,2,... (2.1)

1
£1 Xe2)

and introduce the 2 x 2 population projection matrix (ppm)

A, = | t=1,2,... (2.2)

(See Kim and Svkes, 1978, for a more detailed explanation of the

notation used.) Since the dynamics of a population with age struc-
ture Et at time t is given by:
Xie1 = Bigg X t=0,1,2,... (2.3)

it follows that the age distribution at time t is

X. =A, A eee A_ A, X. =M (2.4)

-t ~t Tt-1 ~2

where we have written the backward product of t ppm's as Mt to

avoid writing a long string of matrices frequently.

We first consider the dynamics of populations when the ppm

is row-stochastic,
a, = £t =1,2,0.. (2.5)
OJ

in which fertility is split arbitrarily between the two age groups
and with mortality set equal to zero. Notice that the period

NRRt = 1 for all t, but that the cohort NRRt =1 - bt + bt+1 # 1.
By directly multiplying the matrices, it can be shown that

M_= t=1,2,... (2.6)
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(2.7a)

and
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Yy = (2.7b)

If the sequence of birth rates'{bt} is bounded below 1 (it is a

sufficient, but not a necessary condition) then

lim Yy = 0

t > >

and

lim G
t > t

I
()]

(2.8)

exist. Hence the product matrix M, converges to a constant mat-

rix of rank 1, i.e.,

lim M_ =G 1 -G (2.9)
G 1 -G

where G satisfies

1 - b1 <G <1 - b1 + b1 b2 (2.10)

and thus is completely determined by early fertility rates. The
age distribution at time t is given by, from equations (2.4) and
(2.9)

£, = (G Xy + (1 = G) x02>1_ (2.11)

for large t. The eventual population size is a weighted average
of the initial population in the two age groups, with the weight
determined by early vital rates, and the relative age distribution
is uniform. We have seen that even with a changing fertility pat-
tern over time, strong ergodicity holds and that all of the usual

measuresdescribing the population eventually become constant.



We next consider the dynamics of populations with column-

stochastic ppms, i.e., At now is of the form

[ |

In this case fertility in the second age group is constant, while
that in the first age group varies with mortality. For this
ppm, both period and cohort NRR are unity. By directly multiply-

ing the ppms, it can be shown that

He He = Ny
M = t = 1,2,... (2.13)
U - Hy 1 - H + ng
where
H. =1 -5,_+8_58S,_ . = «e0 # (=1)F 5 «ee s (2.14a)
t t 7 St Se-oq t 1 :
and
= (-1t s s s (2.14b)
Nt t 1 .

Although the form of Hy is superficially similar to the expression

for Gt given in equation (2.7), it differs crucially in that here
the recent elements of the sequence {St} determine Ht‘ Because

of this, the sequence {Ht} has no limit as t increases, although,

1 - st < Ht < 1 = st + st st_1 (2.15)

The value can be calculated to an arbitrary degree of accuracy

using more terms. The sequence of product matrices {M_} satisfies



lim M, - =0 (2.16)

t >

In other words, the population at time t, for large t, is given

by, from equations (2.4) and (2.16),

(2.17)

i.e., although the total population size is fixed at all times,
the number of births and the age distribution keep constantly
changing over time and are determined by the recent vital rates.

See Kim and Sykes (1978) for more detailed discussion and gener-

alization.

IITI. DYNAMICS OF BIREGIONAL ZERO GROWTH POPULATIONS

We now consider populations without age structure located in
two regions. A major formal difference between this population
and the "closed" population with two age groups is that now all
four transitions are possible, whereas the contribution from the
second age group to itself was zero for the closed population.
When this is translated into a transition matrix (also a ppm) all
four cells of the ppm have non-zero entries for the two-region

(biregional) dynamics.

We can formulate the dynamics of regional populations in two
alternative ways. First, we may take a period approach by using

the two-region accounting relationship (Rogers, 1968):

Pl(t) l-+bl(t)-dl(t)-ol(t) o, (t) Pl(t-l)

Pz(t) Ol(t) l-+b2(t)-d2(t)-02(t) Pz(t-l)

t=1,2,... (3.1)



where Pi(t) , i =1,2, 1is the population size in region i at
time t and bi(t) ' di(t) » and O, () , i = 1,2, are the crude
rates of birth, death, and outmigration for region i at time t.
If the rates given are the usual single year rates, the time

unit of equation (3.1) is also one year. If we denote the matrix
in equation (3.1) as C(t), i.e.,

1-+b1(t)-d1(t)-01(t) Oz(t)

01(t) 1-bb2(t)-d2(t)-02(t)
(3.2)
then the dynamics of regional populations at time t are given by,

P(t) = C(£) C(£=1) ==+ C(2) C(1) P(0) (3.3)

An alternative way of describing the dynamics of a two-

region population is through a generational approach. The birth
sequence in two regions satisfies the expression

B1(t) R11(t) R21(t) B1(t-1)
= t=1,2 (3.4)
Bz(t) R12(t) R22(t) B2(t-1)
where Bi(t), i=1,2, is the number of births in region i at time

t, and Rij(t)’ i,3 = 1,2, is the spatial net reproduction rate

(SNRR) in region j of women born in region i at time t-1. The
Rij(t) is given by

R(t>—8t()t(>d i,5 = 1,2 (3.5)
i3 = pij X mj X X i,] ’ .

a

where pzj(x)iS'the probability of surviving to age x in region j
for those born in region i at time t, and mg(x) is the age-specific
fertility rate for age x in region j at time t. Note that al-

though Rogers and Willekens (1976a, equation 4.2; 1976b, equation

3) have expressions similar to equation (3.4), they restricted



themselves to the limiting stationary birth sequence of popula-
tions with constant rates of no growth. Also note that Rij(t)
in equations (3.4) and (3.5) 1is iRj(O) at time t in the notation
of Rogers and Willekens. The total population at time t may be

expressed as

Y1(t) e11(t) e21(t) B1(t)
= (3.6)
Yz(t) e1z(t) e22(t) Bz(t)
where Yi(t), i=1,2, is the population size in region i at time
t, and‘eij(t), i,j = 1,2, represents the number of years lived

in region j, on the average, by individuals born in region i at
time t. Note that eij(t) is iej(O) at time t in the notation of
Rogers (1975). From equations (3.4) and (3.6) the dynamics of
total populations is given by

Y(t) = e(t) R(£) e '(t=1) ¥(t=1) (3.7)

-1 (3.8)

2
t
|
]
o+
by
t
tO

which may be called the spatial net reproduction rate for a popu-

lation (SNRRP), we rewrite equation (3.7) as

Y, (t) Ny, (8) N, (8) Y, (t=1)
= (3.9)

Y. (t) N12(t) sz(t) Y. (t=1)

2 2

It follows that the regional population distribution at time t is

given by

(3.10)



Hence, the dynamics of total populations is formally identical to
that of the birth sequence in the generational model, and also to

the dynamics of populations in the period model.

Before exploring the dynamics of regional populations with
changing rates, let us briefly summarize the dynamics of stable
stationary populations {(e.g., Rogers and Willekens, 1976b). When
the rates are constant over time, the limiting distribution is de-
termined by the maximal eigenvalue and the corresponding eigen-
vectors of the ppm. A stationary multiregional population results

if the maximal eigenvalue is unity, i.e., in a case of a 2 x 2
a b
N:
c d

if the elements-satisfv the relationship

matrix

(1 - a)(1 - d) = bc (3.11)

A special case of equation (3.11) is a row=-stochastic matrix,

which may be written as

1 - b b
- c 1 - ¢

An example of this form i3 given by Rogers and Willekens (1976b:8).

The limiting stationary distribution becomes

{bY,i(O) +cY, (0))
¥_=\ b T o - (3.13)

which states that the two regions will have an equal number of
perscons, and the ultimate population size will be determined by

a weighted average of the initial populations in the two regions.

Another sp-cial case of equation (3.11) is a column-

stochastic matrix (Rogers and Willekens, 1976b:7)

1 - ¢ b
N = (3.14)
~ c 1 - b
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When the matrix is of this form, the limiting stationary distri-

bution is given by

_ ' b
Y = (Y1(O) + Y2(0)) )

c
b + ¢

(3.15)

so that the ratio of regional shares in two regions will be b/c.

Now we consider dynamics of populations in two regions with
changing rates specified by either equation (3.1) or (3.9). Before
going into the details, we first summarize and interpret useful

theorems on backward products of row-stochastic matrices given

by Chatterjee and Seneta (1977). For backward products
Me = Bp Beq "0t By Ay

of row-stochastic matrices {At}, weak and strong ergodicity are

equivalent, i.e.,

lim M_ = 1 P' (3.16)

where P' is necessarily a probability vector that depends on the
elements of early matrices (Theorem 1). A sufficient condition
for ergodicity is

t

lim 2 g = (3.17)
t > oo k=1

where €y is the minimum element of the matrix N (Corollary of

Theorem 4).

Although the limit theorem given in equation (3.16) is
known, it does not tell us anything about how the sequence con-
verges, or what the elements of the limiting matrix are. To
see the specifics of the convergence, we proceed directly, as

in the previous section.
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When the changing matrices in equations (3.1) or (3.9) are

of the form

A, = t =1,2,... (3.18)

row elements sum to one. This condition is equivalent to

d; (£) + 04 () = by (£) + 04(t) i3 =1,2  (3.19)

for the period model of equation (3.1), and to

1,2 (3.20)

for the generational model of equation (3.9). By directly multi-

plying the matrices, we obtain

-
1 —a1 a1

c1 1--c1

M,=a, A = 1-(a1+a2 [1—(a1+c1)]) a,+a, [1— (a1+c1)1

c1+c2 [1—(a1+c1)] 1—(c1+C2 [1—(a1+c1)])

It can be shown that the upper-righthand corner element of M_ is

given by

(3.21)

for all t. Since 0 < |1 - (a, + ct)| < 1, for all t, the seguence
{Gt} converges to some valuve G, i.e.,



Il
(9]

lim G

t > o

(3.22)

exists and, hence, we have that

lim pgt=[1-G G]
t > e

The value of G can be calculated explicitly to any arbitrary de-
gree of accuracy by eguation (3.21) using only the early rates.

The speed of convergence depends on the values of a, and c

t tf
more specifically, we see from equation (3.21) that the smaller
the value of |1 - (a, + ct)|, t=1,2,... the faster is the con-

vergence. Consequently the regional population is given by

lim [y ()] = [(1-@) y1(0)+Gy2(0)] 1
t >

(3.23)
yz(t) 1

The result of equation (3.23) should be interpreted with
yi(t), a, and Cy replaced by Pi(t)’ oz(t)and o)
model, and by Yi(t), N21(t) and N12

We have just seen that despite constantly changing rates over

1(t) in the period

(t) in the generational model.

time, the regional population will come to have a constant (sta-
tionary) distribution: the population will have ecgual regional
shares and the size of the population will be a weighted average
of the initial population distribution, where the weights (spa-

tial reproductive values) are given by equation (3.22).

The condition of row-stochastic ppm's merits some discus-
sion. In the period model, equation (3.19) shows that as long as
the number leaving a region by death and outmigration is egqual
to the number arriving in the region by birth and inmigration,
strong ergodicity results. In the generational model, equation
(3.20) shows that if, regardless of origin, the SNRRP at the des-

tination is unity, strong ergodicity results.

We next consider the dynamics of populations when the ppm

is column-stochastic, i.e.,



A = £ = 1,2,... (3.24)

b. (t) = 4, (t) i=1,2 (3.25)

with arbitrary Oi(t) for the period model, and to

(t) + Nij(t) =1 i,j =1,2 (3.26)

N. .
ii
for the generational model. Letting Ht denote the upper-righthand

element of the product matrix, M

£ and multiplying directly, we

obtain

Hy = ¢, * ¢ [1 - (a, +°2)]

and, in general

H =c +c [1 - (at+ct)] tci_, [1 - (at+ct)][1 - (a4 +ct_1)]

+...4.c1[1—(at+ctq oo [1—(a2+cf] (3.27)

for all t.

Since 0 < |1 - (a, + ctH < 1, for all t, the value of He de-

pends only on the most recent rates. Although H_ has no limit,

t
the product matrix M, satisfies

lim M, - (3.28)

t >

il
o
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(In fact, it is a transpose of a non-homogeneous Markov chain.)

For large t, the population in two regions is given by,

Y1(t) = <y1(0) + y2(09 Hy

y2(t) 1 - Hy (3.29)

The size of the total population is fixed with uniform spatial
reproductive values, but regional shares keep changing constantly
over time. This occurs when the period rate of natural increase
in each region is zero with an arbitrary interregional migration
rate in the period model, and when the SNRRP in the origin region
is unity, where N, is given in the region of origin and Ni' =

J
1 - Nii is given in the other region in the generational model.

IV. DYNAMICS OF ZERO GROWTH MULTIREGIONAL POPULATIONS
The dynamics of multiregional populations with a recognition
of age structure may be written as Rogers (1975:122-123)

(t)

(4.1)

or

(t) I;I(t) K(t_1)

IR

(4.2)

where the multiregional ppm's now depend on time t, in contrast
to the fixed multiregional ppm's of Rogers. (See Rogers, 1975,
for a description of the elements of the vectors and matrices.)
When we consider populations with two age groups and two regions,

equations (4.1) and (4.2) become

[+ ] [ ¢ t 1ot e ] e

K, (1) By (1) byy (1) 1 by (2) by () [ Ky (1)

t t t E t t -1

K2 (1) P12 (1) Byn (1) 1 by (2) byy (23 1K (1)

————— S el A Mt I € D
t t t . t-1

Kq(2) 514 S, i 0 0 R, (2)

t t t i -1

.—K2(2)_J _512 522 : 0 0 | L“K2(2)-_




and

e | [ e t It e | [ e=1
Ky (1) byy(B) Byy(2) | by (1) byy (2)] | Ky (1)
t t it £=1
K, (2) S, 0 i 591 0 K, (2)
- — R [ AU g —— ’— ___________________
t t t ot t t-1
K, (1) by, (t) b, (2) E b,, (1) byy(2) | Ky (1)
t t Pt £=1
K2(2) S12 0 i 522 0 _J K2(2)

(4.4)
respectively, where Kz(j) denotes the number of persons in region
i, in age group j at time t, sz(k) is the number Qf persons in
the first age group in region j at time t,. per person in region i, in
age group k at time t-1, and Szj is the proportion surviving in the
second age group in region j at time t per person in the first age
group in region i at time t-1. Since the arrangement of equation
(4.1) seems to be simpler to manipulate we shall use it henceforth.

The dynamics of multiregional population at time t is given by

k™ =) ge-1 -0 62) (1 k¥

(0)

M(£) K (£.5)

and hence the dynamics are completely determined by the backward

product M(t) of multiregional ppm's {G(t)}.

As a special case of zero growth dynamics, we first consider
the case of row stochastic multiregional ppm's. Since the multi-
regional ppm G(t) is reguiar, from the theorems of Chatterjee and

Seneta given by equation (3.16), we conclude that

lim M(t)

t >

lp'
holds, so that

lin x(E) - (EIE(O))l (. 6)

t & o
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where (3,5(0)) represents the inner product of the vectors p and
(0)
K

reproductive values. Thus when fertility, mortality, and migra-

. Notice that the elements of the vector p represent spatial

tion rates change over time with the constraints

m n t

D) by; (k) =1 i=1,2,...,m
j=1 k=1
(4.7)
mo ¢
) sj (k) =1 i=1,2,...,m
j=1 k= 1,2,-..,1'1-1

for populations with n age groups and m regions, the population
evolves into a multiregional stationary population with constant

age distribution and regional shares.

Next when the multiregional ppm G(t), is column~-stochastic,
for all t, the sequence of product matrices {M(t)} is a transpose

of a non-homogeneous Markov chain, so that

lim 3114&) - h, 1 % =0 (4.8)

t =

holds and hence, for large t, the multiregional population be-
comes

=

(t) =(1:I_<_(°)) hy , (4.9)

where the inner product (1,5(0)) gives the initial total population
size, and the vector h, satisfies (l,gt) = 1. Here the vector Et
is determined by recent rates. The result of equation (4.9) holds
when, for all t,

m
) [bt (k) + sfj(k)] = 1 i

j=1 L 13

for populations with n age groups and m regions.



V. DISCUSSION

We have seen that the dynamics of populations (both single-
regional and multiregional) with a sequence of row-stochastic
ppm's results in strong ergodicity, while that of populations with
a sequence of column-stochastic ppm's results in only weak ergo-
dicity. Specific expressions originally obtained for populations
with two age groups in a single region were first extended to
populations without age structure in two regions. With these ex-~
pressions we can see explicitly how strong and weak ergodicity
work. The dynamics of populations with n age groups and m re-
gions is qualitatively the same, although we cannot give explicit

formulas in such general cases.

Populations without age structure in two regions were formu-
lated in two alternative ways: a period formulation which involves
crude rates of birth, death, and migration in each period, and
a generational formulation which involves SNRRPs. For the gen-
erational model, the dynamics of population change are formally
identical to the dynamics of birth sequences, although due to
constantly changing mortality and migration schedules they have

to be treated separately when the rates change over time.

Demographic interpretations of row- and column-stochastic
ppm's merit some more discussion. For populations with two age
groups in a single region, if mortality is fixed, and if a life-
time fertility of unity is split arbitrarily into two age groups
(only period NRR = 1), all measures of interest about the popula-
tion eventually become constcint. When fertility in the first age
group and survivorship adjust themselves for the sum to be unity,
with fertility in the seccnd age group being unity (both period
and cohort NRR = 1), then the birth sequence and the age struc-

ture keep changing over time.

In the period formulation of the evolution of two-regional
populations without age structure, when the number leaving a re-
gion by death and outmigration is the same as that arriving in
the region by birth and inmigration, then strong ergodicity holds
with constant regional shares. In the generational formulation,
if the SNRRP at the destination is unity (this may be stated as
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"location SNRRP = 1", or the "location replacement alternative"),
then strong ergodicity holds. On the other hand, in the period
formulation, if the rate of natural growth in each region is zero,
with arbitrary interregional migration rates, only weak ergodicity
holds and, hence, regional shares keep changing constantly to re-
flect recent migration patterns. In the generational model, when
the SNRRP at the originis unity (this may be defined to be "cohort
SNRRP = 1", or the "cohort replacement alternative” (Rogers and
Willekens, 1976b:6) ), then weak ergodicity results. The conditions
(4.7) and (4.10) for populations with n age groups in m regions

may be interpreted similarly.

Finally, the main advantage of having specific formulas for
the 2 x 2 ppm's, ih addition to the limit theorems, is that we
can see the particular workings of strong and weak ergodicity,
and see how they specialize to the stable stationary case. For
example, in equations (3.21) and (3.27), if a, = a and c, =c for

all t, Gt for large t reduces to

G = a [1 + [1 - (a + c)] + [1 - (a + c)]2 + ---}

a
a + c

and Ht’ for large t, reduces to

: = 2
c [1 + [1 - (a + c)J + [1 - (a + c)] + e

C
a + ¢

m
I

thus giving the results of equations (3.13) and (3.15).
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