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FOREWORD 

Choosing models related effectively to the questions to 
be addressed is a central issue in the craft of systems anal- 
ysis. Since the mathematical description the analyst chooses 
constrains the types of issues he candeal with, it is important 
for these models to be selected so as to yield limitations that 
are acceptable in view of the questions the systems analysis 
seeks to answer. 

In this paper, JohnL. Casti of Princetonuniversity gives 
an overview of the central issues affecting the question of 
model choice. To this end, he discusses model components and 
a wide variety of possible mathematical system descriptions. 
After discussing both local and global aspects of these model 
types, headdresses basic questions and perspectives of system 
theory. The paper concludes with a sketch of a systematic 
response to the question: What model to choose? 

To provide a thorough overview of systems analysis, the 
International Institute for AppliedSystems Analysis is preparing 
a Handbook of Systems Analysis in three volumes: 1. Overview; 
2. Methods; 3. Cases. This essay is a contribution to the - 

second volume of this Handbook. It is circulated in this 
informal way for review and comment. Please direct all response 
to the author, c/o IIASA Survey Project. 

Hugh J. Miser 
Survey Project 
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MATHEMATICAL SYSTEM THEORY AND SYSTEM MODELING 

by 

John L. Casti 

I. Model Components 

The implications of existing knowledge in fields such as 

biology, psychology, business, economics and political science, 

not to mention "hard" scientific disciplines like physics and 

chemistry, are so complex that it is no longer possible for the 

human mind to digest them without extensive abstraction, i.e., 

without mathematics. Here by "mathematics," we do not mean data 

analysis, numerical formulas, graphical methods and other pedes- 

trian (although often useful) tools frequently termed mathematics, 

but rather the use of conceptual ideas from set theory, algebra, 

topology and analysis to construct and analyze abstract versions 

of real-worldsituations withthe goalof understanding the essential 

relations among their constituent parts. Such constructions and 

analyses are the province of the mathematical modeler (read: 

system theorist)-the keeper of the abstract processes. 

When confronted by a particular process whose behavior is 

of interest, the modeler's first task is to separate the various 

aspects of the process into major subsystems, which can then be 

modeled at a more detailed level. A convenient high-level decom- 

position of a general situation is depicted in Figure 1. Part 

of the art of system modeling lies in the establishment of useful 

boundaries between the major components indicated in Figure 1.  



Figure 1.  High-level System Decomposition 

External Environment (E) 
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In actuality, these boundaries are totally artificial and what 

constitutes a useful separation is, in general, highly context- 

dependent as we shall see below. Nevertheless, the divisions 

indicated in Figure 1 do provide a helpful guideline upon which 

to focus the remainder of the modeling effort. 

According to current system-theoretic thinking, the Natural 
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process which is not directly accessible to external influence 

or observation. From a certain point of view, one might say 

that only the physically observable causes and effects reside 

in the Decisionmaking (D) and Observing (0) components, with 
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the Natural System playing the role of a mediator. An alternate 

System 

Observers 
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interpretation is to regard the Natural System as a "black box," 

whose inner workings we attempt to explore by applying inputs 

from the Decisionmaking and/or External (E) components and 

measuring outputs in the Observing component. 

We can loosely delineate the model components N, D, 0 and 

E as follows: 



Natural System- a collection of variables and relation- 

ships perceived by D and 0 as having "internal" dynamics and 

couplings to E through measuring apparatus, control mechanisms 

and "forcing functions." This is an open system definition 

and there is no pretense that the boundaries separating N from 

D, 0 and E have been chosen in a knowledgeable or even intelligent 

fashion. 

Decisionmaking Institution - a system which processes 

information, develops models and exerts controlling actions on 

N, chosen with respect to the models and to objectives which may 

be at least partially established by E. 

System Observer-a component which monitors both N and 

E and which provides information to D about the behavior of the 

system N. 

External Environment-a collection of relationships that 

affect and are affected by both N and D, yet are not generally 

perceived as "part of the problem" by D. In a very real sense, 

E can be viewed as "everything that goes on in the world." 

The foregoing definitions are far from being entirely sat- 

isfactory, but the only crucial point is that natural systems 

are arbitrary objects of analysis, whose formalization in 

N-D-0-E terms hinges critically upon the questions which the 

model is required to answer. 

Probably the best way in which to gain a feel for the 

decomposition of a given problem into the compartments outlined 

above is to consider a few representative examples. 



A .  Fishery Management- a simple model of interspecific 

competition between two species is provided by the Gauss-type 

logistic equations 

where x and y are the two fish populations, r and s are growth 

rates, K and L are maximum population levels which the environ- 

ment can support, a and 8 are measures of the extent to which 

each species interferes with the other's use of the external 

resource (food supply) and hl ( 0  1 and h2 ( are harvesting 

functions. 

A plausible separation of the above model into the macro- 

components outlined above is to consider the variables x and y, 

together with their growth rates r and s and interference para- 

meters a and 8, as the natural system N. The decisionmaking 

institution D clearly is composed of the harvesting functions 

hl and h2, while the observer 0 may be thought of as the 

variables x and y, since it is reasonable to suppose that the 

fish populations may be measured directly. Finally, the 

environmental carrying capacities K and L comprise the external 

environment E. 

The above decomposition of the model variables illustrates 

the important point that the system components N, D, 0 and E 

are not necessarily disjoint; here we see that the variables 

x and y belong naturally to both components N and 0. 



B. National Income Dynamics -consider a vastly simplified 

picture of the dynamics of national income in which the total 

national income in year k is denoted by yk and is the sum of the 

consumption expenditures w and the investment expenditures uk, k 

i.e., 

We assume that consumption expenditures depend upon the national 

income of the previous year as 

where b is a constant measuring the marginal propensity to 

consume. Clearly, 

The above relation defines an elementary input/output model of 

national income dynamics, in the sense that the output (total 

income) is determined as a (linear) function of past inputs 

(investment expenditures). 

In terms of our earlier system components, it would be 

natural to regard y as the system observer 0, u as the decision- 

making body D, and b as comprising the external environment E. 

What is of interest here is that the natural system N is only 



i m p l i c i t l y  d e t e r m i n e d  as some "mechanism" which g e n e r a t e s  t h e  

measured o u t p u t  y  f rom t h e  i n p u t s  u .  Thus, w h i l e  it i s  i m p o s s i b l e  

t o  e s c a p e  t h e  f e e l i n g  t h a t  N must  be p a r t  o f  t h e  prob lem,  it is  

n o t  e x p l i c i t l y  r e p r e s e n t e d  by t h e  v a r i a b l e s  d e f i n i n g  t h e  i n p u t /  

o u t p u t  r e l a t i o n ,  b u t  r a t h e r  must  be m a t h e m a t i c a l l y  i n f e r r e d  from 

them. W e  r e t u r n  t o  t h i s  " r e a l i z a t i o n "  problem l a te r .  

C.  E u l e r  A r c h - h e r e  w e  c o n s i d e r  t h e  c l a s s i c a l  p h y s i c s  

problem o f  d e s c r i b i n g  t h e  s t a t i c  b e h a v i o r  o f  t w o  r i g i d  arms 

o f  u n i t  l e n g t h  s u p p o r t e d  a t  t h e  e n d s  and p i v o t e d  t o g e t h e r  a t  

t h e  c e n t e r ,  w i t h  a  s p r i n g  of modulus t e n d i n g  t o  k e e p  t h e  a r m s  

a p a r t  a t  1 80° (see F i g u r e  2 )  . 

F i g u r e  2 .  The S imple  E u l e r  Arch 

I f  t h e  e n d s  are compressed w i t h  a  g r a d u a l l y  i n c r e a s i n g  h o r i z o n t a l  

f o r c e  0 t h e n  t h e  arms w i l l  remain  h o r i z o n t a l  u n t i l  B r e a c h e s  a  

c r i t i c a l  v a l u e ,  a t  which  p o i n t  t h e y  w i l l  b e g i n  t o  b u c k l e  upwards 

( o r  downwards).  I f  0 i s  now f i x e d  and a  g r a d u a l l y  i n c r e a s i n g  

ve r t i ca l  l o a d  a i s  a p p l i e d  t o  t h e  p i v o t ,  t h e n  t h e  a r c h  w i l l  

s u p p o r t  t h e  l o a d  u n t i l  a r e a c h e s  a c r i t i c a l  v a l u e ,  when t h e  a r c h  

w i l l  s u d d e n l y  s n a p  c a t a s t r o p h i c a l l y  i n t o  t h e  downwards p o s i t i o n .  

W e  w i s h  t o  model t h e  e q u i l i b r i u m  p o s i t i o n s  o f  t h e  a r c h  a s  a  

f u n c t i o n  o f  a and B .  



It is convenient to model the global behavior of the Euler 

arch by considering tne total energy of the system. We have the 

1 2 total spring energy = p (2x) , 

energy gained by 

loading = a sin x , 

energy lost by 
= -2B(1 -cosx) . compression 

Thus, 

total energy V = 2px2 + a sin x - 28 ( 1  - cos x) . 

The surface M of equilibrium positions is determined as 

In fact, it can be shown that M is a so-called cusp catastrophe 

surface. The main point to note now is that the local dynamics 

of the Euler arch are deduced from the global energy function V, 

together with the variational principle that the system assumes 

an equilibrium position such that V is at a local minimum. 

Following through the implications of this fact, it turns out 

that the arch buckles when B = 2u. 

For the Euler arch, the natural system N is the position x 

of the arms of the arch. The decisionmaking body or mechanism 

D consists of variation of the input parameters a and 8 ,  while 

the observer 0 is x, the same as N. Finally, we think of the 

spring constant u as representing E, the external environment, 



although we might also wish to include other fixed elements such 

as the length of the arms (here taken to be unity), the gravita- 

tional constant and other possibly influential fectors to be part 

of E. 

D. Transportation Network - in Figure 3 we display a section 

of a typical urban street network. The arrows indicate the allow- 

able directions of traffic flow within the street network. For 

Figure 3. Urban Traffic Network 

purposes of analyzing traffic flow through such a network, it is 

convenient to represent it abstractly by the directed graph (di- 

graph) of Figure 4. Here the nodes 5 and 6 have been added to 

account for trip initiation or termination. An arc connects nodes 

i and j if it is possible to pass from node i to node j in a trip 

of at most one block. 



Figure 4. A Graphical Representation of the Traffic Network 

If costs cij are assigned to each arc (i,j), representing 

the travel time, say, between node i and j, then a number of 

questions related to assignment of network traffic, regulation 

of traffic signals, bottleneck intersections and so forth can 

be approached through the digraph model depicted above. 

In N, D,O, E terms, the foregoing transportation network 

might be decomposed as: 

N = the set of streets, together with the allowable 

directions of traffic flow and the time of traverse 

along each link. 

D = the assignment of automobile trips to the streets 

of the network by, say, regulation of the traffic 

signals. 

0 = the measured traffic flow along each arc of the net- 

work or, equivalently, the measurement of traffic 

passing through each intersection. 

E = the traffic flowing into and out of the system through 

nodes 5 and 6. 



Examination of the preceding examples leads to the obser- 

vation that each systein model exhibits the characteristic 

features of inputs (decisions), outputs (measurements) and 

states. The explicit separation of variables into these cat- 

egories forms the cornerstone of modern mathematical modeling 

and distinguishes the current view of modeling from an earlier, 

semi-archaic approach pioneered in operations research and 

mathematical programming, in which all variables are treated 

equally with no explicit acknowledgement of their individual 

role in the problem. We shall continually emphasize the 

importance of this point throughout the chapter. 

The preceding discussion, together with the examples, shows 

that there are generally many different types of mathematical 

representations which may lay claim to the title of a "model" 

for a given process. The particular type of model employed 

will usually depenl upon the specific questions we wish to 

have answered about the process and the accuracy demanded in 

these answers. Before turning to a detailed examination of 

the basic system-theoretic questions one might wish to consider, 

let us examine in more detail the various types of mathematical 

descriptions which might be employed. 



11. Types of Mathematical Descriptions of a System 

A. Sets and Relations -at the most primitive level of 

mathematical description, we may choose to model a system as 

a relation (or collection of relations) defined on two (or 

more) finite sets. 

The general set-up for such a model is to choose two sets 

X = {xI,x2, ..., xnl, Y = {y1,y2, . . . , y  ,I, whose elements have some 

relevance to the variables of the problem, and define a binary 

relation A on the cartesian product X x Y  of X and Y. The rela- 

tion A, which is a subset of X x Y, is defined in some meaningful 

way within the context of the particular problem and it is often 

convenient to represent it by an incidence matrix A ,  as described 

in Section V, p. 50. The transportation example cited above is a 

model of this type, wherein we might choose X = Y = t h e  street 

intersections in the transportation network (the nodes of the 

graph). The relation A for this example is such that (xi,y.) E A 
3 

if and only if node xi may be reached from node y by a single 
j 

block passage through the network according to the allowable 

traffic flow. Thus, we see that almost all graph-theoretic 

descriptions are inherently of the sets/relations type, with x = Y .  

Generally, X # Y and the relation A links quite different 

aspects of the system under study. For example, in an analysis 

of the relative strength of various board positions in the game 

of chess, it is useful to let 

X = {playing pieces) 

= CP,N,B,R,Q,KI , 

Y = {board squares) 

= {1,2, ..., 641 . 



I n  t h i s  c a s e ,  s e v e r a l  d i f f e r e n t  r e l a t i o n s  may b e  d e f i n e d  on 

X x Y ,  r e p r e s e n t i n g  v a r i o u s  views of t h e  p l a y e r s  Black and White. 

D e t a i l s  of  t h i s  example may be  found i n  t h e  c h a p t e r  n o t e s  f o r  

t h e  i n t e r e s t e d  r e a d e r .  

A p a r t i c u l a r l y  v a l u a b l e  a s p e c t  o f  t h e  s e t s / r e l a t i o n s  view 

o f  a  system i s  t h e  e a s e  w i t h  which such a  d e s c r i p t i o n  e n a b l e s  

t h e  a n a l y s t  t o  d e a l  w i t h  h i e r a r c h i c a l  sys tem s t r u c t u r e .  The 

key i d e a  i n  such a  h i e r a r c h i c a l  system decompos i t ion  i s  t h e  

concep t  o f  a  set  cove r  and t h e  n a t u r a l  s t r a t i f i c a t i o n  i t i nduces  

on a  set .  W e  s a y  t h a t  a  c o l l e c t i o n  o f  s u b s e t s  {Ail forms a  

cove r  of  t h e  set  X i f  and on l y  i f  

i) Ai E P ( X ) ,  t h e  power set  o f  X ,  

Thus, w e  may now deL ine a  h i e r a r c h y  H by r e l a t i o n s  o f  t h e  t ype  

( A ~ , x  ) E p e 3 x  € A i .  The g e n e r a l  i d e a  can a l s o  be  ex tended i n  
j j 

an  obv ious way t o  a d d i t i o n a l  h i e r a r c h i c a l  l e v e l s  and d i a g o n a l l y  

a c r o s s  l e v e l s  a s  i n d i c a t e d  i n  F igu re  5.  

Level  S e t s  

A . . .  B ... 

F igu re  5. H i e r a r c h i c a l  Leve ls  of  S e t s  and R e l a t i o n s  



B. Input/Output- closely related to the sets/relations 

type of description is that in which we describe the system 

inputs and outputs by elements in certain spaces R and r, say, 

and define a map f : R - t  r, which associates inputs with the 

corresponding outputs. Such a description differs from the 

sets/relations type only in that additional algebraic and/or 

topological structure is usually imposed on the sets R and r, 

depending upon the application. Most commonly, R and r are 

assumed to be finite-dimensional vector spaces of some sort, 

with f a linear map. Such is the case, for example, in the 

so-called input/output models in the Leontief theory of global 

economic processes. 

Unfortunately, both the sets/relations and input/output 

types of mathematical descriptions, while of considerable 

value in analyzing certain structural and connective features 

of large systems, are somewhat deficient in dealing with dynam- 

ical considerations. Furthermore, as these system descriptions 

are basically phenomenological, as expressed through the binary 

relation X (or the map f), such models are inherently limited 

in their predictive powers, i.e., they offer no real explanation 

of the means by which inputs are transformed into observable 

outputs. Thus, the need arises for a more detailed description 

accounting for the "inner workings" of the system under study. 

C. Potential Functions -occupying an intermediate position 

between purely phenomenological descriptions and detailed internal 

descriptions of system behavior are potential (or energy) function 

descriptions, which have at their basis the teleological principle 



that a system's dynamic is such that the system "moves" to a 

minimum of a suitably defined energy function. 

Such models, of course, have a long tradition in classical 

mechanics, arising from the well known variational principles 

of Fermat, d1Alernbertr Hamilton, Lagrange and others. Consid- 

erable ingenuity, imagination and wishful thinking have been 

expended in recent years in an attempt to develop corresponding 

variational principles for more general processes occurring in 

biology, ecology and the social sciences. The basic problem, 

of course, is to find some invariants of motion for such pro- 

cesses. Various thermodynamic arguments, interspersed with 

concepts from information theory have also been employed in 

this regard. Perhaps surprisingly, there have been some limited 

successes in such modeling efforts, with interesting results 

reported in population dynamics, cell differentiation and 

chemical reactions. 

Mathematically, a potential function description of a 

process assumes that there exists a function V(xl,x2, ..., xn), 

where the xi are microscopic system variables, such that the 

equilibrium states x* of the process are given by the set M =  

= 0). Dynamically, this means that the transient motion 

of the system variables is described by the set of differential 

equations 

dxi 
- av - - - -  

dt axi I 

or more compactly, 

- dx - - - grad V . dt 



Thus, we see that the existence of a potential function V 

induces a dynamic upon the system. The converse question, namely, 

given a dynamic 

does a potential function V exist such that 

is of some importance also, especially in view of the dependence 

of Thom's theory of catastrophes upon such "gradient" systems. 

The answer to the above question is provided by the following 

simple test: the system = f (x) is a gradient system if and 

only if the Jacobian matrix J(x) = ax a f  is symmetric, i.e., 

af. af . 
-2 = 2 for all x in the region of interest. 
ax 

j 
axi 

D. Internal Descriptions -passing from a local dynamic 

induced from a global system potential function, we next consider 

a system description based entirely upon local interactions, a 

so-called "state variable" model. In continuous-time, such a 

model takes the form of a system of differential equations 

where x(t) E Rn is the system state, while u(t) E Rm, is the vector 

of system inputs. Usually, there is also an output y(t) E RP, 

generated by the states (and possibly the inputs), given as 



The c r i t i c a l  p o i n t  t o  n o t e  h e r e  i s  t h e  way i n  which a  

mathemat i ca l  a r t i f i c e ,  t h e  s t a t e  v e c t o r  x ,  h a s  been i n t r o d u c e d  

a s  a  v e h i c l e  t o  med ia te  between t h e  i n p u t s  and o u t p u t s .  The 

impor tance o f  t h i s  o b s e r v a t i o n  canno t  b e  overemphasized s i n c e  

it i s  p r e c i s e l y  t h e  i n t r o d u c t i o n  o f  t h e  n o t i o n  o f  s ta te  which 

e n a b l e s  a n  i n t e r n a l  d e s c r i p t i o n  t o  p rov i de  a p r e d i c t i v e  model 

o f  sys tem behav io r .  S c h e m a t i c a l l y ,  w e  have t h e  "black-box" 

s i t u a t i o n  i n  F i gu re  6 ,  w i t h  t h e  

F i g u r e  6.  Black-Box Model o f  t h e  System 

sys tem i n p u t / o u t p u t  model be ing  d e s c r i b e d  by t h e  map f .  The 

i n t e r n a l  sys tem d e s c r i p t i o n  i s  p rov ided  by t h e  two maps ( g , h ) ,  

which t o g e t h e r  g i v e  an " e x p l a n a t i o n "  o f  f  i n  t h e  s e n s e  t h a t  

t h e  i n p u t / o u t p u t  behav io r  o f  ,Y g e n e r a t e d  by ( g , h )  a g r e e s  w i t h  

t h a t  o f  f .  The q u e s t i o n  o f  how t o  de te rm ine  ( g , h ) ,  g i ven  f ,  

w i l l  b e  d i s c u s s e d  i n  t h e  n e x t  s e c t i o n .  

The a t t r a c t i o n  o f  i n t e r n a l  sys tem models i s  q u i t e  c l e a r :  

i f  t h e  f u n c t i o n s  ( g , h )  can  be  o b t a i n e d  on t h e  b a s i s  o f  p h y s i c a l  

laws and observed  d a t a ,  t h e n  t h e  i n t e r n a l  d e s c r i p t i o n  a l l o w s  u s  



to predict the future behavior of the process as a function of 

the inputs (decisions) applied. In short, the functions (g,h) 

describe the internal "wiring diagram" of the system C and 

uniquely determine its future outputs, giventhe current state 

and future inputs. 

E. Finite-State ~escriptions- for a number of technical 

reasons, the problem of determining an internal model, given 

an input/output map f, is complicated when the problem state- 

space is infinite (even if finite-dimensional), except incertain 

cases where special structure, e.g., linearity, is present. 

In addition, there are a number of practical situations inwhich 

it is natural to consider a finite state-space model as, for 

example, when modeling the workings of a digital computer. 

Such considerations lead to finite-state descriptions of dynam- 

icalprocesses. The usual ingredients of afinite-state description 

are 

U, a finite set of admissible inputs, 

Y, a finite set of admissible outputs, 

Q, the finite set of states, 

X : Q X U  +Q,  the next-state function, 

y : Q x U + Y ,  the output function. 

Since the finite sets U, Y and Q have no interesting topo- 

logical structure, the analysis of a system described in the 

above terms is a purely algebraic matter, relying heavily upon 

the theory of finite semigroups. As computational considerations 

ultimately force us to reduce all descriptions of systems to the 

above terms, it is of considerable importance to understand as 



much as possible about the underlying structure and behavior of 

such finite-state descriptions. The famous Krohn-Rhodes Decom- 

position Theorem provides a starting point for analyzing the 

inherent structure of the finite-state models, as it insures 

the existence of certain coordinatizations of the state set Q, 

which are advantageous for computation of the action of system 

inputs upon the states. 

F. Operations Research Descriptions -as already noted, 

the typical type of mathematical description arising in areas 

such as game theory, mathematical programming, decision analysis 

and other fields, which we collectively term operations research, 

generally consists of an exhaustive listing of all variables 

relevant to the system at hand, an account of various identities, 

inequalities and constraints existing between the variables and 

the presentation of a cost function involving some subset of 

the variables. A fundamental conceptual deficiency in such 

a description is the lack of discrimination between inputs, 

outputs and states. While a posteriori analysis can usually 

separate the original variables into the appropriate classes, 

the fact that such a separation has not been carried out prior 

to the analysis of the process prejudices, in our view, the 

entire methodological approach to the problem. 

As illustration of such a modeling approach, consider an 

elementary linear programming problem. 

A certain factory manufactures two products, "gadgets" 

and "gizmaccis." In each case the product is first processed 

on a cutting machine, then a hole is drilled into it on a drill 



press. The times required for these operations, the total time 

available per week, and the profit per gadget or gizmacci are 

as below. 

How can the manufacturer maximize his profit? 

Introducing the variables xl and x2 as x = number of gadgets 1 

time available 

15 

10 

to produce, x2 = number of gizmaccis to produce, we have the 

relations 

gizmacci 

5 

2 

3 

machine 

cutter 

drill press 

profit per unit 

where xl - > 0, x2 0, with the profit being 

gadget 

3 

5 

5 

Elementary graphical means or a routine application of standard 

* = %  x * = (Here, algorithms yield the optimal solution x1 l g  , 19 . 
for simplicity, we assume that gadgets and gizmaccis are contin- 

uously divisible.) 

While the preceding model certainly deals with the problem 

as stated, the distinction between what constitutes the decisions, 



the states and the outputs is clearly blurred, at best. One 

might ask, 'so what?' The reply is that by neglecting the basic 

distinction between variables, it is very difficult to naturally 

incorporate dynamical considerations into the model and, what is 

worse, without the concept of a system state, it is next to impos- 

sible to consider feedback decisionmaking or stochastic effects. 

As an illustration of how the preceding problem could have 

been formulated in more system-theoretic terms, let us introduce 

the variables 

u = the amount of time available on 

the cutting machine, 

v = the amount of time available on 

the drill press, 

and the function 

fn(u,v) = the profit obtained when u units 

of cutter time, v units of drill 

press time are available, n types 

of items are to be produced and an 

optimum decision rule is employed. 

Then it is easy to see that 

f2 (u,v) = max [3x2+fl(u-5x2,v-2x2)l I 

0 < 5x- < u 

f l (u,v) = max [5x11 . 
0 - < 3x1 (U 



Computation of the functions fl and f2 for all values of (u,v) 

in the range O f u 1 1 5 ,  0 - c v <  - 10 enables us to solve a family 

of problems for all cutting and drilling times in the indicated 

ranges. Furthermore, the concept of a system dynamic is intro- 

duced through the idea of manufacturing "gadgets," followed by 

"gizmaccis." Thus, the solution proceeds one item at a time, 

rather than attempting to compute all production levels in one 

fell swoop. This dynamic approach is a direct consequence of 

introducing the state variables u and v, along with the decision 

variables x l  and x2. 

The disadvantage of the dynamic programming (DP) formulation 

just given is that the computational algorithms are not nearly 

as efficient as for the previous linear programming (LP) set-up, 

which can employ the simplex method. However, if the costs 

and/or constraints are nonlinear or if stochastic effects 

enter, then the DP formulation comes into its own. The point 

to observe here is that it is a fundamental mistake to swear 

religious adherence to any one particular orthodoxy: flexibility 

in modeling must be maintained if best results are to hoped for. 



111. Local Considerations 

Once a particular mathematical description has been chosen 

for a given process, a number of important systenl-theoretic 

questions involving both local and global phenomena present 

themselves. The manner in which these questions appear in the 

model depends, of course, upon the type of descriptionemployed; 

however, the abstract phenomena are relatively invariant under 

a change of description, so we shall attempt to discuss the 

main issues in as context-free a manner as possible in thenext 

two sections. 

One set of system phenomena that any model must cope with 

are issues which are best termed "local" system properties. 

Here by local we mean that the phenomena either manifest them- 

selves in some restricted region of the system model or, in 

some meaningful sense, can be analyzed by considering only 

interactions between system components in the immediate neigh- 

borhood of a restriced piece of the entire system. On theother 

hand, global aspects require consideration of the entire system 

for their analysis; no smaller subsystem will suffice. We shall 

consider global properties later. For now, let us examine some 

of the local considerations more closely. 

i) stochastic effects -typically, the influence of the 

external part of a system, which we do not fully understand or 

cannot account for in the system descriptions sketched above, 

is often assumed to be a random perturbation whose effect is 

locally felt upon the system. 



For illustration, assume we have modeled a process by an 

internal description as 

To account for the fact that the functions g and h may not be 

known exactly, the above model may be replaced by 

where r(*) is a stochastic process with appropriate statistical 

properties. Here the local effect of the noise r is felt by the 

system in state z(t), i.e., r acts as a perturbation in a local 

neighborhood of the state z(t). Such a disturbance is in the 

E part of the system C. 

Another manner in which stochastic effects locally influence 

C is through the D component. Here we assume exact knowledge of 

the dynamics g and the observation function h is kncwnexactly, butthe 

theoretically desirable control law u(t) cannot be applied because 

of computational inaccuracies or otherwise. Similarly, it may 

not be possible to measure the system output with complete pre- 

cision owing to noise corruption in the measuring apparatus. 

These are again local effects in the sense that they affect 

only a neighborhood of a point in the control or output space. 

With a more elementary level of system description the 

stochastic features assume a somewhat different form. For 

instance, if the description is sets/relations then there 



may be uncertainty as to whether or not a particular pair 

(xi,yj) c A or, if an i;lput/output model is used, then uncer- 

tainties in the map f may arise. What is important here is 

not the fact that stochastic influences appear, but that their 

influence is exerted at a point of the system, not throughout 

the entire system simultaneously. This is the essence of what 

we mean by a local effect. 

ii) constraints -restrictions on the system inputs and/or 

states come in two varieties: local, in which the immediate 

decision or state is constrained to lie in some admissible 

region or global, in which some overall function of the control 

or state must remain bounded within given limits. We shall 

illustrate both types. 

Consider an internal system model 

and assume that it is desired to transfer this system to the 

origin. Further, assume that the magnitude of controlling action 

is limited by 

Such a limitation may arise as a result of considerations 

such as maximum stress factors, finite resource availability, 

maximum tolerable unemployment rates and so on. In any case, 

the constraint locally restricts the amount of control action 

that can be exerted to modify the system's dynamical behavior. 

Here local is interpreted in the temporal sense, as the magnitude 



limit M must be obeyed at each time instant t. 

NOW consider the same problem with the local constraint 

replaced by the condition 

Here we have an example of a global constraint. There is now 

no restriction on the instantaneous value of the control u, 

only the condition that the total control energy expended in 

transferring the system to the origin remain bounded by K. 

Thus, we have now traded a constraint on the local value of 

a control function for a condition on the entire function u 

itself. 

If the system description is of the sets/relations type 

then the constraints are almost automatically built into the 

schema through the relation A .  This would be regarded as a 

global constraint, as it restricts those elements of the basic 

sets X and Y which can be A -  related. In other descriptions, 

as in operations research, the constraints enter in both a 

local and global form, as was indicated in the LP example of 

the preceding section, where we had the local nonnegativity 

constraints x, 0, x2 - > 0, with the global resource constraints 

on the available cutting machine and drill press time. 

iii) time-lags - a  fundamental principle of large systems 

is: control -- takes time. Thus, the theoretical assumption 

implicitly built into most internal models that the system output 

measurement and determination and application of the control 



action take place coterminously must be regarded as only a 

convenient mathematicdl idealization in real problems. Happily, 

such an approximation works well in many cases, especially in 

classical physics and engineering. However, in decentralized 

processes with many components and decisionmakers the "simul- 

taneity" hypothesis can no longer be accepted and explicit 

account must be taken of the time-lag effect. This is partic- 

ularly true in models arising from social-science situations. 

To illustrate the manner in which time lags can affect a 

control law, consider the internal model 

where it is desired to choose the input u(t) so that the 

terminal state x(2) is as small as possible, subject to the 

constraint 

It is an elementary exercise to see that the optima1 

choice is 

Now consider exactly the same problem with the sole change 

that the system dynamics have a unit time lag in the state, i.e., 

the dynamics are 



with the initial condition now being 

It is a somewhat less elementary, although straightforward, 

exercise to determine the optimal control for this problem as 

Thus, we find that introduction of a time lag has resulted 

in a qualitative change in the structure of the optimal decision 

by introducing a switching point from max control to min control 

1 at t = z .  Furthermore, we note that this change in control 

strategy is a local effect in that it is applied to the system 

1 1 when it is in its state x ( ~ )  (which happens to be x = - in this 2 

case) . 

It is a common feature of processes involving time lags that 

the presence of a delay may cause the appearance of self-exciting 

oscillations, then exertion of too much control, followed by com- 

plete instability of the system. Such undesirable phenomena can 

only be avoided by application of inputs timed in such a manner 

so as to counteract the influence of the after effects on the 

state due to the delay. This is an important aspect of controlling 

large, complex systems and one to which considerable theoretical 

work is currently being directed. 



IV. Global Aspects of System Structure 

In contrast to the local issues involving system structure 

and behavior in a restricted region of its definition, we must 

also consider aspects of the system which cannot be confined to 

any particular part of the structure, but which are properties 

of the entire system. If the preceding section dealt withtopics 

associated with a "reductionist" view of the system, then the 

current section will look at the system from a "holist's" vantage 

p o i n t , t a k i n g i n t o a c c o u n t p r o p e r t i e s  possessed by no single com- 

ponent or subsystem of the total system. We have in mind system 

properties such as conservation/dissipation laws, hierarchical 

structure, singularities and process time scales. Let us examine 

each of these global features in a bit more detail. 

i) conservation/dissipation laws - a  good part of mathe- 

matical physics is anchored by the laws of conservation of mass, 

energy, charge, baryon number and so on. These are all restric- 

tions imposed upon the global behavior of physical processes. 

On the other hand, equally basic principles involving dissipation 

effects also pervade classical physics. Here we refer to increase 

of entropy in closed systems as dictatedbythe SecondLawofThermo- 

dynamics and the transformation of mechanical energy to heat via 

various types of functional effects. Again, such dissipative 

principles are constraints which the global dynamical behavior 

of a process must adhere to. The conservation/dissipation laws 

impose no restriction on the local behavior of a process; they 

simply say that the total motion must be such that certain 

functions of that motion are invariant or non-decreasing. 



The s e a r c h  f o r  e x t e n s i o n s  o f  t h e  c o n s e r v a t i o n  laws o f  

c l a s s i c a l  p h y s i c s  f o r  more g e n e r a l  s y s t e m s  h a s  been t h e  t o p i c  

o f  much s t u d y  i n  t h e  s y s t e m s  l i t e r a t u r e .  G e n e r a l l y  s p e a k i n g ,  

t h e  f u r t h e r  t h e  g i v e n  s y s t e m  i s  f rom a  c l a s s i c a l  p h y s i c a l  

p r o c e s s ,  t h e  more f a n c i f u l  t h e  p roposed  c o n s e r v a t i o n  p r i n c i p l e s  

seem. N o n e t h e l e s s ,  i n t e r e s t i n g  r e s u l t s  have been o b t a i n e d  i n  

some a r e a s .  F o r  i n s t a n c e ,  f o r  t h e  w e l l  known L o t k a - V o l t e r r a  

p r e d a t o r - p r e y  dynamics 

i t  c a n  b e  shown t h a t  t h e  f o l l o w i n g  f u n c t i o n  i s  c o n s t a n t  a l o n g  

s o l u t i o n  c u r v e s  

~ ( x , y )  = c x  + by - d l o g x  - a  l o g y  . 

The c o n s t a n c y  o f  H im?oses c e r t a i n  g l o b a l  s t r u c t u r a l  f e a t u r e s  

upon t h e  dynamics o f  t h e  s y s t e m ,  e . g . ,  no  l i m i t  c y c l e s ,  e a c h  

t r a j e c t o r y  i s  a  c l o s e d  o r b i t ,  e tc .  

I n  a  q u i t e  d i f f e r e n t  d i r e c t i o n ,  Ashby deve loped  h i s  Law 

o f  R e q u i s i t e  V a r i e t y  i n  a n  a t t e m p t  t o  i n t r o d u c e  thermodynamic 

c o n s i d e r a t i o n s  i n t o  s y s t e m  t h e o r y .  The b a s i c  i d e a  i s  t o  d e f i n e  

t h e  v a r i e t y  o f  a  f i n i t e  set A t o  b e  l o g Z  ( c a r d  A ) ,  where  c a r d  A = 

number o f  e l e m e n t s  i n  A. Then i f  R and E a r e ,  r e s p e c t i v e l y ,  t h e  

set o f  i n p u t s  ( d e c i s i o n s )  and e x t e r n a l  d i s t u r b a n c e s  f o r  a  g i v e n  

sys tem,  t h e  Law o f  R e q u i s i t e  V a r i e t y  s t a t e s  t h a t  o n l y  v a r i e t y  

i n  R c a n  f o r c e  down v a r i e t y  due  t o  E .  I n  o t h e r  words ,  i f  t h e  

v a r i e t y  i n  t h e  c o n t r o l  i s  l o g r  and t h a t  o f  E is l o g c ,  t h e n  t h e  



variety in the output is - at least logr - logc. An account of 

the derivation of this basic rule, together with its connections 

to entropy and information theory can be found i- the works of 

Ashby cited at the end of the chapter. 

The preceding examples show that conservation principles 

can yield important information on the structure and behavior 

of a given system if we are either clever or lucky enough to 

find them. Regrettably, as yet there appears to be no uniform 

procedure to employ for generation of such laws for general 

classes of processes. 

ii) hierarchical structure -almost all large systems, 

biological, business, economic, political or sociological, 

share the property of hierarchical organization. Decisionmakers 

exist on all levels communicating instructions and receiving 

information from subordinate levels. From a modeling standpoint, 

we are interested in questions such as how the hierarchical 

structure influences the flow of information throughout the 

system, what effect the hierarchical organization has upon the 

system's ability to react to external disturbances, the sensitivity 

of the system output to changes in the connective structure of 

the hierarchy and so forth. 

The hierarchical organization of a given system is clearly 

a global feature which cannot be analyzed by local tools. In 

mathematical system studies, it appears that ideas taken from 

algebra and geometry will prove most effective in studying 

questions related to system hierarchy. As was indicated earlier, 

techniques from algebraic topology can be employed in a sets/ 



relations description to quantitatively study hierarchical orga- 

nization. It is tempting to conjecture that once the global 

tools have mapped out the overall hierarchical structure and 

connective pattern for a system then local tools from analysis 

may be brought to bear upon considerations such as system 

stability. However, since we don't wish to begin dreaming in 

print, we leave this as only a speculative possibility and 

move on to other global system properties. 

iii) singularities - for systems modeled by differential 

(or difference) equations, perhaps the most noticeable feature 

is the set of points in state, parameter or control space at 

which qualitative changes in system behavior occur. 

For instance, consider the internal model 

where a is a vector of parameters. The steady-state equilibrium 

of the system will be the state x(-1 = x*(c,a), where we explicitly 

indicate the dependence of x* upon the parameters a and the initial 

state c. Furthermore, x*(c,a) will be a solution of the equation 

For fixed a and c, any equilibrium x* can be regarded as a 

singularity of the process. This is the view taken in classical 

stability theory. On the other hand, we may also consider the map 

whereby a and c are regarded as variables. In this setting, 



those values of c and a at which the map x* is discontinuous 

or multivalued are also considered to be singularities of the 

system, although of a very different type. 

In either of the above cases, it can be shown that the 

singularities of the system determine to a large degree its 

entire dynamical behavior and it is only a small exaggeration 

to think of the transient motion as being forced upon the system 

by the particular structure of its singularities. In addition, 

one should note that no local coordinate changes can remove 

singularities of the above type: they are global invariants 

of the process. Thus, it is of the utmost importance to under- 

stand the number and nature of all system singularities if we 

wish to control any system in an effective manner. 

iv) time constants -an almost universal feature of large 

systems is that the variables seem to separate into a fast-time/ 

slow-time dichotomy. This qualitative distinction between vari- 

ables is so pervasive that, for most engineering problems, the 

"fast" variables are usually considered state variables, while 

the "slow" variables are generally treated as parameters. Here 

again we see a system property which cannot be localized to a 

particular region of variable definition. 

In mathematical modeling, it is of some importance to isolate 

the slow variables since, depending upon the application, it may 

be possible to "factor" them out of the problem, at least in a 

computational sense. For example, if there are n + m  variables 

which describe the evolution of the system and m of them are 

slow variables which can be regarded as parameters, then we have 



thc: option of considering a single problem with a state space 

of dimension n + m ,  or m problems of dimension n. In many cases, 

the first version may be computationally intractable, or at 

least impractical. Those analysts familiar with dynamic pro- 

gramming procedures for control processes will recognize the 

fast/slow separation of variables as one way in which we may 

hope to lift the "curse of dimensionality." The catastrophe 

theory applications of Thom, Zeeman and others are also a good 

illustration of time-constant exploitation, wherein the slow 

variables are regarded as inputs (or decisions), while the 

fast variables are the observed outputs. All intermediate 

speed variables (the states) are suppressed in what is essen- 

tially an input/output theory. 

Having now had a look at some of the main local and global 

aspects of large-scale systems, we turn to a more extensive 

discussion of the basic system-theoretic questions which the 

mathematical model must address. 



V. Basic Questjons and Perspectives -- of - -  System Theory 

Models are constructed because there are aspects of the 

system which we don't understand and wish to explore. But what 

type of questions can models of the foregoing type address and 

to what extent do modern system-theoretic tools enable us to 

speak with confidence about the connection between the system 

model and the system? These issues lie at the very heart of 

thensystems approachw,and it is possible to provide only a 

partial glimpseoftheoverall situationin suchabriefchapter. 

So, in this section we shall sketch a broad array of questions 

which can be approached using mathematical models of various 

sorts. This overview should provide the needed perspective for 

the reader to pursue the technical literature with someconfidence. 

The basic questions of theoretical and applied systemscience, 

when broadly interpreted, are surprisingly few in number and, in 

one way or another, all center about the interaction of thesystem 

with its environment. For purposes of exposition, it is conve- 

nient to group the questions into the following main categories: 

reachability/controllability -the identification of those 

system behaviors which are achievable by application of admissible 

inputs; 

observability/detectability -the determination of those 

systembehaviorswhich are identifiable frommeasured physical outputs; 

realization/identification -the generation of the class 

of models which could "explain" a given set of input/output data; 

optimality -determining how efficiently a system can 

perform a specified function, subject to physical and theoretical 

operating constraints; 



s t a b i l i t y / s e n s i t i v i t y - c a l c u l a t i n g t h e w a y i n w h i c h e r r o r s  

and disturbances affect the equilibrium behavior of a system. 

We now examine each of the above categories within the con- 

text of specific types of mathematical descriptions. As we 

proceed, it will become evident that the type of mathematical 

description employed will strongly flavor the precise technical 

form of the question, but the invariant essence of the problem 

will be sufficiently clear as to leave no doubt as to which 

category the question belongs. 

Abstractly, the question of reachability may be formulated 

in the following terms: given a set R of admissible inputs and 

a set X of system states, the transition map I$ of the system 

associates a particular state with each element w E R ,  assuming 

the system starts in some agreed upon initial state x (usually 0 

taken to be the origin if X is a vector space). Thus, the map 

I$ : R + X  determines the effect of the input w on the system, trans- 

ferring x to the state +(x ; w ) .  The problem of reachability 
0 0 

is to characterize the range of . In the event the map + 
is onto, i.e., the range of + is all of XI  then we say 

that the system is completely reachable, i.e., any state 

in X may be "reached" by application of some admissible 

input from R. The corresponding problem of controllability is 

similar: given that the system is in a state x E X ,  does there 

exist an input from R which transfers the system to x ? If so, 
0 

x is called a controllable state. If all X E X  are controllable, 

then the system is said to be completely controllable. (Remark: 

the preceding definitions are incomplete in the sense that the 



initial and terminal time should also be taken into account. We 

omit this aspect for two reasons. First, it is relevant only 

for non-autonomous systems described in internal form and secondly, 

it requires an extended notation which is needlessly elaborate 

for our current needs. The technical treatments of mathematical 

system theory cited in the bibliography will supply the reader 

with all relevant definitions and details.) 

Certainly, the best-structured concretization of the 

above abstract set-up is for a linear system given in internal 

form. Here the system dynamics are 

and it is a well known result that the set of reachable states 9? 

is precisely the set of elements in Rn spanned by the vectors 

2 n- 1 G,FG,F G, ..., F G, i.e., 

2 n- 1 g =  span {G,FG,F G ,..., F G) . 

Furthermore, a consequence of linearity and continuous-time is 

that,if a state x €9, then x may be reached in an arbitrarily 

short length of time. As an illustration of the above result, 

consider the system in R4 given by 



Here the set 

9' = span 

2 3 since the vectors G I  FG,F G I  F G are linearly independent. 

Hence, the above system is completely reachable. 

For more general processes given in internal form, the 

situation cannot usually be resolved by linear algebraic tech- 

niques alone. For instance, the reachable set of the nonlinear 

system 

with f analytic in x and u, can be characterized using 

techniques from differential geometry and Lie algebras of 

vector fields. 

Systems described by finite-state machines have a reachability 

theory that parallels that for internal descriptions, and which is 

usually termed "strongly connected" in the automata literature. 

In the event we have a system description of a more general 

type as, for instance, sets and relations, then we may no longer 

have as much structure in the sets Q and X and, consequently, it 

may be somewhat more complicated to characterize reachability. 

Say, for example, that in a sets/relations description we take 



the state space X to consist of a vector Q whose components 

(positive integers) charac~erize the nunber of connected ccprrponents which 

exist at dimmion level q in the simplicia1 axnplex sssociated with 

the relation A .  (The notion of q-connectivity is elaborated 

in detail in the works cited in the references.) The set R 

may consist of various modifications that one could make to 

the incidence matrix A ,  e.g., addition or deletion of vertices, 

modifications of entries from 0 to 1 or vice-versa. Then the 

reachability problem would be to ask if a prescribed structure 

vector Q could be obtained by admissible changes in the rela- 

tion A .  This is a far different technical problem than that 

sketched earlier. Nonetheless, the abstract structure of the 

question is the same. 

B. Observability/Detectability 

The question of reachability revolves about what can be 

accomplished using admissible inputs. Problems of observability 

focus upon what can be done with system outputs. More precisely, 

each state x E X of a system generates a certain output via the 

system output map 

where r is the output set. Questions of observability deal with 

the issue of whether or not two (or more) distinct states x and 

x' give rise to the same output. In set-theoretic terms, we are 

concerned with whether the map r l  is 1 - 1 .  In most practical 

problems, it is impossible to physically monitor the entire sys- 

tem state. We must settle for measurements of accessiblevariables 

or aggregates such as sums of various state components. Observability 



properties of the system then determine whether it is theoretically 

possible to reconstruct the entire state from output measurements. 

As one might suspect, for the constant linear system 

the observability question can be settled by purely algebraic 

means. It is an easy exercise to verify that a given state x* 

is unobservable if and only if r~ (x*) = 0. Thus, the unobservable 

states are precisely those elements forming the kernel of the 

matrix 

In other words xo is unobservable if and only if it is mapped to 

zero by the above matrix. Otherwise, measurement of the output 

y(t), over an arbitrarily short interval, will suffice to uniquely 

determine xo. 

The foregoing result strongly suggests a dual relationship 

between the concepts of reachability and observability upon making 

the transformations F +F', G +HI, p + m  (recall: H is p x n, 

G is n xm). A precise duality theory (in the vector space sense) 

can be developed by following up this observation and it can be 

seen that a system is completely reachable if and only if its 

dual is completely observable. Heuristically, this result is 

equivalent to interchanging the system inputs and outputs and 

reversing the flow of time. 



As usual, the observability question for more general pro- 

cesses is not so weli understood and its very discussion would 

require more mathematics than we have room for here. In more 

general contexts, such as potential functions, sets/relations, 

etc., even a precise statement of the problem remains to be 

formulated, although the general notion of the output map 

being 1 - 1  provides a starting point. 

C. Realizations/Identification 

The construction of an internal description from input/output 

data is the very essence of mathematical modeling. In technical 

terms, this is the "realization" (electrical engineering terminol- 

ogy) of the data. A special subcase of the general problem is 

when the model structure is given and only the values of parameters 

within the model need to be determined by the data. This is the 

parameter identification problem. In either case, the objective 

is to provide a model which, in some sense, "explains" theobserved 

data. 

The form of the realization depends, of course, upon the 

type of model one is attempting to obtain. Generally, we are 

given an external description, i.e., a map 

where R and r are the system input and output spaces, respectively, 

and the task is to construct an internal model whose input/output 

behavior reproduces that of the map f. If f is linear, it turns 

out that the problem is remarkably easy: there are an infinite 

number of non-equivalent internal models which will have external 

behavior identical to that of f. However, all ambiguity is removed 



(modulo a coordinate change in the state space X) if we further 

demand that the realization be both completely reachable and 

completely observable. Such a realization is called canonical 

and is equivalent to demanding that the dimension of the state 

space X be as small as possible. 

Example. Suppose a single-input/single-output linear system 

is presented with the input 

and the observed output is the sequence of natural numbers, i.e., 

The problem is to realize an internal model 

whose input/output behavior generates the natural numbers starting 

with a unit input. Application of standard algorithms soon yields 

the canonical model 

which can easily be seen to be reachable and observable. 

The realization problem takes on a much more complicated 

character once we pass out of the realm of linear theory. For 



some classes of nonlinear processes, some procedures exist which 

mimic the linear case as long as sufficient structure is present 

in the input/output map, e.g., multilinear or polynomial. How- 

ever, almost everything remains to be done in the way of making 

these methods practically operational. 

If the model we are trying to generate is not an internal 

"differential-equation type," then the realization problem enters 

the realm of system theory research. For instance, in a sets/ 

relation context, the realization problem would be that of 

generating the system incidence matrix A, given the two finite 

sets X and Y together with an input/output relation between them. 

Here it is not even entirely clear what constitutes the input/ 

output map f, but a plausible beginning would be to take the 

structure vector Q mentioned above. Difficult mathematical 

questions then arise as to whether or not Q contains sufficient 

information to determine A (up to a permutation matrix). 

In another direction, we might wish to determine a potential 

function such that observed system equilibria (the measured data) 

agree with the stationary states of the potential function. 

Depending upon the setting, this is equivalent to solving the 

so-called "inverse problem" of the calculus of variations. Much 

work has been done in this area, but the problem is by no means 

completely settled. 

D. Optimality 

The imposition of some measure of system performance upon 

a process changes dramatically our view of the choice of system 

inputs. Now, instead of choosing an input to transfer the system 



to some specified state, we select the input to minimize a 

measure of system cost. (Of course, the reachability problem 

for a fixed terminal state could be viewed as a special case 

of the optimality problem by introducing a distance measure 

from the desired state as the cost function; however, it is 

generally more illuminating to regard the reachability issue 

separately as we have done above.) 

In general terms, the optimality problem goes as follows: 

we are given a cost measure J :  Q - + R  which associates a real 

number (the process cost) with each admissible input. The 

problem is to determine those inputs (controls) which yield 

the minimal cost. The existence and uniqueness of optimal 

controls for various classes of maps J and various types of 

internal and external dynamics has been studied for many years 

and a considerable body of knowledge, termed "optimal control 

theory," has arisen as a modern outgrowth of the classical 

calculus of variations, within which the results and techniques 

are codified. Again, the most extensive results are available 

for those processes described in internal form, as we now 

illustrate. 

Consider the problem of minimizing 

over all piecewise-continuous functions u(t) on [O,T]. Assume 

that the system dynamics are 



It has been shown that a necessary condition which any candi- 

date optimal control must satisfy, is that it yield the pointwise 

minimum of the system Hamiltonian 

where X(t) is an arbitrary piecewise-continuous multiplier 

function to be determined. This is a scalar version of the 

famous Pontryagin Maximum Principle. Under convexity condi- 

tions on q, this principle can also be shown to be a sufficient 

condition for optimality, as well. With a little bit of analysis, 

it can be shown that the solution of the above problem reduces 

to solving the nonlinear two-point boundary-value problem 

with the minimizing control u* (t) belonging to the set 

Thus, the Pontryagin Principle is an ul-dated extension of 

Hamilton's equations from classical mechanics. We note, in 

passing, that the same problem can also be approached using 

dynamic programming or even via nonlinear programming methods. 

In the event the system is described by a potential function, 

then the dynamics themselves are governed by a variational prin- 

ciple and we can express them as 



= - grad V(x,u) , 
X 

where V(x,u) is the appropriate potential. Here we generally 

regard the inputs u as parameters and the optimal control prob- 

lem might be posed as the nonlinear programming problem of 

finding the best set of parameter values, with the above system 

dynamics as a constraint. However, if the inputs are functions 

then the Pontryagin approach sketched above could also beemployed. 

The more general setting of sets/relations or a graph 

description introduces the problem of suitable definition of 

a criterion, together with the serious technical difficulties 

of determining the type of inputs which will optimize the chosen 

performance measure. The difficulty is one of a lack of conti- 

nuity, a typical obstacle in cornbinatorial problems. Since there 

is no notion of "nearness" upon which one can construct a varia- 

tional theory, it is necessary to employ various algebraic means 

to attempt to isolate the best system input. Unfortunately, 

these methods are still in their infancy and nothing approaching 

a comprehensive set of results is yet available. 

E. Stability/Sensitivity 

One of the most fundamental of all system-theoretic questions 

is that of determining the effect of changes in the model upon 

the system structure and observed behavior. Suchstabilityproblems 

take on myriad forms, depending upon the type of systemdisturbance, 

the observed output, the structural feature under consideration, 

the type of mathematical description chosen and so forth. Here 

we shall indicate only a few of the more common types of stability 

problems. 



Consider a system whose dynamics are described by the 

potential function V(x,u), where the components of the vector 

u are a set of system parameters, i.e., the system evolves 

according to the gradient dynamics 

The equilibrium states M of such a system correspond to the 

critical points of the potential V and the particular location 

x* E M of the equilibria depends upon the vector u, i.e., 

* x* = x (u), where M = (x : grad V =  0). An important stability 
X 

problem is to determine those values of u such that the map 

u+x*(u) is discontinuous. Such values of u are called 

"catastrophe" points and are the focus of the recent catastrophe 

theory of Thom and Zeeman. 

The catastrophe theory set-up is a special case of another 

type of stability concept, structural stability, in which one 

studies how changes in the system dynamics, themselves, influence 

the geometric character of the system trajectories. For example, 

consider the damped oscillator described by the equation 

If a > 0, the phase-plane portrait of the trajectories is as in 

Figure 7a. For the undamped case a = 0, we have the situation 

depicted in Figure 7b. 



Figure 7. The Damped and Undamped Harmonic Oscillator 

The equilibrium at the origin is of an entirely different topo- 

logical character in the above two cases: in case (a), the 

origin is a focus, while in case (b) it is a center. ~ h u s ,  the 

undamped harmonic oscillator is not structurally stable with 

respect to perturbations in the damping coefficient a, since 

any departure from a = 0 changes the character of the system 

trajectory. On the other hand, the damped oscillator is 

structurally stable with respect to changes in a, since for 

any a > 0, there is a nearby value of a such that the system 

trajectory is still a focus. Higher-dimensional generalizations 

of the above idea form the essence of multiparameter bifurcation 

theory, of which catastrophe theory is an important special case. 

The most classical stability questions involve a system 

given in internal form 



where it is assumed that f(0) = 9, i.e., the origin is an equi- 

librium point. If the initial state c f 0, then it is of 

interest to know if the system state x(t) + O  as ':+- and, if 

so, at what rate does the state approach the origin. These 

are stability problems in the sense of Lyapunov and many 

effective techniques exist for answering the above questions 

and many more. 

From an applied systems analysis viewpoint, perhaps the 

most interesting aspect of classical stability is the deter- 

mination of the domain - of attraction of the origin, i.e., the 

determination of those initial states c which will eventually 

go to the origin. If the system dynamic f contains parameters, 

i.e., f =  f(x,u), then the variation of the boundary of the 

domain of attraction with changes in u brings us back to the 

catastrophe theory setting under appropriate hypotheses on 

the analytic structure of f. 

If the basic system model is not of the internal type but, 

say, is a graph or simplicia1 complex, then the stability prob- 

lems are of a somewhat different sort. For instance, consider 

the energy demand model characterized by the graph of Figure 8. 



Energy 
Capacity 

Energy 
Price 

Environmental 
Quality 

/ Use 

- 
Population 

Number of +  umber of 
Factories Jobs 

Figure 8. Graph Model of Energy Demand 

Here a "+" on a directed arc from node i to j means that an 

increase in the value of variable i tends to increase the value 

of variable j, all other factors being held constant, while a 

" -"  means an increase in i tends to reduce the level of j .  

This is an example of a signed digraph. A stability question 

of interest in connection with such a situation is whether 

a unit pulse introduced into the system at a given node 

(e.g., population) results in the value of any variable 

ultimately becoming unbounded. If not, then we say the 

system is value stable. A related concept, called pulse 

stability looks at basically the same question but with 

respect to the sequence of changes in values at a vertex from 

one time period to another. Both of these stability concepts 

can be attacked by algebraic means, utilizing the connection 

between the properties of a planar digraph and the properties 

of associated matrices. 



In the more general case of a system described by a 

simplicia1 complex, the stability problems center upon changes 

in the connection pattern induced by perturbatioqs of vertex 

values and/or changes in the defining relation A. To illustrate, 

consider a pair of sets X = ix tx2tx3tx41t Y  = iy1ty2,y3ty41, 1 

with the defining relation X C Y  x X  being characterized by the 

incidence matrix 

Decomposing this complex into its dimensional components, we 

find that there are 3 distinct components at the 0-level, and 

one component at the 1-level.   his is easily seen from the 

geometrical representation of the complex shown in Figure 9. 

Figure 9. The Simplicia1 Complex of the Relation A 

The first structure vector of this complex is then Q = (1 3), 

indicating a low level of connection at the 0-dimensional level. 



A stability problem that may arise in connection with a 

problem of this sort is whether or not the components of Q 

remain unchanged if we vary some elements in A .  When stated 

in this form, it is also clear that the stability and reach- 

ability problems are related as we may wish to arrange the 

modifications in A to achieve the structure vector Q = (1 I), 

which would indicate a more tightly connected system. Regret- 

tably, a systematic methodology for answering this type of 

question remains to be developed. 

VI. What Model to Choose? 

In the preceding sections we have presented a number of 

alternative descriptions for modeling applied system processes 

and discussed a variety of basic questions which the models 

address. However, in the final analysis the modelermustchoose 

one or another type of description, which then constrains the 

type of question with which he can effectively deal. As a 

guide to the selection of a particular system description, we 

present the Table below, in which the strengths and weaknesses 

of the model classes presented above are summarized. The reader 

should consider the Table only as a rough guide, since in any 

individual case, peculiarities of the problem may require a 

modeling approach departing from the general guidelines of the 

Table. 



External 

(InputIOutput) 

Deals only with observed 
data; does not require 
introduction of statevari- 
ables, thereby reducing 
computational burden. 

Weaknesses Model Type 

Provides no explanatory 
mechanism or prediction 
procedure; reachabilityl 
observability questions 
hard to formulate. 

Strengths 

Internal 

(State Variable) 

Explicitly postulates a 
mechanismwhereby inputs are 
transformed into outputs; 
highly developedmathemati- 
cal theory for analyzing 
most basic systemquestions; 
not difficult tonaturally 
incorporate global system 
constraints suchas conser- 
vation laws, non-local 
effects, connectivity 
structures. 

Requires detailedknowledge of 
dynamics and the way system in- 
puts andoutputs areprocessed; 
computational burden very 
highunlessspecial structure 
(e.g., linearity) present; 
hard tomodelnon-dynamical 
situations, e.g., art, 
music, game-playing, etc. 

Potential 
Functions 

Easy to synthesize local 
dynamics from global 
variational principle. 

Difficult to justify incases 
whenno apparent variational 
princip1eexists;hard tofor- 
mulate meaningful reachabilityl 
observability problems. 

SetsIRelations 

(Graphs) 

Can be employed in very 
general settings; easy to 
analyze overall connection 
pattern betweensystemcompo 
nents; readilyaccommodates 
hierarchical decomposition 
of systemstructure; compu- 
tationalaspects relatively 
straightforward. 

Hard to incorporate dynamical 
effects in a natural way; 
provides little predictive 
power. 

Operations Research I Can handle very large prob- I Fails to distinguish between 

(Mathemat 
Programmi 

ical 
ng) 

lems if sufficient sttucture 
(e.g., linearity) present; 
computational procedures 
welladvanced; require rela- 
tivelymodestmathematical 
background to understand 
and employ. 

inputs, outputs, states; 
also, makes no distinction 
between open-loopand feedback 
control; no natural way to 
include stochastic/adaptive 
aspects; notionsof reachabilityl 
observability nonexistent. 

Table 1 .  Relative Merits/Demerits of Model Types 
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