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SOME PROBLEMS OF LINKAGE SYSTEMS 

Yuri Ermolev 

INTRODUCTION 

At present many different models have been developed which 

describe separate activities of a real economy. Some examples 

are energy, water and other resources supply models, problems 

of national settlement planning, industrial or agricultural 

production models, manpower and educational planning models, 

and resources allocation models. These models have exogenous 

variables which describe interactions between one subsystem and 

the other subsystems. One can consider these variables as endo- 

genous or as decision variables when these submodels are linked 

with a model of the whole system. 

There are different aspects of the linkage of submodels. 

We define here linkage as the opposite to decomposition. If in a 

linkage problem one tries to obtain a model of the whole system 

by uniting models of the subsystems, then in the decomposition 

problem one must tryto split a model of the system into a number 

of small models of the subsystems. As a result, one may obtain 

a large-scale model. How does one solve a corresponding mathe- 

matical problem? Is it necessary to collect all submodels in 

one place? Are there numerical methods which allow us to use 

different computers for running separate submodels? 



The objective of this paper is to discuss the possible ways 

to formulate the problems of linkage mathematically and possibil- 

ities for applying methods of optimization to these problems. 

For instance, in special cases of linkage the known decomposition 

technique can be used. 

A Deterministic Case with a Common Objective 

Let us suppose that each model of a subsystem (submodel) 

can be described in the follot~ing LP-form: 

(a (k) , x (k) ) = max (1) 

- 
There are N submodels k = 1,N. Linking the submodels is carried 

out by parameters y(k). There is a nonempty feasible set of 
- 

endogenous (linking) variables y(k), k = 1,N, corresponding 

to the feasible conditions of linkage. Let us assume that these 

conditions of linkage are described by linear constraints 

in particular, 

In this case the linkage version may be a problem of allocating 
- 

the vector resources among subsystems k = 1,N. 



Sometimes equations (5) and (5') have only a single solution, 

for instance, if the linkage variables are bound by a strong 

econometrics relationship then the problem of linkage leads to 

the solving of equations (see Almon and Nyhus 1977; Keyzer et al. 

1977). Let us assume that equation (5) has many solutions. In 

this case, it is natural to consider the problem of finding the 
- 

best variables y(k), k = 1,N. Denote by x(k,y) the solution of 

the k-th problem (1) - (4) for given y(k). Then the problem of 

linkage might be the problem of finding y such that y = 

= (y (1 ) , . . . , y (N) ) , which maximizes the nonlinear objective 

function 

under the conditions of (5). Generally speaking, there is a 

set value f(y) for each given y and there must be a certain 

sense of maximizing the mapping f(y). In particular, if 

then function f (y) is a nondifferentiable piecewise linear 

concave function and for the maximization of this function 

one can use the well-known finite methods of decomposition 

or iterative methods of nondifferentiable optimization (see, 

for instance, Ermolev 1978). 

The number of vertices of the feasible polyhedral set for 

such problems is so large that finite-step methods, based on 

moving from one vertice to another, yield very small steps at 

each iteration and consequently very slow convergence. More- 

over, the known finite methods are not robust versus computa- 

tional errors. The nondifferentiable approach made it possible 

to develop easily implemented iterative decomposition schemes 

of the gradient type. These approaches do not use the basic 

solution of the linear programming problem which makes it 

possible to start the computational process from any point 

and leads to computational stability. 



Let us consider an application of nondescent methods of 

nondifferentiable optimization--the method of a generalized 

gradient. Denote by v(x,y) the optimal value of dual variables 

in problems ( 1 )  - ( 4 ) ,  which corresponds to the constraint ( 3 ) .  

Then a generalized gradient of function f(y) defined by ( 6 )  is 

Therefore the generalized gradient method for the considered 

problem of maximization ( 6 )  subject to (5) reduces to the 

following steps. Let 

be an approximate solution after the s-th iteration (s = 0,l . . . ) ,  
S yo being arbitrary. For the given y the following subproblems 

are solved 

u (k)A(k) + v(k)B (k) - > a (k) , ( 8 )  

for k = m. If (u (kIys) ,v [kly5) ) are the solutibns of these ; 

problems, then the next value of y will be calculated from 

S where ps is a step-size multiplier; v = (v(1 .yS)l.. . . V ( N , ~ ~ ) ) ,  

e = (e(l), ..., e(N)); Y is the set defined by (5), and T ( 0 )  

Y 
is the projection operator on Y. 

In problems (7) - (9) only the objective function changes 

with the number of iterations. Therefore the previous solution 

(u(k,ys),v(k,ys)) can be used for calculating the solution 
s+l 

(U ( k , ~  ) ,v (k,ys+l ) ) in the next iteration s+l . For this 
s+l s+ I reason it is possible to calculate (u (k,y ) ,v(k,y 1 )  very 

quickly. 



The projection operation could be easily implemented for 

constraint (5') if the number of components of d is not too large, 

This operation can also be simplified for constraint (5) when 

information about the previous iteration is used. 

The convergence conditions for the procedure demand that 

Note that according to algorithm (10) the solutions of subproblems 

(7) - (9) can be carried out on different computers and the 

information on x(kIyS) and e(k) is needed for solving the problem 

of linking (6) and (5) only. 

A More General Case with Different Objectives 

In a more general case each submodel can be described in the 

following form: maximize 

subject to 

where k = 1 ,  ..., N, and the link2ng variable y is given. Let 

x(k,y) be an optimal solution and X(k,y) be a set of optimal 

solutions. Then for finding a desirable point y in the feasible 

set of linking variables Y one can use the set valued mapping 

and a problem of linkage is the problem of maximization of the 

mapping F(y). One way to understand this problem is the maxi- 

mization of function 



in the feasible set of linking variables Y. 

0 
If f (x (1 ) , . . . , x (k) ,y) = 1 g (x (k) ,y,k)., functions 

k= 1 
v - 

g (x,y,k), v = 0,1,..., m, k = 1,N are concave as functions 

of variables (x,y), then function F(y) will also be concave and 

for solving the obtained problem there exists a numerical method 

similar to method (1 0) . 

0 
If f (~(1). . . , x(x) ,y) # 1 g (x(k) ,y,k), then for given y, 

k= 1 

the maximization of f (x (1) . . . , x(N) ,y) , x (k) E X ( k , ~ )  is 

equivalent -to maximizing 

under constraints 

for all z (k) such that 

This problem can be approximated by the following stochastic 

maximin-type problem. Maximize the function 



subject to 

where M is a large positive number, p(z(l), ..., z(N)) is an 

arbitrary nongenerate density over set X = X(1)*-*X(N). 

In some cases problems of this type are solved by stochastic 

quasigradient methods (see Ermolev 1978; Ermolev and Nurminski 

1980). 

A Stochastic Case 

The stochastic aspects of linkage systems is a very impor- 

tant practical extension of the above case. Below we will con- 

sider one possible stochastic formulation of the linkage problem. 

Instead of common constraint (5), let (5') be the constraint 

with only the vector of total resources being random. Denote 

this by d (w) = (dl (w) , . . . , dr (w) ) , where w is a random parameter 

which is supposed to be an element of some probabilistic space. 

Let us assume that the distribution of resources between 

subsystems be carried out according to the proportions: 

yj(k) = h.  (k)d. (w) ; j = 3 3 I 



where for unknown h(k) = (hl (k). . . ., h (k)) r 

Consider an optimal solution x(k,h,w) for the k-th subsystem 

which maximizes (1) subject to (2); (4) and 

where H(k) is a diagonal matrix with h.(k) on it diagonal and 
J 

h.(k) is fixed. It is natural to introduce the mathematical 
J 

expectation of the stochastic set valued mapping 

as the objective function of the whole system. If a(k) = c(k) , 
e (k) = 0, then function 

will be a concave function and the solution of the problem 

of linkage (the maximization of function F(h) subject to (12) 

can be obtained by a stochastic quasigradient method (see 

Ermolev 1978). This method is the natural extension of the 

generalized gradient method (10) to the stochastic case. 

Let hS = (hS (1 ) , . . . , hS ( N )  ) be an approximate solution 
0 1 S after s iterations, w , w ,..., w ,..., which result from 

independent draws over w. The second component vS(k) of the 

optimal solution (us (k) .vs (k) ) of subproblem 



S 
is obtained. Here H' (k) is the diagonal matrix with h .  (k) , 

3 
j = 1 ,  ..., r, at the main diagonal. Then the new approximation 

is 

where {h) is the set of h = (h(l), ..., h(N)), which are satisfied 
S 

according to (13); eS = (0 (11, ..., eS(N)), eS(k) = 
S s S 

= Q ~ , . . . ,  ~ ~ ( k ) ) ,  0 .  (k) = e .  (k)d. (wS). j = E. 
3 3 3 

It is not difficult to show that the conditional mathematical 

expectat ion 

where eh (hs) is the subgradient of F (h) . The convergence con- 

ditions of this kind of procedure follow from the general condi- 

tions for stochastic quasigradient methods. 

Dynamic Systems 

There may be several possibilities for formulating linkage 

problems for dynamic systems. Let us consider only one of them. 

The behavior of k = 1, ..., N subsystems is described by the 

following state equations 

k k where Z (t) are state variables, x (t) are control variables, 

and (t) are linkage variables. There are objective functions 

and constraints 



k k k x (t) E x  (t) , y (t) Eyk(t )  , t = O ,  ..., T-1 . (16) 

k k k k k k 
Here all matrices @ (t), $ (t), y (t) , A (t) , B (t) R (t) and 

k vectors are assumed to be fixed. Let x (t,y), t = 0,1 ,..., T-1 
k be an optimal control and z (t,y), t = 0,1, ..., T-I be the opti- 

mal trajectory of the k-th subsystem. The problem of linkage 
k is to find such linkage variables y (t), t = 0,1, ..., T-1, which 

maximize the set-valued mapping 

subject to 

k k k k k If c (t) = a (t), 6 (t) = B (t), e (t) = 0, then the problem of 

maximizing the concave function F (y) subject to (17) is the 

problem of decomposition of the dynamic systems. 

This particular problem arises, for instance, in planning 

a dairy farm: as cattle grow, the dairy farm subsystem is linked 

with the crop s:~bsystem. Similarly, a model of an agricultural 

region might be linked with a model of water resources management. 
k k 

Problems (12) - (18) are very difficult even if c (t) = a (t) , 
k k k 6 (t) = (3 (t), e (t) = 0. The development of special methods 

which take into account the dynamic structure of the problem 

is needed. In addition, these special methods would allow us 

to use different computers for running separate submodels. 

One such method was described in Ermolev (1978) and it is 

the extension of method (10) on a dynamic case. The remarkable 



feature of this method is that it is also applicable in the 

case when the coefficient of the original problem is subjected 

to random disturbances. This method, like (lo), consists.of 

solving the primal and dual problem. 

Problems (1 3) - (16) are equivalent to the following prob- 
k k lem--to find x (t), y (t) subject to constraints ( 1 7 )  and (18) 

which maximize function 

k k where variables X (t), p (t) are subjected to the constraints 

k k 
(20) 

p (T) = B (T) t = T-1 I . . . ,  0 

k' k' The method consists of the following. Let x (t, s) , y (t, s) ' be 

the approximation of optimal control and linking variables after 
k s iterations. Compute the corresponding trajectory z (t,s) from 

k k (13). For given x (t,s), Z (t,s) to find a solution of the 
k simple subproblems by choosing dual control X (t,s), t = T-1, ..., 0, 

k and corresponding trajectory p (t,s), t = TI  ..., 0, which minimize 

the linear function 



under constraints (20) and (21). According to the well-known 

discrete ~ontryagin's principle the solution of this problem is 

reduced to the solution of the simplest static, linear program- 

ming subproblems: 

min 
k k k k 

[ (A (t) ,bk(t)-~k(t)Zk(t,S)-~ ( t rs)-~ (t)y ( t r ~ )  I 
k 

c>X (t)>O - - 

k k 
where z (t,s) is a trajectory corresponding to control x (t,s) 

k 
and linking variables y (t,s) and vector c has a large number of 

k components. Let A (t,s) be the optimal solution of this subproblem 
k k k and p (t,s) be the trajectory found from (20) for A (t) = A (t,s) . 

The next approximation for optimal control will be 

1 N and for linking variables y (t,s) = (y (t,s) , . . . , y (t,s) ) 

where ll 
X (k) 

( ) is the projection operator on the set x (k) , 
II ( 9 )  is the projection operator on the set defined by constraints 
Y 

(16) and (17) , and ps are the step-size multipliers which should 

satisfy the same conditions as in procedure (1 0 )  y (t, s) = 
1 N 1 1 1 

= ( y  t , ~ ~ . . . ~  y (t,s)), ~ ( t , s )  = (e (t) - P (t+l,s)y (t) - 
1 1 N N N N - A (t1s)R t . . .  e (t) - p (t+l,s)y (t) - A ( t ,s)~~(t) ) .  



There may be a great variety of iterative methods for solving 

the described problems. The approach studied in this paper is 

based on methods of nondifferentiable optimization. These methods 

have some advantages which make them attractive for certain 

categories of users. Among these advantages are logical sim- 

plicity of algorithms which vary slightly in all the mentioned 

cases, low core requirements, numerical stability, and the pos- 

sibility of handling a relatively big problem on several small 

computers. 
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