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ABSTRACT 

We show that the theory of e-convergence, originally 

developed to study approximation techniques, is also useful 

in the analysis of the convergence properties of algorithmic 

procedures for nonlinear optimization problems. . 



APPROXIMATION AND CONVEXGENCE IN NONLINEAR OPTIMIZATION 

Hedy Attouch 
Roger J.-B. Wets 

INTRODUCTION 

In the late 601s,  motivated by the need to approximate 

difficult (infinite dimensional) problems instatistics [I], 

[21, stochastic optimization [3], variational inequalities [4], 

[5], [6] and control of systems, there emerged a new concept of 

convergence,called here e-convergence, for functions and operators. 

Since then a number of mathematicians have made substantial 

contributions to the general theory and have exploited the 

properties e-convergence to study a wide variety of problems, 

in nonlinear analysis [7] , convex analysis [8] , [9] , partial 

differential equations [10], homogenization problems [ll], 

(classical) variational problems [ 121 , [1 31 , optimal control 

problems [I 41 and stochastic optimization problems [IS] . Some 

parts of this theory are now well understood, especially the 

convex case, see [32] for a survey of the finite dimensional 

results. 

The objective of this paper is to exhibit the connections 

between e-convergence--basically an approximation scheme for 

unconstrained optimization--and the convergence of some 

algorithmic procedures for nonlinear optimization problems. 

Since we are mostly interested in the conceptual aspects of this 

relationship, it is convenient to view a constrained (or 

unconstrained) optimization problem, as the minimization of a 



f u n c t i o n  f  de f i ned  on R" and t a k i n g  i t s  v a l u e s  i n  t h e  ex tended 

r e a l s .  T y p i c a l l y ,  

t = o the rw i se ;  

where f o r  i = 0, 1 , .  . . , m ,  t h e  f u n c t i o n s  gi a r e  (con t inuous  and) 

f i n i t e - v a l u e d  . 
I n  s e c t i o n  2,  w e  i n t r o d u c e  and rev iew t h e  main p r o p e r t i e s  

o f  e-convergence i n  t h e  nonconvex case .  I n  p a r t i c u l a r  w e  show 

t h a t  e-convergence of a  c o l l e c t i o n  o f  f u n c t i o n s  { f v , v € ~ }  t o  a  

f u n c t i o n  f ,  i m p l i e s  t h e  convergence o f  t h e  op t ima l  s o l u t i o n s  i n  

a  sense  made p r e c i s e  i n  t h e  second p a r t  o f  t h a t  s e c t i o n .  The 

r e s u l t  showing t h a t  t h e  set  of  op t ima l  s o l u t i o n s  i s  t h e  l i m i t  

i n f e r i o r  o f  t h e  set  o f  €-opt imal  s o l u t i o n s  o f  t h e  approx imat ing  

problems appea rs  h e r e  f o r  t h e  f i r s t  t i m e .  I n  s e c t i o n  3 ,  w e  show 

t h a t  t h e  s o - c a l l e d  b a r r i e r  f u n c t i o n s ,  engender a  sequence o f  

f u n c t i o n s  t h a t  e-converge t o  f .  From t h i s  a l l  t h e  known 

convergence r e s u l t s  f o r  b a r r i e r  methods f o l l ow  r e a d i l y .  

The r e l a t i o n  between pointwise-convergence and e-convergence 

i s  c l a r i f i e d  i n  s e c t i o n  4 .  I t  i s  shown t h a t  i f  t h e  fami l y  

(f ,v€N} s a t i s f i e s  an equ i - sem icon t i nu i t y  c o n d i t i o n  t h e n  e- v  
and pointwise-convergence c o i n c i d e .  T h i s  equ i va lence  i s  ex- 

p l o i t e d  i n  s e c t i o n  5 t o  g i v e  a  (new) b l i t z p r o o f  o f  t h e  convergence 

r e s u l t s  f o r  p e n a l t y  methods. We a l s o  c o n s i d e r  e x a c t  p e n a l t y  

methods. 

F i n a l l y ,  i n  s e c t i o n  6 ,  w e  i n t r o d u c e  t h e  n o t i o n  o f  

e/h-convergence f o r  b i v a r i a t e  f u n c t i o n s .  I t  i m p l i e s ,  i n  a  

s e n s e  made p r e c i s e  i n  s e c t i o n  6 ,  t h e  convergence o f  t h e  

s a d d l e  p o i n t s .  The t h e o r y  and i t s  a p p l i c a t i o n  i s  n o t  y e t  f u l l y  

developed b u t  a s  i s  ske tched  o u t  i n  s e c t i o n  7 ,  it can  be used 

t o  o b t a i n  convergence r e s u l t s  f o r  m u l t i p l i e r  methods. 

I t  shou ld  be  emphasized t h a t  w e  e x p l o i t  h e r e  t h i s  

approx imat ion  t heo ry  f o r  o p t i m i z a t i o n  problems t o  obtain-and 

i n  some c a s e  s l i g h t l y  general ize--some convergence r e s u l t s  

f o r  c o n s t r a i n e d  o p t i m i z a t i o n .  There a r e  many o t h e r  connec t i ons  



t h a t  a r e  worth i n v e s t i g a t i n g ,  i n  p a r t i c u l a r  between 

e-convergence and s e n s i t i v i t y  a n a l y s i s  [16-191, and t h e  con- 

vergence c o n d i t i o n s  f o r  a l go r i t hms  modeled by po in t - t o - se t  

maps, see e . g . ,  [ 2 0 ] ,  [21 ]  and t h e  r e f e r e n c e s  g i ven  t h e r e i n .  

2 .  e-CONVERGENCE 

L e t  f  be  a  f u n c t i o n  d e f i n e d  on Rn and w i t h  v a l u e s  i n  t h e  

ex tended r e a l s .  By e p i  f ,  w e  deno te  t h e  ep ig raph  o f  f ,  i . e . ,  

Sy dom f ,  t h e  e f f e c t i v e  domain o f  f ,  i . e . ,  

dom f  = {x  I f  (x) < + . 

I ts hypograph i s  { ( x , a )  1 a< f  ( x )  ) o r  e q u i v a l e n t l y  { (x,a) ( (x,-a) Eepi(- f )  ) 

The f u n c t i o n  f  i s  l .sc .  ( l ower  semicont inuous)  i f  e p i  f  i s  c l o s e d  

o r  e q u i v a l e n t l y  i f  t o  eve ry  x E  R" and c > o ,  t h e r e  co r responds  a  

neighborhood V o f  x  such t h a t  f o r  a l l  y CV,  

' I  

The f u n c t i o n  i s  u . s c .  (upper  semicont inuous)  if -f i s  l . s c .  

L e t  {fv.vEN) be a  coun tab le  f am i l y  of  ex tended rea l - va l ued  

f u n c t i o n s  d e f i n e d  on Rn.  The e - l i m i t  i n f e r i o r ,  denoted by l i e f v l  

i s  d e f i n e d  by: f o r  x€Rn, 

( 2 . 1 )  ( l i e f v )  ( x )  = i n f  l i m i n f  f  ( x  ) , 
MCN p E M  1-1 1-1 
{x  + x , p E ~ )  

1-1 

where M w i l l  always be a n  i n f i n i t e  ( c o u n t a b l e )  s u b s e t  o f  N .  The 

e - l i m i t  s u p e r i o r ,  deno ted  by l s e f v ,  i s  d e f i n e d  s i m i l a r l y :  f o r  
- 

( 2 . 2 )  (1se fV)  ( x )  = i n f  l imsup f v  ( x v )  
~ x v + x , v E ~ )  v E N  



Since N C N ,  and liminf limsup, we have that 

Also, since { x v = x , v ~ ~ l C ~ x v ~ x , v ~ ~ l  we have that 

(2.4) lief G li f and lsef G 1s fv 

where li fv, the pointwise-limit inferior of the family {fV,v€N}, 
is defined by 

(2.5) (li fv) (x) = liminf fV'(x) 
v'-E N 

and 1s fv, the pointwise-limit superior, is given by 

(2.6) (1s f v) ( x) = limsup fv (x) . 
v E  N 

Finally, we note that 

(2.7) epi(liefv) = - Ls epi fv , 

and 

(2.8) epi(lsefv) = Li - epi fv 
I 

where - Li epi f and Ls epi fv are respectively the limits v - 
inferior and superior of the family of sets {epi fv ,vENl ,  i.e., 

(2.9) - ~i epi fv = ~ ( ~ , a ) = l i r n ~ ~ ~ ( ~ ~ , a ~ ) ) a ~ ~ f ~ ( ~ ~ ) l  , 

and 

(2.10) - LS epi fv = {(x,a)=lim (X ,aP) ( a  2f (X ,MCNI . P E M  P IJ P P  



The p r o p e r t i e s  of t h e s e  l i m i t  sets a r e  e l a b o r a t e d  i n  [22 ,  sect.  

251; i n  p a r t i c u l a r  w e  n o t e  t h a t  t hey  a r e  c l o s e d .  Th is  means 

t h a t  bo th  l i e f v  and l s e f v  have c l o s e d  ep ig raphs  o r  e q u i v a l e n t l y  

a r e  lower semicont inuous ( l . s c . ) .  

W e  s a y  t h a t  t h e  fami l y  { f v , v € ~ }  p-converges (converges 

po in tw i se )  t o  a  f u n c t i o n  f ,  w r i t t e n  f v  + f ,  if 
P 

I t  e-converges,  w r i t t e n  f V  i f  

o r  e q u i v a l e n t l y ,  i n  view of  (2 .3 )  i f  

I n  t h i s  c a s e ,  from (2 .7 )  and (2 .8 )  i t  f o l l ows  t h a t  

(2 .13)  - Ls e p i  f v  = e p i  f  = - L i  e p i  f  v  I 

i . e . ,  t h e  ep ig raph  o f  f  i s  t h e  l i m i t  o f  t h e  ep ig raphs .  Th i s  is 

why we r e f e r  t o  t h i s  t y p e  o f  convergence,  a s  e-convergence.  

Our i n t e r e s t  i n  e-convergence is spu r red  on  by t h e  f a c t  

t h a t  it e s s e n t i a l l y  i m p l i e s  t h e  convergence of  t h e  minima, 

t h i s  is made p r e c i s e  h e r e  below. Le t  

(2.14)  Av = argmin f v  = {XCR" ( f v  ( x )  = i n £  f v }  

and A = argmin f .  Then, i f  f v - t e f  



The relation is triviallysatisfied if Ls - A, is empty--this 

occurs if and only if for any bounded subset D of R", 

AvnD = qi for all v is sufficiently large. Otherwise, suppose 

that for some M C N ,  

x E AP and x + x - 
P P 

We need to show that x €A. To the contrary suppose that there 

exists such that f(2) < f (x) . Hence, by e-convergence 

(ls,fv)(~) = f(z) < f(x) = (liefv) (x) G liminf fP(xP) . 

Thus for some sequence {zv , v E N,:~ + x} and p sufficiently large 

contradicting the hypothesis that x E A . 
P P 

For €>Of  we denote by o-A, the set of points that are 

within E of m, the infimum of f. Similarly for v E N ,  let 

mv = inf fv , 

and 

E-A v = { x / ~ ~ ( x ) - E c ~  v } . 

If f + ef and mv + m, then 

and whenever m is finite 



Clearly to verify (2.16), it suffices to check the second 

inclusion. Suppose x E - Ls €-AVI then by definition of - Ls, there 

exists M C N  and {x -+x,pEMI such that 
1-I 

From this and the hypotheses, it follows that 

f(x) G (li f )(x) G liminf f (x ) G  lim m + E- = m + 
e 1-I !,EM 1-1 1-1 1-I 

and consequently x E €-A, 

In view of (2.16) and the fact that A = n E-A, to verify 
E>O 

(2.17). it suffices to derive the inclusion A C nE,O Li - €-AV. 

If A = 4 the inclusion is trivially satisfied. ThusI suppose 

that xEA # 4 .  Since f -+ f, it follows from (2.13) and (2.8) v e 
that there exists {(xv ,av)€ epi fv, WEN] such that (xvlav) -+ (x,m) . 
The statement will be proved if given any E>O, for v sufficiently 

large xvE €-AV or equivalently a G m v +  E. To the contrary, v 
suppose that for some E>O, there exists M E C N  such that for all 

LJEME r 

From this it would follow that 

contradicting the working hypothesis. 

It is noteworthy that although e-convergence always implies 

(2.15), in general this is not sufficient to imply that mv-+ m; 

even if all the quantities involved are finite,the functions 

{fvIvEN] and f are convex and continuous,and the {AVIvEN] 



and A a r e  nonempty. The fo l lowing example i l l u s t r a t e s  t h a t  

s i t u a t i o n :  L e t  

and 

Then mv -1 7' m = 0, Av = ] --, -v] and, 

- 1 (A  v a r i a n t  of t h i s  example d e f i n e s  f v  a s  v  x  on x <  0 , w i t h  t h e  

same f  a s  t h e  e - l im i t  func t ion .  Then mv -=f m = 0  ; h e r e  

Av = @.) 

However, i f  A i s  nonempty and m is f i n i t e ,  then  e-convergence 

always imp l ies  t h a t  

(2.18) m l imsup mv . 

To s e e  t h i s ,  simply no te  t h a t  (x,m) E  e p i  f  imp l i es ,  v i a  (2.1 3 )  

and t h e  d e f i n i t i o n  of - L i ,  t h a t  t h e r e  e x i s t s  { ( x v , a v ) E e p i f v , v E ~ )  

such t h a t  (xv,av)+(x,m) . Since a > mv v  f o r  a l l  vEN, we o b t a i n  

(2.18) by tak ing  l imsup on both s i d e s .  

I f  i n  a d d i t i o n  A = L i A V ,  o r  more generally i f  (2.17) is - 
s a t i s f i e d ,  then  m = l i m  m v  ' From (2.17) and t h e  d e f i n i t i o n  of 

L i ,  w e  have t h a t  t o  each x?A and E > O ,  t h e r e  corresponds a  - 
sequence {xVE €-AV, VRI) converging t o  x .  Hence 

rn = f ( x )  = ( l i e f )  (x )  < l imin f  f  (x  ) 4 E + l im in f  mv , 
vEN v v  vEN 

which wi th  (2.18) imp l ies  t h a t  m = l i m  m v '  Observe t h a t  w e  have 



shown t h a t  i f  m i s  f i n i t e  and f v  j e f ,  then mv + m  i f  and only 

i f  (2.17) i s  s a t i s f i e d .  

F i n a l l y ,  even i f  m = 2- it i s  poss ib le  t o  o b t a i n  v a r i a n t s  

of (2.17) t h a t  a r e  genuine t o  those  cases .  The development i s  

somewhat t e c h n i c a l  and would l ead  us too  f a r  a s t r a y  from t h e  

main s u b j e c t .  

3. BARRIER METHODS 

To i l l u s t r a t e  some of  t h e  imp l i ca t i ons  of  e-convergence, 

we d e r i v e  (and s l i g h t l y  g e n e r a l i z e )  t h e  s tandard  convergence 

r e s u l t s  f o r  b a r r i e r  methods a s  a  consequence of  t h e  p r o p e r t i e s  

of  e-convergence. (A.  Fiacco has r e c e n t l y  publ ished an 

i n t e r e s t i n g  and comprehensive survey of  b a r r i e r  methods[23] . )  

We cons ide r  t h e  non l inear  op t im iza t i on  problem 

(3 .1 )  Minimize go ( x )  s u b j e c t  t o  gi ( x )  0 i = l , . . . , m ,  

where f o r  i = 0 ,  ..., m ,  t h e  gi a r e  cont inuous rea l -va lued 

func t i ons  de f ined  on Rn.  W e  assume t h a t  

c l  i n t  S  = S = {xIgi ( x ) <  0 , i = l  , . . . , m l  , 

i . e . ,  S  is  t h e  c l o s u r e  of i ts  i n t e r i o r ,  Define 

(3 .2 )  i f  x E  S 

o therw ise  

and 

where t h e  ev>O a r e  s t r i c t l y  i nc reas ing  t o  + w i t h  v ,  and 

i s  cont inuous,  f i n i t e  i f  x E i n t  S  and + -  otherw ise ,  and i f  

x E i n t  S, 0+q (8 , x )  i s  s t r i c t l y  decreas ing  t o  0 .  I n  p a r t i c u l a r  

t h e s e  p r o p e r t i e s  of q  imply t h a t  g iven any x E S  and E > O ,  



(3.4) a(xv+x and v such that VV 2 VE ,q(Ov,xv) E . 
E 

To see this, for a given ~>O,let  Sv = { x ( ~ ( ~ ~ , x ) < E } .  The family 

of sets {Sv,vE~} are nested under inclusion andcl u vEN Sy = S t  
as follows from our assumptions. Hence (Ls - Sv=)Li - Sv = S, see e.g., 

124, Prop. 1 1  and thus every x in S is the limit of a sequence 

{xvE sv , VEN} from which ( 3 -41  follows immediately. 

The function q is called the barrier function. The most 

commonly used barrier functions are: 

with the understanding that lna  = - -  if a 4  9. It is easy to 

see that these functions and many variants thereof satisfy the 

assumptions laid out here above. 

Next, we show that fv+ef. We begin with lsefv G f . The 

inequality is clearly valid if x S. If x E S t  from (2.14) and 

the continuity of go, it follows that given any E>O, we can 

always find {xV,vEN} converging to x, such that for v sufficiently 

large 

Thus 

(liefv)(x) S limsup fv(xv) 4 limsup go(xv) + limsup q(evtxV) G 2 ~ +  f(x) 
vEN vEN vEN 

which yields the desired inequality since E is arbitrary. Again 

f <liefv is trivially satisfied if x S. If x E S t  let 

{x ,pEMCN} be arbitrary sequence converging to x. By continuity 
IJ 

of go, we have that for any E>O and sufficiently large, 



-11- 

(x ) . A fortiori, since q(e ,x) > 0 g0(x) - E G go 

- r = gO(x) - c g0(xu) + q(~~,x,,) = f (x,,) 
1-1 

I 

Thus 

This holds for every E > O  and every sequence Ex ,UEMCN) converging 
lJ 

to x, hence f (x) G liefv. 

Since the f e-converge to f, it follows from (2.15) that v 
if for each v, x* minimize f and x* is any cluster point of the v v 
sequence {x:,vE~), then x* minimize f, i.e., solves (3.1). Note 

that if f is in£-compact--i.e., if for some a E R ,  the set 

'a = s n {gO(x)G a} isnonempty and bounded--then not only is A nonempty 

but also for every v, 4 + Av C Sa . Thus in this case, we are 

guaranteed to find approximate solutions to (3.1) by minimizing 

the "unconstrained" functionals f . (The unconstrained v 
minimization of the f must start from a feasible point, there v 
are a number of ways to do this. A. Fiacco [23, p.400-4011 has 

suggested a method that can be viewed as a phase I barrier 

method. ) 

Also, the convergence of parameter-free barrier methods 

can be handled in this framework. For example, consider the 

sequence of functions 

where x *  minimizes f v-1 ' 
Under some regularity conditions v- 1 

[25] these penalty functions have the same properties as those 

considered at the beginning of this section. 

4. e-CONVERGENCE AND p-CONVERGENCE 

Sometimes it might be easier to verify p-convergence 

(pointwise) than e-convergence. It is thus useful to make 



explicit the relationship between these two types of convergence. 

Unfortunately, neither implies the other. To see this simply 

consider the collection (of l.sc. convex) functions. 

fV (xl ,x2) = vxl on dom fv = {(xl ,x2) IxlC 0,vxl~x2} , 

that e-converges to 

f(xl tx2) = X, on dom f = {(xl ,x2 ) Ix1< Otx2=O} 

and p-converges to 

f1(xl,x2) = 0 on dom f l =  dom f . 

However, if the collection is equi-l.sc. then e- and 

p-convergence imply the other [26,4 and 5 I .  The family 
P P 

{ fvtvE~l is equi-l.sc. if there exists a subset of D C R" such 

that conditions (4.1 ) and (4.2) are satisfied: 

(4.11 To each x E D I  . and E > 0, there corresponds a 

neighborhood V of x and v E  such that for all 

y E V and all v 2 vE  

(4.2) To each x 9 DI  and TI E R, there corresponds a 

neighborhood V of x and v such that for all 
ri 

y E V a n d v 2 v  
ri 

fv(y) 2 ri 

If the functions are finite-valued then equi-continuity--and a 

fortiori equi-Lipschitz--will imply equi-l.sc. but for our 

purposes those conditions are too restrictive since we view 

the fv as representing optimization problems, possibly involving 

constraints, and thus at best l.sc. and usually taking on the 

value + =. The equi-l.sc. condition is in some sense minimal 



since f -+ f and f v +  f imply (4.1) and (4.2) with D = dom f v e P 
[26. 3pl. 

5. (EXTERIOR) PENALIZATION METHODS 

The relation between p- and e-convergence can be exploited 

to yield the convergence of penalization methods. The results 

are not new but the proof should help in comsng to grip,s with the 

concept of equi-lower semicontinuity. We consider the nonlinear 

optimization problem: 

(5.1) Minimize go (x) 

Subject gi(x) G O  i = m 
- 

gi(x) = 0 i = m + 1, ..., m 

where for i = 0, ..., m, the gi are continuous real-valued 

functions defined on Rn. By S we denote the set of feasible 

solutions. D efine 

and 

where the B v  are strictly increasing with v to + =, and 

is continuous, nonnegative and finite; if x E s then p(fj,x,) = 0, 

otherwise O'p(0rx) is increasing uniformly to + oc on compact 

subsets of R" \ S. 

All common (exterior) penalty functions satisfy these 

conditions, as can easily be verified. For example 



with a 2 1 and B 2 1. 

It is obvious that the collection {fv,vEN} is equi-l.sc. 

- (4.1) and (4.2) are trivially satisfied with D = dom f--and 

that f v +  f, hence by the results alluded to in the previous 
P 

section f v+  f. From (2.15) it follows that if the x; minimize e 
the fv, then any cluster point x* of the sequence {x~,vEN} solves 

(5.1). As for barrier methods, the inf-compactness of f will 

grarantee the existence of the x *  and of some cluster point v 
x* that solves the original problem. 

Some results for exact penalty functions can also be derived 

directly from the general theory. If x E Av, for all v larger 

than some 3, then from ( 2.1 5) it follows that 2 E A and thus 

solves 5 . 1 .  This is the sufficiency theorem of Hahn and 

Mangasarian [27, Theorem 4.11. 

On the other hand suppose that we are in the situation when * 
the sequence of optimal solutions {x ,v€N) admit x* as a cluster v 
point. If we assume that g is locally Lipshitz--at least at 0 
x+-- then provided that the "slope" at x* of x +  p ( 8 , ~ )  on R" \ S 

becomes sufficiently steep, therewill exist such that for all 

v 2 8, x* E Av. By "slope" we mean here the following quantity: 

liminf inf [P (~~Y) / )Y  - x*l] 

'a 
{ x *  y E V n  ( R ~  \ S) 

where the {V } are nested collections of aeighborhoods Va of 
a 

X* such that n Va = {x*). For specific forms of the function 

p such as (5.4), more detailed conditions can be worked out; 

see e.g., [27, Theorem 4.41. 

6. CONVERGENCE OF BIVARIATE FUNCTIONS 

A number of algorithms for constrained optimization 

problems construct not only a sequence of approximate solutions 

but simultaneously build up approximates for the Lagrange 



m u l t i p l i e r s .  To s tudy  t h i s  t y p e  o f  convergence it i s  necessa ry  

t o  i n t r o d u c e  a  n o t i o n  of  convergence f o r  b i v a r i a t e  f u n c t i o n s  

t h a t  would have p r o p e r t i e s  s i m i l a r  t o  e-convergence i n  t h e  

u n i v a r i a t e  c a s e .  Such a  concep t  has been i n t r oduced  r e c e n t l y  by 

t h e  a u t h o r s  1281, [29]  and independen t l y  i n  t h e  convex-concave 

c a s e  by Bergstrom and McLinden [ 3 0 ] .  W e  s h a l l  o n l y  g i v e  h e r e  a  

ske tchy  d e s c r i p t i o n  o f  e/h-convergence, a l l  t h e  i m p l i c a t i o n s  

having n o t  y e t  been comp le te ly  worked o u t .  

Le t  { H ~ , V € N }  be a  f am i l y  of  b i v a r i a t e  f u n c t i o n s  d e f i n e d  on 

Rn X Rm w i t h  v a l u e s  i n  [-m,+ m] . A b i v a r i a t e  f u n c t i o n  H must be 

viewed a s  a  r e p r e s e n t a n t  o f  an equ i va lence  c l a s s ,  D ( H )  i s  t h e  

s u b s e t  o f  4" X 4 m  on which t h e  members o f  t h e  c l a s s  a r e  d e f i n e d  

w i thou t  any amb igu i t y ,  see [31 ]  f o r  a  d e t a i l e d  a n a l y s i s .  W e  s a y  

t h a t  t h e  Hv e/h-converge t o  a  member H o f  an  equ i va lence  c l a s s  

of  b i v a r i a t e  f u n c t i o n s ,  i f  f o r  a l l  ( x , y )  E D(H), w e  have t h a t  

(6 .1 )  f o r  a l l  M C N and eve ry  sequence {x I !J€M/ x,, + X I  I 
!J 

t h e r e  e x i s t s  {y ,!~€Mly + y )  such  t h a t  
lJ !J 

l im in f  H '  (x  
!J !J !JtY!J 

) 2 H ( X , Y )  ; 

( 6 .2 )  f o r  a l l  M C  N and eve ry  sequence {y , ! J E M ( ~  + y )  , 
!J !J 

t h e r e  e x i s t s  {x  ,!~EMlx,,-*x} such  t h a t  
!J 

W e  r e f e r  t o  t h i s  t y p e  of  convergence a s  e/h-convergence because 

t h e  ep ig raph  of  x +  M(x,y) i s  t h e  l i m i t  of  t h e  e p i g r a p h s  of  

x  + H v (x , y  ' )  w i t h  yf c o n v e r g i n g  t o  y  and t h e  hypograph o f  

y  + H ( x  , y )  i s  t h e  l i m i t  of t h e  hypographs o f  y  + Hv (x: y ) w i t h  

x" .converg ing t o  x.  From t h i s  it f o l l o w s  t h a t  i f  H i s  t h e  

e /h - l im i t  o f  a  sequence o f  b i v a r i a t e  f u n c t i o n s ,  it i s  n e c e s s a r i l y  

lower semicont inuous w i t h  r e s p e c t  t o  x  and upper  semicont inuous 

w i t h  r e s p e c t  t o  y.  For  o u r  pu rposes ,  t h e  main consequence o f  t h e  

e/h-convergence of  a  f am i l y  o f  b i v a r i a t e  f u n c t i o n s  i s  t h e  

imp l ied  convergence o f  t h e  s a d d l e  p o i n t s .  More s p e c i f i c a l l y :  

Suppose t h a t  f o r  some M C N , t h e  (x  
u t y l J  

) a r e  s a d d l e  p o i n t s  o f  



m 
t h e  f u n c t i o n  H , i . e . ,  f o r  a l l  y E R  and a l l  x E  R " ,  w e  have 

P 
t h a t  

W e  assume t h a t  f o r  a l l  p .  HP(xP,y  a r e  f i n i t e .  Moreover, 
P 

suppose t h a t  t h e  { H ~  , v E N ~ ,  e/h-converge t o  H t  (ZIT) = lim (x I Y  ) PEM P P 
and (G ,? )  E D,(H)  . Then i s  a s a d d l e  p o i n t  of  H w i t h  

- - 
assuming a g a i n  t h a t  H(x ,y )  i s  f i n i t e .  

To prove t h e  a s s e r t i o n ,  w e  proceed by c o n t r a d i c t i o n .  Suppose - - 
t h a t  ( x , y )  is n o t  a  s a d d l e  p o i n t .  Then a t  least one of  t h e  two 

i n e q u a l i t i e s  appear ing  i n  (6 .4)  must f a i l ;  w i t hou t  loss of  , 

g e n e r a l i t y ,  l e t  u s  suppose t h a t  t h e r e  e x i s t s  xE such t h a t  

- 
S ince  y  + y , by d e f i n i t i o n  o f  e/h-convergence ( 6 . 2 ) ,  t h e r e  e x i s t s  
A 

P 
x + x such t h a t  

11 E 

- 
( 6 . 5 )  l imsup H ( 2  

P P f Y P  
1 H(xE ' Y )  

Recall t h a t  ( x P , y P )  i s  a s a d d l e  p o i n t  which means t h a t  

Taking l im in f  on bo th  s i d e s ,  w e  g e t  

- - A 

H ( x , ~ )  4 l im in f  H ( X  ) l im in f  H P  ( xP IYP)  I 

P E M  
P P f Y P  P E  M 



which combined with (6.5) yields 

. . . . - - - 
H(x,Y) < liminf H (x ,yP) l i m s u ~  H 1-1 (x !JtY!J H(xEty) 

!J !J 

contradicting the working typothesis. 

7. METHOD OF MULTIPLIERS 

Our only purpose is to illustrate the potential use of the 

concept of e/h-convergence for bivariate functions to obtain 

convergenceproofs for multiplier methods. We consider the 

problem 

(7.1) Minimize gO(x) subject to gi(x) = 0 i=l,. . .,m 

where for i=O, ..., m, the functions gi are continuous. As usual 

by S = {xlgi(x)=O,i=l, ..., m}, we denote the feasibility region. 

The approximation to (7.1) are given by 

(7.2) Minimize go (x) subject to gi (x) = 9 i=1,. . . ,m i 

The idea being to have the 9 tend to zero and the problems 
i 

(7.2) would, in some sense, converge to (7.1). However, it is 

not quite in that form that we design the approximation scheme. 

To (7.2) we associate the bivariate function 

As a + + *, the family H (x,9) e/h-converges to a member of H v v 
of an equivalence class of bivariate which o n D  (H) takes on the 

form 

(7.4) H(x.9) = gO(x) if x E S  and {9=0} 
+* if x y S  and {8=0) 
-00 if x C S  and {8ZO} 

To see this simply observe that if (x,9) ED(H) and a 



sequence {x ,pEM) converges to x for some MCN, then simply 
lJ 

setting 8 8 , we see that (6.1) is satisfied, similarly if a 
lJ 

sequence {€I ,pEM) converges to 8, then with x G x  we obtain 
lJ lJ 

(6.2). Thus if the saddle points of the bivariate functions HV 

admit a cluster point in D(H) it will be a saddle point if H and 

hence an optimal solution of (7.1). 

Assuming that for i=O,m, the functions g are differentiables 
i 

then if ( ~ ~ ~ 0 ~ )  is a saddle point of Hv satisfies the equations: 

Substituting in (7.5) it yields 

These conditions suggest a "multiplier method", where we solve 

(7.7), adjust 8' by means of (7.6) and then repeat. The method 

is just a variant of a penalty method and hence will be exact 

under some regularity conditions. 
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