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ABSTRACT

We show that the theory of e~convergence, originally
developed to study approximation techniques, is also useful
in the analysis of the convergence properties of algorithmic

procedures for nonlinear optimization problems,
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APPROXIMATION AND CONVERGENCE IN NONLINEAR OPTIMIZATION

Hedy Attouch
Roger J.-B. Wets

INTRODUCTION

In the late 60's, motivated by the need to approximate
difficult (infinite dimensional) problems instatistics [1],
[2], stochastic optimization [3], wvariational inequalities [4],
[5], [6] and control of systems, there emerged a new concept of
convergence, called here e-convergence, for functions and operators.
Since then a number of mathematicians have made substantial
contributions to the general theory and have exploited the
properties e-convergence to study a wide variety of problems,
in nonlinear analysis [7], convex analysis [8], [9], partial
differential equations [10], homogenization problems [11],
(classical) variational problems [12], [13], optimal control
problems [14] and stochastic optimization problems [15]. Some
parts of this theory are now well understood, especially the
convex case, see [32] for a survey of the finite dimensional

results.

The objective of this paper is to exhibit the connections
between e-convergence--basically an approximation scheme for
unconstrained optimization--and the convergence of some
algorithmic procedures for nonlinear optimization problems.
Since we are mostly interested in the conceptual aspects of this
relationship, it is convenient to view a constrained (or

unconstrained) optimization problem, as the minimization of a

-1-



-2-

function f defined on R" and taking its values in the extended

reals. Typically,

f(x) = [go<x) if g (x)<0 i=1,..., m,

+ oo otherwise;

where for i = 0, 1,..., m, the functions g; are (continuous and)

finite-valued.

In section 2, we introduce and review the main properties
of e-convergence in the nonconvex case. In particular we show
that e-convergence of a collection of functions {fv,vEN} to a
function £, implies the convergence of the optimal solutions in
a sense made precise in the second part of that section. The
result showing that the set of optimal solutions is the limit
inferior of the set of e-optimal solutions of the approximating
problems appears here for the first time. 1In section 3, we show
that the so-called barrier functions, engender a sequence of
functions that e-converge to f£f. From this all the known

convergence results for barrier methods follow readily.

The relation between pointwise-convergence and e~convergence
is clarified in section 4. It is shown that if the family
{fv,vGN} satisfies an equi~semicontinuity condition then e-
and pointwise-convergence coincide. This equivalence is ex-
ploited in section 5 to give a (new) blitzproof of the convergence
results for penalty methods. We also consider exact penalty

methods.

Finally, in section 6, we introduce the notion of
e/h-convergence for bivariate functions. It implies, in a
sense made precise in section 6, the convergence of the
saddle points. The theory and its application is not yet fully
developed but as is sketched out in section 7, it can be used

to obtain convergence results for multiplier methods.

It should be emphasized that we exploit here this
approximation theory for optimization problems to obtain=-~and
in some case slightly generalize--some convergence results

for constrained optimization. There are many other connections



that are worth investigating, in particular between
e-convergence and sensitivity analysis [16-19], and the con-
vergence conditions for algorithms modeled by point-to-set

maps, see e.g., [20], [21] and the references given therein.

2. e-CONVERGENCE

Let £ be a function defined on R and with values in the

extended reals. By epi f, we denote the epigraph of f, i.e.,

n+1 |

epi £ = {(x,a)€ER f(x)<al ,

by dom f, the effective domain of £, i.e.,

dom £ = {x| £(X)< + =}

Its hypograph is {(x,a) |a< £ (x) } or equivalently {(x,a)| (x,-a) €epi(-f)}

The function f is l.sc. (lower semicontinuous) if epi f is closed

or equivalently if to every x €R™ and €>0, there corresponds a
neighborhood V of x such that for all y €V,

£(y)=f (x)-€ .

The function is u.sc. (upper semicontinuous) if -f is l.sc.

Let {fv,vEN} be a countable family of extended real-valued
functions defined on R™. The e-limit inferior, denoted by liefv’
is defined by: for XERn,

(2.1) (liefv)(x) = inf liminf £ (x ) .
MCN HEM H
{xu+x,p€M}

where M will always be an infinite (countable) subset of N. The
e-limit superior, denoted by lsefv, is defined similarly: for

n
X E€R

’

(2.2) (1s £ )(x) = inf limsup £ (x )
eV {xv+x,\)€N} ven v Vv



Since NCN, and liminf < limsup, we have that
(2.3) llefv < lsefv .
Also, since {xv= x,vEN}C{xV +x,vEN} we have that

i <1lj <
(2.4) llefv 1i fv and lsefv : 1ls fv

where 1li fv’ the pointwise-limit inferior of the family {fV,VGN},

is defined by

(2.5) (1i £ ) (x) = liminf f_(x)
v VEN v

and 1ls fv’ the pointwise~limit superior, is given by

(2.6) (ls £ )(x) = limsup £ (x)
v ve N VY

Finally, we note that

(2.7) epi(liefv) = Ls epi £,
and
(2.8) epl(lsefv) = Li epi fv )

where Li epi fv and Ls epi fv are respectively the limits

inferior and superior of the family of sets {epi fV,V‘EN}, i.e.,

(2.9) Li epi £ = {(x,a)=lim g (x ,a ) la,Z £ (x )}
and
(2.10) Ls epi £ = {(,x,a)=limuEM(xu,au) |au>fu(xu) MCN}



The properties of these limit sets are elaborated in [22, sect.
25]; in particular we note that they are closed. This means
that both liefv and lsefv have closed epigraphs or equivalently

are lower semicontinuous (l.sc.).

We say that the family {fv,vGN} p-converges (converges

pointwise) to a function £, written fv-*pf, if
(2.11) 1s £ <« f < 1i f
v v

It e-converges, written fv »ef, if

< £ < 1i
(2.12) lsefv f llefv ’

or equivalently, in view of (2.3) if

f 1i £
e v e v

’_J

w
I
h
Il

In this case, from (2.7) and (2.8) it follows that

(2.13) Ls epi fv epi £ = Li epi fv ’

i.e., the epigraph of f is the limit of the epigraphs. This is

why we refer to this type of convergence, as e-convergence.

Our interest in e-convergence is spurred on by the fact
that it essentially implies the convergence of the minima,

this is made precise here below. Let

_ . _ n .
(2.14) A = argmin fv = {x€R lfv(x)—lnf fv}
and A = argmin f. Then, if fv"ef

(2.15) Ls A CA
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The relation is trivially satisfied if Ls A, is empty--this

occurs if and only if for any bounded subset D of rR",

AvnD
that for some MCN,

-+

X and X

€ A
H H

X
u
We need to show that x €A.
exists x such that f(x) < f(x).

(lsefv)(§)

¢ for all v is sufficiently large.

f(x) € f(x)

Otherwise, suppose

To the contrary suppose that there

Hence, by e-convergence

(liefv)(x) < liminf fu(xu) .

Thus for some seguence {;{v ,vEN,iv +x} and u sufficiently large

f'IJ (xu) < fu (xu) ’

contradicting the hypothesis that xue Au.

For €>0, we denote by €-A3,

within ¢ of m, the infimum of £f.

m, = inf £,
and
e-A = {X,fv(x)'€<“$}
If fv-+ef and m, > m, then
(2.16)

and whenever m is finite

(2.17) A N Li eE-A, .

€>0

the set of points that are

Similarly for vE€N, let

i - C hanl C -
Li e-A Ls e-a €E~A ,
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Clearly to verify (2.16), it suffices to check the second
inclusion. Suppose X € Ls E-Av’ then by definition of Ls, there

exists MCN and {xu+x,uEM} such that

f (x) < m + ¢
U u U

From this and the hypotheses, it follows that

f(x) < (li_ f )x) < liminf f (x )S limm + € = nq + ¢
e u . 1 EM oM H

and consequently x € €-a,

In view of (2.16) and the fact that A = N e-A, to verify
e>0

(2.17), it suffices to derive the inclusion A C ﬁ€>0 Li E-Av’

If A = ¢ the inclusion is trivially satisfied. Thus, suppose
that x€A # ¢. Since fv'*ef' it follows from (2.13) and (2.8)
that there exists {(xv,av)EEepifv,vEN} such that (xv,av)+(x,m).
The statement will be proved if given any e€>0, for v sufficiently

< m,+ €. To the contrary,

large va E—Av or equivalently a,
suppose that for some €>0, there exists MECIQ such that for all

uEME,

m +e < f (x) <€ a .
H H U u

From this it would follow that

lim mu + e=m+e<m-=1lim au '

contradicting the working hypothesis.

It is noteworthy that although e-convergence always implies
(2.15), in general this is not sufficient to imply that m, > m;
even if all the quantities involved are finite, the functions

{fv,vEN} and f are convex and continuous, and the {Av,veN}
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and A are nonempty. The following example illustrates that
situation: Let

fv(x) = -1 if x< -y
—1x if =v< x <0
if X>O ’
and
f(x) = [o if x<o0
X if x=20 -
Then m =E-1m-=20, Av = ]=o0,~y] and,

L_SA\)=¢CA=]'°°'0} .
(A variant of this example defines fv as v x on x< 0, with the
same f as the e-limit function. Then m
A, =9¢.)

-0 A~ m = 0; here

However, if A is nonempty and m is finite, then e-convergence
always implies that

(2.18) m =2 limsup m, -

To see this, simply note that (x,m) € epi £ implies, via (2.13)
and the definition of Li, that there exists {(x ,a )€epif ,vEN}
such that (xv,av)*(x,m). Since a, = m for all vEN, we obtain

(2.18) by taking limsup on both sides.

If in addition A = LiA , or more gcrerally if (2.17) is

satisfied, then m = lim m. From (2.17) and the definition of

Ei, we have that to each x€A and ¢>0, there corresponds a

sequence {xVEE-AV,vGN} converging to x. Hence

m= f(x) = (lief)(x) < liminf fv(x ) £ ¢ + liminf m
VEN v vEN

which with (2.18) implies that m = lim m,. Observe that we have



shown that if m is finite and fv *éf, then m, >m if and only
if (2.17) is satisfied.

Finally, even if m = %% it is possible to obtain variants
of (2.17) that are genuine to those cases. The development is
somewhat technical and would lead us too far astray from the

main subject.

3. BARRIER METHODS

To illustrate some of the implications of e~-convergence,
we derive (and slightly generalize) the standard convergence
results for barrier methods as a consequence of the properties
of e-convergence. (A. Fiacco has recently published an
interesting and comprehensive survey of barrier methods[23].)

We consider the nonlinear optimization problem
(3.1) Minimize go(x) subject to gi(x)‘< 0 i=11,...,m,

where for i = 0,...,m, the g; are continuous real-valued

functions defined on R"”. We assume that

cl int S = 8 = {x|gi(x)<(),i=1,...,m} ,
i.e., S8 is the closure of its interior. Define
(3.2) f(x) = go(x) if x€s
+ o0 otherwise
and
(3.3) fv(X) = g (x) + q(8,,x)

where the 6v>0 are strictly increasingto + * with v, and
n
q: 10,*[X R >]0,%]
is continuous, finite if x€int S and +* otherwise, and if

x€int S, 6>q (6,x) 1is strictly decreasing to 0., In particular

these properties of g imply that given any x€$ and >0,
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<
(3.4) H(xv-*x and %:) such that ¥v 2 g;,q(ev,xv) € .

To see this, for a given €>0, let S, = {x|q(6v,x)<§e}. The family

ven Sy = Sy

as follows from our assumptions. Hence (Ls Sv=)££ Sv = S5, see e.qg.,

of sets {Sv,vGN} are nested under inclusion andclu

[24, Prop. 1] and thus every x in S is the limit of a sequence
{xveisv,uGN} from which (3.4). follows immediately.-

The function g is called the barrier function. The most

commonly used barrier functions are:

1 1

(3.5) q(8,x) = -6" /1 [min(0,qg; (x))]"
- . -2
(3.6) a6, = 67°2™ [min(0,q, (x)]
_ -1y m .
(3.7) g(6,x) = -6 Ei=1ln[m1n(.5,-gi(x))]
with the understanding that lna = -« if a< Q. It is easy to

see that these functions and many variants thereof satisfy the

assumptions laid out here above.

Next, we show that fv-*ef. We begin with lsefv=< f. The
inequality is clearly valid if x € S. If x € §, from (2.14) and
the continuity of Jor it follows that given any €>0, we can
always find {xv,vEN} converging to x, such that for v sufficiently

large
- <
go(xv) go(x) € .

Thus

(11 £ ¥ x) < limsup f (x ) < limsup g _(x. ) + limsup g(6_,x ) < 2e+ £(x)
e v VEN vy vey oV VEN vy

which yields the desired inequality since & is arbitrary. Again
f < liefv is trivially satisfied if x € S. If x € 5, let
{xu,uGMCN} be arbitrary sequence converging to x. By continuity

of Jor We have that for any e£>0 and sufficiently large,
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go(x) - £ < gO(Xu)' A fortiori, since g(6,x) > 0
- = - < =
£(x) - e =9gy(x) —csgplx) +q6,x)=*£f&x) ,

Thus

f - < 1i f
(x) £ imsup u(xu)

This holds for every €>0 and every segquence {xu,u€M<ZN} converging

< 11
to X, hence f(x) llefv'

Since the fv e-converge to f, it follows from (2.15) that
if for each v, x; minimize fv and x* is any cluster point of the
sequence {xc,vEN}, then x* minimize f, i.e., solves (3.1). Note
that if f is inf-compact--i.e., if for some a €R, the set
sa =SSN {go(x)< al is nonempty and bounded--then not only is A nonempty
but also for every v, ¢ # AJC S, - Thus in this case, we are
guaranteed to find approximate solutions to (3.1) by minimizing
the "unconstrained" functionals fv' (The unconstrained
minimization of the fv’ must start from a feasible point, there
are a number of ways to do this. A. Fiacco [23, p.400-401] has
suggested a method that can be viewed as a phase I barrier
method.)

Also, the convergence of parameter-free barrier methods
can be handled in this framework. For example, consider the

sequence of functions

-2sm . -1
= * -
(3.8) £ (x) 9o (¥ + [gg(x¥_4) 9o (x)] Z;=Jmln(0.gi(X))]
where xJ_1 minimizes fv—1' Under some regularity conditions

[25] these penalty functions have the same properties as those

considered at the beginning of this section.

4. e-CONVERGENCE AND p-CONVERGENCE

Sometimes it might be easier to verify p-convergence

(pointwise) than e-convergence. It is thus useful to make
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explicit the relationship between these two types of convergence.
Unfortunately, neither implies the other. To see this simply

consider the collection (of l.sc. convex) functions.

= = < =
fv(x1,x2) vx, on dom fv {(x1,x2)|x1 0,vxy x2} ,

that e-converges to

f(x,,%x,) = x, on dom £ {(x1,x2)|x1< 0,x2=0}

and p-converges to

f'(x1,x2) = 0 on dom f'= dom £ .

However, if the collection is equi-l.sc. then e- and

p-convergence imply the other [26,4_  and 5p]‘ The family

P
{fv,vGN} is equi-l.sc. if there exists a subset of D C R" such

that conditions (4.1) and (4.2) are satisfied:

(4.1) To each Xx€ D, . and € > 0, there corresponds a
neighborhood V of x and Ve such that for all
y €V and all v = Ve

fv(y) > £,(x) - e

(4.2) To each x € D, and n € R, there corresponds a
neighborhood V of x and Vn such that for all

y € Vand v 2 vy

>
£, () n .

If the functions are finite-valued then equi-continuity--and a
fortiori equi-Lipschitz--will imply equi-~l.sc. but for our
purposes those conditions are too restrictive since we view

the fv as representing optimization problems, possibly involving
constraints, and thus at best l.sc. and usually taking on the
value + %, The equi-l.sc. condition is in some sense minimal
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since fv-*ef and fv-*pf imply (4.1) and (4.2) with D = dom f
(26, 3p]'

5. (EXTERIOR) PENALIZATION METHODS

The relation between p- and e-convergence can be exploited
to yield the convergence of penalization methods. The results °
are not new but the proof should help in coming to grips with the
concept of eqgui-lower semicontinuity. We consider the nonlinear

optimization problem:

(5.1) Minimize go(x)
Subject gi(x) <0 i=1,..., m

g.(x) =0 i=m+1,..., m

where for 1 = 0,..., m, the g, are continuous real-valued
functions defined on R™. By S we denote the set of feasible

solutions. Define

(5.2) f(x) = go(x) if x € s

+ oo otherwise
and

(5.3) fv(x) = go(x) + p(ev,x)

where the ev are strictly increasing with v to + %, and
n
p: J0,<[ X R = [0,%]

is continuous, nonnegative and finite; if x € S then p(6,x,) = 0,
otherwise 0 2>p(6,X) 1is increasing uniformly to + ® on compact
subsets of R" \ S.

All common (exterior) penalty functions satisfy these

conditions, as can easily be verified. For example
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(5.4) p(6,x) = 8Z7 [max (0,g,(x))1% + o%T

with ¢ 2 1 and g =2 1.

It is obvious that the collection {fv,vGN} is equi-l.sc.
- (4.1) and (4.2) are trivially satisfied with b = dom f--and
that fv-*pf, hence by the results alluded to in the previous
section fv-*ef. From (2.15) it follows that if the XS minimize
the fv' then any cluster point x* of the sequence {x:,vEN} solves
(5.1). As for barrier methods, the inf-compactness of f will
grarantee the existence of the XJ and of some cluster point

x* that solves the original problem.

Some results for exact penalty functions can also be derived

directly from the general theory. 1If x € Av, for all v larger
than some v, then from (2.15) it follows that X € A and thus
solves (5.1). This is the sufficiency theorem of Hahn and

Mangasarian [27, Theorem 4.1].

On the other hand suppose that we are in the situation when
the sequence of optimal solutions {x*v,vEN} admit x* as a cluster
point. If we assume that 90 is locally Lipshitz--at least at
X*~--then provided that the "slope" at x* of x> p(6,x) on R®\ s
becomes sufficiently steep, therewill exist 6 such that for all

ev >0, x* € Av' By "slope" we mean here the following quantity:

liminf inf p(o,y)/|y - x*|]
v, = {x#} yeEvN (RT\ 8)

where the {Va} are nested collections of neighborhoods Va of
x*¥ such that N v, = {x*}. For specific forms of the function
p such as (5.4), more detailed conditions can be worked out;

see e.g., [27, Theorem 4.4].

6. CONVERGENCE OF BIVARIATE FUNCTIONS

A number of algorithms for constrained optimization
problems construct not only a sequence of approximate solutions

but simultaneously build up approximates for the Lagrange
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multipliers. To study this type of convergence it is necessary
to introduce a notion of convergence for bivariate functions
that would have properties similar to e-convergence in the
univariate case. Such a concept has been introduced recently by
the authors [28], [29] and independently in the convex-~concave
case by Bergstrom and McLinden [30]. We shall only give here a
sketchy description of e/h-~convergence, all the implications

having not yet been completely worked out.

Let {HV,vEN} be a family of bivariate functions defined on
rR? x g™ with values in [-%,+ =], A bivariate function H must be
viewed as a representant of an equivalence class, D(H) is the
subset of R® XR™ on which the members of the class are defined
without any ambiguity, see [31] for a detailed analysis. We say
that the Hv e/h-converge to a member H of an equivalence class

of bivariate functions, if for all (x,y) € D(H), we have that

(6.1) for all MCN and every sequence {xu,ueMlxu-*x},

there exists {yu,uGM yu*)d-such that

liminf H ’ = ’ i
lman.u u(xu yu) H(x,vy)

(6.2) for all MC N and every sequence {yu,u€M|Yﬂ+y},
there exists {xu,ueMlxu->x} such that

limsu H ’ < ’ .
P, U(XU Yu) H(x,y)

We refer to this type of convergence as e/h-convergence because
the epigraph of x> H(x,y) is the limit of the epigraphs of
x-*I{V(x,y')with y' ‘converging to y and the hypograph of

y *H(x,y) is the limit of the hypographs of y - Hv(xﬁy) with

x' ‘converging to x. From this it follows that if H is the
e/h-limit of a sequence of bivariate functions, it is necessarily
lower semicontinuous with respect to x and upper semicontinuous
with respect to y. For our ﬁurposes, the main consequence of the
e/h-convergence of a family of bivariate functions is the

implied convergence of the saddle points. More specifically:

Suppose that for some M C N, the (xu,yu) are saddle points of
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the function Hu, i.e., for all y € R™ and all x € Rn, we have
that

< < ,
(6.3) Hu(xu’Y) Hu(xu’yu) Hu(x yu)

We assume that for all yu, Hu(xu,yu) are finite. Moreover,
suppose that the {H ,vEN}, e/h-converge to H, <§’§)=:lﬁ%J€Mcﬂﬂyu)
and (%,y) €D(H). Then (X,y) is a saddle point of H with

(6.4) H(X,y) < H(X,y) < H(x,y):

assuming again that H(§,§) is finite.

To prove the assertion, we proceed by contradiction. Suppose
that (%,y) is not a saddle point. Then at least one of the two
inequalities appearing in (6.4) must fail; without loss of

generality, let us suppose that there exists X such that
H(x_,y) < H(X,y)

Since yu'* vy, by definition of e/h-convergence (6.2), there exists

A

X = x_such that
u €
.5 ; H (] , < H Y
(6.5) limsup U(Xu yu) (x€ v)
Recall that (xu,yu) is a saddle point which means that

H < H (x
u(xu’yu) u( u’yu)

Taking liminf on both sides, we get

H(x,y) < liminf H (x ,y ) < liminf H (x.,v.)
UEMUUU UGMUUU
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which combined with (6.5) yields

~ ~

H(x,y) < liminf Ho(x ,y) < limsup H (x ,y) < H(x_,y)

contradicting the working typothesis.

7. METHOD OF MULTIPLIERS

Our only purpose is to illustrate the potential use of the
concept of e/h-convergence for bivariate functions to obtain

convergence proofs for multiplier methods. We consider the

problem
(7.1) Minimize go(x) subject to gi(x) =0 i=1,...,m
where for i=0,...,m, the functions g; are continuous. As usual

by S = {x|gi(x)=0,i=1,...,m}, we denote the feasibility region.

The approximation to (7.1) are given by

(7.2) Minimize go(x) subject to gi(x) = ei i=1,...,nm

The idea being to have the ei tend to zero and the problems
(7.2) would, in some sense, converge to (7.1). However, it is
not quite in that form that we design the approximation scheme.
To (7.2) we associate the bivariate function

o)

— .y m _ 2,22
(7.3) Hv(X,G) = gO(X)'+lz%;1[(gi(x) ei) 9, 67 v]

As ovf + o, the family Hv(x,e) e/h-converges to a member of H
of an equivalence class of bivariate which on D (H) takes on the

form
(7.4) H(x,8) = go(x) if x€S and {6=0}
+00 if x€S and {8=0}

-0 if xCs and {8+#0}

To see this simply observe that if (x,6) €D(H) and a
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sequence {xu,UEM} converges to x for some MCN, then simply
setting euESB, we see that (6.1) is satisfied, similarly if a
sequence {eu,uem} converges to 0, then with xu§>< we obtain
(6.2). Thus if the saddle points of the bivariate functions Hv
admit a cluster point in D(H) it will be a saddle point if H and
hence an optimal solution of (7.1).

Assumlng that for i=0,m, the functions g are differentiables
then if (x .0 ) is a saddle point of H satlsfles the equations:

(7.5) Vg, (x") + 5T, 0, (g; (x")=8]) Vg, (x”) =0 ,
vo_ v _
(7.6) ei = gi(x )/(°v=l)

Substituting in (7.5) it yields

(7.7) Vg, (x*) + o (1-0,"H I g (x¥) Vg, (x") = 0

These conditions suggest a "multiplier method"”, where we solve
(7.7), adjust 8V by means of (7.6) and then repeat. The method
is just a variant of a penalty method and hence will be exact

under some regularity conditions.
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